
FITSIO, NetCDF, HDF4 and HDF5
Performance

Some Benchmarks Results

Elena Pourmal
NCSA

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-2

Benchmark Environment
(software)

• Software
– HDF4 r1.4
– HDF5 1.4.2 and 1.4.2-post1 (both sequential only)
– NetCDF 3.5
– FITSIO version 2.2
– ‘System” benchmark uses open, write, read and close

UNIX functions.

• each measurement was taken 10 times, best
times were collected

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-3

Benchmark Environment
(hardware)

• 440-Mhz UltraSPARC i-Iii (Solaris 2.7)
– 1G memory

• 2 - 550 Mhz Pentium III Xeon (Linux 2.2.18smp)
– 1G memory

• Dual 450-Mhz Pentium II (FreeBSD 4.4)
– 512 MB memory
– SCSI-2 disk

• NCSA O2K (IRIX64)
– http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/Origin

2000/

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-4

Benchmarks

• Creating and writing contiguous dataset; sizes
vary from 2MB to 512MB

• Reading contiguous dataset; sizes vary from 2MB
to 256MB

• Reading contiguous hyperslab; sizes vary from
1MB to 64MB

• Reading every second element of the hyperslab;
sizes of selections vary from 0.25MB to 16MB

• Creating and writing up to 1000 1MB datasets;
reading back the dataset created last

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-5

Some Remarks

• “dataset” describes array stored in the FITS,
HDF4, HDF5, NetCDF and UNIX binary files, i.e.
“dataset” means
– “primary array” and “extension” for FITSIO
– “variable” for NetCDF
– “SDS or scientific data set” for HDF4
– HDF5 dataset
– raw data stored in UNIX binary file

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-6

Creating and Writing
Contiguous Dataset

• In this test we created a file and stored two
dimensional array of short unsigned integers;
size of array varied from 2MB and up to 512MB

• We measured
– Total time to

• create a file

• create a dataset

• write a dataset

• close the dataset and the file

– Time to write dataset only

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-7

Creating and Writing Dataset on IRIX (total time)

0

1

2

3

4

5

6

7

8

2 4 8 16 32 64 128 256

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s FITSIO

HDF4

HDF5

NetCDF without fill
values
System

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-8

Creating and Writing Dataset on LINUX
(total time)

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s FITSIO

HDF4
HDF5 (native)
HDF5 (big-endian)
NetCDF
System

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-9

Creating and Writing Dataset on LINUX
 (write time)

0

2

4

6

8

10

12

2 4 8 16 32 64 128 256

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s

HDF5 (native)

HDF5 (big-endian
conversion)
HDF5-post1 (big-endian
conversion)
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-10

Reading Contiguous Dataset

• In this test we created two dimensional array of
short unsigned integers than we read it back; size
of array varied from 2MB and up to 512MB

• We measured
– Total time to

• open a file

• open a dataset

• read a dataset

• close the dataset and the file

– Time to read dataset only

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-11

Reading Contiguous Dataset on FreeBSD
 (read time only)

0

1

2

3

4

5

2 4 8 16 32 64

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s FITSIO

HDF4
HDF5 (native)
HDF5 (conversion)
NetCDF
System

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-12

Reading Contiguous Dataset on IRIX
(total time)

0

2

4

6

8

10

12

14

64 128 256 512

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF4
HDF5
NetCDF
System

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-13

Reading Contiguous Hyperslab
of the Dataset

• In this test we created two dimensional array of
short unsigned integers and than read
contiguous hyperslab of the dataset; size of the
dataset was up 256 MB and size of the hyperslab
varied from 1MB up to 64 MB

• We measured
– Total time to open a file, dataset, select and read hyperslab,

close the dataset and the file

– Time to read hyperslab only

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-14

Reading Continuous Hyperslab on IRIX
(read time only)

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF4
HDF5
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-15

Reading Contiguous Hyperslab on IRIX
(read time only)

0

2

4

6

8

10

12

32 64

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF4
HDF5
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-16

Reading Every Second Element
in the Hyperslab

• In this test we created 256 MB two dimensional
array of short unsigned integers; then we read
read back every second element of the selected
hyperslab

• We measured
– Total time to open a file and dataset, select and read every

second element of the hyperslab, close the file and dataset

– Time to read selection only

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-17

Reading Every Second Element of the
Hyperslab on IRIX (total time)

0
20
40
60
80

100
120
140
160

0.25 0.5 1 2 4 8 16

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF4
HDF5
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-18

Reading Every Second Element of the
Hyperslab on IRIX (total time)

0
5

10
15
20
25
30
35
40

0.25 0.5 1 2 4 8 16

Data buffer size in MB

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF5
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-19

Creating and Writing
Multiple Datasets

• In this test we created up to 1000 1MB two
dimensional datasets of short unsigned integers;
then we read the last created dataset

• We measured
– Time to

• create a file

• create and write N datasets

• close all datasets and the file

– Time to open the file, read N-th dataset and close the file

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-20

Creating and Writing Datasets on IRIX

0

5

10

15

20

25

30

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
0

10
00

Number of datasets in the file

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF4
HDF5
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-21

Reading Dataset from the Files

0

0.5

1

1.5

2

2.5

3

3.5

100 200 300 400 500 600 700 800 900

Number of datasets in the file

T
im

e
in

 s
ec

o
n

d
s

FITSIO
HDF4
HDF5
NetCDF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-22

Reading a dataset from the file on IRIX

0

0.01

0.02

0.03

0.04

0.05

10
0

50
0

90
0

13
00

17
00

21
00

25
00

29
00

Number of datasets

T
im

e
in

 s
ec

o
n

d

NetCDF

HDF5

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-23

Summary

• HDF5 is 2-6 times faster when performs native
write/read

• HDF5 needs some tuning when datatype
conversion is used

• When subsetting is used, HDF5 performs about
the same as FITSIO and NetCDF, and 2-6 times
faster than HDF4

• HDF5 is an order of magnitude faster in
accessing datasets within the file with many
objects

Parallel HDF5 Performance

Albert Cheng
NCSA

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-26

SNL Tflops
PHDF5 Collective I/O

• Romio, as is, does not do 2-phased collective I/O,
even when requested, if data are not interleaved

• Modified Romio to do 2-phased I/O if requested
• Test

– 128 processes
– Used 1 & 4 MB collection buffer sizes

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-27

PHDF5 2-Phased
Collective I/O Numbers

PHDF5, ROMIO, 2-phase collective I/0 performance numbers
Romio (1.2.2.1) VS modified Romio to force 2-phas collective I/O
128 Processes
Total Data (MB) ROMIO Unmodified ROMIO 2-phased (1MB) ROMIO 2-phased (4MB)
MB MB/S MB/S MB/S

28 10 15 24
52 26 42 78

100 50 62 109

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-28

2-phased Collective I/O
Chart

0

20

40

60

80

100

120

Write Speed
(MB/S)

28 52 100

Total Data (MB)

TFLOPS 2-phased Collective I/O
128 processes

ROMIO Unmodified

ROMIO 2-phased (1MB)

ROMIO 2-phased (4MB)

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-29

2-phased Collective I/O
Remarks

• Improvement for collective I/O even for just 1MB
collection buffer

• Can be invokde by the MPI-INFO object parameter
when setting up the MPIO-access for H5Fopen.

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-30

Split-file for Tflops
Write Performance

• Each process writes 10 blocks, each is 1MB big,
in round robin

• Number of processes: 2, 4, 8, 16
• Write via

– MPI-IO
– PHDF5 to one PFS file
– PHDF5 split meta-file to UFS and raw-file to PFS files

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-31

Tflops: HDF5 Split-file
Improvement

0

2

4

6

8

10

12

14

16

18

MB/S

2 4 8 16

Number of processes

Tflops: PHDF5, PHDF5-split-file, MPIO
write Performance

HDF5 write

HDF5-Split write

MPIO write

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-32

Split File for Tflops
Remarks

• Split-file big improvement
– Match up with MPIO speed
– Could it be alignment?

SAF Performance

Larry Schoof
Sandia National Laboratories

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-34

Outline

• Current applications of parallel I/O

• Parallel I/O issues

• Performance considerations

• End-to-end parallel SAF benchmark

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-35

Current Applications

• Most current applications use EPIO
– file per processor
– read/write access pattern results in small I/O requests

• Naïve parallel implementation (1 file / processor)
– 10M element 3d mesh
– 10 fields
– 1000 time steps; flush every time step
– 1000 processors
– aggregate dataset size = 400 GB
– BUT…
– individual file size -- 400 GB / 1000 processors = 400 MB
– I/O request size -- 400 MB / 1000 time steps = 400 KB I/O requests!
– many I/O requests (e.g., metadata) are ~10 KB

• Many HPC I/O subsystems peak at >> 1 MB requests

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-36

Parallel I/O Issues

• Distinguish parallel I/O from parallel data constructs
– parallel I/O

• EPIO vs.. collective parallel I/O
• distributed or global parallel file system

– parallel data constructs
• local vs. global information
• local/global mapping (node- or element-based decomposition)

• Separate raw data from metadata in function calls
• Consider file system characteristics

– UFS vs. PFS (large block read/write vs. small data access)

• Allow flexibility in file specification
– what data goes to which file
– separated by time slice, processor, mesh part, etc.

• Parallel I/O and parallel data constructs must be implicit part of
data model, not appendages

• Aggregate data into large buffers

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-37

2-Phase I/O

p0 p1 p2 p3 p4 p5

p0 p1

disk

- Interleaving (ROMIO does this)

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-38

2-Phase I/O

• Aggregation (ROMIO doesn’t do this!); useful for
• filling I/O buffers
• moving data to processors that have better connectivity

p0 p1 p2 p3 p4 p5

disk

p0 p1

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-39

SAF Performance Considerations

BLOBS

• Light data (metadata)
– memory resident

– data is local (private) or

global (shared) across

processors

– VBT manipulates

• Heavy data (raw data)
– file resident

– no transformations unless

requested

– passed through to HDF

MAPS

INDICES

FIELDS

BUNDLES

FIBERS

CELLS

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-40

SAF Performance Considerations
(cont.)

• Allow choice of when to perform transformations
– local/global remapping on write (during simulation) or on read

(during visualization)

• Minimize transformations; transform data only
when client requests it
– “hub and spoke” paradigm is not optimal

• units, binary data representation (e.g., XDR) primitive node-
ordering, etc.

– requires description of data (via metadata)

• Multi-layer approach; what is the function of each
layer; sometimes there are decisions
– local/global remapping -- MPI-IO has this functionality

(MPI_Type_indexed / MPI_File_set_view), but we chose to do it
in SAF

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-41

End-to-end Parallel SAF Client

• Purpose

– create a parallel client to test performance of SAF

implementation; test all layers

– simulate the I/O of parallel analysis process (mesh generation,

domain decomposition, physics code, visualization)

– create, write, read arbitrarily large sets of SAF data

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-42

End-to-end Parallel SAF Client

• Description
– create mesh (serial)
– decompose mesh (serial)
– write mesh and decomposition (serial)
– read mesh (parallel)
– write mesh (parallel)

• Parameters
– number of (processor) domains
– size of mesh
– number of fields
– file mode (use of master and supplemental files)

create + write

read + write

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-43

Processor-local mesh

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-44

SAF Benchmark Results (preliminary)

0
50

100
150
200
250
300
350

MB/sec

1 2 4 8

Procs

SGI O2K 16 proc
1M elem / 10 fields

read
write

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-45

SAF Benchmark Results (preliminary)

0
1
2
3
4
5
6
7

Time (sec)

1 2 4 8

Procs

SGI O2K 16 proc
1M elem/10 fields

read
write

SC-2001-Scalable/Sharable-IO-Tutorial-Session-IV-46

Performance Summary

• Provide many “knobs” to turn
– what transforms to perform
– when to perform them
– flexibility in file specification (what data to which file)
– aggregation options (e.g., 2-phase I/O)

• Don’t use “hub and spoke” paradigm
• Parallel data constructs must be implicit part of

data model
• Separate “light data” from “raw data”
• Most parallel I/O implementations in current

applications are naïve

