
Using collective IO inside a high performance IO software package – HDF5

MuQun Yang, Quincey Koziol
National Center for Supercomputing Applications

University of Illinois, Urbana-Champaign

I. Introduction Flash I/O Benchmark (Checkpoint f iles)

0

500

1000

1500

2000

2500

10 60 110 160 210 260 310

Number of Processors

M
B/

s

netCDF

HDF5v16 col

HDF5v16 ind

HDF5[1] is a data format and software library

for storing scientific data. The software is open-
source and free. It is based on a general data model
and emphasizes standards and flexible, efficient IO.

HDF5 provides parallel IO support through

Message Passing Interface Input and Output (MPI-
IO). One way to do parallel IO through MPI-IO is
for every process IO to function independently. No
communication among processes is required, but
significant disk IO latency may be expected when
performing non-contiguous subsetting of arrays.
MPI-IO provides an alternate option, collective IO,
to support efficient IO for non-contiguous
subsetting of arrays. Although it involves network
communications among processes, the interleaved
IO requests from different processes can be
combined into a single contiguous operation to
yield a significant speedup [2].

Fig. 1: Comparison of aggregated IO bandwidth of the
FLASH-IO benchmark among parallel NetCDF collective
mode, parallel HDF5 collective mode, and parallel HDF5
independent mode on IBM POWER5.

However, HDF5 also allows array data to be
stored on disk in chunked format. Chunked storage
is also called data tiling for the two-dimensional
instance. It can improve IO performance when
subsetting large arrays[5]. It is required if
extensible dimensions are defined for raw data or
when a filter, such as deflate compression, is
applied to an HDF5 dataset. Extensible dimensions
and in-memory data compression are widely used
in parallel scientific applications such as WRF[6]
and ROMS[7]. Achieving high IO performance
with chunked data sometimes requires collective
IO.

HDF5 has supported collective IO since HDF5

Release 1.2 in 1999. In 2003, Argonne National
Lab and Northwestern University implemented a
parallel version of NetCDF that also supports
collective IO[3]. NetCDF is a widely used scientific
data format originally developed at Unidata[4].

Recently, NCSA’s HDF group has used the

FLASH-IO benchmark, which simulates the IO
pattern of astrophysical thermonuclear flashes, to
compare IO performance among parallel HDF5 in
independent mode, parallel HDF5 in collective
mode, and parallel NetCDF in collective mode.
Fig.1 shows an example of such a study on an IBM
Power5 SMP 8-processor-per-node cluster at
Lawrence Livermore National Lab. The results
show the IO bandwidth of parallel HDF5 in
collective mode to be almost equivalent to that of
parallel NetCDF. Both greatly outperform the case
of parallel HDF5 in independent mode. In this
example, both HDF5 and parallel NetCDF store the
data in a contiguous data stream on disk; it turns
out that this storage option is appropriate for the
FLASH-IO benchmark.

To achieve high performance of collective IO

in chunked storage is challenging. In section II we
will explore the difficulties and our approach to this
issue.

Parallel HDF5 is widely used by many
scientific applications on high performance
computing systems such as Teragrid. Since parallel
HDF5 needs to use features supported in MPI-IO to
do collective IO, intensive tests had to be
performed with various MPI-IO packages during
development of the HDF5 software. In section III
we will share our experiences in handling the
difficulties of utilizing MPI-IO packages on several
high performance computing systems.

II. Internal software management to
support collective IO with chunked

storage

1. Description of HDF5 irregular selection with

MPI-IO derived datatype

HDF5 can support both regular and irregular
selections. A regular selection, sometimes also
called a hyperslab, is a selection generated inside an
HDF5 program with only one H5Sselect_hyperslab
routine call[1] for the selected data space. An
irregular selection is a selection generated inside an
HDF5 program with more than one
H5Sselect_hyperslab routine call [1].

Figure 2 illustrates regular selections with a
two-dimensional data array.

(a) (b)

Fig.2: Illustrations of regular selections. Shaded regions
represent selections.

Figure 2(a) illustrates a singular selection that
covers one logically contiguous block. Figure 2(b)
illustrates a non-singular selection that covers more
than one logically contiguous block. The shape of
each individual block is the same and the stride
between adjacent blocks is equal.

There can be many kinds of irregular selections
in an HDF5 dataset. Figure 3 presents examples of
irregular selections.

 (a) (b)
Fig.3: Examples of irregular selections. Shaded regions
represent selections.

Figure 3(a) shows a case of one contiguous
block that is overlapped by a similar contiguous
block. Figure 3(b) shows an irregular selection that
includes two regular but dissimilar selections in one
dataset.

It is relatively straightforward to support
collective regular selections in chunked storage and
it is true that most known HDF5 applications use
only regular selections. However, the shape of a
selection that is regular across an entire dataset may

become irregular within individual chunks in
chunked storage. Figure 4 illustrates the change.
The selection is regular for the complete array.
However, for each chunk the selection becomes
irregular. Furthermore, HDF5 allows different
shapes of selections between the memory data
space and disk data space. The mapping of a
selection from disk to memory may change the
shape from regular to irregular. Finally, some
HDF5 applications may need to use irregular
selections in the future. So a more general
description of HDF5 selections in terms of MPI-IO
is needed.

(a) (b)

Fig.4: An illustration of the change of type of selections in
chunked storage. The shaded area is the selection.
Fig.4(a) shows a regular selection in the whole data space,
which includes four chunks. The logical boundaries of the
chunks are represented by the dashed line. Fig.4(b) shows
that the original regular selection becomes an irregular
selection within a chunk.

MPI-IO provides an MPI derived datatype that
can not only describe irregular selections but can
also be easily connected with the internal HDF5
data structure that describes irregular selections.
The MPI derived datatype is a user-defined
datatype based on MPI predefined datatypes and
other user-defined datatypes. An MPI derived
datatype can only be built through MPI derived
datatype function calls. Within each chunk, an MPI
derived datatype is used to describe the layout of
selections in the file and in memory.

The MPI type function calls
MPI_Type_contiguous and MPI_Type_vector
describe regular selections. MPI_Type_indexed and
MPI_Type_struct describe irregular selections. The
MPI-IO function MPI_FILE_SET_VIEW is then
used to receive the description of selections with
the MPI derived datatype and to pass these
descriptions to MPI-IO, which will then perform
the collective IO.

2. Optimization 1 – One linked-chunk IO

Generally the HDF5 Library only allows an

application to do IO on a per-chunk basis. That may
cause performance degradation if a selection covers
many small chunks. One means of overcoming this
problem is to create an MPI derived datatype across
all of the relevant chunks. Internally, HDF5 uses a
B-tree to store the physical chunk address. Due to
the support of extensible dimensions in HDF5, one
should be aware that the physical address of the
starting point of each chunk may not increase
according to the order in which it is created. Sorting
the starting physical addresses of all chunks is
therefore necessary before creating the MPI derived
datatype across all chunks. For each process, the
final MPI derived datatype internally links all MPI
derived datatypes created in the chunks that the
selection covers. Fig. 5 illustrates the collective
view of how such MPI derived datatypes are
created with two processes across four chunks. This
will tremendously improve the performance for
parallel applications when multiple selections
involve many small chunks to cover selections.

Fig.5: A schematic illustration of an MPI derived datatype
that links multiple chunks

3. Optimization 2 – Multi-chunk IO

r chunk. We call this a
mul chunk IO approach.

performance, compared to independent IO.

the library
will use independent IO for that chunk.

ther and
roadcast collective calls to finish the job.

4. Software m nt – User-input

options

tive IO
with hunked storage in some applications.

the
HDF5 Library and may see better performance.

One linked-chunk IO can improve parallel

performance. However, not all MPI-IO packages
fully support collective IO with complicated MPI
derived datatypes (we will further discuss this topic
in section III). Another disadvantage of using one
linked-chunk IO is that it may require excessive
memory and performance may degrade, possibly
causing a system memory error. In such a case, we
want to retain the original implementation which
performs collective IO pe

ti-

The trade-off with collective IO is the

involvement of additional inter-process
communications. Usually the more processes

participating in IO and the closer the disk layout of
selections from all processes, the better the chance
that collective IO can outperform independent IO.
Unfortunately, this situation may not always apply
to HDF5 applications that do IO per chunk because
each process will not necessarily have selections in
every chunk, as illustrated in Fig.5. Collective IO
could be done with different chunks from different
processes, but physical locations on disk of
logically adjacent chunks may be distant.
Furthermore, the complex selection resulting from
chunked storage may cause the collective IO
component of an MPI-IO package to fail to
optimize IO accesses and achieve good

To overcome this problem, HDF5 internally

determines whether it is appropriate to use
collective IO for each chunk based on the
percentage of processes having selections in the
chunk. If the library finds that it is not beneficial to
use collective IO for the current chunk,

So, contrary to one linked-chunk IO, we now

have to do IO for each chunk. This approach
provides better control over collective IO on
chunked data inside HDF5. The disadvantage is
that this approach requires extra MPI ga

chunk 1 chunk 3 chunk 4chunk 2

b

anageme

So far, we have presented two options for

optimizing collective IO in chunked storage in
HDF5. Each option may achieve improved
performance for some kinds of applications. We
also realize that the HDF5 Library may make the
wrong decision about the way to do collec

 c

Therefore, the HDF5 Library provides several

APIs to give applications more control over the
way collective IO is done on chunked data. Figure
6 shows the internal procedure the HDF5 Library
employs to handle a collective IO request in
chunked storage. Through participation in the
decision-making process for the collective IO
request, the application has more control over

P0

P1

chunk 1 chunk 2 chunk 3 chunk 4

chunk 1 chunk 2 chunk 3 chunk 4

Collective View

ure to handle a collective IO
request in chunked storage

III. Experiences with MPI-IO packages

es full use of the MPI
derived datatype technique.

till use an older version of an
M I-IO package.

s, otherwise leaving those
op izations enabled.

e
parallel programs can only be run in batch mode.

Fig.6: Flow chart of proced

The HDF development group has committed to
fully support parallel HDF5 on several key
platforms such as Teragrid Linux clusters and IBM
AIX SMP clusters. But the collective IO support
inside HDF5 relies on the robustness of MPI-IO
collective IO calls and mak

In the process of testing HDF5 collective IO

features, we frequently find bugs in MPI-IO
packages. Most bugs have been fixed in newer
versions of these MPI-IO packages. However,
many HDF5 applications rely on computing
architectures that s

P

On the one hand, we have to provide work-

around solutions to assure that HDF5 does not
break those applications using older versions of
MPI-IO packages. On the other hand, we would
like applications to take advantage of our new
collective IO support if they are using a newer
MPI-IO package. Therefore, we currently disable
some collective IO optimizations in situations with
known MPI-IO problem

tim

We also realize that there are some MPI-IO

packages on some platforms that we have not tested
and we do not know whether they also have these
known bugs. Ideally, we would prefer to figure out
their functional status during the HDF5 installation
process with simple MPI-IO programs. However,
the currently available automatic configuration
techniques don’t allow us to do so because som

Therefore, we collect MPI-IO programs that can
detect specific bugs and include them in the HDF5
parallel test suite. When the parallel HDF5 Library
is installed, the MPI-IO test programs will fail if the
current MPI-IO package has a known bug. The
installer can then follow the guidelines in the HDF5
release notes and manually modify the configure
file on that platform to fix the error. We further ask
the installer to report this result to the HDF
helpdesk.

IV. Conclusion

Supporting collective IO for chunked storage
inside HDF5 is not trivial. Several implementation
options and controls are required to assure good
performance.

Users can choose to do one collective MPI-IO

across all chunks. Alternatively users can do IO per
chunk using HDF5 optimizations.

 Furthermore, user applications can improve IO

performance by participating in the decision-
making process.

Because the collective IO support for chunked

storage in HDF5 relies on the robustness of MPI-IO
packages in handling collective IO, user assistance
is valuable in testing and improving the correctness
and performance of those packages. Currently,
more software maintenance work needs to be done
to achieve these goals in both the HDF5 Library
and MPI-IO packages.

More information about HDF5 can be found at
http://hdf.ncsa.uiuc.edu/HDF5/.

References

1. HDF5: http://hdf.ncsa.uiuc.edu/HDF5/
2. William Gropp, Ewing Lusk, Rajeev

Thakur. : Using MPI-2. The MIT Press, 51-
118, 1999.

3. Jianwei Li, Wei-keng Liao, Alok
Choudhary, Robert Ross, Rajeev Thakur,
William Gropp, Rob Latham, Andrew
Siegel, Brad Gallagher, Michael Zingale.
“Parallel netCDF: A High-Performance
Scientific I/O Interface,” SC’2003
November 15-21, 2003, Phoenix, Arizona,
USA.

4. Unidata: http://www.unidata.ucar.edu/

Decision-making about
One linked-chunk IO

Multi-chunk IO
Decision-making about

collective IO

One collective IO call for all
chunks

Independent IO

Optional User
Input

Optional User
Input

Collective chunk IO request

NO

Yes

NOYes

Collective IO per chunk

5. HDF chunking concept:
http://hdf.ncsa.uiuc.edu/UG41r3_html/Perf
orm.fm2.html#149138.

6. WRF: http://wrf-model.org/
7. ROMS:

http://marine.rutgers.edu/po/index.php?mo
del=roms

Acknowledgements:

The authors would like to thank Frank
Baker of the NCSA HDF group for his great
help in editing this paper. The authors would
also like to thank Leon Arber and Christian

Chilan at the University of Illinois for their work
with the FLASH-IO benchmark on the IBM
POWER5 SMP cluster at LLNL to create figure
1.

This paper is funded by National Science
Foundation Teragrid grants SCI 0504064 and
SCI 0451538, the Department of Energy's ASC
Program under contract LLNL B527300 and
the Cooperative Agreement with NASA under
NASA grant NNG05GC60A. Any opinions,
findings, and conclusions or recommendations
expressed in this material are those of the
author(s) and do not necessarily reflect the
views of the National Aeronautics and Space
Administration.

	References

