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I. Introduction Flash I/O Benchmark (Checkpoint f iles)
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HDF5[1] is a data format and software library 

for storing scientific data. The software is open-
source and free. It is based on a general data model 
and emphasizes standards and flexible, efficient IO.  

 
HDF5 provides parallel IO support through 

Message Passing Interface Input and Output (MPI-
IO). One way to do parallel IO through MPI-IO is 
for every process IO to function independently. No 
communication among processes is required, but 
significant disk IO latency may be expected when 
performing non-contiguous subsetting of arrays. 
MPI-IO provides an alternate option, collective IO, 
to support efficient IO for non-contiguous 
subsetting of arrays. Although it involves network 
communications among processes, the interleaved 
IO requests from different processes can be 
combined into a single contiguous operation to 
yield a significant speedup [2].  

Fig. 1: Comparison of aggregated IO bandwidth of the 
FLASH-IO benchmark among parallel NetCDF collective 
mode, parallel HDF5 collective mode, and parallel HDF5 
independent mode on IBM POWER5.  
 

However, HDF5 also allows array data to be 
stored on disk in chunked format. Chunked storage 
is also called data tiling for the two-dimensional 
instance. It can improve IO performance when 
subsetting large arrays[5]. It is required if 
extensible dimensions are defined for raw data or 
when a filter, such as deflate compression, is 
applied to an HDF5 dataset. Extensible dimensions 
and in-memory data compression are widely used 
in parallel scientific applications such as WRF[6] 
and ROMS[7]. Achieving high IO performance 
with chunked data sometimes requires collective 
IO.  

 
HDF5 has supported collective IO since HDF5 

Release 1.2 in 1999. In 2003, Argonne National 
Lab and Northwestern University implemented a 
parallel version of NetCDF that also supports 
collective IO[3]. NetCDF is a widely used scientific 
data format originally developed at Unidata[4].  

 
Recently, NCSA’s HDF group has used the 

FLASH-IO benchmark, which simulates the IO 
pattern of astrophysical thermonuclear flashes, to 
compare IO performance among parallel HDF5 in 
independent mode, parallel HDF5 in collective 
mode, and parallel NetCDF in collective mode. 
Fig.1 shows an example of such a study on an IBM 
Power5 SMP 8-processor-per-node cluster at 
Lawrence Livermore National Lab. The results 
show the IO bandwidth of parallel HDF5 in 
collective mode to be almost equivalent to that of 
parallel NetCDF. Both greatly outperform the case 
of parallel HDF5 in independent mode. In this 
example, both HDF5 and parallel NetCDF store the 
data in a contiguous data stream on disk; it turns 
out that this storage option is appropriate for the 
FLASH-IO benchmark. 

 
To achieve high performance of collective IO 

in chunked storage is challenging. In section II we 
will explore the difficulties and our approach to this 
issue. 
 

Parallel HDF5 is widely used by many 
scientific applications on high performance 
computing systems such as Teragrid. Since parallel 
HDF5 needs to use features supported in MPI-IO to 
do collective IO, intensive tests had to be 
performed with various MPI-IO packages during 
development of the HDF5 software.   In section III 
we will share our experiences in handling the 
difficulties of utilizing MPI-IO packages on several 
high performance computing systems. 
 

 

 



II. Internal software management to 
support collective IO with chunked 

storage 
 
1. Description of HDF5 irregular selection with 

MPI-IO derived datatype 
 

HDF5 can support both regular and irregular 
selections. A regular selection, sometimes also 
called a hyperslab, is a selection generated inside an 
HDF5 program with only one H5Sselect_hyperslab 
routine call[1] for the selected data space. An 
irregular selection is a selection generated inside an 
HDF5 program with more than one 
H5Sselect_hyperslab routine call [1].   

Figure 2 illustrates regular selections with a 
two-dimensional data array. 

 

 
(a)        (b) 

Fig.2: Illustrations of regular selections. Shaded regions 
represent selections. 
 

Figure 2(a) illustrates a singular selection that 
covers one logically contiguous block. Figure 2(b) 
illustrates a non-singular selection that covers more 
than one logically contiguous block. The shape of 
each individual block is the same and the stride 
between adjacent blocks is equal.  

There can be many kinds of irregular selections 
in an HDF5 dataset. Figure 3 presents examples of 
irregular selections. 

 

 
 (a)   (b) 
Fig.3: Examples of irregular selections.  Shaded regions 
represent selections. 
 

Figure 3(a) shows a case of one contiguous 
block that is overlapped by a similar contiguous 
block. Figure 3(b) shows an irregular selection that 
includes two regular but dissimilar selections in one 
dataset. 
 

It is relatively straightforward to support 
collective regular selections in chunked storage and 
it is true that most known HDF5 applications use 
only regular selections. However, the shape of a 
selection that is regular across an entire dataset may 

become irregular within individual chunks in 
chunked storage. Figure 4 illustrates the change. 
The selection is regular for the complete array. 
However, for each chunk the selection becomes 
irregular. Furthermore, HDF5 allows different 
shapes of selections between the memory data 
space and disk data space. The mapping of a 
selection from disk to memory may change the 
shape from regular to irregular. Finally, some 
HDF5 applications may need to use irregular 
selections in the future. So a more general 
description of HDF5 selections in terms of MPI-IO 
is needed. 

 

 
(a)                                   (b) 

Fig.4: An illustration of the change of type of selections in 
chunked storage. The shaded area is the selection. 
Fig.4(a) shows a regular selection in the whole data space, 
which includes four chunks. The logical boundaries of the 
chunks are represented by the dashed line. Fig.4(b) shows 
that the original regular selection becomes an irregular 
selection within a chunk. 
 

MPI-IO provides an MPI derived datatype that 
can not only describe irregular selections but can 
also be easily connected with the internal HDF5 
data structure that describes irregular selections. 
The MPI derived datatype is a user-defined 
datatype based on MPI predefined datatypes and 
other user-defined datatypes. An MPI derived 
datatype can only be built through MPI derived 
datatype function calls. Within each chunk, an MPI 
derived datatype is used to describe the layout of 
selections in the file and in memory.  
 

The MPI type function calls 
MPI_Type_contiguous and MPI_Type_vector 
describe regular selections. MPI_Type_indexed and 
MPI_Type_struct describe irregular selections. The 
MPI-IO function MPI_FILE_SET_VIEW is then 
used to receive the description of selections with 
the MPI derived datatype and to pass these 
descriptions to MPI-IO, which will then perform 
the collective IO.  
 
 
 
 

 



2. Optimization 1 – One linked-chunk IO 
 
Generally the HDF5 Library only allows an 

application to do IO on a per-chunk basis. That may 
cause performance degradation if a selection covers 
many small chunks. One means of overcoming this 
problem is to create an MPI derived datatype across 
all of the relevant chunks. Internally, HDF5 uses a 
B-tree to store the physical chunk address. Due to 
the support of extensible dimensions in HDF5, one 
should be aware that the physical address of the 
starting point of each chunk may not increase 
according to the order in which it is created. Sorting 
the starting physical addresses of all chunks is 
therefore necessary before creating the MPI derived 
datatype across all chunks. For each process, the 
final MPI derived datatype internally links all MPI 
derived datatypes created in the chunks that the 
selection covers. Fig. 5 illustrates the collective 
view of how such MPI derived datatypes are 
created with two processes across four chunks. This 
will tremendously improve the performance for 
parallel applications when multiple selections 
involve many small chunks to cover selections. 
 

 
 

Fig.5: A schematic illustration of an MPI derived datatype 
that links multiple chunks  

 
3. Optimization 2 – Multi-chunk IO 

r chunk. We call this a 
mul chunk IO approach. 

performance, compared to independent IO.  

the library 
will use independent IO for that chunk.  

ther and 
roadcast collective calls to finish the job. 

 
4. Software m nt – User-input 

options 

tive IO 
with hunked storage in some applications. 

the 
HDF5 Library and may see better performance. 

 

 
One linked-chunk IO can improve parallel 

performance. However, not all MPI-IO packages 
fully support collective IO with complicated MPI 
derived datatypes (we will further discuss this topic 
in section III). Another disadvantage of using one 
linked-chunk IO is that it may require excessive 
memory and performance may degrade, possibly 
causing a system memory error.  In such a case, we 
want to retain the original implementation which 
performs collective IO pe

ti-
 
The trade-off with collective IO is the 

involvement of additional inter-process 
communications. Usually the more processes 

participating in IO and the closer the disk layout of 
selections from all processes, the better the chance 
that collective IO can outperform independent IO. 
Unfortunately, this situation may not always apply 
to HDF5 applications that do IO per chunk because 
each process will not necessarily have selections in 
every chunk, as illustrated in Fig.5. Collective IO 
could be done with different chunks from different 
processes, but physical locations on disk of 
logically adjacent chunks may be distant. 
Furthermore, the complex selection resulting from 
chunked storage may cause the collective IO 
component of an MPI-IO package to fail to 
optimize IO accesses and achieve good 

 
To overcome this problem, HDF5 internally 

determines whether it is appropriate to use 
collective IO for each chunk based on the 
percentage of processes having selections in the 
chunk. If the library finds that it is not beneficial to 
use collective IO for the current chunk, 

 
So, contrary to one linked-chunk IO, we now 

have to do IO for each chunk. This approach 
provides better control over collective IO on 
chunked data inside HDF5. The disadvantage is 
that this approach requires extra MPI ga

chunk 1 chunk 3 chunk 4chunk 2 

b
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So far, we have presented two options for 

optimizing collective IO in chunked storage in 
HDF5. Each option may achieve improved 
performance for some kinds of applications. We 
also realize that the HDF5 Library may make the 
wrong decision about the way to do collec

 c
 
Therefore, the HDF5 Library provides several 

APIs to give applications more control over the 
way collective IO is done on chunked data. Figure 
6 shows the internal procedure the HDF5 Library 
employs to handle a collective IO request in 
chunked storage. Through participation in the 
decision-making process for the collective IO 
request, the application has more control over 
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ure to handle a collective IO 
request in chunked storage 

 

III. Experiences with MPI-IO packages  
 

es full use of the MPI 
derived datatype technique. 

till use an older version of an 
M I-IO package.  

s, otherwise leaving those 
op izations enabled. 

e 
parallel programs can only be run in batch mode.  

 
Fig.6: Flow chart of proced

 

The HDF development group has committed to 
fully support parallel HDF5 on several key 
platforms such as Teragrid Linux clusters and IBM 
AIX SMP clusters. But the collective IO support 
inside HDF5 relies on the robustness of MPI-IO 
collective IO calls and mak

 
In the process of testing HDF5 collective IO 

features, we frequently find bugs in MPI-IO 
packages. Most bugs have been fixed in newer 
versions of these MPI-IO packages. However, 
many HDF5 applications rely on computing 
architectures that s

P
 
On the one hand, we have to provide work-

around solutions to assure that HDF5 does not 
break those applications using older versions of 
MPI-IO packages.  On the other hand, we would 
like applications to take advantage of our new 
collective IO support if they are using a newer 
MPI-IO package.  Therefore, we currently disable 
some collective IO optimizations in situations with 
known MPI-IO problem

tim
 
We also realize that there are some MPI-IO 

packages on some platforms that we have not tested 
and we do not know whether they also have these 
known bugs. Ideally, we would prefer to figure out 
their functional status during the HDF5 installation 
process with simple MPI-IO programs. However, 
the currently available automatic configuration 
techniques don’t allow us to do so because som

Therefore, we collect MPI-IO programs that can 
detect specific bugs and include them in the HDF5 
parallel test suite. When the parallel HDF5 Library 
is installed, the MPI-IO test programs will fail if the 
current MPI-IO package has a known bug. The 
installer can then follow the guidelines in the HDF5 
release notes and manually modify the configure 
file on that platform to fix the error.  We further ask 
the installer to report this result to the HDF 
helpdesk. 
 

IV. Conclusion 
 

Supporting collective IO for chunked storage 
inside HDF5 is not trivial. Several implementation 
options and controls are required to assure good 
performance.  

 
Users can choose to do one collective MPI-IO 

across all chunks. Alternatively users can do IO per 
chunk using HDF5 optimizations. 

 
 Furthermore, user applications can improve IO 

performance by participating in the decision-
making process.  

 
Because the collective IO support for chunked 

storage in HDF5 relies on the robustness of MPI-IO 
packages in handling collective IO, user assistance 
is valuable in testing and improving the correctness 
and performance of those packages. Currently, 
more software maintenance work needs to be done 
to achieve these goals in both the HDF5 Library 
and MPI-IO packages. 
 

More information about HDF5 can be found at 
http://hdf.ncsa.uiuc.edu/HDF5/. 
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