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1. Introduction 

 
The amount and complexity of data used in 

scientific applications demand a portable standard 
for flexible and efficient access across several 
computing platforms. Two libraries, Hierarchical 
Data Format 5 (HDF5) [1] and Network Common 
Data Form (netCDF) [2], have been able to provide 
the scientific community with suitable general-
purpose data formats and programming interfaces.  

 
HDF5 is a widely used portable file format and 

library developed at the National Center for 
Supercomputing Applications (NCSA) for storing, 
retrieving, analyzing, visualizing and converting 
data. HDF5 stores multidimensional arrays along 
with metadata in a portable file. It supports 
hierarchical file structures providing users with a 
high degree of flexibility for data management. 
HDF5 also provides support for parallel data access 
built on top of MPI-IO, which is specified by the 
MPI-2 standard [3]. In this way, HDF5 can take 
advantage of MPI-IO optimizations. Additional 
features such as variable-size arrays and data 
compression are made possible by partitioning the 
storage space into chunks.  

 
NetCDF[2] is another portable file format and 

programming interface broadly utilized in the 
scientific community for data access and storage of 
structured datasets. NetCDF uses a linear data 
layout which stores data arrays in a contiguous 
space or interleaved in a regular pattern. This 
simple and efficient method for data storage 
minimizes the overhead in I/O operations and 
allows for arrays to have one dimension (the most 
significant) with variable size. Parallel netCDF 
(PnetCDF) [4] is a parallel version of netCDF 
developed by Argonne National Laboratory and 
Northwestern University.  It provides support for 
parallel access built on top of MPI-IO which allows 
possible optimizations. 

 
In this paper, we examine the results of an 

earlier performance comparison which showed that 

PnetCDF provides overall higher performance than 
HDF5 [5] and we explain the reasons for such 
behavior. We also discuss the effects of 
independent and collective operations on I/O 
performance using several test cases. We also 
intend that HDF5 users reading this paper develop a 
notion of what type of access pattern is to be 
preferred (or avoided) when using a particular I/O 
mode. 
 
2. HDF5 and PnetCDF performance 
comparison 
 

Published results from an earlier performance 
study suggest that PnetCDF achieves higher 
parallel I/O performance than HDF5 [5]. To 
reproduce the given results and to provide an 
analysis for performance, we carried out similar 
testing. 

 
The study was made using two high-

performance parallel computing systems. The first 
system is NCAR Bluesky, an IBM Cluster 1600 
system with AIX 5.1 and General Parallel File 
System (GPFS) [6]. Each node has 32 Power4 
processors and 4 ports to the switch (SP Switch2) 
which provides 1 GB/s of bandwidth. The second 
system is LLNL uP, an IBM SP system with AIX 
5.3 and GPFS. Each node has 8 Power5 processors. 
A Federation switch provides 122 GB/s of 
bandwidth. The versions of the parallel libraries are 
PnetCDF 1.0.1 and HDF5 1.6.5.  

 
The benchmark used is the I/O kernel of 

FLASH [7], an adaptive mesh hydrodynamics code 
for modeling astrophysical thermonuclear flashes. 
We configured FLASH I/O [8] to generate 3D 
adaptive mesh refinement (AMR) blocks of size 
8×8×8 on Bluesky, and 16×16×16 on uP. Each 
processor handles approximately 80 blocks, and 
writes them into three output files. The largest file 
is a checkpoint file containing all of the data from 
the blocks. The other files are visualization files 
that contain center and corner data.  In our study, 
we refer only to the writing performance of the 

 



checkpoint file because its size allows for more 
stable and relevant measurements.  In fact, each 
processor writes about 8 MB and 60 MB into the 
checkpoint file when using 8×8×8 and 16×16×16 
blocks, respectively. The performance metric 
provided by FLASH I/O is the parallel execution 
time in seconds. The aggregate bandwidth is 
obtained by dividing the file size over the reported 
time. 

 
FLASH I/O makes use of the PnetCDF libray 

in collective mode. Collective I/O operations 
combine the noncontiguous data requests of each 
process into a single contiguous I/O operation. One 
important result is that the contribution of access 
latency, usually the costliest I/O factor, is 
minimized, improving performance significantly 
[3]. For HDF5, we performed tests using both 
collective and independent I/O operations. Also, the 
HDF5 tests used contiguous storage, which is the 
default configuration. 

 
The results of our study in Bluesky and uP are 

shown in Figures 1 and 2, respectively. The figures 
show the best results from a set of three executions 
in order to avoid results hindered by concurrent 
processing loads. 

 
Both figures show that the performance of 

FLASH I/O using PnetCDF and collective HDF5 
scales well with respect to the number of 
processors. The small decrease in performance 
present during the transition from 16 to 32 
processors in Figure 1 is mainly caused by a larger 
demand of resources while the number of switch 
ports remains constant (32-way node). 

 
On the other hand, HDF5 in independent mode 

does not scale properly. Since the published study 
used HDF5 in independent mode, the large 
performance difference we found between 
PnetCDF and independent HDF5 agrees with the 
results of that study. Such difference is nominally 
the same variation in performance between 
collective and independent I/O operations in 
FLASH I/O. 

 
A close examination of the access pattern of 

FLASH I/O reveals that each processor writes a 
contiguous region of approximately 80 blocks at a 
time, and that such regions are placed one next to 
the other. Some MPI-IO implementations may yield 
only a minor difference between the performance of 
independent and collective I/O operations for this 
type of access [7]. However, the MPI-IO 
implementation on IBM systems, MPI-IO/GPFS 

[9], provides features that can optimize collective 
operations even for this access pattern. 
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Figure 1: FLASH I/O performance on NCAR 

Bluesky 
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Figure 2: FLASH I/O performance on LLNL uP 

MPI-IO/GPFS uses a file system in which the 
storage of a file is distributed across several GPFS 
servers. Stripes of consecutive GPFS blocks are 
bound to an I/O agent on each MPI task in a round-
robin fashion. When a task requests data from a 
block other than the ones it has been assigned, the 
I/O agent designated to that block performs the 
access to the file system and then ships the data to 
the requesting task. This feature is known as data 
shipping and it is enabled by default. In order to 
manage large files efficiently, the size of a GPFS 
block is set to 1 MB, and each stripe contains 16 
blocks by default. The stripe size matches the 
buffer size of each I/O agent. Large file structures 
help reduce latency and make better use of 
bandwidth. 

 
Because the size of the contiguous region to be 

written by each processor at a time in FLASH I/O 
is ~0.31 MB and 2.5 MB when using 8×8×8 and 

 



16×16×16 blocks, respectively, it is evident that 
several processors may request access to the same 
stripe of size 16 MB. In an independent operation, 
the I/O agent assigned to the stripe performs a 
separate file access for each request. However, a 
collective operation will cause the I/O agent to 
combine the many requests into a single contiguous 
access reducing latency costs and improving 
performance [9]. 

 
3. Performance effect of collective and 
independent I/O operations 

 
Data access performance is affected by many 

factors, including caching, network bandwidth, and 
latency. Benchmarking with FLASH I/O also 
shows that the way resources are accessed can 
affect the execution time. In particular, we want to 
determine how independent and collective 
operations affect parallel I/O performance.  

 
We will illustrate the effects of access and 

layout formats by using four test cases which 
consist of writing a selection to a rectangular array 
where the datatype of each element is a double 
precision float. In our analysis, we consider that the 
data is stored in row-major order. The tests were 
executed on NCAR Bluesky using HDF5 version 
1.6.5. 

 
We also included in our study the effects of 

using contiguous and chunked storage. When 
contiguous layout is used, a dataset is stored as a 
single contiguous portion of data on the media. In 
contrast, chunked layout partitions the storage 
space into several smaller units of contiguous 
storage that can be located anywhere on the media 
[1]. Chunked layout allows arrays to have 
extensible dimensions and enables data 
compression.  

 
3.1 Collective and independent access 
using contiguous storage 
 

Consider a rectangular array in which every 
processor has a noncontiguous selection involving a 
large number of rows and a small number of 
columns, as shown in Figure 3. Further note that the 
access requests of different processors are 
interleaved. 

 
In order to write the entire selection using 

independent access, each process has to perform 
numerous small write operations, paying the high 
cost of latency many times. This is probably one of 

the worst cases for independent access in two 
dimensions. 

 
In collective mode, however, the interleaved 

access requests of different tasks can be combined 
by each I/O agent into a single contiguous I/O 
operation yielding a very high speedup with respect 
to independent access [9]. 

             row 1                  row 2 

Figure 3: Geometrical layout and processor 
distribution on a noncontiguous interleaved 

selection 
 
A write operation with 32 processors where 

each processor selection has 512K rows and 8 
columns took 1,659.48 seconds using independent 
access and 4.33 seconds using collective access. In 
this instance, collective write is more than 380 
times faster than independent write! 

 
Now consider a rectangular array in which 

every processor has a contiguous selection as 
shown in Figure 4. In contrast to our previous case, 
this is a very good situation for independent access 
when the selection of each processor is larger than 
the stripe size, i.e. the buffer size of an I/O agent. It 
is also expected that collective access would 
perform well. 

  
 

        
 

Figure 4: Geometrical layout and processor 
distribution on a contiguous selection 

P0 P1 P2 P3

P0

P1

P2

P3

P0 P1 P2 P3 

P0 P1 P2 P3 P0 P1 P2 P3 …….

 



In this case, there are no interleaved requests 
from different processors and contiguity is already 
established in the access pattern. Also, since we 
assume that the selection of each processor is larger 
than the stripe size, only a single processor will 
request access to a specific stripe most of the time 
(improper alignment may cause two processors to 
access the same stripe very few times). Therefore, 
each I/O agent can perform a contiguous access and 
then ship the data to the requesting task. Collective 
access may not provide significant improvement in 
performance. 

 
A write operation with 32 processors where 

each processor selection has 16K rows and 256 
columns took 3.64 seconds using independent 
access and 3.87 seconds using collective access.  
Note that the selection size of each processor (32 
MB) is larger than the stripe size in Bluesky 
(16MB). These execution times are nominally the 
same with a slight difference due to the overhead of 
collective access. 
 
3.2. Collective and independent access 
using chunked storage 

 
The application of chunked storage requires the 

definition of a uniform size for all chunks. A 
situation in which the chunk size does not divide 
exactly the dataset size on a particular dimension is 
not unlikely. This can yield unexpected results in 
I/O performance. 

 
Consider a rectangular array whose storage has 

been partitioned into two chunks. Since the chunk 
size does not divide exactly the array size, one 
chunk extends beyond the storage space assigned to 
the array. This difference is represented by the 
letter ∆ in Figure 5. 

 

 

Figure 5: Geometrical layout and processor 
distribution on a noncontiguous selection within 

a chunk 

A user selecting all the dataset space in chunk 
1 may assume that the selection is contiguous. 
Unlike the case in Figure 4, the selection is 
noncontiguous because the extra chunk space 
generates holes in the selection. One way to write 
the entire selection would be to perform a write 
operation for each contiguous portion (each row in 
our example), incurring the high cost of latency 
several times. However, MPI-IO/GPFS can perform 
an efficient access by prefetching contiguous byte 
ranges [9] in an operation similar to data sieving 
[10]. For this optimization to perform most 
efficiently it is recommended that the application 
provide information about the access pattern in the 
form of derived datatypes. 

 
A write operation with 32 processors where 

each processor selection has 16K rows and 256 
columns took 43.00 seconds using independent 
access and 22.10 seconds using collective access. 
Since there are no interleaved requests and the 
selection of each processor is larger than the stripe 
size, the mentioned optimization would be expected 
to cause independent and collective access to 
achieve similar performance. 

 
The main reason for the observed difference in 

performance is that the version 1.6.5 of HDF5 only 
provides datatypes to the MPI-IO layer when using 
collective operations. Passing derived datatypes for 
MPI-IO optimization of independent I/O operations 
will be implemented as an option in version 1.8 of 
HDF5.  
 

In our final case, we have a rectangular array 
partitioned exactly into two chunks. Several 
processes participate within each chunk as shown in 
Figure 6. 
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Figure 6: Geometrical layout and processor 
distribution on a contiguous selection within a 

chunk 

Note that the every processor selection is 
contained within one chunk and contiguous. 
Therefore, independent and collective accesses 
have very similar performance with a small 
difference due to the overhead of collective 
operations as in Figure 4. 

 
A write operation with 32 processors where 

each chunk is selected exactly by 4 processors, and 
each processor selection has 256K rows and 32 
columns took 7.66 seconds using independent 
access and 8.68 seconds using collective access. 

 
In a more general case, the selection of each 

processor may span several chunks causing the 
selection to be noncontiguous. Because HDF5 1.6.5 
only provides derived datatypes to the MPI-IO 
layer when using collective access, it is likely that 
collective access will achieve higher performance 
than independent access. As mentioned before, 
independent operations with improved performance 
will be available in version 1.8 of HDF5. 

 
4. Conclusions 

 
We have reproduced the results of the earlier 

study comparing PnetCDF and HDF5 performance. 
But in contrast, our results indicate that the 
performance is quite comparable when the two 
libraries are used in similar manners. If collective 
access is employed in both, the performance 
difference is small. When independent mode is 
used with one library and collective mode is used 
with the other, performance differs in predictable 
ways.  

 
It is noteworthy that HDF5 can achieve very 

high performance while providing superior 
flexibility for data management by using 
hierarchical file structures and chunked storage. 

 
Our brief study of independent and collective 

operations shows that collective access should be 
preferred in most situations when using HDF5 
1.6.5. Even in the cases where collective mode does 
not improve the performance, the resulting 
overhead is very small. In either case, it is 
important to provide information about the access 
pattern to the MPI-IO layer to allow for possible 
optimizations. Finally, we showed that the use of 
chunked storage may affect the contiguity of the 
data selection, which in turn may have an effect on 
the parallel I/O performance. 
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