
PARALLEL I/O PERFORMANCE STUDY WITH HDF5,
A SCIENTIFIC DATA PACKAGE

Christian M. Chilan

MuQun Yang
Albert Cheng
Leon Arber

National Center for Supercomputing Applications

University of Illinois at Urbana-Champaign

1. Introduction

The amount and complexity of data used in

scientific applications demand a portable standard
for flexible and efficient access across several
computing platforms. Two libraries, Hierarchical
Data Format 5 (HDF5) [1] and Network Common
Data Form (netCDF) [2], have been able to provide
the scientific community with suitable general-
purpose data formats and programming interfaces.

HDF5 is a widely used portable file format and

library developed at the National Center for
Supercomputing Applications (NCSA) for storing,
retrieving, analyzing, visualizing and converting
data. HDF5 stores multidimensional arrays along
with metadata in a portable file. It supports
hierarchical file structures providing users with a
high degree of flexibility for data management.
HDF5 also provides support for parallel data access
built on top of MPI-IO, which is specified by the
MPI-2 standard [3]. In this way, HDF5 can take
advantage of MPI-IO optimizations. Additional
features such as variable-size arrays and data
compression are made possible by partitioning the
storage space into chunks.

NetCDF[2] is another portable file format and

programming interface broadly utilized in the
scientific community for data access and storage of
structured datasets. NetCDF uses a linear data
layout which stores data arrays in a contiguous
space or interleaved in a regular pattern. This
simple and efficient method for data storage
minimizes the overhead in I/O operations and
allows for arrays to have one dimension (the most
significant) with variable size. Parallel netCDF
(PnetCDF) [4] is a parallel version of netCDF
developed by Argonne National Laboratory and
Northwestern University. It provides support for
parallel access built on top of MPI-IO which allows
possible optimizations.

In this paper, we examine the results of an

earlier performance comparison which showed that

PnetCDF provides overall higher performance than
HDF5 [5] and we explain the reasons for such
behavior. We also discuss the effects of
independent and collective operations on I/O
performance using several test cases. We also
intend that HDF5 users reading this paper develop a
notion of what type of access pattern is to be
preferred (or avoided) when using a particular I/O
mode.

2. HDF5 and PnetCDF performance
comparison

Published results from an earlier performance
study suggest that PnetCDF achieves higher
parallel I/O performance than HDF5 [5]. To
reproduce the given results and to provide an
analysis for performance, we carried out similar
testing.

The study was made using two high-

performance parallel computing systems. The first
system is NCAR Bluesky, an IBM Cluster 1600
system with AIX 5.1 and General Parallel File
System (GPFS) [6]. Each node has 32 Power4
processors and 4 ports to the switch (SP Switch2)
which provides 1 GB/s of bandwidth. The second
system is LLNL uP, an IBM SP system with AIX
5.3 and GPFS. Each node has 8 Power5 processors.
A Federation switch provides 122 GB/s of
bandwidth. The versions of the parallel libraries are
PnetCDF 1.0.1 and HDF5 1.6.5.

The benchmark used is the I/O kernel of

FLASH [7], an adaptive mesh hydrodynamics code
for modeling astrophysical thermonuclear flashes.
We configured FLASH I/O [8] to generate 3D
adaptive mesh refinement (AMR) blocks of size
8×8×8 on Bluesky, and 16×16×16 on uP. Each
processor handles approximately 80 blocks, and
writes them into three output files. The largest file
is a checkpoint file containing all of the data from
the blocks. The other files are visualization files
that contain center and corner data. In our study,
we refer only to the writing performance of the

checkpoint file because its size allows for more
stable and relevant measurements. In fact, each
processor writes about 8 MB and 60 MB into the
checkpoint file when using 8×8×8 and 16×16×16
blocks, respectively. The performance metric
provided by FLASH I/O is the parallel execution
time in seconds. The aggregate bandwidth is
obtained by dividing the file size over the reported
time.

FLASH I/O makes use of the PnetCDF libray

in collective mode. Collective I/O operations
combine the noncontiguous data requests of each
process into a single contiguous I/O operation. One
important result is that the contribution of access
latency, usually the costliest I/O factor, is
minimized, improving performance significantly
[3]. For HDF5, we performed tests using both
collective and independent I/O operations. Also, the
HDF5 tests used contiguous storage, which is the
default configuration.

The results of our study in Bluesky and uP are

shown in Figures 1 and 2, respectively. The figures
show the best results from a set of three executions
in order to avoid results hindered by concurrent
processing loads.

Both figures show that the performance of

FLASH I/O using PnetCDF and collective HDF5
scales well with respect to the number of
processors. The small decrease in performance
present during the transition from 16 to 32
processors in Figure 1 is mainly caused by a larger
demand of resources while the number of switch
ports remains constant (32-way node).

On the other hand, HDF5 in independent mode

does not scale properly. Since the published study
used HDF5 in independent mode, the large
performance difference we found between
PnetCDF and independent HDF5 agrees with the
results of that study. Such difference is nominally
the same variation in performance between
collective and independent I/O operations in
FLASH I/O.

A close examination of the access pattern of

FLASH I/O reveals that each processor writes a
contiguous region of approximately 80 blocks at a
time, and that such regions are placed one next to
the other. Some MPI-IO implementations may yield
only a minor difference between the performance of
independent and collective I/O operations for this
type of access [7]. However, the MPI-IO
implementation on IBM systems, MPI-IO/GPFS

[9], provides features that can optimize collective
operations even for this access pattern.

Flash I/O Benchmark (Checkpoint f iles)

0

10

20

30

40

50

60

10 60 110 160

Number of Processors

M
B/

s

PnetCDF HDF5 collective HDF5 independent

Figure 1: FLASH I/O performance on NCAR

Bluesky

Flash I/O Benchmark (Checkpoint f iles)

0

500

1000

1500

2000

2500

10 60 110 160 210 260 310

Number of Processors

M
B/

s
PnetCDF HDF5 collective HDF5 independent

Figure 2: FLASH I/O performance on LLNL uP

MPI-IO/GPFS uses a file system in which the
storage of a file is distributed across several GPFS
servers. Stripes of consecutive GPFS blocks are
bound to an I/O agent on each MPI task in a round-
robin fashion. When a task requests data from a
block other than the ones it has been assigned, the
I/O agent designated to that block performs the
access to the file system and then ships the data to
the requesting task. This feature is known as data
shipping and it is enabled by default. In order to
manage large files efficiently, the size of a GPFS
block is set to 1 MB, and each stripe contains 16
blocks by default. The stripe size matches the
buffer size of each I/O agent. Large file structures
help reduce latency and make better use of
bandwidth.

Because the size of the contiguous region to be

written by each processor at a time in FLASH I/O
is ~0.31 MB and 2.5 MB when using 8×8×8 and

16×16×16 blocks, respectively, it is evident that
several processors may request access to the same
stripe of size 16 MB. In an independent operation,
the I/O agent assigned to the stripe performs a
separate file access for each request. However, a
collective operation will cause the I/O agent to
combine the many requests into a single contiguous
access reducing latency costs and improving
performance [9].

3. Performance effect of collective and
independent I/O operations

Data access performance is affected by many

factors, including caching, network bandwidth, and
latency. Benchmarking with FLASH I/O also
shows that the way resources are accessed can
affect the execution time. In particular, we want to
determine how independent and collective
operations affect parallel I/O performance.

We will illustrate the effects of access and

layout formats by using four test cases which
consist of writing a selection to a rectangular array
where the datatype of each element is a double
precision float. In our analysis, we consider that the
data is stored in row-major order. The tests were
executed on NCAR Bluesky using HDF5 version
1.6.5.

We also included in our study the effects of

using contiguous and chunked storage. When
contiguous layout is used, a dataset is stored as a
single contiguous portion of data on the media. In
contrast, chunked layout partitions the storage
space into several smaller units of contiguous
storage that can be located anywhere on the media
[1]. Chunked layout allows arrays to have
extensible dimensions and enables data
compression.

3.1 Collective and independent access
using contiguous storage

Consider a rectangular array in which every
processor has a noncontiguous selection involving a
large number of rows and a small number of
columns, as shown in Figure 3. Further note that the
access requests of different processors are
interleaved.

In order to write the entire selection using

independent access, each process has to perform
numerous small write operations, paying the high
cost of latency many times. This is probably one of

the worst cases for independent access in two
dimensions.

In collective mode, however, the interleaved

access requests of different tasks can be combined
by each I/O agent into a single contiguous I/O
operation yielding a very high speedup with respect
to independent access [9].

 row 1 row 2

Figure 3: Geometrical layout and processor
distribution on a noncontiguous interleaved

selection

A write operation with 32 processors where

each processor selection has 512K rows and 8
columns took 1,659.48 seconds using independent
access and 4.33 seconds using collective access. In
this instance, collective write is more than 380
times faster than independent write!

Now consider a rectangular array in which

every processor has a contiguous selection as
shown in Figure 4. In contrast to our previous case,
this is a very good situation for independent access
when the selection of each processor is larger than
the stripe size, i.e. the buffer size of an I/O agent. It
is also expected that collective access would
perform well.

Figure 4: Geometrical layout and processor
distribution on a contiguous selection

P0 P1 P2 P3

P0

P1

P2

P3

P0 P1 P2 P3

P0 P1 P2 P3 P0 P1 P2 P3 …….

In this case, there are no interleaved requests
from different processors and contiguity is already
established in the access pattern. Also, since we
assume that the selection of each processor is larger
than the stripe size, only a single processor will
request access to a specific stripe most of the time
(improper alignment may cause two processors to
access the same stripe very few times). Therefore,
each I/O agent can perform a contiguous access and
then ship the data to the requesting task. Collective
access may not provide significant improvement in
performance.

A write operation with 32 processors where

each processor selection has 16K rows and 256
columns took 3.64 seconds using independent
access and 3.87 seconds using collective access.
Note that the selection size of each processor (32
MB) is larger than the stripe size in Bluesky
(16MB). These execution times are nominally the
same with a slight difference due to the overhead of
collective access.

3.2. Collective and independent access
using chunked storage

The application of chunked storage requires the

definition of a uniform size for all chunks. A
situation in which the chunk size does not divide
exactly the dataset size on a particular dimension is
not unlikely. This can yield unexpected results in
I/O performance.

Consider a rectangular array whose storage has

been partitioned into two chunks. Since the chunk
size does not divide exactly the array size, one
chunk extends beyond the storage space assigned to
the array. This difference is represented by the
letter ∆ in Figure 5.

Figure 5: Geometrical layout and processor
distribution on a noncontiguous selection within

a chunk

A user selecting all the dataset space in chunk
1 may assume that the selection is contiguous.
Unlike the case in Figure 4, the selection is
noncontiguous because the extra chunk space
generates holes in the selection. One way to write
the entire selection would be to perform a write
operation for each contiguous portion (each row in
our example), incurring the high cost of latency
several times. However, MPI-IO/GPFS can perform
an efficient access by prefetching contiguous byte
ranges [9] in an operation similar to data sieving
[10]. For this optimization to perform most
efficiently it is recommended that the application
provide information about the access pattern in the
form of derived datatypes.

A write operation with 32 processors where

each processor selection has 16K rows and 256
columns took 43.00 seconds using independent
access and 22.10 seconds using collective access.
Since there are no interleaved requests and the
selection of each processor is larger than the stripe
size, the mentioned optimization would be expected
to cause independent and collective access to
achieve similar performance.

The main reason for the observed difference in

performance is that the version 1.6.5 of HDF5 only
provides datatypes to the MPI-IO layer when using
collective operations. Passing derived datatypes for
MPI-IO optimization of independent I/O operations
will be implemented as an option in version 1.8 of
HDF5.

In our final case, we have a rectangular array
partitioned exactly into two chunks. Several
processes participate within each chunk as shown in
Figure 6.

P0

P1

P2

P3

chunk 0 chunk 1

P4

P5

P6

P7

P0

P1

P2

P3

chunk 0 chunk 1

dataset
∆

P0 P1 P2 P3
P0 … P1 P1 … P2 P2 … P3 P3 …P0

Figure 6: Geometrical layout and processor
distribution on a contiguous selection within a

chunk

Note that the every processor selection is
contained within one chunk and contiguous.
Therefore, independent and collective accesses
have very similar performance with a small
difference due to the overhead of collective
operations as in Figure 4.

A write operation with 32 processors where

each chunk is selected exactly by 4 processors, and
each processor selection has 256K rows and 32
columns took 7.66 seconds using independent
access and 8.68 seconds using collective access.

In a more general case, the selection of each

processor may span several chunks causing the
selection to be noncontiguous. Because HDF5 1.6.5
only provides derived datatypes to the MPI-IO
layer when using collective access, it is likely that
collective access will achieve higher performance
than independent access. As mentioned before,
independent operations with improved performance
will be available in version 1.8 of HDF5.

4. Conclusions

We have reproduced the results of the earlier

study comparing PnetCDF and HDF5 performance.
But in contrast, our results indicate that the
performance is quite comparable when the two
libraries are used in similar manners. If collective
access is employed in both, the performance
difference is small. When independent mode is
used with one library and collective mode is used
with the other, performance differs in predictable
ways.

It is noteworthy that HDF5 can achieve very

high performance while providing superior
flexibility for data management by using
hierarchical file structures and chunked storage.

Our brief study of independent and collective

operations shows that collective access should be
preferred in most situations when using HDF5
1.6.5. Even in the cases where collective mode does
not improve the performance, the resulting
overhead is very small. In either case, it is
important to provide information about the access
pattern to the MPI-IO layer to allow for possible
optimizations. Finally, we showed that the use of
chunked storage may affect the contiguity of the
data selection, which in turn may have an effect on
the parallel I/O performance.

Acknowledgements

The authors would like to thank Frank Baker of

the NCSA HDF group for his help in editing the
paper.

This paper is funded by National Science

Foundation Teragrid grants SCI 0504064 and SCI
0451538, the Department of Energy's ASC Program
under contract LLNL B527300, the DOE SciDAC
program under grant DEFC02-01ER25508, NCSA
core (e.g. CIP): NSF grant SCI 0525308, and the
Cooperative Agreement with NASA under NASA
grant NNG05GC60A. Any opinions, findings, and
conclusions or recommendations expressed in this
material are those of the author(s) and do not
necessarily reflect the views of the National
Aeronautics and Space Administration.

References

1. HDF5 Home Page. The National Center

for Supercomputing Applications.
http://hdf.ncsa.uiuc.edu/HDF5/.

2. Unidata NetCDF Home page.
http://www.unidata.ucar.edu/.

3. Gropp, W., Lusk, W., and Thakur, R. Using
MPI-2. Advanced Features of the
Message-Passing Interface, The MIT
Press, Cambridge, MA, 1999.

4. Parallel netCDF Home Page. Argonne
National Laboratory. http://www-
unix.mcs.anl.gov/parallel-netcdf/.

5. Li, J., Liao, W., Choudhary, A., Ross, R.,
Thakur, R., Gropp, W., Latham, R., Siegel,
A., Gallagher, B., and Zingale, M. “Parallel
netCDF: A High-Performance Scientific I/O
Package,” Proceedings of the 2003
ACM/IEEE Conference on
Supercomputing, Phoenix, AZ, 2003.

6. IBM General Parallel File System for AIX:
Installation and Administration Guide, IBM
Document SA22-7278-03, July 2000.

7. Fryxell, B., Olson, K., Ricker, P., Timmes,
F. X., Zingale, M., Lamb, D. Q., MacNeice,
P., Rosner, R., and Tufo, H. “FLASH: An
Adaptive Mesh Hydrodynamics Code for
Modelling Astrophysical Thermonuclear
Flashes,” Astrophysical Journal
Suppliment, pp. 131-273, 2000.

8. FLASH I/O Benchmark.
http://flash.uchicago.edu/~jbgallag/io_benc
h/flash_io_bench.tar.gz.

9. Prost, J.-P., Treumann, R., Blackmore, R.,
Hartman, C., Hedges, R., Jia, B., Koniges,

http://hdf.ncsa.uiuc.edu/HDF5/
http://www.unidata.ucar.edu/
http://www-unix.mcs.anl.gov/parallel-netcdf/
http://www-unix.mcs.anl.gov/parallel-netcdf/
http://flash.uchicago.edu/~jbgallag/io_bench/flash_io_bench.tar.gz
http://flash.uchicago.edu/~jbgallag/io_bench/flash_io_bench.tar.gz

A., and White, A. “Towards a High-
Performance and Robust Implementation
of MPI-IO on top of GPFS,” Sixth
International Euro-Par Conference,
Springer-Verlag, pp. 1253-1262, August-
September 2000.

10. Thakur, R., Gropp, W., and Lusk, E. “Data
Sieving and Collective I/O in ROMIO,”
Proceedings of the 7th Symposium on the
Frontiers of Massively Parallel
Computation, pp 182-189, February 1999.

	References

