
Parallel HDF5 Hints 
 

MuQun Yang & Quincey Koziol 
NCSA HDF group 

 
I. Some definitions 

 
According to HDF5 user’s guide [1], hyperslabs are portions of datasets. A 
hyperslab selection can be a logically contiguous collection of points in a 
dataspace, or it can be regular pattern of points or blocks in a dataspace. Four 
parameters are required to describe a completely general hyperslab. Each 
parameter is an array whose rank is the same as that of the dataspace. The 
parameters are shown in Table 4. 

Table 4 
Parameter Definition 
start A starting location in the array for the 

hyperslab. 
stride The number of elements to separate each 

element or block to be selected. If the 
stride parameter is set to NULL, the stride 
size defaults to 1 in each dimension (i.e., 
no elements are skipped). 

count The number of elements or blocks to select 
along each dimension. 

block The size of the block selected from the 
dataspace. If the block parameter is set to 
NULL, the block size defaults to a single 
element in each dimension, as if the block 
array was set to all 1s. 

 
Based on the above definitions, we will define singular and regular hyperslabs. 
 
1. regular hyperslab 
 
A regular hyperslab is a hyperslab that generated inside an HDF5 program with 
only one H5Sselect_hyperslab routine call for the selected data space. Please 
refer to HDF5 reference manual [2] for the description of H5Sselect_hyperslab.  
The following two figures show illustrations of one regular hyperslab and one 
non-regular hyperslab. 
 

 



     

 

 
 Regular hyperslab selection   irregular hyperslab selection 
 (One H5Sselect_hyperslab call) (Two H5Sselect_hyperslab calls) 
 

2. Singular hyperslab  
 
A singular hyperslab is a special type of regular hyperslab of which the count of 
all dimensions is always 1. The following two figures show the illustration of one 
singular hyperslab and one non-singular hyperslab. 
 

     

 

 
 Singular hyperslab selection  non-singular hyperslab selection 
 (count =1 for both dimensions) (count = 2 for X- dimension) 
 

3. MPI-IO  
 
It is the parallel I/O part of MPI-2. The specification was finalized in July 1997. 
According to [3], MPI-IO includes the following features: 
 

• Noncontiguous access in both memory and file, 
• Collective I/O operations, 
• Use of explicit offsets to avoid separate seeks, 
• Both individual and shared file pointers, 
• Nonblocking I/O, 
• Portable and customized data representations, 
• Hints for the implementation of file system. 

 
4. MPI Derived Data Type 

 
The material describing MPI derived data type here is from the tutorial “Derived 
Data Types with MPI”[4]. 
 
It is built from the basic MPI datatypes; it consists of sequence of basic datatypes 
and displacements. The reason to build MPI derived datatype is to provide a 
portable and efficient way to describe non-contiguous or mixed types in a 
message. MPI provides several routines to create MPI derived data type. They are 
MPI_Type_contiguous, MPI_Type_vector, MPI_Type_indexed and 
MPI_Type_struct.  
 



Here we just show the usage of  MPI_Type_indexed. There are five parameters 
for this routine: count, blocklens[], offsets[], oldtype and newtype. 
 Count, blocklens, offsets and oldtype are inputting parameters;  
Count is the number of blocks to be added. 
Blocklens are number of elements in block – an array of length count. 
Offsets are displacements for each block – an array of length count. 
Oldtype is the datatype of each element. 
The newtype will return the pointer for new derived type. 
 
The C routine of MPI_Type_indexed is 

MPI_Type_indexed(count,blocklengths,displacements,MPI_INT,&indextype);  
 

The following figure shows an example of describing MPI_Type_Indexed. 
 

count = 2;  
 
 

4 3 2 1 

 
blocklengths[1] = 2; 

displacements[1] = 12; 
 
 
 
 
 
 
 
 
 
 
 
 

  
5. Independent IO and Co
 

Independent IO means 
not depend on or be aff
Collective IO is a way o
independent IO, all pro
optimization to improve
routine with collective 
 
The following figures s
 
 
1)  With independent IO
 
 
 

blocklengths[0] = 4;  
displacements[0] = 5; 
1
5

1
4 

1
3 

1
2 

1
1

1
0 

98765

 

llective IO  

that each process can do IO independently. It should 
ected by other processes. 
f doing IO defined as MPI-IO standard; contrary to 

cesses must participate in doing IO. MPI-IO can do 
 IO performance by using MPI_FILE_SET_VIEW 

IO. 

how examples with 4 processes. 

 



 
        P0’s view 

 
 

        P1’s view  
 
 

        P2’s view 
 
 

               P3’s view 
 
 

When doing independent IO, for worst case it may require 8 individual IO 
access.  

 
 

2) With collective IO 
 

 
 
 

It may only need one IO access to the disk. Check [5] and the reference of that 
report for more information. 

 
II. Parallel HDF5 application software stacks 

 
Applications 
Parallel HDF5 
MPI-IO(ROM-IO, etc.) 
Parallel File System(GPFS, PVFS, Lustre) 
Hardware(Myrinet, infinite band etc.) 

 
     There are several layers that can affect performances for the parallel HDF5 
application according to the table. In this document, we will only focus on the 
performance hint on how to wisely use parallel HDF5 to gain better performance 
through MPI-IO.  

 
 

III.     Functionality of Parallel HDF5    
 
There are three different storage layouts for raw data in HDF5. They are contiguous 
storage, chunking storage and compact storage.  



 
Regardless of performance issue, users can choose to use either collective IO or 
independent IO. From parallel HDF5’s perspective, there are no restrictions to 
enforce applications not to use either option. 
 
IV.     Internal implementations of parallel HDF5 
 
Since internal implementations of parallel HDF5 can help understanding performance 
issue, here we will give an overview of ideas of current implementation inside 
parallel HDF5. These descriptions only reflect the current implementation (HDF5 
1.6.3 release) and should not be treated as the final implementation since HDF5 is 
still in the process of being developed.  

 
1. Raw data with contiguous storage 

Parallel HDF5 supports both independent IO and collective IO. 
 
1) Collective IO 
 
For regular hyperslab selection, parallel HDF5 uses MPI derived data type 
routine MPI_TYPE_VECTOR to build a MPI derived data type. Through 
using MPI_FILE_SET_VIEW and the MPI derived data type, the potential 
improvement of IO performance through using MPI-IO will be accomplished. 
For non-regular hyperslab selection, parallel HDF5 uses independent IO 
internally for this option. 
 
2) Independent IO 

 
Parallel HDF5 supports independent IO for any hyperslab selections. 

 
2. Raw data with chunking storage 
 

1) Collective IO 
 
The current parallel HDF5 implementation can do collective IO in chunking 
storage with more restrictions. If the application setting matches either case of 
the two special cases below, the collective IO is accomplished.  
 
The first case is: hyperslab selection in each process must be regular and all 
hyperslab selections must be within one chunk.  
 
The second case is: hyperslab selection in each process must be singular and 
the number of chunks that covers the hyperslab selection for each process 
must be equal.  
 
 



Internally, the implementation for these two cases will call routines that 
generate MPI derived data type in contiguous storage to accomplish collective 
IO. For all other cases, parallel HDF5 uses independent IO for chunking 
storage.  
 
2) Independent IO 

 
Parallel HDF5 supports independent IO for any hyperslab selections. 

 
3. Raw data with compact storage 
 

The current parallel HDF5 implementation does not use parallel IO for this 
storage. Applications should assure the consistency of data among processes. 
In other words, IO access to data in a dataset should be exactly the same for 
all processes. 
 

4. Metadata IO 
 

The current parallel HDF5 implementation does not use parallel IO for 
metadata. Applications should assure the consistency of metadata among 
processes. In other words, IO access to metadata should be exactly the same 
for all processes. 
 

 
V.     Performance Hints for Parallel HDF5 applications 

 
1. General hint 

 
Use collective IO option of parallel HDF5 in your application if possible! 
 

2. Collective IO hints for contiguous storage 
 

Since parallel HDF5 currently only supports collective IO for regular 
hyperslab, so if possible, always use regular hyperslab selection in your 
application to take advantage of the collective IO feature inside HDF5. 

 
3. Collective IO hints for chunking storage 
 

According to section IV part 2, the current parallel HDF5 implementation 
only supports two special cases for collective IO for chunking storage.  
 
Case 1 requires that  
 

• hyperslab selection in each process must be regular 
• all hyperslab selections must be within one chunk 
 



Case 2 requires that  
• hyperslab selection in each process must be singular 
• the number of chunks that covers the hyperslab selection for each 

process must be equal 
 

Since the current implementation will do collective IO access per chunk, so to 
avoid multiple IO accesses with multiple chunks, we recommend at first to try 
setting hyperslab in your application as case 1 required(that is regular 
hyperslab selection with all selections inside one chunk) to gain better 
performance.  
 
However, if your application cannot fulfill the requirement of case 1, setting 
the hyperslab as case 2 requires should also gain better performance than 
using independent IO. For this case, try to make the chunk size large. 
 

 
4. MPI POSIX driver 

 
Besides MPI-IO driver, there is another parallel IO driver called MPI POSIX 
driver implemented in HDF5. It is a "combination" MPI-2 and posix I/O 
driver. It uses MPI for coordinating the actions of several processes and posix 
I/O calls to do the actual I/O to the disk. There is no collective I/O mode with 
this driver.This will almost certainly not work correctly for files accessed on 
distributed parallel systems with the file located on a non-parallel filesystem. 
 
On some systems, Using MPI POSIX driver may perform better than using 
MPI-IO driver with independent IO mode. 

 
 
VI. Undergoing Work 

 
HDF5 group is currently in the process of enhancing the support of using for 
general hyperslab selection. Some information can be found from [6]. 
 

VII. Reference: 
 
(1) HDF5 user’s guide: http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/ 
(2) HDF5 reference manual: http://hdf.ncsa.uiuc.edu/HDF5/doc/RM_H5Front.html 
(3) William Gropp, Ewing Lusk, Rajeev Thakur, 1999: Using MPI-2. The MIT Press 
(4) Derived Data types with MPI: 

http://www.msi.umn.edu/tutorial/scicomp/general/MPI/content6.html at 
supercomputing institute of University of Minnesota 

(5) Investigation of Parallel NetCDF with ROMS: 
      http://hdf.ncsa.uiuc.edu/apps/WRF-ROMS/parallel-netcdf.pdf 
(6) HDF5 collective chunk IO power point slides: HDF innards seminar  

http://hdf.ncsa.uiuc.edu/HDF5/doc/UG/
http://www.msi.umn.edu/tutorial/scicomp/general/MPI/content6.html
http://hdf.ncsa.uiuc.edu/apps/WRF-ROMS/parallel-netcdf.pdf

	Table 4

