Get access to the library versions of HDF5 objects

Quincey Koziol

Elena Pourmal

Kent Yang

Feb. 12th, 2007

I. Introduction

It was requested at the 10th HDF-EOS Workshop X for an HDF5 application to have access to the version numbers of the HDF5 objects stored in a file.

 A recent email exchange with an important NASA user is attached at the end of the memo. Quincey, Elena and Kent discussed the issue. This memo presents several solutions for this request. Our recommendation is also presented at the end.

II. Use cases

1. Internal use to help testing backward/forward compatibility

THG would like to set up a comprehensive testing suite to backward/forward compatibility of HDF5; we will need to create files with different versions of the library and then read/modify them. Having information about library versions associated with the files will be very helpful for testing.

2. User is required to archive HDF5 files with extra information about which version of software created the files.

3. Users who use other software to get access to HDF5 data

Many applications use other software such as IDL or Matlab to get access to HDF5 data. A NASA Aura IDL application is used as an example to describe the scenario.

Aura data may be generated by using the new version of HDF5. However, IDL is still using old version of HDF5. When a user tries to use IDL to get access to newly generated Aura data, because of the addition/deletion of HDF5 objects it is possible that unexpected results or even crashes of the software may occur without giving any hints, explanations or warnings to the user.

The requirement of this use case is to provide a way for either IDL or the end-user to have access of the library version of HDF5 objects so that at least the end-user can get some information for further investigating the cause of the problem.

4. Portability of HDF5 Applications

Application may have to be linked against several versions of HDF5 library. For example, the application may need to work on several platforms. On some platforms the latest HDF5 library is installed but others still use the old version. Therefore some application’s features should be turned off-on depending on the version of the HDF5 library used and on the versions of the HDF5 files produced/consumed.

5. Friendly warnings for HDF5 Data Consumers

When data consumer opens a file that his application cannot read at all or can read only part of the file, it would be helpful to give a warning such as “You need version X or higher to read this HDF5 file; some objects may be not be accessible with the current version”

6. Friendly warning from HDF5 Data Producers

Data producer would like to make sure that data consumer can easily find the version of the HDF5 library needed to read the whole file or a part of it.

III. Background

The HDF5 file format is designed so that some individual components of an object in a file have their own version numbers. Because the HDF5 library tries to write out each object component in a way that is maximally compatible with previous versions of the library, the version number used for the object component isn’t necessarily the latest version defined for that component. This variation of component version numbers makes it impossible to assign a single HDF5 Library version number to the objects in a file or to a file itself. But it is possible to determine the earliest version of a library that could read the object or the whole file, and that is the basis for some of the solutions suggested below.

IV.
Possible Solutions

1. Enhance HDF5 library

The library will do the following:

· Obtain the latest and earliest library versions of those HDF5 objects when they are created

· Put the latest and earliest versions into the super block extension

· Provide APIs to obtain these two versions

	ProS
	· Relatively easy to do in terms of library development

· May help ease the backward and forward compatibility issue

· Will be easy for other HDF5 library-dependent tools such as HDFView or h5dump or h5ls to provide the information of library version of HDF5 objects

	CONS
	· Don’t accurately catch all the versions of HDF5 objects

· Can only work for 1.8 and future HDF5 releases

2. Enhance h5check tool

The tool will do the following:

· Add another feature to obtain the library version of every object that has a library version associated with.

· Use HDF5 file format specification to obtain the library version.

· Display the version information when a specific flag of h5check tool is turned on. It can either provide the latest library version of all the objects or provide the library version necessary to read an individual object.

	ProS
	· Relatively easy to do in terms of only adding a new feature for an existing tool

· Easy for end-users

· Relatively easy to maintain

· Tool is independent of HDF5 library

	CONS
	· The feature is somewhat offset the role of h5check tool. However, we think this is okay if the checker presents the library version information in addition to the validation information

· Each version of the library that introduces file format changes has to have a corresponding version of h5check

3. Only provide guidelines to applications

We don’t do anything with our software. Instead we will put guidelines in our website, perhaps FAQ or other documents. These guidelines will not be very helpful for end-users, but it will help data producers or applications (IDL, Matlab) that use HDF5 to serve end-users. Our suggestions are:

· Use the latest version of the library

· Use user-block or filename or readme to remember the version number.

· Create some information inside the file (for example a file attribute)

· Use different versions of h5dump to read a file and/or object to see which library version is needed for application; different versions of h5dump have to be available for user’s platform. This is probably not a very god solution since, for example, version 1.2* may not even build on the new platform, with a new compiler, etc.

V. Conclusions

Based on our discussions, we all agree that if possible, we should enhance h5check tool to help users. The second choice is to provide guidelines to applications. Enhancing the HDF5 library is the third choice unless it can be combined with other tasks. Both enhancing the h5check tool and enhancing the library require to keep the library version of HDF5 objects up to dated in the HDF5 file specification.

Appendix:

Email exchange from Cheryl at UCAR. The last paragraph shows her suggestions.

Kent-

Yes, I have encountered problems with IDL being a older version and not working with a recently created file. My most recent experience was with the current IDL release, and it involves the szip compression with HDF4. I think I remember another occurrence back a number of years ago with HDF5 (where older versions could not read newer versions).

If I understand 1.8 correctly, there will be new features which will not be able to be read by older HDF versions. If this is the case, not only will IDL have problems, but even users who don't update their HDF5 could potentially have problems. What would be useful is a way that a user could look at a file, determine the version of the piece they are having problems with and determine the version of software they are using. If there is a mismatch, that could indicate the reason for a problem. I don't hold out much hope that IDL will incorporate anything into their software, but this would be something that a user would do on their own. If there were a way to use a tool such as hdfview, and see the versions of the pieces it displays, that would be one way to get this information out to the user.

I think this would be useful, but I wouldn't put a high priority on it.

Perhaps a simpler approach would be that you attach a version to the entire file of the software version which last wrote any piece of the file. This would give a "worst case scenario". For the vast majority of files, this would probably be better than nothing and would not bog you folks down in the details. Perhaps finding a solution for "most of the time" is better than spending all of the effort to solve it "all of the time".

Cheryl

