
1

Integration of HDF5 and SRB for Object-level Data Access*

Peter X. Cao
Univ. of Illinois, Urbana

xcao@ncsa.uiuc.edu

Mike Wan
Univ. of California, San Diego

mwan@sdsc.edu

Mike Folk
Univ. of Illinois, Urbana

mfolk@ncsa.uiuc.edu

Abstract*

Fast partial access to objects from very large files in
the SDSC Storage Resource Broker (SRB[5]) can be
extremely challenging, even when those objects are
small. The HDF-SRB model integrates the SRB and
NCSA Hierarchical Data Format (HDF5[6]), to create an
access mechanism within the SRB that is more efficient
than current methods for accessing object-based file
formats.

This model integrates two successful technologies, the
SDSC SRB and the NCSA HDF, to create a new, more
sophisticated distributed data service. The SRB serves as
standard middleware to transfer data between the server
and client. HDF5 provides interactive and efficient
access to datasets or subsets of datasets in large files
without bringing entire files into local machines. A new
set of data structures and APIs have been implemented to
support such object-level data access. A working
prototype of the HDF5-SRB data system has been
developed and tested.

1. Introduction

Storing massive data presents two big challenges:
management of distributed data systems and efficient
access to complex data content. The NCSA Hierarchical
Data Format (HDF) and the SDSC Storage Resource
Broker (SRB) have addressed the two issues. The SRB is
client-server middleware (or grid data software) that
provides a uniform interface and authorization
mechanism to access heterogeneous data resources
(UNIX FS, HPSS, UniTree, DBMS, etc.) distributed on
multiple hosts and diverse platforms. The HDF is a file
format and software library for storing all kinds of data,
simple integers and floats or complex user-defined
compound data types. The HDF employs a common data
model with standard library APIs, providing efficient
data storage and I/O access.

* Sponsored by NLADR[1], NFS PACI[2] project
 in support of NCSA[3] and SDSC[4] Collaboration.

The HDF and the SRB offer valuable and

complementary data management services, but they have
not previously been integrated in an effective way.
Earlier work had the SRB accessing HDF data either (a)
by extracting entire HDF files, or (b) by extracting byte-
streams through the SRB’s POSIX interface. Approach
(a) fails to take advantage of HDF’s ability to offer
interactive and efficient access to complex collections of
objects. Approach (b) has been shown to be far too low-
level to perform reasonably for some data extraction
operations.

In discussions between NCSA and SDSC, it has been
determined that a more effective approach is possible,
one that uses modified HDF APIs on the server side to
extract data from large files at the instruction of client-
side HDF APIs and SRB as middleware to transfer data
between the server and client. This approach would insert
the HDF library and other object-level HDF-based
libraries (such as HDF-EOS) between the SRB and a data
storage source (such as a file system), making it possible
to extract objects, rather than files or byte streams.
Furthermore, these libraries typically offer query,
subsetting, sub-sampling, and other object-level
operations, so that these services might also be available..

2. Overview of SRB and HDF5

This section is a brief introduction of SRB and HDF5.
For more information, you can visit the SRB and HDF5
websites at http://www.sdsc.edu/srb/ and
http://hdf.ncsa.uiuc.edu/.

2.1. What is SRB

SRB is client-server middleware (or grid data
software) that provides a uniform interface and
authorization mechanism to access heterogeneous data
resources (UNIX FS, HPSS, UniTree, DBMS, etc.)
distributed on multiple hosts and multiple platforms. It is
a distributed file system, a data grid management system,
a digital library, and a semantic web.

2

2.2. What is HDF5

HDF5 is a general-purpose library and file format for
storing scientific data. At its lowest level, HDF5 is a
physical file format for storing scientific data. At its
highest level, HDF5 is a collection of utilities and
applications for manipulating, viewing, and analyzing
data in HDF5 files. Between these levels is the HDF5
software library that provides high-level APIs and a low-
level data interface. HDF5 is a file format for storing all
kinds of data and a library with standard APIs. It
provides efficient data storage and I/O access and
software and tools.

HDF5 can store two types of primary objects: datasets
and groups. A dataset is essentially a multidimensional
array of data elements, and a group is a structure for
organizing objects in an HDF5 file. Using these basic
objects, one can create and store almost any kind of
scientific data structure, such as images, arrays of
vectors, and structured and unstructured grids. You can
also mix and match them in HDF5 files according to your
needs.

3. The HDF-SRB model

We have designed a new mechanism, the HDF-SRB
model to support object-level data access. The two basic
requirements of the HDF-SRB model are simple and
efficient. The HDF-SRB model has minimum changes
the SRB code. It uses one set of objects for both server
and client. It should have efficient data access by
transferring only the required data (no redundant member
object within an object) between client and server.

3.1. The HDF-SRB architecture

The HDF-SRB model consists of four basic
components: the client (HDF client application or SRB
client), the HDF-SRB module, SRB server, and the HDF
library. Figure 1 illustrates the basic architecture of the
HDF-SRB model.

Client applications are implemented using a set of
APIs provided by SRB for sending requests and
receiving responses to/from the SRB servers. The
requests and responses are packed with HDF objects. The
critical component is the HDF-SRB module, which
connects the HDF clients to the HDF library on the
server. The HDF-SRB module is responsible for packing
and unpacking messages, or HDF objects, between the
SRB and HDF components. The HDF library is installed
with the SRB server for interactive access to HDF files
on the server side.

Figure 1 The HDF-SRB Model.

3.2. HDF data objects

In the HDF-SRB model, data objects are passed
between the client and server rather than the entire file.
There are several advantages for object level access.
First, passing objects is more efficient than passing an
entire file especially for large files. For example, if we
want to access a small subset of a gigabyte dataset, we
just bring the selected data to the client instead of the
whole file. Second, it is easy to pass complex requests
such as sub-setting. Because messages passing between
the client and server are packed in data objects, there is
no need to specify the format of the messages; messages,
simple or complex, are self-explained in the object.
Thirdly, it is easy to maintain the source code and extend
to support new objects and new functions. Adding a new
function to the object will not require any change to the
data model.

There are three basic HDF5 objects (C structures):
H5File, H5Dataset and H5Group. H5File is used to hold
metadata about the file and the root group of the file. The
file structure can be constructed by following the links
that flow from the root group. H5Dataset contains data
values and information about the data, such as data type
and data space. H5Attribute is similar to H5Dataset, but
contains user-defined metadata for groups and datasets.
H5Datatype contains information about the data type of
the dataset, such as data type class, order and size.
H5Dataspace contains sizes of the dimensions of dataset.
It is also used to calculate the data size and pass the
subsetting information.

SRB Server

HDF5 file

MCAT

HDF5 Library

HDF5-SRB Module
(unpackMsg/packMsg)

HDF5 Object
(File, Group, Dataset)

Client Application

HDF5-SRB Module
(unpackMsg/packMsg)

HDF5 Object
(File, Group, Dataset)

3

3.3. Client side API

h5ObjRequest() is the client side API, which is
responsible for sending a client request to the server and
for processing the response from the server. Request and
response messages are packed in the HDF object
structures.

3.4. Server side API

h5ObjProcess() is the server side API, which
processes client request and sends results to back the
client. The server side API does not call the HDF5 library
directly. It calls unpackMsg() to construct the data object
passed from the client. The data object then takes the
operation and calls the HDF5 library.

3.5. Pack/Unpack routine enhancements

The packMsg() and unpackMsg() routines exchange
structured data between client/server. A data structure is
packed into a single byte stream before sending cross the
network. Byte stream received is unpacked back into the
data structure based on its definition. The enhanced
packMsg() and unpackMsg() routines handle
complicated data structures – string, pointers, pointers to
arrays, arrays of pointers, etc.

3.6. General proxy functions

In SRB, proxy functions allow the execution of
certain functions on the servers to improve performance.
Examples of the use of proxy functions include data
subsetting and filtering type operations where they can
most efficiently be carried out on the servers where data
reside.

To make it easier to implement and handle object-
level HDF5 requests which can be quite complex, a new
and more general SRB proxy function framework has
been added. This framework can also be used by other
developers to implement their own proxy functions.

In this framework, a client calls a new client API -

srbGenProxyFunct() to make proxy request. Inputs for
the srbGenProxyFunct function include:

• int functType - the type of proxy function. e.g.,
HDF5_OPR_TYPE

• void *inputStruct - Pointer to input struct.
• FormatDef inputFormat - packing instruction for

inputStruct.
• void **outputStruct - Pointer to output struct.
• FormatDef outputFormat - packing instruction for

outputStruct.

Inputs for the proxy function are given in an
"inputStruct" which is a pointer to an arbitrary data struct
and a "inputFormat" which is a character string
containing the instruction for serializing the "inputStruct"
into a single byte stream before sending across the
netwotk to the server.

For example, an "inputStruct" may contain an "int"
and a pointer to a string:

struct foo {
 int myIndex;
 char *myName;
};
The serializing instruction is a string containing "int

myIndex; str *myName;" which instructs the serializing
routine to treat the first member of the struct as an integer
and the second member as a pointer to a string.

 Similarly, the "outputStruct" and "outputFormat"
specify the output and packing instruction for the output
of the proxy function.

On the server side, the genProxyFuncEntries[] table
defined in genProxyFunct.h is a switch table used by the
server to determine the handling function for each proxy
function type. Currently, the genProxyFuncEntries[] is
defined as follows:

genProxyFunc_t genProxyFuncEntries[] = {
 {HDF5_OPR_TYPE, (func_ptr) h5ObjProcess},
};
The table contains only one entry, the HDF5 type

(HDF5_OPR_TYPE) proxy function. The
h5ObjProcess() function will be called to handle the
HDF5_OPR_TYPE request. To implement a new type of
proxy function, one needs to simply add one more entry
to the genProxyFuncEntries[] table and a function to
handle this type of request on the server.

4. Client application: the HDFView

The HDFView is a visual tool for browsing and
editing NCSA HDF4 and HDF5 files. Using HDFView,
you can

• view a file hierarchy in a tree structure
• create new file, add or delete groups and datasets
• view and modify the content of a dataset
• add, delete and modify attributes
• replace I/O and GUI components such as table

view, image view and metadata view
For more details on HDFView, visit the NCSA

HDFView webpage at http://hdf.ncsa.uiuc.edu/hdf-java-
html/hdfview/index.html.

Supporting HDF-SRB in HDFView requires
implementing HDF-SRB Java Native Interface(JNI) and
adding new GUI components and data object

4

4.1. The HDF-SRB JNI

The HDF-SRB Java Native Interface (JNI) consists of
an Java class and dynamically linked native library. The
Java class declares static native methods, and the library
contains C functions which implement the native
methods. The C functions call the standard HDF-SRB
client module.

The HDF-SRB JNI class contains only one native
interface, h5ObjRequest(). h5ObjRequest () does two
things: load the dynamic library and pass client requests
to the C function.

public synchronized static native int h5ObjRequest
(String srb_info[], Object obj, int obj_type) throws
Exception;
The dynamic library (C implementation of the native

interface) wraps the SRB client and converts data object
between C and Java. When client calls the Java interface
h5ObjRequest(), the dynamic library does the following
tasks:

• Make connection to the SRB server
• Decode the Java object and construct C structure
• Send requests to the server in the form of C

structure
• Encode server result in to Java object

4.2. The Java HDF-SRB objects

HDFView is implemented based on the HDF object
package, a Java package which implements HDF4 and
HDF5 data objects in an object-oriented form. The HDF
Java object package provides a common standard Java
API to access both HDF4 and HDF5 files. For more
information on the HDF Object Package, visit
http://hdf.ncsa.uiuc.edu/hdf-java-html/hdf-
object/index.html.

To support HDF-SRB data objects, we have
implemented the following Java package,
ncsa.hdf.srb.obj, which contains:

• H5SrbFile extends FileFormat
• H5SrbGroup extends Group
• H5SrbScalarDS extends ScalarDS
• H5SrbCompoundDS extends CompoundDS
• H5SrbDatatype extends Datatype
These objects implement methods to deal with the

client requests and data from the server. The native call,
h5ObjReques(), passes the information through the
objects. For example, the following code is how the we
read data from remote file using H5SrbScalarDS::read().

 public Object read() throws Exception
 {
 String srbInfo[] =
 ((H5SrbFile)getFileFormat()).getSrbInfo();
 if (srbInfo == null || srbInfo.length<5)

 return null;
 opID = H5DATASET_OP_READ;
 H5SRB.h5ObjRequest (srbInfo, this,
 H5SRB.H5OBJECT_DATASET);
 return data;
 }

4.3. The GUI components

Since HDFView is built on modular fashion, the GUI
components are transparent to data access. There is not
much change to the GUI components. We added
SRBFileDialog class to the GUI. SRBFileDialog class is
used to make server connection by using the Java API for
Real Grids On Networks (JARGON). JARGON is a pure
java API for developing programs with a data grid
interface. The API currently handles file I/O for local and
SRB file systems, as well as querying and modify SRB
metadata. For more information on JARGON, read
http://www.sdsc.edu/srb/jargon/index.html.

Figure 2 shows two examples of accessing HDF5 files
on the SRB server in HDFView. The first file, extdat-
srb.h5, contains one dataset of size about seven gigabytes
(25*3000*22728*4). With SRB support, we can have
instant access to subset of the seven gigabyte dataset.
Without SRB support, it would take hours to transfer the
whole file to local machine.

The second example, weather.h5, shows how we can
have instant access to the file structure. With SRB
support, we can browse through the file structure without
bringing the content of the file to local machine.

Figure 2 The SRB File Access in HDFView

4.4. Conclusions

The HDF-SRB model integrates two successful
technologies, the SDSC SRB and the NCSA HDF, to

5

create a new, object-lvel distributed data service. The
SRB serves as standard middleware to transfer data
between the server and client. HDF5 provides interactive
and efficient access to datasets or subsets of datasets in
large files without bringing entire files into local
machines. A new set of data structures and APIs have
been implemented to the SRB support such object-level
data access.

A working prototype of the HDF5-SRB data system
has been developed and tested. The HDF-SRB has been
proved to be very efficient in large files. We have
implemented SRB support in HDFView. Using
HDFView, we can have instant access to file structures
and fast access to subset of large dataset. Without HDF-
SRB support, it might take hours to bring the file to a
local machine.

This project has been a very successful team effort
between SDSC and NCSA. Both SRB and HDF5 are
very complex and the implementation of such a
server/client system requires a full understanding of the
two technologies. The SDSC SRB and NCSA HDF
teams have worked together on all parts of the project,
including designing, coding and testing.

References

[1] http://www.nladr.org
[2] http://www.npaci.edu/
[3] http://www.ncsa.uiuc.edu/
[4] http://www.sdsc.edu/
[5] http://www.sdsc.edu/srb/
[6] http://hdf.ncsa.uiuc.edu/

