
 1

h5perf_serial, a Serial File System Benchmarking Tool

The HDF Group
April, 2009

HDF5 users have reported the need to perform serial benchmarking on systems without
an MPI environment. The parallel benchmarking tool, h5perf, cannot be used for this
purpose since the code is dependent on MPI functions and names. In addition, desired
features like the use of extendable datasets and file drivers are not available in h5perf.
These considerations call for the development of a new benchmarking tool,
h5perf_serial.

Requirements

Although h5perf_serial is still under development, the following initial requirements
have been implemented:

1. Use of POSIX I/O calls
a. Write an entire file using a single I/O operation.
b. Write a file using several I/O operations.

2. Use of HDF5 I/O calls
a. Write an entire dataset using a single I/O operation.
b. Write a dataset using several I/O operations with hyperslabs.
c. Select contiguous and chunked storage.
d. Select fixed or extendable dimensions sizes for the test dataset.
e. Select file drivers.

3. Support for datasets and buffers with multiple dimensions.

Most of the design and options are taken from h5perf, e.g. the datatype of each array
element is char. The options and parameters of the tool, dataset organization examples,
and API features are described next.

Options and Parameters

-A api_list

Specifies which APIs to test. api_list is a comma-separated list with the following
valid values: hdf5, posix. (Default: All APIs)

-e dataset-dimension-size-list
Specifies the sizes of the dataset dimensions in a comma-separated list. The
dataset dimensionality is inferred from the list size. For example, a 3D dataset of
dimensions 20 × 30 × 40 can be specified by -e 20,30,40 (Default: 1D dataset of
16M, i.e. –e 16M)

 2

-x buffer-dimension-size-list
Specifies the sizes of the transfer buffer dimensions in a comma-separated list.
The buffer dimensionality is inferred from the list size. For instance, a 3D buffer
of dimensions 2 × 3 × 4 can be specified by -x 2,3,4 (Default: 1D buffer of 256K,
i.e. –x 256K)

-r dimension-access-order-list
Specifies the dimension access order in a comma-separated list. h5perf_serial
starts accessing the dataset at the cardinal origin, then it traverses the dataset
contiguously in the order specified. For example, -r 2,3,1 will cause the tool to
traverse first the dataset dimension 2, then the dimension 3, and finally, the
dimension 1. (Default: -r 1)

-c chunk-dimension-size-list
Creates HDF5 datasets in chunked layout, and specifies the sizes of the chunks
dimensions in a comma-separated list. The chunk dimensionality is inferred from
the list size. For instance, a 3D chunk of dimensions 2 × 3 × 4 can be specified by
-c 2,3,4 (Default: Off).

-t
Use an HDF5 dataset with extendable dimensions. (Default: Off, i.e., fixed
dimensions).

-v file-driver
Specifies which file driver to test with HDF5. Valid values include: sec2,
stdio, core, split, multi, family, and direct. (Default: sec2)

-i iterations
Sets the number of iterations to perform. (Default: 1)

-w
Performs only write tests, not read tests. (Default: Read and write tests)

Data Organization Examples

An execution of the following command

h5perf_serial -e 16,16 -x 2,4 -r 2,1

defines a dataset of 16×16 bytes, a transfer buffer of 2×4 bytes, and dimension access
order 2,1. Figure 1 shows the state of the dataset after seven write operations.

 3

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1

Figure 1 Data pattern for access order 2,1

A different buffer size and access order can be specified. The following command

h5perf_serial -e 16,16 -x 4,2 -r 1,2

defines a dataset of 16×16 bytes, a transfer buffer of 4×2 bytes, and dimension access
order 1,2. Figure 2 shows the state of the dataset after seven write operations.

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1
1 1
1 1
1 1
1 1

Figure 2 Data pattern for access order 1,2

h5perf_serial will check that the size of each dataset dimension is a multiple of the
size of the same dimension in the transfer buffer. Also, the dimensionality of the dataset,
transfer buffer, and chunks must be the same.

 4

APIs Features

The available APIs for testing are POSIX and HDF5. In both cases, h5perf_serial
can write the dataset through one or several I/O operations by setting the appropriate
sizes for the dataset and transfer buffer, e.g. a dataset can be written in a single operation
by using a transfer buffer that matches the dataset dimensions.

The HDF5 API allows the selection of chunked storage using the option -c. When
chunked storage is selected, h5perf_serial offers the added option –t, which extends
the dataset while it is being written. During each I/O access the dataset is extended
minimally, if needed, to support the writing of the transfer buffer. The extension process
continues until the dataset has achieved its final size. Following this scheme, the datasets
on Figures 1 and 2 would have been extended four times assuming that the initial dataset
size was that of the transfer buffer.

An additional feature of h5perf_serial under HDF5 is the possibility to select a
particular file driver to test the variation in I/O performance under different file access
implementations.

Tool Output

The resulting output is similar to that of h5perf; throughput statistics are displayed by
API and write/read operations. The use of multiple iterations provides information for
maximum, average, and minimum throughput values.

 5

./h5perf_serial -e 4K,4K -x 512,256 -c 4K,256 -i 3
HDF5 Library: Version 1.9.39
==== Parameters ====
IO API=posix hdf5
Number of iterations=3
Dataset size=4KB 4KB
Transfer buffer size=512 256
Dimension access order=1 2
HDF5 data storage method=Chunked
HDF5 chunk size=4KB 256
HDF5 dataset dimensions=Fixed
HDF5 file driver=sec2
Env HDF5_PREFIX=not set
==== End of Parameters ====

Transfer Buffer Size (bytes): 131072
File Size(MB): 16.00
 IO API = POSIX
 Write (3 iteration(s)):
 Maximum Throughput: 52.78 MB/s
 Average Throughput: 52.03 MB/s
 Minimum Throughput: 50.68 MB/s
 Write Open-Close (3 iteration(s)):
 Maximum Throughput: 35.53 MB/s
 Average Throughput: 34.05 MB/s
 Minimum Throughput: 31.52 MB/s
 Read (3 iteration(s)):
 Maximum Throughput: 62.50 MB/s
 Average Throughput: 62.24 MB/s
 Minimum Throughput: 61.87 MB/s
 Read Open-Close (3 iteration(s)):
 Maximum Throughput: 62.44 MB/s
 Average Throughput: 62.17 MB/s
 Minimum Throughput: 61.80 MB/s
 IO API = HDF5
 Write (3 iteration(s)):
 Maximum Throughput: 533.30 MB/s
 Average Throughput: 523.39 MB/s
 Minimum Throughput: 505.82 MB/s
 Write Open-Close (3 iteration(s)):
 Maximum Throughput: 89.24 MB/s
 Average Throughput: 59.46 MB/s
 Minimum Throughput: 35.76 MB/s
 Read (3 iteration(s)):
 Maximum Throughput: 607.49 MB/s
 Average Throughput: 605.97 MB/s
 Minimum Throughput: 603.66 MB/s
 Read Open-Close (3 iteration(s)):
 Maximum Throughput: 585.72 MB/s
 Average Throughput: 581.98 MB/s
 Minimum Throughput: 577.45 MB/s

