
Proposal for representing simple data in the HDF5 XML DTD
Mike Folk, May 23, 2000
Rev 2: Revised May 31, 2000
Rev 3: Revised June 8, 2000

Background
For reasons given in the design notes (section 3.3), we were not able to
create a satisfactory markup for data in the HDF5 file for the first release.
The initial version of the DTD has a limited <DataFromFile> element, which
does not support all the desired features. This will be revised in a future
release, after we have had more time and experience with this the HDF5 DTD.

So the purpose of this proposal is just to suggest one way to represent data
in HDF5, not to provide a general solution for representing HDF5 data. Our
purpose here is to help users experiment with the DTD in useful ways, and to
get feedback on this and other possible approaches.

Comments, corrections, and suggests are very welcome.

Data ordering
In the proposed scheme, values shall listed in "row major" order, meaning that the
last dimension varies fastest. For instance, for a three dimensional array, 4 x 5 x
10, declared as

int x[4][5][10]

the data would appear in the order:

x[0][0][0] x[0][0][1] ... x[0][0][9] x[0][1][0] x[0][1][1] ... x[0][1][9] ...
x[3][4][0] x[3][4][1] ... x[3][4][9]

Datatypes
All HDF5 datatypes are covered except opaque and object selection references.
Any compound datatype that includes either of these cannot be displayed.
Individual values must be represented by one of the following three types:
decimal integer constant, character string, or floating point constant.
Datatypes are mapped to these three types as follows:

Datatypes Representation Comments/examples
All integers integer_const Decimal integers only
All floats float_const
Characters and strings string_const Use C rules for special characters
Enum string_const
Bitfield binary_const Assumed to be 0s and 1s.
Object reference integer_const Assumes no decimal point
Variable length type* paren_list Except string. E.g. (4,5,6)
Compound compound_list E.g. 5.2, "abc" or [5.2, "abc"]
*Except character string

BNF notation for <DataFromFile> element
This BNF description of a valid <DataFromFile> stream uses the following
special notation:
 <token>?: 0 or 1 occurrences of <token>
 <token>*: 0 or more occurrences <token>
 <token>+: 1 or more occurrences <token>

digit ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
non_zero_digit ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
integer_const ::= sign non_zero_digit digit * // assume decimal integer
float_const ::= sign fraction exp_part? |
 integer_const exp_part
fraction ::= digit * "." digit *
exp_part ::= ("e" | "E") sign digit *
sign ::= "+" | "-" | <epsilon> // <epsilon> indicates the
 // absence of a token
binary_const ::= ("0"|"1")+

valid char ::= // Any character accepted by HDF5 (except "<"
 // and "&") for the datatypes that are supported
 // " <" must be used instead of "<" and "&"
 // instead of "&"
string_const ::= quote valid char * quote // allows empty strings?
quote ::= """ // the double-quote symbol
paren_list ::= "(" list * ")" // allows empty variable-
 // length types
compound_list ::= "{" list * "}" | list *
list ::= value (separator value)* separator ? | ws*
value ::= integer_const |
 float_const |
 string_const |
 paren_list |
 compound_list
separator ::= ws + | // allow any combination of separators
 ws* "," ws * // but no more than one comma
ws ::= <space> | // white-space
 <tab> |
 <newline> |
 <carriage_return>

