Experimentswith JSP, XML, CORBA and HDF5

KunYan
Robert E. McGrath
National Center for Supercomputing Applications
University of Illinois, Urbana-Champaign

August, 2002

Contents
I T oo [UTox i o o PP 1
2. EXPeriment 11 ISP aNG XIML ..ot n s 2
P22 I | 1o [F o £ o o 1SS 2
2.2. SOftware CoNfIQUILION.........cceeiie et et r et sreenaesreere e ne e 3
2.3. EXPerimentS WIth HDF ..ot 5
2.4. RESUITS AN DISCUSSION.......coviieieieiieeiiesiesieete st e see st esee e eseestesseeneessesneessesaeeseseeeneensesseessens 6
3. Experiment 2: HDF5 Java/CORBA EXPENMENES......ccceeiiiitieiiecieieesieseesee st see e sreesse e snessesneas 6
G 50 I 1 1 L 1 o o P 6
3.2, ENVITONMENT SEEUD ...ttt b et n e ne e 7
3.3. SOftWare DEVEIOPIMENT........ccui ettt st r e s re e re s ae e e resaeens 7
3.4, EXperimentS With HDF ..ottt st 8
3.5. SUMMANY 8N0 DISCUSSION.......cuviieiieiieiinieete sttt e ettt sbess s e bbb s nn e e 10
I T o 1T o SRS 12
B ACKNOWIEUGEIMENES......ceeeiti ettt ettt st s e et e ae et e s be e e e s beereentesaeeneestesneesreanes 13
B. REFEIEINCES. ...ce ettt ettt e te e a e et e s teeneeteere e eeare et e nteeneesreeneentenrean 13

1. Introduction

This project investigated several new technologies that appear to enable HDF5 files to be
accessed by Web-based tools. The overall motivation is a desire to make datafrom HDF files
easily accessible using standard Web technology. This requires support at the server, the client, or
both [15].

The basic scenario is “browsing” and HDF5 dataset, preferably using a standard Web browser.
This process requires a “conversation with the data” ([15]), discovering the structure and objects
in the file, and selecting what data to retrieve (download).

In earlier work, we created a CGl-based server for HDF4 (the $pBajhich evolved into

DIAL [7] and its descendants. Early versions of the NCSA Java HDF Viewer JHV) featured a
client-server architecture which used raw sockets, RMI, or Servlets ([16]). The JHV was designed
to work as an application; the Java classes were not used by standard Web browsers.

The current HDF Java products access HDF using the Java Native Interface (JNI) which is used
to call the native C libraries from Java. Since Java security usually does not allow an applet to
call a C library, HDF can be accessed only by Java applications, not by remote Web browsers.
This is an unfortunate limitation.

The JNI technology has other serious limitations and flaws, especially for calling a large,
complex library that performs I/O. The Java Virtual Machine (JVM) manages the linking and

loading of the native modules, which has many undocumented and platform specific pitfalls.

Also, the Javato C interaction runs entirely within the context of the VM, which is multi-

threaded, and has other undocumented details. For instance, the Java specification requires all C-

code called by JNI to be ‘thread-safe’—but the definition of ‘thread safe’ is poorly documented
and appears to be JVM specific. As far as can be determined, it is not wise to do disk I/O in a
native call—which is a severe restriction on the HDF libraries.

For these reasons, it would be advantageous to have an alternative method to access HDF, one
that does not use the JNI, and preferably a method by which Web browsers can access data.

Conceptually, it seems clear that Java is designed to communicate with non-Java code via sockets
or network services. This can be done through any of several mechanisms, such as HTTP with
CGl or Java Server Platform (JSP), or directly over a socket. The connection might exchange
messages in many formats, including XML, HTML, or a network protocol such as ODBC. Most

of these mechanisms can work across a network or within a single application (possibly as two
processes).

A potential advantage of this decoupling of the client from the server is that it may enable the
client to be pure Java (i.e., no JNI) and the HDF access to be done without the JNI. It also offers
the possibility of an improved “HDF server”, which could enable users to publish HDF data on
the Web.

This project investigated several new technologies that appear to enable HDF5 files to be
accessed by Web-based tools. Several experiments were done with Java Server Platform (JSP),
XML, and HDF-5 for remote accessing scientific data. This experiment is using Tomcat as Web
server and JSP servlet container, converting HDF5 file into XML file and further transforming
XML file into HTML file using XSL style sheets.

A second phase of this project investigated using CORBA technology with Java to have HDF5
file access done from a remote and heterogeneous environment. The overall approach is to have
data access in a CORBA servant written in C/C++, while browsing and presenting the

information in Java. Java can communicate directly with CORBA objects via Java’'s RMI.
Basically, the Java program sees the CORBA object as a remote Java object, although the object
can be written in C or C++.

These experiments demonstrated that these technologies can be used to implement sophisticate
Web-based browsing for HDF5 files. The JSP and JavaBean server is particularly easy to
customize, which would enable specific user communities to create custom “views” of the same
HDF5 dataset. The CORBA server is quite robust and reliable, and would be quite useful as an
alternative to the JNI.

A combined system with both CORBA and JSP would be quite powerful and flexible. The
CORBA server would provide reliable access to HDF5 for clients written in any language, the
JSP server could “wrap” the CORBA with different views and dialogs.

2. Experiment 1. JSPand XML

2.1. Introduction

Experiment 1 investigated remote access to HDF5 datasets using Java Server Platform (JSP) and
XML. This experiment used standard open source software: the Apache Web server with Tomcat
JSP servlet container [citations], which dynamically generates HTML or XML using

JavaBeans™. A set of JSP pages was created which convert HDF4 to HDF5, and HDF5 to XML,
and XML to HTML, which is sent to a standard Web browser.

This experiment built on other work with XML, in which we created an XML DTD for HDF5
[17,18], and tools for converting to and from HDF5 binary files and XML, and also used XSL
stylesheet to translate the XML into HTML [19]. We also usechttteh5 utility [20], which
converts HDF4 files to HDF5.

The first goal of this experiment was to explore the JSP and XML technology, to learn the
terminology and techniques, and gain practical experience with the software configuration. The
second goal was to construct a demonstration server, which converts HDF5 into HTML or XML.

2.2. Softwar e Configuration

A basic system was set up, and small JSP examples use. From this experience, a simple
experiment was set up. Figure 1 shows a functional diagram of the how JSP works in this
experiment2, 3, 4].

When the client request a JSP page, the file’s extensiam, tells the server a special handling
needed. The request is forwarded to Tomcat from Apache. The special handling involves four
steps §]:
1. The JSP engine parses the page and creates a Java source file.
2. It then compiles the source file intakhass file. The class file is a servlet, and from
this point on, the servlet engine handlesahass file in the same manner as all
other servlets.
3. The servlet engine loads the servlet class for execution.
4. The servlet executes and streams back the results to the requestor.

Figure 2 shows the flow of a client’s request. (Adapted from Eden and Lbjke [

The first step was to set up the required environment: the Apace web server (using Apache), the
JSP/Servlet container (Tomcat), and the communicator between Apache and wochcjak,.

For the experiment, the HDF5 library, XML DTD, and some tools are also. Table 1 provides the
information about where to find the source/binary code and the instruction of configuration and
installation.

How JSF Warks

Figure 1. How JSP works in this experiment

Request
Wide b
‘ﬂspmse sernver
— f
i =
Cliernt
A Server
exibaernsion
Sarwviet
< JSP
angine engine
dSP
parser
Class
loadar Jawva

- -C:-Cll'l-'lp“Ef

Figure 2. The flow of a request. (Adapted from [5].)

Table 1 Apache, Tomcat, and other software used in this experiment

Download
Apache Web Server 21]
Tomecat 3.3 [22]
mod_jk [22]
hdf5 tools [14, 20]
DTD for hdf (5.1.4) [23]

The “nmod_j k” is a Tomcat-Apache plugin that handles the communication between Tomcat and
Apache. We need to reconfigure Tomcat and Apache to make them workingpdithk. For
Apachel.3.20 and Tomcat 3.3, the reconfiguration is much simpler than with earlier versions.
(See [22)])

The Tomcat server can be configured as a stand alone Web server, but in this experiment it was
configured as a backend to the regular Apache Web server. This is the typical use of Tomcat,
which is not as fast as Apache when it serves static pages. The Apache server handles the static
content, such as images and HTML documents, and forwards all requests for dynamic content to
Tomcat PJ.

2.3. Experimentswith HDF

This experiment was implemented by four JSP pages and three JavaBean classes. The pages of
HDF5, XML, and HTML file lists are generated by the same JSP file and JavaBeans with

different parameters passing to corresponding JSP pages. The Java beans access HDF5 using the
Java Native Interface (JNI) to call the native HDF5 library.

The test data included a sample of HDF5 files and some real NASA data files. Those files were
converted from HDF4 to HDF5 Hyatoh5 utility. Table 2 lists the NASA test data.

Table 2. NAS A datasets that were be converted to HDF5.

HDFS5 file converted from NASA dataset File Size (bytes)
NI SE_SSM F11_19911227. h5 oM
CER _ES8 Terr a- 76M

FM2_Test _SCF_016011. 20000830. subset _70_20_-
140_-40. 20001012_204110Z. h5

98034001632_GOES08_IMAGER.h5 24M
avhrr8kmmonthly.h5 24M
balloon_sp.h5 51k

The demonstration implemented simple browsing of a collection of HDF5 files from a standard
Web browser. The JSP accessed the HDF5 data, called programs, and generated HTML which
was sent to the client. A typical sequence of operations was:

Select “hdf5 file” and send the request

Get the hdf5 file list, select file “tattr.h5”, request converting to XML file
Get the converting result, request the list of XML file

Get the XML file list, select “tattr.h5.xml”, request transforming to html file
Get the transformed result, request the transformed HTML file.

Get tattr.h5.xml.html file

oukwnpE

The JSP functions are written special web pages and JavaBeans. The bean is the middleware
between data library and JSP. In principle there can be several layers of beans and Java classes to
accomplish complex task, and the Java beans can access CORBA services.

We developed a sequence JSP pages that converts files from one format to another with a single
click of a Web browser. We demonstrated the following conversions:

e HDF4 to HDF5 (used thiedtoh5 utility).

* HDF5 to XML (used the ncsa.hdf.io.XMLWriter class)

e XML to HTML (used Xalan and an XSL style sheet)

« XML to HDF5 (used the ncsa.hdf.tools.h5gen.H5Gen class)

2.4. Results and Discussion

The results of this experiment show that we could receive request from a standard Web browser,
invoke corresponding JavaBeans classes used in JSP, access the HDF5 library using JNI. We also
showed that the JavaBeans could invoke a binary utility prodmvétoh5.

These technologies could be used to design and implement an application of remote scientific
data access with functions similar to CGl-based servers, such as Qlahd SDB []. JSP and
JavaBeans are flexible and easier to use than CGl.

There are many ways to use JSP and XML together. We could generate XML with JSP, as in this
experiment, generate beans from XML, and transform XML into 438.[These ideas need to
be investigated further.

Also there are other issues essential to our design. Since scientific data files usually are large and
user may not want to acquire entire data at one time, we have to make the application efficient.
Using XML technology, Xlink, Xpointer, and XPath could allow partial data ac8&$8% [Also

we may need to use some sort of cache techniques to store XML objects in memory.

3. Experiment 2: HDF5 Java/CORBA Experiments

3.1. Introduction

This project investigates using CORBA technology with Java and HDF5 file. The overall
approach is to have data access done by a CORBA servant written in C/C++, while browsing and
presenting the information in Java (or any other language). This eliminates the need for the JNI,
and so avoids the problems discussed in the Introduction.

In this approach, there would be a CORBA server which exports aview of HDF5 files as objects,
and accesses the files using the HDF5 library. The CORBA server would be written in C++ and
would link to the HDF5 library. It will implement whatever thread-safety and other details need
to be managed, using the regular HDF5 library, C/C++, and CORBA.

Clients can access these objects from the server locally (from another process) or remotely across
the network. The client can be written in any language. Furthermore, the Java Virtual Machine
contains an ORB, so Java classes can directly communicate with CORBA objects asif they were
Java. For instance, we could re-implement the H5View as a pure Java application, using CORBA
rather JNI. Of particular interest would be light-weight Java applets that could runin a Web
browser. Thisalso gives us afast way to support other languages that can readily use CORBA,
including Lisp, Smalltalk, and Python.

3.2. Environment setup

There are severa proprietary and free implementations of CORBA [24]. We used the free
CORBA from ORBacus [10] which iswidely considered the best. Note that the CORBA server
requires CORBA for development and to run. The requirements for the client depend on the
programming language.

We have tried the earlier version of ORBacus (3.3.4) and found that it is not as well supported as
the updated version. Finally we chose ORBacus 4.1.0 sinceit is fully compliant with CORBA
2.3 standard, and supports POA (Portable Object Adapter) and OBV (Object by Value).

We set up OB-4.1.0 (supports C++) and JOB-4.1.0 (supports Java) on both Linux (Red Hat 7.1)
and Solaris 2.7 platforms. ORBacus 4.1.0 comes with test and demo packages for testing the
environment setting and showing demos of a series of small, distributed applications.

Note that it requires gcc2.95.3 (or above) and jdk1.3 (or above) to configure and install ORBacus
4.1.0.

3.3. Softwar e Development

The communication between a CORBA server and its clients is based on a common interface,
which is essentially a contract between the server and its potential clients. To develop and build a
CORBA application, there are three phases required:

» Design of the CORBA interfaces, coded in CORBA IDL.
» Design of the implementation modules to implement the CORBA interfaces.
» Design of client programs to remotely invoke the server.

Design of the IDL interface isthefirst step of the development of a CORBA application. The IDL
interface describes CORBA abjects. The IDL for a server specifies the modularized object
interfaces, attributes and operations available for that interface. IDL interface are programming
language neutral .

The IDL file needs to be compiled with an IDL compiler and converted to its associated
representation in the desired programming language according to the standard language binding.
This step is required on both of the server and the client sides, prior to the implementation.

To implement the server, first we need to implement the interfaces or objectsin the IDL using the
desired programming language. Next isto set up the server. The basic steps for setting up a server
are:

e Initialize the ORB.

* Create and setup the POA, activate the POA manager.
« Activate objects

e Wait for client requests.

The client implementation is quite simple and easy. The CORBA object implementations are
completely transparent to the clients, client just invoke the operations of a CORBA object likeits
methods of alocal object. Also before sending arequest to the server, clients need to initialize the
ORB in order to communicate with the server.

In this experiment, we designed the IDL according to features we want to demonstrate (see next
page), compiled it into C++ for the server and Javafor the clients.

There are two server implementation issues beyond this experiment that we would like to address
here.

First isthe versioning problem. As we mentioned, the IDL file is the communication contract
between server and clients. The interface normally is not subject to changing once the
development of the system or application isfinished. Once it changed, both of the server and
client implementation need to be modified or even redesigned. However, new features or changes
might be needed for the new version of a system. In order to support the old or previous versions
of the IDL interface in the new design, the versioning problem is raised. Applying extension
interface pattern is one approach to solve the versioning problem.

The second issue is the structural mechanisms for associating an implementation class with the
skeleton class. One is using inheritance approach, while the other istie approach. The first
approach is simple and easy to implement, where the implementation directly extends the
skeleton class. The second approach uses delegation to forward requests to the implementation
object, which is aso referred as an instance adapter or delegation. The tie approach allows the
implementation class to inherit from an application-specific class and one class providing the
implementation of more than one IDL interface. For Javaimplemented server, tie approach make
the implementation of inherit IDL interfaces much easier.

Even we did not have the versioning problem or use the tie approach in this experiment, the
above issues will be useful for the future projects.

3.4. Experimentswith HDF

There are two phases of this CORBA/Java and HDF experiment.

Thefirst phase was just implementing a simple CORBA client and server that the client could
successfully invoke the operation to access HDF library, such as open a HDF5 file on the server
side.

Based on the first phase experiment and the necessary understanding of how CORBA waorks, we
designed and implemented a demonstration application on the second phase.

According to the HDF file structure, we created CORBA objects corresponding to each HDF C++
object, including H5File, H5Group, H5Dataset, and H5Datatype. The following isthe IDL
interfaces:

module HDF5{
struct Objinfo{
long oid;
long fid;
long type;
string name;
long numOfMembers;

13
typedef sequence<long> Sizes;

struct DatasetInfo{
string name;
long numOfDim;
Sizes dimSizes;
Sizes dimMaxSizes;
long dataTypeClass;
long dataTypeSize;
long long storageSize;

3

struct Datatypelnfo{
string name;

long type;

long size;

b

interface H50bj{

void getObjlnfo(out Objinfo obji);

void getNumAttributes(out long attrNum);
void openAttributes (out long attr);

b

interface H5DatasetObj:H50bj{
void getDatasetInfo(out Datasetinfo dsinfo);
long long getStorageSize();

b

interface H5GroupObj:H50bj{
Objlnfo getGMember(in long fid, in string gName, in long index);
void openGroup(in string gName, out H5GroupObj h5gobj);
void getDatasetInfo(in string dsName, out Datasetinfo dsinfo);
void openDataset(in string dsName, out H5DatasetObj h5ds);
void getDataTypelnfo(in string ttName, out Datatypelnfo dtinfo);

3

interface H5FileObj{

void getTOC(out Objinfo ohji);

void openRootGroup(out H5GroupObj h5gobj);
)

interface H5FileAccess{

void openH5File(in string fileName, out H5FileObj h5fobyj);
void numOfGMembers(in long fileld, in string gName, out long gNum);
string closeH5File(in long fileld);

3
3

We implemented the CORBA server in C++ on Linux platform and created a Java application
client on Solaris environment. The GUI based application demonstrates the basic features of the
server, such as opening and describing HDF5 files, navigating the Group hierarchy, and showing
the metadata of dataset, and data type.

We used Portable Object Adapter to implement the objects. The POA isthe intermediary between
the implementation of an object and the ORB. It dispatches the request to corresponding servant.
Each POA has a set of policies that defineits characteristics. Using POA, at least one POA
object must exist on the server. In this experiment, we only used the root POA and passits
reference to each object. Figure 3 shows the role of POA between the ORB and the server
application.

Incaming Reqghsst

Figure 3. POA — the Mediator between ORB and Server Application

Each HDF5 object is represented by a CORBA object on the server side. References to the
objects are passed to the client, which invokes methods remotely to access the objects.

Further we implemented a Java applet on the client side that is able to browse the HDF5 file by
navigating the CORBA objects. We used signed appl et to be able to invoke those methods from a
web browser. The requests were sent from the browser to the web server where the CORBA
client resides and further to the CORBA server.

3.5. Summary and Discussion

In this experiment, we developed and deployed the CORBA server in C++ and created alight
weighted client in Java. We installed ORBacus 4.1.0 for the server and used JDK built in
CORBA package for the client. The structural components of this experimental project are shown
in Figure 4.

10

Server
(T3

C++ Wirapper

Client
Applet ~~— (Java) HS File HIXFS lib

Figure 4. The Components of CORBA-HDF5 project

As an experimental project, only limited functionalities are explored and implemented. Those
functionalities are listed in Table 3.

During the experimental period, the server was solid and stable. It was never crushed. The server
handles multiple simultaneous requests properly. Meanwhile, the communication between C++
wrapper objects and HDF5 library was partially tested and functions well.

Due to the limitation of the functionality in this project, there many issues and questions remain
to be explored. Thefirst issue is how to send data of large dataset to client, by sending the entire
dataor just reference? Since the data usually are huge and multi dimensions, the representation
of the dataisacrucial issue, especially when sending back to client via ORB and networking.
The second issue is how to support the write access. Current project only involves read access
and isrelatively easy to design and implement. To support write access, thread safe and
synchronization will be the major part to be considered. The third issue is the security issue.
Authorization and authentication mechanism will be needed and apply it when clients connect to
server and invoke requests. The next issue would be exception handling. For the experimental
project, we used the CORBA internal exceptions. For future project, we need to create the
necessary exception handling system.

Since this project only demonstrates very limited functionality and mostly provides the metadata
of HDF5 file, such as the Table of Content (TOC) of file, group, and dataset, the efficiency and
performance issue of using CORBA remains uncertain. However, theoretically the networking
speed will be the major factor to affect the performance.

In summary, this experimental project opened one path for remotely accessing and browsing
HDF5 file in adistributed system with languages transparency.

11

Table 3. The CORBA-HDFES5 project demonstrated functionalities

Function Client Sends Client Receives
1. | openan H5 File file name H5FileObj (reference of CORBA object)
2. | get file Table of Contents | reference of H5FileObj ObjInfo (CORBA object)
3. | open Root Group group name (/" root) H5GroupObj (reference of CORBA object)
4. | get group TOC reference of H5GroupObj | Objlinfo (CORBA object)
5. | iterate through the group name H50bj (reference of CORBA aobject)
members of a Group
6. | open adataset path, dataset name H5DatasetObj (reference of CORBA object)
7. | get dataset info path, dataset name ObjlInfo (CORBA object)
8. | get datatype info path, datatype name ObjInfo (CORBA object)
9. | get dataset storage size dataset reference storage size (CORBA Long)
4. Discussion

Both the JSP and the CORBA projects investigated the different ways for remotely browsing
HDF files. Each way hasits own limitations. By using JSP only, we have to use the Java wrapper
functions to access the HDF library via JNI. Aswe mentioned in Section 1, Introduction, JNI has
certain limitations and flaws that are what we want to avoid. If we use the approach of the second
project, the elimination of using NI is accomplished by using C++ wrapper functions with the
server application. However, the presentation of datain applet is not flexible and can not be
customized by clients.

Now a question israised. Could we combine the two approaches together to eliminate the major
limitations of each approach? The answer is certainly we can. In Figure 1, it shows that the JSP
communicates to Java beans and the beans could associate with other Java applications. We could
design JSP pages and the supporting beans that communicate with a Java client of the CORBA
server that isimplemented in C++. The requests from the JSP page will be sent to where the JSP
engine resides, forwarded to the CORBA client via Java beans. The CORBA client will invoke
the remote methods on the CORBA server side and get the desired data back and send the data
back to JSP page, which will be displayed in the web browser.

By using JSP, we could browse and display HDF files dynamically with unlimited flexibility.
Using CORBA server implemented in C++ as the source of data provider, we could make a solid
and powerful server. Combining the two approaches, we could build up a powerful and scalable
system with easy customization for users.

Both JSP and CORBA have strong portability with using XML technology. For the future
project, how to combine XML with JSP, CORBA together would be the most beneficial areato
explore and investigate. We may also need to consider using XML to represent the data of HDF
and passing XML string back to JSP.

12

Another suggestion to the future projects isto adapter visualization techniques to display HDF
file and data. Using visualization with XML, JSP, and CORBA technologies will be the most
interesting and challenge project for us.

5. Acknowledgements

Kun Y an conducted these experiments as a Research Assistant at the N.C.S.A.

Thisreport is based upon work supported in part by a Cooperative Agreement with NASA under
NASA grant NAG 5-2040. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Aeronautics and Space Administration.

Other support provided by NCSA and other sponsors and agencies [6].

6. References

=

“Scientific Data Browser (SDB)”, http://hdf.ncsa.uiuc.edu/sdb/sdb.html

2. JavaServer Pag¥s(JSPM)", http://java.sun.com/products/jsp/

3. Alex Chaffee, “Using XML and JSP together”, http://www.javaworld.com/javaworld/jw-03-
2000/jw-0331-ssj-jspxml_p.html

4. Kammie Kayl, “Creating web services with Java technology and XML",
http://www.sun.com/software/cover/2001-0530/

5. Timothy Eden and Ed Ludke, “Introducing JavaServer Pages”,
http://lwww.devx.com/upload/free/features/javapro/2000/04apr00/te0004/te0004-1.asp

6. http://hdf.ncsa.uiuc.edu/acknowledge.html

7. “DIAL (Data and Information Access Link)”,http://dial.gsfc.nasa.gov/

8. “XML Pointers, XML Base and XML Linking”, http://www.w3.org/XML/Linking

9. “XML Path Language”, http://www.w3.0rg/TR/xpath

10. “ORBacus For C++ and Java (Version 4.1.0)", http://www.orbacus.com

11. “’Object Management Group, http://www.omg.org

12. Michi Henning and Steve Vinoskisgvanced CORBA Programming with C++, Addison-
Wesley, 1999.

13. “Introduction to CORBA”http://java.sun.com

14. “NCSA HDF”, http://hdf.ncsa.uiuc.edu

15. Robert E. McGrath, “A Scientific Data Server: The Conceptual Design”, 1997,
http://hdf.ncsa.uiuc.edu/horizon/DataServer/sds_design.html

16. “NCSA Java HDF Server (JHS}ittp://hdf.ncsa.uiuc.edu/java-hdf-html/jhs/

17. Robert E. McGrath, "Experiment with XSL: translating scientific data" February, 2001
http://hdf.ncsa.uiuc.edu/HDF5/XML/nctoh5/writeup.htm

18. Robert E. McGrath, "An Experimental Comparison of HDF4, HDF5, and XML
Representations of the Same Dataset" (May, 2001)
http://hdf.ncsa.uiuc.edu/HDF5/XML/EOSData/h4-h5-xml.htm

19. "Experiment on JSP, XML, and HDF"
http://hdf.ncsa.uiuc.edu/HDF5/XML/JSPExperiments/index.html

20. “HDF (4.x) and HDF5"http://hdf.ncsa.uiuc.edu/h4toh5/

21. “Apache httpd”http://www.apache.org/dist/httpd/

22. “The Jakarta projecthttp://jakarta.apache.org/

23. HDF5.dtdhttp://hdf.ncsa.uiuc.edu/DTDs/HDF5-File-1.4.txt

24. Free CORBA page, http://adams.patriot.net/~tvalesky/freecorba.html

13

