An Automake Primer for HDF5
How to:

Change a Makefile

Add a source file to an existing program or library

Add a simple test

Add a slightly more complicated test

Add a new directory

Add a program that is only compiled in parallel

Change a program's name when it is compiled in parallel

Add a new library

Change the library's API

Changing a Makefile

Suppose you need to make a minor change to a Makefile in the test directory (hdf5/test/Makefile). You have checked out hdf5 from the CVS repository into ~/scratch/hdf5. You want to build the library in a directory named ~/scratch/build.

First, edit the Makefile.am in the source tree. You must make any changes in the Makefile.am, not the Makefile, since the Makefile is automatically generated.

cd ~/scratch/hdf5/test

vi Makefile.am

Now, go to the root of the source tree and run the reconfigure script, which updates the source tree. It will create a new Makefile.in in the test directory with your changes.

cd ~/scratch/hdf5

./bin/reconfigure

After running bin/reconfigure, you will want to test your change. Go to ~/scratch/build and run configure

cd ~/scratch/build

../hdf5/configure

make check

Configure generates Makefiles from the Makefiles.in in the source tree. The dependencies are:

Makefile.am -> (bin/reconfigure) -> Makefile.in -> (configure) -> Makefile

Reconfigure should also be used when any change is made to configure.in.

Adding a source file to an existing program or library
Suppose you want to add the source file h5testfoo.c to the HDF5 test library in the test directory. You open up test/Makefile.am in your favorite text editor and scroll down until you see the line:

libh5test_la_SOURCES=h5test.c testframe.c
Just add h5testfoo.c in the list of sources. You're done!
Now run bin/reconfigure to create a new Makefile.in from the Makefile.am you just edited.
Adding a simple test

Suppose you want to create a new test executable named newtest with one source file, newtest.c. You open up test/Makefile.am and find the line

TEST_PROG=testhdf5 lheap ohdr ...
Just add newtest in the list of programs. You're done! Automake will by default guess that your program newtest has one source file named newtest.c.

Now run bin/reconfigure to update the Makefile.in.

Adding a slightly more complicated test

Suppose you want to create a new test executable named newertest with several source files. You open up test/Makefile.am as before and find the line

TEST_PROG=testhdf5 lheap ohdr ...
Add newtest in the list of programs.

Now you need to tell Automake how to build newertest. Add a new line below TEST_PROG:

newtest_SOURCES = source1.c source2.c source3.c
You don't need to mention header files.

Now run bin/reconfigure to update the Makefile.in.

Adding a directory
To add the directory for a new tool, h5merge, go to the Makefile.am in the tools directory (the parent directory of the one you want to add). Find the line that reads

SUBDIRS=lib h5dump...

Add h5merge to this list of subdirectories.

Now you probably want to create a Makefile.am in the h5merge directory. When you have done so, go to configure.in. Near the end is a list of files generated by configure.in. Add tools/h5merge/Makefile.in to this list.

Now run bin/reconfigure. This will update configure and generate a Makefile.in in the tools/h5merge directory. Don't forget to add both the Makefile.am and the Makefile.in to CVS, and to update the Manifest!.

Adding a program that is only compiled in parallel

Suppose you want to only compile a program when HDF5 is configured to run in parallel--perhaps a parallel version of h5repack, h5prepack. Open up the h5repack Makefile.am

The simple way to do this is:

if BUILD_PARALLEL_CONDITIONAL

 H5PREPACK=h5prepack
endif

Now the variable $H5PREPACK will be "h5prepack" if parallel is enabled and "" if parallel is disabled. Add this variable to the list of programs to be built:
bin_PROGRAMS=h5repack $(H5PREPACK)

And add sources for this program as usual:

h5prepack_SOURCES=...
Don't forget to run bin/reconfigure when you're done!

Changing a program's name when it is compiled in parallel
Automake conditionals can be a very powerful tool. Suppose that instead of building two versions of h5repack during a parallel build, you want to change the name of the tool depending on whether or not HDF5 is configured to run in parallel--you want to create either h5repack or h5prepack, but not both.

Open up the h5repack Makefile.am and use an automake conditional:

if BUILD_PARALLEL_CONDITIONAL

 H5REPACK_NAME=h5prepack
else

 H5REPACK_NAME=h5repack
endif
bin_PROGRAMS=$(H5REPACK_NAME)
Now you only build one program, but its name changes. You still need to define sources for both programs, but you needn't type them out twice:

h5repack_SOURCES=...

h5prepack_SOURCES=$(h5repack_SOURCES)
Don't forget to run bin/reconfigure when you're done!
Adding a new library
Suppose you want to add a new library to the HDF5 build tree, libfoo. The procedure for building libraries is very similar to that for building programs:
lib_LTLIBRARIES=libfoo.la

libfoo_la_SOURCES=sourcefoo.c sourcefootwo.c …

This library will be installed in the lib directory when a user types 'make install.' You might instead be building a convenience library for testing purposes (like libh5test.la) and not want it to be installed. If this is the case, you could instead type
check_LTLIBRARIES=libfoo.la

To make it easier for other directories (tests, for instance) to link to your library, you might want to assign its path to a variable in all HDF5 Makefiles. You can make changes to all Makefiles by editing config/commence.am and adding a line like

LIBFOO=$(top_builddir)/foo/src/libfoo.la

This file is textually included in all Makefiles.am when automake processes them.

As always, if you change a Makefile.am or config/commence.am, don't forget to run bin/reconfigure.
Changing HDF5's API
If you have added or removed a function from HDF5, or if you have changed a function signature, you must indicate this by updating the file lt_vers.am located in the config directory.

If you have changed the API at all, increment LT_VERS_INTERFACE and set LT_VERS_REVISION to zero.

If you have added functions but not altered or removed existing ones, also increment LT_VERS_AGE.

If instead you have altered or removed any functions, reset LT_VERS_AGE to zero.
