February 23, 2012 TRTHG 2011-07-18.v3

HDF4 File Content Map Schema Design Notes
Ruth Aydt (aydt@hdfgroup.org)

Ruth Duerr (rduerr@nsidc.org), Mike Folk (mfolk@hdfgroup.org),
Hyo-Kyung Lee (hyoklee@hdfgroup.org), Christopher Lynnes (christopher.s.lynnes@nasa.gov),
Elena Pourmal (epourmal@hdfgroup.org), Binh-Minh Ribler (bmribler@hdfgroup.org)

The HDF4 File Content Map Schema was developed as part of a NASA-funded project to improve
long-term preservation of EOS data by independently mapping HDF4 data objects. This document
contains a subset of the design notes that were discussed by the project team during the
development of the schema. The notes are being distributed more widely as part of the project
output as they may provide helpful context for others outside of the project team.

|.T Page 1 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

Table of Contents

3 A = 7= ol 1< o 11 4T Ot 4
P YU Te [T Yol TS 4
2.1 Primary AUdIENCE c.uueiiiiiiiiiieeieiiiiniiineesneesiisiiiiiisessssssssssssssmessnssssssssssssssssssssssssssssssssnssssssssssssssssnnnssses 4
2.2 Other AUAIENCES ..ccuuueuiiiiiiiiieenniiiiiiiiiieeeneesiseiitiiesssssssssssssttsssssssssssssssstssssssssssssssssssssnssssssssssssssssnnnsssss 5
2.2.1 Data Preservaltion SYSteM ... ittt e e e e et e e e e e e et e e e e et e e e aeeranaaes 5
2.2.2 Demonstration Reader APPlICAtioNueeeii it e e e ee et e e e e e e e e e e e nnaraaes 5
2.2.3 Users of XML TECHNOIOZIES ...cccciie ettt e e e e e e e e e e e e e e e s abtbbaeaeeaaaeeeeeesnnnsrenns 5
3 Requirements and GOalS......cccceeiiiiiirenuiiiiiiiinmmiiiiniiieesiiiiiienmeiiiiemmsiiisssttiesnssstreenns 6
4 Guidelines and ResponSibilitiesccccciiieiiiiiiiiiiircrrrr e rene e s e e s s e ne e s e nn s ssenananns 6
5 Definitions from PREIMISoereiiiiiciiiiicrteieeereeeesreneseerenesessenassssennsssenassssensssssennsssssnnssssennnns 6
5.1 Types of Metadata......ccoiiiiiieeuiiiiiiiiiiiieiiiiiniiiiieeeneeeisiiitessssssssssssstisssssssssssssssssssssssssssssssssssssnnnssses 7
5.1.1 Preservation Metadataottt e ettt e e e e e e e e ettt a b e e e e e e e e e e ee e e nbtbraaaaeaaaeeeeeanannnrranes 7
LT S U (ot {01 =1 I\ =Y o Lo £ o U SUUUUROE 7
LT . T =Yl Yot | Y/ =Y =Y = o ISP SUUUUR Ot 7
LT B T T ol g1 A V=N V<] = Lo - | = U SUUUUR Ot 7
5.2 PREMIS Data Model and Data Dictionarycciieeeeeeiiiiiiiiineemeeiiiiiiiiieessssssiiisiissssssssssssssmsssssssssses 7
L0 A N =1 o 11 P PUT PR UPPPPPRRPPRt 7
LI [0} (=1 | =T (U E= N o 1 YU SUUURR Ot 7
LI T 0 1T-41 =] I O] o =Tt U SUUUUROE 7
N A (=Y o] T =T o} =1 f o] o PP UPPPPPPRPRE 8
7020 T 1T SRR 8
T A I = 11 6] o (=T o [P UP PP UPPPPPRRPPRE 8
5.2.7 COMPOUNG ODBJECE....uuiiiiiiiiiiiiiie ettt e e e e e e ee ettt re e e e e eeeeeeeesebabrasasaeeaaaeessasasnstssasaseaaasassessansssrenes 8
R < B V=1 =Y o] o T o 11 o T U UUUUURRE 8
5.2.9 Structural REIATIONSNIP «uuviiiiiiii ettt e e e e e e e e e e e e e e e e s bbb baeeeeeaaeeeeeesnnnnsrenes 8
L0 A 1 0 T £ Vo To) PO U SUPPPPPRRPPRE 8
5.3 Other Terms used by PREMIS........ccoiiiiiemiiiiiiiiiiiienniiiiiiiieeessssssiiiiiiiisssssssssissstmsssssssssssssssssssssnnssses 8
L0 T8 A oo T ¢ o1 - P UP PP UPPPPPRRPRE 8
LT T 1 =Y 13 o] o s o - 1 o TP UUUURROE 9
LT T0C T 1Y/ 1 =4 = o] o HP PP UPPPPPRRPPRE 9
6 Description of HDF4 Mapping using Definitions from PREMIS...........ccccceeeiiiiiiinnniiiininnnnneiiinnnenne 9
7 HDF4 Data Model and File FOrmatcoieeeiiiieiiiiiciciiccciienecsreneseerenaseesenasssensssssenassessnssassenas 10
7.1 HDFA Data MOdElL.......uiiiiiiiiiieiiiiiiiiiiieeneeiiiniiinnessssesisssiiissssssssssssssssmsssssssssssssssssssssssssssssssssssssnnnnss 10
8 0 1T @ o =Y ot SRR 10
% W XYV YL I 0] o [T o1 oSS UUPURR 11
7.2 HDFA File FOrMAt ccuueeiiiiiiiiiiieeieiiiiiiiiiieeeneesisiiiiiiesssssssssssssissesssnnnnnss 11
7.2.1 Low-Level Object (LL-Object), Low-Level Descriptor (LL-Descriptor), Low-Level Element (LL-
=T 0 Y=Y o ST R TRP 12
7.3 HDFA LIBIary ..cccceeeueiiiiiiiiiiieenneeiiiiiiiiissssssssssiiiiiissssssssssssssisssnnnnss 12
8 Description of HDF4 Mapping using Terms from HDFA4...........cccccoiiiimmmniiiiiiinnennniinnniieneiene. 13
9 HDF4 Objects and HDF4 File Content Map Elements.........cccuvueiiiiiiinnnneniiiniinennsinnniene. 14
9.1 HDFA File ODjJECLcoiiiiiiieniiiiiiiiiiiiiiniieeiiiniesesssssssessttiesssssssssssssisesssssssssssssssssssssssssssssssssssnsssssssssss 14
9.2 HDFA VEroup ODjJECE ...cccivuuueiiiiiiiiiiiinneiiieiiiiiiieesnsssesiiiiesssssssssssssistsss 14

|_T Page 2 of 30

The HDF Group

February 23, 2012 TR THG 2011-07-18.v3

9.3 HDFA Vdata OBjeCt.....cciiiieuueiiiiiiiiiiiinnniiiiiiiiiieesnesisieiiiiisesssssssssiiiisss 14
9.4 HDF4 Scientific Data Set (SDS) ObjJeCt.......cciiiiiiiimiiiiiiiiiiiiieniiiiiiiiiieesseesiineinessssessssssssnsssssssssssns 15
9.5 HDF4 General Raster ObjJecCt........ccuiieuiiiiiiiiiiiiieniiiiiiiiiineesseeesiiiiesssssssesiiiiessssssssssssssssssssssssssssss 15
9.6 HDF Palette ODJECt.....cccuuuuiiiiiiiiiiiiennniiieiiiiiiisessesssieiiiiesssssssssesssistsss 16
9.7 HDF4 ATtribUute ODjJECT ...cccuueuiiiiiiiiiiiiiiiiiiiiinnieneiseeniteesssssssssssssitesssssssssssssssssssssssssssssssssssnnssssssssss 16
9.8 HDF4 ANNOtation ODBJECt ...cuuuuiiiiiiiiiiieiiiieiiiiiiieenniiseeiiiitsesssssssessiittssssssssssssssssessssssssssssssssssnsssssssssss 16
10 Data Type, Storage Representation, Datumcccccveeeiiiiiniiiiiniiiiiiniiinniese. 17
0 R D T 1 - T IV - 17
10.2 Storage Representationcccoiiiieeiiiiiieiiiiieiiire e sa s e s e s s e nnnnns 17
0 JRC TN 0 -1 U T o T 0 LYol] 4] o TS 18
0I5 0 R O F=Y = T o <1 ol D 1= U 1o o DO UU U 18
O T A 1) =T == T ol D F- 1 {0 o FO PP PUPTPPRR PPN 19
10.3.3 Floating POINt DatUM ..ottt e e e e e e ettt e e e e e e e e e e s e e abt bbb e eaeeaaaeeeeeanssntsaaaaaeaaaaens 19

11 Preservation Considerations and Unmapped HDF4 Features......cc..ccceirrrrmnniiininnnnnesssnnneennnneees 20
11.1 Unsupported Compression Schemes for Scientific Data Setsccceirreermeiiiiiiniineenneniiiiinnnieeeneee. 20
11.2 Unsupported Compression Schemes for General Raster IMages.........ccueeveeiiiiiiniinieennniiiiinnnneeenenens 21
11.3 Unsupported External Files for RaW Data........cccuiiieuuiiiiiiiiiiiinnniiiiniiiieemmssiiieesmsssssssssssssss 21
11.4 Unsupported Raster and Palette FEatUres.......ccciuveuiiiiiiiniiieinnniiiiinniiieenseiiinsnineessssssssssssssssssss 21
11.5 Unsupported ANNOtatioNsS......cccceeiiiiiiiiiiimuiiiiiiiniiieiimmiiiiieiiiiesmmmssiissiimessmssssssisssttsssssssssssssssssssnsnsss 22
11.6 Unsupported Ordering of RAW Datac.cccceiiiiiiiiiiimnniiiiiiiiiiiimnmssiiieiiiieimsmmsssiieesssmmssssssssssssnnes 22
11.7 UNSUuPPOrted LL-OBjJeCtS....cccuuuuuiiiiiiiiiirimnniiiiiniiitemmnmsiiiiesiisesmmmsiisstmsessssssssssssssssssssssssssssssssssnssnss 22
12 Recommended Comments for HDF4 File Content Mapsccciireeueiiiiiinnnnnniinninnesnsisnieesssssees 23
12.1 Comments Providing EXplanationcccceeeiiiiiiiiiiinniiiiiiniiieinniineesssssiiiesssssssssssssssssss 24
12.1.1 Comment Block One: HDFAFileInformation......cccceceie ettt nrrare e e e 24
12.1.2 Comment Block TWO: HDFAFIIECONTENTS ...uuuviiiiiiieeeeee ettt ee e e e e e ettt e e e e e e e e e e e s aaaraaaeeeeaaaeens 24

12.1 Comments Providing Values for Verificationccccccceeiiiiiiiiiiinnniiiiiiniinicniineecssesnsneessseees 27
12.1.1 Table Element and Verification COMMENT........ceiiiiiiiiiiiiiiiieeeee e e e e e 27
12.1.2 Array Element and Verification COMMENT........ceiiiiiiiiiiiiiiieeeee e e e e 28
12.1.3 Dimension Element and Verification COMMENTcciiiiiiiiiiieee e 28
12.1.4 Raster Element and Verification COMMENTciiiiiiiiiiiiiiieeeee et e e e e 29
12.1.5 Palette Element and Verification COMMENTccoiiiiiiiiiiiieeee e e 29

13 Additional INfOrmationccieeeeciiiiiiiiniiiiiiiiiiiirer s rrrssssss st s ssssssssssssssnnnsssns 29
ACKNOWIEAZEMENTS....cccuuuiiiiiiiiiiiiiiiiiiieiiiieiirrrsienrreeasssestrrsssssssstressssssssssssssnssssssssnesnssssssssssnnnns 29
LAV TY o] o T o T o] oV O 29

|_T Page 3 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

1 Background

The HDF4 File Content Map Schema describes an XML Document that provides access to content
originally stored in a companion binary HDF4 file without reliance on the HDF4 library. For our
purposes, we define content as the data and metadata provided by the creator of the binary HDF4
file.

The HDF4 File Content Map Schema is composed of several XML schema documents written in the
XML Schema Definition Language, XSDL.

An XML Document that conforms to the HDF4 File Content Map Schema is an HDF4 File Content Map.

The HDF4 File Content Maps and the companion binary HDF4 files will be part of NASA’s data
preservation system.

The word Schema will be used interchangeably with HDF4 File Content Map Schema throughout the
remainder of this document.

2 Audiences

The audiences for the HDF4 File Content Maps influence the Schema design.

2.1 Primary Audience

The primary target audience for the HDF4 File Content Maps is a person twenty or more years in the
future who is interested in the content originally stored in the companion binary HDF4 files.

The person will have access to the binary HDF4 files.

The person will not necessarily know anything about the HDF4 data model or file format, nor can they
be expected to have access to any HDF4 documentation or software.

The person will have very basic knowledge of XML, or access to materials to obtain that knowledge.
The person may not have access to the HDF4 File Content Map Schema.

The person will have computers and digital storage media at their disposal, and have the knowledge
and ability to access the binary HDF4 files on a byte-by-byte basis.

The person will be familiar with, or have access to documentation that describes, data
representations and compression schemes that are in use today. These include:

Data Representation:

o signed and unsigned characters (8 bits)
o signed and unsigned integers (8, 16, and 32 bit)
o two’s complement signed integer representation
o |EEE floating point representation (32 and 64 bit)
o bigand little-endian byte order

Compression:
o DEFLATE (gzip)

|.T Page 4 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

Run-Length Encoding (RLE)

Adaptive Huffman (sometimes referred to as Skipping Huffman)*
JPEG"

Szipl'2

O O O O

The person may write a program (a Reader Application) to read an HDF4 File Content Map and
companion binary HDF4 file to access the content.

2.2 Other Audiences

2.2.1 Data Preservation System

Another audience for the HDF4 File Content Maps is a present-day data repository used to support
the digital preservation process. The repository may extract preservation metadata about a binary
HDF4 file from an HDF4 File Content Map.

2.2.2 Demonstration Reader Application

A Demonstration Reader Application will be developed as part of the Mapping Project to read an
HDF4 File Content Map and the companion binary HDF4 file, and makes the contents available to the
user.

The Demonstration Reader Application will not be built with the HDF4 library.

The Demonstration Reader Application may be built with an XML parser from an Open-Source project
such Gnome (libxmlI2) or Apache Xerces (Xerces C++, Xerces Java, Xerces Perl).

The developer of the Demonstration Reader Application will have knowledge of XML.
The developer of the Demonstration Reader Application will not have access to the Schema.

The developer of the Demonstration Reader Application may not have knowledge of the HDF4 data
model or file format.

2.2.3 Users of XML Technologies

Others might employ XPath, XQuery, an XSLT processor, an XML validating parser, and/or an XML
DOM parser to work with the HDF4 File Content Maps.

This audience will have knowledge of XML and access to the Schema.

This audience will not access the binary HDF4 files and may not have knowledge of the HDF4 data
model or file format.

! Adaptive Huffman, JPEG, and Szip compression are commented out of the Schema as they are not implemented in
Vesion 1.0.0 of the HDF4 File Content Map Writer, h4mapwriter.

2 Szip compression is covered by copyright and licensing terms that are more restrictive than those of the other
compression schemes listed. See http://www.hdfgroup.org/doc_resource/SZIP/ for more information.

|_T Page 5 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

3 Requirements and Goals

The Schema must be designed so that the HDF4 File Content Maps it describes provide complete
access to the content in the binary HDF4 files held by NASA’s Earth Observing System.?

To the extent possible given the time constraints of the project, and without introducing excessive
complexity, the Schema should be designed so that the HDF4 File Content Maps it describes provide
access to all content originally stored in binary HDF4 files. This would include content stored using
HDF4 objects, data representations, or compression schemes that are not found in NASA’s EOS
collection of binary HDF4 files.

The Schema will be designed to accommodate the needs of all audiences to the greatest extent
possible. When a design choice must be made, the needs of the primary audience (§ 2.1) will take
priority over the needs of the other audiences (§ 2.2).

4 Guidelines and Responsibilities

Existing standard schemas and terminology from the Digital Preservation and other communities will
be leveraged in the design and documentation of the HDF4 File Content Map Schema.

Terminology and design hints from the book “Definitive XML Schema”, by Priscilla Walmsley, will be
employed in the design and documentation of the HDF4 File Content Map Schema.

XML and XSDL offer almost unlimited options for schema design. The HDF4 Mapping Project team,
especially the NASA members, will be responsible for deciding which of several draft Schemas best
meet the Requirements and Goals of the project.

The HDF4 data model and binary file format offer considerable flexibility and extensibility, and have
evolved over the lifetime of HDF. The HDF4 Mapping Project team, especially The HDF Group
members, will be responsible for ensuring that the Schema design describes HDF4 File Content Maps
that provide access to content originally stored in binary HDF4 files, in accordance with the
Requirements and Goals of the project.

5 Definitions from PREMIS

The PREMIS Data Dictionary for Preservation Metadata - version 2.0, available from
http://www.loc.gov/standards/premis/v2/premis-2-0.pdf, defines several terms that are relevant to
the HDF4 Mapping project. Unless otherwise noted, the text here is copied verbatim or almost
verbatim from the PREMIS Data Dictionary—in most cases from the Glossary. The text was collected
in this document so that it could be more easily accessible to the project team members during design
discussions.

3 The HDF4 File Content Map Writer being developed as part of the Mapping Project will detect content that cannot be
mapped and report an error. If this happens, a decision will be made to expand the Schema and Writer to cover the
content, or—if it is deemed unimportant—to leave it unmapped. Because of the flexibility of the HDF4 format and library
APls, it is possible that unanticipated content may be present in HDF4 binary files.

|_T Page 6 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

5.1 Types of Metadata

5.1.1 Preservation Metadata

Information a Preservation Repository uses to support the digital preservation process. Preservation
Metadata spans Administrative, Technical, and Structural Metadata.

Note: Administrative Metadata is not relevant to the HDF4 Mapping project.

5.1.2 Structural Metadata

Describes the internal structure of digital resources and the relationships between their parts. Itis
used to enable navigation and presentation. (From NINCH Guide to Good Practice:
www.nyu.edu/its/humanities/ninchguide/appendices/metadata.html.)

5.1.3 Technical Metadata

Information describing physical (as opposed to intellectual) attributes or properties of Digital Objects.
Some Technical Metadata properties are Format specific (that is, they pertain to a Digital Object in a
particular Format, for example, color space associated with a TIFF image), while others are Format
independent (that is, they pertain to all Digital Objects regardless of Format, for example, size in
bytes).

5.1.4 Descriptive Metadata

Metadata that serves the purposes of discovery (how one finds a resource), identification (how a
resource can be distinguished from other, similar resources), and selection (how to determine that a
resource fills a particular need, for example, for the DVD version of a video recording. (From Caplan,
Metadata Fundamentals for All Librarians, ALA Editions, 2003)

Typically, Descriptive Metadata describes Intellectual Entities and is often domain-specific. (pg 23-24)
5.2 PREMIS Data Model and Data Dictionary

5.2.1 Entity

Abstraction for set of “things” (agents, events, etc.) described by the same properties. The PREMIS
data model defines five types of Entities: Intellectual Entities, Digital Objects, Agents, Rights, and
Events.

Note: Agents, Rights, and Events are not relevant to the HDF4 Mapping project.

5.2.2 Intellectual Entity

Coherent set of content that is described as a single intellectual unit for purposes of management
and description. For example, a book, a map, a photograph, a serial. An Intellectual Entity can
include other Intellectual Entities; for example, a Web Site can include a Web Page, and a Web Page
can include a photograph. An Intellectual Entity can have one or more Representations.

5.2.3 Digital Object

Discrete unit of information in digital form. Note that the PREMIS definition of Digital Object differs
from the definition commonly used in the digital library community, which holds a digital object to be

|_T Page 7 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

a combination of identifier, metadata, and data. The Digital Object Entity in the PREMIS Data Model
is an abstraction defined only to cluster attributes (Semantic Units) and clarify relationships. A Digital
Object cannot be modified. A Digital Object can be a Representation, File, Bitstream, or Filestream.

Note: Filestream is not relevant to the HDF4 Mapping project.

Note: PREMIS also refers to these as Objects. We will use the complete name, Digital Objects, in this
document to distinguish them from HDF4 Objects.

5.2.4 Representation

Digital Object instantiating or embodying an Intellectual Entity. A Representation is the set of stored
Files and Structural Metadata needed to provide a complete and reasonable rendition of the
Intellectual Entity.

5.2.5 File

Named and ordered sequence of Bytes that is known by an operating system. A File can be zero or
more Bytes, has access permissions, and has file system statistics such as size and last modification
date. AFile also has a Format.

5.2.6 Bitstream

Contiguous or non-contiguous data within a File that has meaningful common properties for
preservation purposes. A Bitstream cannot be transformed into a standalone File without the
addition of file structure (headers, etc.) and/or reformatting the Bitstream in order to comply with
some particular Format.

5.2.7 Compound Object

Digital Object composed of multiple Files, for example, a Web Page composed of text and image files.
5.2.8 Relationship

Statement about an association between instances of Entities.

5.2.9 Structural Relationship

Relationship between parts of a Digital Object.

5.2.10 Root

The File that must be processed first in order to render a Representation correctly.

5.3 Other Terms used by PREMIS

5.3.1 Format

Specific, pre-established structure for the organization of a File, Bitstream, or Filestream.

|_T Page 8 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

5.3.2 Transformation

Process performed on a Digital Object that results in one or more new Digital Objects that are not bit-
wise identical to the source Digital Object. Examples of Transformation include Migration and
Normalization

5.3.3 Migration

Preservation strategy in which a Transformation creates a version of a Digital Object in a different
Format, where the new Format is compatible with contemporary software and hardware
environments. Ideally Migration is accomplished with as little loss of content, formatting and
functionality as possible, but the amount of information loss will vary depending on the Formats and
content types involved. Also called “format migration” and “forward migration”.

6 Description of HDF4 Mapping using Definitions from PREMIS

This section contains a high-level description of the Mapping process using definitions from the
PREMIS Data Dictionary.

The Intellectual Entity to be preserved is the content stored in a binary HDF4 file.

A binary HDF4 file is a File Digital Object with the HDF4 file format.

A binary HDF4 file is a Representation of the Intellectual Entity.

A Mapping Transformation applied to a binary HDF4 file results in an HDF4 File Content Map.

An HDF4 File Content Map is a File Digital Object in the XML format that conforms to the HDF4 File
Content Map Schema.

Some, but not all, of the content stored in a binary HDF4 file is migrated to an HDF4 File Content Map
by the Mapping Transformation. For the content that is not migrated, the Mapping Transformation
writes Preservation Metadata to the HDF4 File Content Map that allows a reader to access the
content in the binary HDF4 file. The content that remains in the binary HDF4 file is in Bitstream Digital
Objects.

An HDF4 File Content Map and a companion binary HDF4 file is a Representation of the Intellectual
Entity. The HDF4 File Content Map is the Root of this Representation.

Figure 1 shows a diagram of the PREMIS view of the HDF4 Mapping Process.

|_T Page 9 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

Root File

/\ 5 ’/\

N
)
i Mapping n

Transformation @/z |

HDF4 file HDF4 file

v HDF4 File Content _/
Map

||

Representation 1 Representation 2

Orange fill indicates content; the Intellectual Entity

@ | | Blue outlines indicate Digital Objects

:E:;:;:;:Ei Green fill indicates Preservation Metadata

|:| Red shapes indicate Representations

Figure 1: PREMIS view of HDF4 Mapping Process

If an HDF4 binary file refers to data stored in one or more external files, those files are also Digital
Objects that would be included in both Representations.

7 HDF4 Data Model and File Format

At the beginning of this document, we defined content to be the data and metadata provided by the
creator of a binary HDF4 file. In this section, we give a high-level overview of the HDF4 Data Model
and File Format, and define terms we will use when discussing them and their roles in the HDF4
Mapping process. We strive to harmonize the terms used in this section with those defined in the
PREMIS Data Dictionary.

7.1 HDF4 Data Model
The HDF4 Data Model is composed of two types of Entities: HDF4 Objects and Low-Level Objects.

7.1.1 HDF4 Object

An HDF4 Object is an abstraction in the HDF4 Data Model defined to store and organize user data and
metadata (descriptive, technical, and structural).

HDF4 Objects are the primary conceptual units for representing user data and metadata in HDF4.

|_T Page 10 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

HDF4 Objects of the same type have the same properties (metadata), some of which may be
optional.

An HDF4 Object may include, or refer to, other HDF4 Objects.

The single-file and multi-file APIs in the HDF4 library provide the interfaces to create, populate, and
access HDF4 Objects.

The primary HDF4 Objects are: Vgroup, Vdata, Scientific Data Set, General Raster Image, Palette,
Attribute, and Annotation.

An HDF4 Object can have associated metadata such as name, rank, and data type that may be
Descriptive or Technical.

Metadata that is fairly small, such as name, rank, and data type, is considered part of the Object.

Metadata that is more extensive, such as a Dimension, is treated as a separate HDF4 Object related to
one or more primary HDF4 Objects.

Structural metadata provided by the creator of the file is represented in the technical metadata
associated with an HDF4 Object, or in the relationships between various HDF4 Objects,

The term raw data is used to refer to the creator-provided data values that are stored in HDF4
Scientific Data Set, General Raster Image, and Vdata Objects. Some metadata that is more extensive,
such as that in Dimension, Attribute, Annotation, and Palette Objects, is also considered raw data.

The HDF4 Objects are: File, Vgroup, Vdata, Scientific Data Set, Dimension, General Raster Image,
Palette, Attribute, and Annotation.

7.1.2 Low-Level Object
An HDF4 Low-Level Object is the basic building block used to organize and store data in an HDF4 file.
The HDF4 File Format defines these low-level blocks and their structures.

The Low-Level Objects are part of the HDF4 Data Model, as they are accessible via the Low-Level API
and can be created and accessed directly by an application. This use is not typical.

More details on Low-Level Objects are included in the next section, which discusses the HDF4 File
Format.

7.2 HDFA4 File Format

The HDF4 File Format defines the low-level building blocks used to organize and store data in a binary
HDF4 file. The internal layout of the low-level building blocks is also defined by the HDF4 File Format.

The standard HDF4 terms Data Object, Data Descriptor, and Data Element are not used for these low-
level building blocks in this document. Instead, we adopt the terms Low-Level Object, Low-Level
Descriptor, and Low-Level Element. The adopted terms are abbreviated LL-Object, LL-Descriptor, and
LL-Element.

|.T Page 11 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

7.2.1 Low-Level Object (LL-Object), Low-Level Descriptor (LL-Descriptor), Low-Level Element (LL-
Element)

The Low-Level Object is the basic structure for encapsulating data in an HDF4 file. The encapsulated
data may be user data, user metadata, or HDF4 file format metadata. The HDF4 specification defines
numerous LL-Object types.

The HDF4 Objects discussed in section 7.1.1 are instantiated in binary HDF4 files as LL-Objects.

Some HDF4 Objects are represented by a single LL-Object; most are represented by multiple LL-
Objects.

Some HDF4 Objects (e.g., a Vdata and an Attribute) are represented by the same type of LL-Objects.

Some LL-Objects have the same name as HDF4 Objects (e.g., Vgroup). To distinguish between the
two, we will preface the LL-Object names with LL- (e.g., LL-Vgroup)

An LL-Object is usually made up of a Low-Level Descriptor (12 bytes) and a Low-Level Element
(variable length). For some LL-Objects that encapsulate HDF4 file format metadata, the LL-Descriptor
component contains all of the data and there is no associated LL-Element component. (HDF4 User’s
Guide section 2.2.2)

A tag in the LL-Descriptor identifies the LL-Object type.
A reference number in the LL-Descriptor is assigned by the HDF4 library when a LL-Object is created.

The tag and reference number pair uniquely identifies the corresponding LL-Object in the HDF4 file.
This pair is often called the tag/ref. (HDF4 User’s Guide sections 2.2.2 and 2.2.2.1)

When the LL-Object has an LL-Element component, the offset and length of the LL-Element are stored
in the LL-Descriptor. The tag, which identifies the LL-Object type, determines whether the LL-Element
should exist. When an LL-Element is expected and none exists (the offset and length are 0), the LL-
Object is Incomplete.

The LL-Element component of the LL-Object contains the bulk of the data, be it user data, user
metadata, or HDF4 file format metadata. The LL-Object type determines how the data in the LL-
Element is organized and interpreted.

Extended Tags are special versions of the defined tags that indicate the LL-Element component of the
LL-Object is organized using an alternate physical storage layout that cannot be fully described by a
simple offset and length. The HDF4 library uses data stored in the LL-Element referenced by the LL-
Descriptor to locate and process the remainder of the data associated with the LL-Object. That data
may be stored in linked non-contiguous blocks, in an external file, as chunked non-contiguous blocks,
or in a compressed format. Extended tags are only available for the LL-Objects types that store the
largest quantities of raw data (LL-COMPRESSED, LL-CHUNK, LL-Raster Image, LL-Scientific Data, LL-
Vdata), and not all extended tags are available for all of the LL-Object types.

7.3 HDFA4 Library

When an application uses the HDF4 Library the connection between the LL-Objects and the HDF
Objects is typically hidden. For example, an Attribute is associated with a General Raster Image
without the user knowing what underlying LL-Objects store the Image, the Attributes or the raw data
values for either.

|.T Page 12 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

8 Description of HDF4 Mapping using Terms from HDF4

This section contains a high-level description of the Mapping process using definitions from the HDF4
Data Model and File Format.

The content to be preserved is stored in LL-Objects in a binary HDF4 file.
The creator of the HDF4 file thinks of the content in terms of HDF4 Objects.

A Mapping Transformation applied to a binary HDF4 file results in an HDF4 File Content Map with
Elements that reflect the HDF4 Objects in the original binary HDF4 file.

The creator-supplied metadata in a binary HDF4 file is migrated to an HDF4 File Content Map by the
Mapping Transformation. The Mapping Transformation writes Preservation Metadata to the HDF4
File Content Map that provides the information necessary to access the raw data in the LL-Elements
of the binary HDF4 file. Preservation Metadata for the binary HDF4 file as a whole is also written to
the HDF4 File Content Map.

Figure 2 shows a diagram of the HDF4 view of the HDF4 Mapping Process.

Root File

ﬁ B
Mapping Abn 2
Transformation C
HDF4 file HDF4 File Content HDF4 file
y
F Purple shapes indicate HDF4 Objects.

Orange fill without grid indicates user metadata.

Orange fill with grid indicates raw data.

Green fill indicates Preservation Metadata

Figure 2: HDF4 view of HDF4 Mapping Process

If an HDF4 binary file refers to data stored in one or more external files, those files would also be
included in the Mapping Process.

|_T Page 13 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

9 HDF4 Objects and HDF4 File Content Map Elements

This section gives a very high-level overview of the HDF4 Objects introduced in Section 7.1 and the
elements that represent them in the HDF4 File Content Map Schema. Comments embedded in the
Schema documents, available at http://www.hdfgroup.org/HDF4/XML/schema/HDF4map/1.0.0/,
provide more details.

9.1 HDF4 File Object
The File Object is the entry point into the contents of an HDF4 File.

* Information about the HDF4 File, such as its size in bytes, is mapped to the HDF4FileInformation
element.

* Information about the contents of the HDF4 File, such as other HDF4 Objects it contains, is
mapped the HDF4FileContents element.

Mapping Note: The HDF4 File Library Version that is part of the information included in the file is not
mapped, as it contains the version of the library used to create the file in some cases, and the version
last used to update the file in others.

9.2 HDF4 Vgroup Object

A Vgroup Object is a grouping structure designed to associate related HDF4 Objects. (HDF4 User’s
Guide section 5.2)

* User-created Vgroups are mapped to Group elements.
* Group elements and their members form a graph of some Objects in the HDF4 file.

* The graph formed by the Groups may have cycles. Cycles are represented by groupCycleRef
elements.

Mapping Note: Vgroup LL-Objects in the HDF4 file that were created by the HDF4 library for
organization or "bookkeeping" are not mapped to Group elements as they do not represent
information supplied by the creator of the HDF4 file.

9.3 HDF4 Vdata Object

A Vdata® Object is a customized table used to store data. The table is made up of rows (records) and
named columns (fields). Every cell in the table has a [row,column] index. Every column has an
associated data type and a number of entries per cell in the column (order). The values stored in the
table are referred to as raw data. (HDF4 User’s Guide section 4.2)

* User-created Vdatas are mapped to Table elements.
* HDF4 Vdata fields are mapped to Column elements.

* HDF4 Vdata number of records is represented as nRows Table attribute, number of fields as
nColumns Table attribute, and field order as nEntries Column attribute.

4 The name “Vdata” reflects the original use of the Object to store vertex and edge data of polygon sets.

|.T Page 14 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

* Preservation Metadata that allows access to, and intepretation of, the raw data in the HDF4 file is
found in the tableData element.

* Interlace mode is mapped to the storageOrder attribute of tableData.

Mapping note: Vdata LL-Objects in the HDF4 file that were created by the HDF4 library for
organization or to store Attribute or other data are not mapped to Table elements.

9.4 HDF4 Scientific Data Set (SDS) Object

A Scientific Data Set (SDS)’ Object corresponds to a set of structures used to store a multi-
dimensional array of data with a single data type. In addition to the primary structure that stores the
array data, related structures store metadata (technical and descriptive) about the array. The values
stored in the array are referred to as raw data. (HDF4 User’s Guide section 4.2)

* HDF4 SDS objects are mapped to Array elements.
* SDS rank is mapped to nDimensions attribute.
* SDS dimensions are mapped to dataDimensionSizes element, which is absent if nDimensions is 0.

* If any SDS dimension has name, attribute, or scale it is mapped to a Dimension element that is
referenced by dimensionRef.

* Preservation Metadata that allows access to, and intepretation of, the raw data in the HDF4 file is
found in the arrayData element.

* Storage order is mapped to the fastestVaryingDimensionindex attribute of arrayData. This
attribute is absent if nDimensions is 0.

* Compression information is mapped to the compressionType attribute of arrayData.

* |f raw data for the SDS is stored using chunks, and the array dimensions are not exact multiples of
the chunk dimensions, the allocatedDimensionSizes attribute of Array gives the dimensions
including ghost cells. See section 3.13 in the HDF4 User’s Guide for a discussion of ghost areas.

9.5 HDF4 General Raster Object

The HDF4 General Raster Object encompasses several generations of Raster Images, including those
written with the DFR8 API for 8-bit Raster Images, the DFR24 API for 24-bit Raster Images, and the
most recent GR API.

* HDF4 8-bit Raster Images, 24-bit Raster Images, and General Raster (GR) Images are mapped to
Raster elements in the HDF4 File Content Map.

* Number of rows (scan lines) in the image it mapped to the height attribute, number of columns to
the width attribute, and image depth to the nComponentsPerPixel attribute.

* If a Raster has an associated Palette (color lookup table), it is referenced by paletteRef.

> The name “Scientific Data Set” reflects the type of data the Objects were originally designed to support. In fact, they can
also be used to store non-scientific data. The array component of an SDS is conceptually equivalent to a variable in the
netCDF data model.

|.T Page 15 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

* Preservation Metadata that allows access to, and intepretation of, the raw data in the HDF4 file is
found in the rasterData element.

* Interlace mode is mapped to dimensionStorageOrder attribute of rasterData.

* Compression information is mapped to the compressionType attribute of rasterData.

9.6 HDF4 Palette Object

The HDF4 Palette Object, also know as a color lookup table (LUT), provides the means by which color
is applied to an image.

* HDF4 palettes and color lookup tables (LUTs) are mapped to Palette elements.

* Preservation Metadata that allows access to, and intepretation of, the raw data in the HDF4 file is
found in the paletteData element.

* Interlace mode is mapped to dimensionStorageOrder attribute of paletteData. This is an optional
attributes that defaults to “entry,component” (Pixel interlace in HDF4 terminology).

9.7 HDF4 Attribute Object

The HDF4 Attribute Objects are used to associate textual or numeric metadata with HDF4 Files,
VGroups, Vdata, Vdata Fields, SDSes, Dimensions, Rasters, and Palettes.

* HDF4 File Attributes, added through the SD or GR API, are mapped to FileAttribute elements.

= Textual SD File Attributes with similar names may optionally be combined into a single
element.

= Textual File Attributes may optionally have trailing nulls trimmed.

* HDF4 Vgroup, Vdata, Vdata Field, SDS, Dimension, Raster, and Palette Attributes are respectively
mapped to GroupAttribute, TableAttribute, ColumnAttribute, ArrayAttribute, DimensionAttribute,
RasterAttribute, and PaletteAttribute elements.

* HDF4 has a number of pre-defined attributes with specific names that can be associated with SDS
and Dimension objects. These are mapped to Attribute subelements of the associated Array or
Dimension element in the HDF4 File Content Map.

* The Attribute metadata is fully represented inline the HDF4 File Content Map.

* Preservation Metadata that allows access to, and interpretation of, the Attribute metadata in its
raw form in the binary HDF4 file is found in the attributeData element.

9.8 HDF4 Annotation Object

An HDF4 Annotation Object is used to associate textual descriptive metadata with an HDF4 File or LL-
Object. The HDF4 API supports four distinct types of Annotation Objects (File Labels, File
Descriptions, Object Labels, Object Descriptions), with slightly different characteristics.

* HDF4 File Label and File Description Annotations are mapped to FileAttribute elements.

|.T Page 16 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

* HDF4 Object Label and Object Description Annotations are mapped to Attribute elements based
on the HDF4 Object the Annotation was associated with (via the LL-Object). See previous Section
(9.7) for more on Attribute elements.

* HDF4 Annotation Objects do not have names; the names “File Label”, “File Description”, “Object
Label” and “Object Description” are assigned to the Attribute elements that represent the
Annotations in the HDF4 File Content Map.

10 Data Type, Storage Representation, Datum

HDF4 has the ability to store a variety of data types using different storage representations in a binary
HDF4 file. The information about the data types and storage representations must be made available
in the HDF4 File Content Map in order for the HDF4 file contents to be interpreted correctly. This
section defines terminology and provides an overview of how the information is mapped.

10.1 Data Type

We use the term Data Type to refer to the user’s view of the data, in particular the data type and
number of bits.

A Data Type includes:

a) data type (character, unsigned character, integer, unsigned integer, float)

b) number of bits in data type

c) for n-bit types, the relevant bits and their position in the larger integer, padding, and sign-
extend information. (not implemented in Version 1.0.0 of the Schema)

In addition to standard data types with standard lengths, HDF4 allows the user to specify integer data
types of non-standard length, referred to as nbit types, via the SDsetnbitdataset routine. The user is
effectively saying that only certain bits of a standard-size integer are relevant. When the data is
written to the HDF4 file, only those bits are saved, along with the positioning, padding, and sign-
extend information. The NBIT compression scheme handles this downsizing. When the HDF4 file is
read using the HDF4 library, the data is expanded into the standard-size integer. The information
about the relevant bits and their position in the standard-size integer is part of the Data Type. HDF4
nbit types are not handled by Version 1.0.0 of the Schema. See also the NBIT table entry in Section
11.1.

10.2 Storage Representation

We adopt the term Storage Representation to describe how a given data value is stored in the HDF4
file. This includes byte order, floating point representation, and the number of bytes used to store the
data when it is not the number expected based on the data type and number of bits in the Data Type.
A non-standard number of bytes could occur, for example, when the data is written on a system
where all numeric types are stored in 8-byte words. In this case, the number of bits in the Data Type
is not equal to 8 times the number of bytes in the Storage Representation.

A Storage Representation includes:

a) byte order (big-endian, middle-endian, little-endian)

|.T Page 17 of 30

The HDF Group

February 23, 2012

TR THG 2011-07-18.v3

b) encoding for character types (BYTE, ASCII, EBCDIC)
c) floating point format (IEEE, Vax, Cray, Convex, Fujitsu)
d) number of bytes used to store a single data value of this type

Version 1.0.0 of the HDF4 File Content Map Schema supports all of the Storage Representation
options, but the Map Writer only supports the most common (big-endian, BYTE and ASCII, IEEE,
number of bytes used equals number of bytes expected).

10.3 Datum Description

The term Datum Description refers to the complete information about how a single value (a datum) is
represented in HDF4. The Datum Description includes both the Data Type and the Storage
Representation information.

While the HDF4 Data Model and File Format support a very wide range of possible Data Types and
Storage Representations, only those the most common are fully supported by Version 1.0.0 of the
Schema and Map Writer. Refer to the HDF4 source files “hdfi.h” and “hntdefs.h” for complete list of

encodings.

Tables found in the following sections detail what datum are handled by Version 1.0.0 of the HDF4
File Content Map Schema and mapped byVerson 1.0.0 of the HDF4 Map Writer. See the Schema
Document HDF4map_datum_representation.xsd for more information.

10.3.1 Character Datum

HDF4 defines both character and unsigned character types, and distinguishes between BYTE and
ASCII representations when storing the type, with BYTE representation used only with raster data. For
the mapping project, 8-bit character and unsigned character types with ASCII representation are

mapped to dataTypeT “char8”. 8-bit character and unsigned character types with BYTE

representation are mapped to dataTypeT “byte8” and “ubyte8”, respectively. The Storage
Representation encoding is not expressed explicitly in the Content Map. The attribute
typeUsesNBytes can be set if the number of bytes is other than 1.

Character Datum

Data Type Storage Representation Handled by V1.0.0

data type # of bits # of bytes encoding Schema | Writer
character 8 1 BYTE, ASCII yes yes
character 8 1 EBCDIC yes no
character other than 8 1 BYTE, ASCII, EBCDIC no no
character 8 other than 1 | BYTE, ASCII, EBCDIC yes no
unsigned character 8 1 BYTE yes yes
unsigned character 8 1 ASCII, EBCDIC yes no
unsigned character | other than 8 1 BYTE, ASCII, EBCDIC no no
unsigned character 8 other than 1 | BYTE, ASCII, EBCDIC yes no

FOF

The HDF Group

Page 18 of 30

February 23, 2012

TR THG 2011-07-18.v3

10.3.2 Integer Datum

Integer data types are mapped to dataTypeT values “int8”, “int16”, “int32”, “uint8”, “uint16”, and
“uint32”. The attribute typeUsesNBytes can be set if the number of bytes is not the number of bits/8.

All integers are stored in twos-complement representation.

For byte order:

o BE = Big Endian, also known as MBO (Motorola Byte Order)
o LE = Little Endian, also known as IBO (Intel Byte Order)
o ME = Middle Endian, also known as VBO (Vax Byte Order)

The byteOrder attribute in the Content Map may be set to “bigEndian”, “littleEndian”, or
“middleEndian” if the number of bytes is greater than one.

Little endian storage order was not seen in the NASA data and therefore not tested thoroughly. It can
be mapped with the -c option to h4mapwriter, but there will be a warning in the Content Map file.
For those cases in the table below where BE byte order is mapped, LE will probably be mapped
correctly in spite of the warning.

Integer Datum

Data Type Storage Representation | Handled by V1.0.0

data type # of bits n-bit type | # of bytes | byte order | Schema | Writer
integer 8, 16, 32 no # bits / 8 BE yes yes
integer 8, 16, 32 no any LE, ME yes no
integer 8, 16, 32 yes any any no no
integer other than 8, 16, or 32| yes or no any any no no
unsigned integer 8, 16, 32 no # bits / 8 BE yes yes
unsigned integer 8, 16, 32 no any LE, ME yes no
unsigned integer 8, 16, 32 yes any any no no
unsigned integer |other than 8, 16, or 32| yesor no any any no no

10.3.3 Floating Point Datum

The HDF4 File Content Map Schema provides “float32” and “float64” dataTypeT values for floating
point data types. The attributes typeUsesNBytes and byteOrder are the same as for integer datum.
The type floatingPointFormatT is defined for the floating point formats, and had the value “IEEE” in
all HDF4 files examined, although other values are defined in the Schema.

Floating Point Datum
Data Type Storage Representation Handled by v1.0.0
data type # of bits # of bytes |byte order|floating point format| Schema | Writer
float 32 4 BE IEEE yes yes
float 32 4 LE IEEE yes no

Page 19 of 30

FOF

The HDF Group

February 23, 2012 TR THG 2011-07-18.v3

float 32 other than4| BE, LE IEEE yes no
float 32 any ME VAX yes no
float 32 any BE Cray, Convex, Fujitsu yes no
float (double) 64 8 BE IEEE yes yes
float (double) 64 8 LE IEEE yes no
float (double) 64 otherthan 8| BE, LE IEEE yes no
float (double) 64 any ME VAX yes no
float (double) 64 any BE Cray, Convex, Fujitsu yes no
float other than 32 or 64 any BE, LE, ME any no no

11 Preservation Considerations and Unmapped HDF4 Features

The purpose of the HDF4 File Content Map Schema is to describe an XML Document that provides
access to content originally stored in a binary HDF4 file without reliance on the HDF4 library.

Some features of the HDF4 format are rarely used, and were not found in any of the NASA EOS files
examined as part of the Mapping project. Due to budget constraints and project priorities, these
features are not all fully supported by the HDF4 File Content Map Schema Version 1.0.0 or the Map
Writer. In some cases, the Schema does handle the features, but the Map Writer does not. In other
cases, the Schema itself would need extensions to support the features. The tables in Section 10
indicated data type and storage representation features in HDF4 that were not supported by the
Schema or by the Map Writer. Other features that are not fully supported are noted in this section.

HDF4 binary files that rely on unsupported features will not be fully represented by the HDF4 File
Content Map, and their content will not be fully preserved by the Mapping Transformation. The Map
Writer was designed to issue warnings when these features are encountered in an HDF4 file.

The HDF4 File Content Map Schema documents also contain comments that more fully discuss the
limitations noted here. Look for the key phrases “Schema Limitation” and “NOTE: h4mapwriter” in
the Schema documents.

11.1 Unsupported Compression Schemes for Scientific Data Sets

HDF4 offers a range of compression schemes for raw data in Scientific Data Set Objects. The ones
listed here have been commented out of the Schema as they are not implemented and tested in
Version 1.0.0 of the Map Writer.

See the Schema Document HDF4map_byteStream_representations.xsd for more information.

Scheme Comment

RLE Byte-wise Run-Length-Encoding. Supported for General Raster Images, but not for
Scientific Data Sets.

Adaptive Also known as Skipping Huffman.
Huffman

Szip A licensed compression technology. There are 2 versions of szip and they have slightly

|.T Page 20 of 30

The HDF Group

February 23, 2012 TR THG 2011-07-18.v3

different representations in the HDF4 binary files. That difference would need to be
handled if this compression scheme is ever supported.

NBIT Used by HDF4 to store data with non-standard bit length, specified by the user with a
call to SDsetnbitdataset. nbit will require considerable effort and additional information
from the HDF4 library to implement. It may also require decoding at a different point in
the data read/process pipeline than the other compression types.

11.2 Unsupported Compression Schemes for General Raster Images

HDF4 offers a range of compression schemes for raw data in General Raster Image Objects. The ones
listed here have been commented out of the Schema as they are not implemented and tested in
Version 1.0.0 of the Map Writer.

See the Schema Document HDF4map_byteStream_representations.xsd for more information.

Scheme Comment

DEFLATE Also known as gzip compression. Supported for Scientific Data Sets, but not for General
Raster Images.

Adaptive Also known as Skipping Huffman.

Huffman
Szip A licensed compression technology. See table entry in section 11.1
JPEG There are different versions of the JPEG algorithm, but it is not clear that the jpeg

versions is kept in the HDF4 file, or that it is needed to uncompress the data. Would
require further investigation if this were to be supported.

IMCOMP This lossy image compression scheme was offered for 8-bit Raster Images, but is not
supported by the General Raster interface. Availability of documentation describing it
is uncertain, even if it were to be mapped.

11.3 Unsupported External Files for Raw Data

HDF4 allows raw data to be stored in external files for Vdata (Table), SDS (Array), and Raster (Raster)
Objects. The Schema provides a mechanism for supporting external files for Tables and Arrays
through the ExternalFile element, externalFileIDREF type, and the datalnExternalFile element. Raw
data storage in external files was not included for Rasters in Version 1.0.0 of the Schema due to time
constraints.

Version 1.0.0 of the Map Writer does not support data in external files for any type of HDF4 Objects.

11.4 Unsupported Raster and Palette Features

Version 1.0.0 of the Schema does handle raw data for Rasters that is stored non-contiguously in the
HDF4 file.

Version 1.0.0 of the Schema and Map Writer handle only a subset of the Rasters and Palettes that are
supported by HDF4.

|.T Page 21 of 30

The HDF Group

February 23, 2012 TR THG 2011-07-18.v3

* Only Rasters that have 8-bit datatypes, one component per pixel, and pixel interlace mode are
supported.

* Rasters created with the HDF4 GR interface can’t be in VGroups.

* Palettes must have 256 entries, 3 components per pixel (RGB), and use pixel interlace mode.
See comments in the schema documents HDF4map_rasters.xsd and HDF4map_palettes.xsd for more
information.

11.5 Unsupported Annotations

Annotations are only supported by Version 1.0.0 of the Map Writer on the subset of LL-Objects that
were annotated in the NASA files that were studied. If Annotations are encountered on other
objects, a warning message is issued by the writer and they are not mapped.

11.6 Unsupported Ordering of Raw Data

Version 1.0.0 of the Map Writer does not support Vdata data stored with HDF4 NO_INTERLACE mode.
This is supported in the Schema via tableOrderT="by column”.

Version 1.0.0 of the Map Writer does not support SDS data stored in column-major storage order.
This is supported in the Schema via fastestVaryingDimensionindex equal to zero when the number of
dimensions in the array is greater than one.

11.7 Unsupported LL-Objects

The HDF4 Documentation, and in some cases the Library, has LL-Objects that are not handled by the
HDF4 Map Writer Version 1.0.0, nor in some cases by the schema. Some of these objects were
designed to allow future expansion but never implemented. The HDF4 Map Writer checks for them
in the HDF4 file that is being mapped, and raises an error if any are encountered.

TAG Description Notes

DFTAG_IMCOMP | Image compression for 8-

(12) bit images

DFTAG_TID Tag ldentifier Annotation

(102)

DFTAG_TD Tag Descriptor Annotation

(103)

DFTAG_MT Machine Type Only appears in source .h files.

(107) If encountered, make sure preservation metadata for bitstreams
appropriately reflects the correct storage representation, taking this into
account as well as the Number Type.

DFTAG_II8 IMCOMP compressed 8-bit

(204) image

DFTAG_LD Palette Dimensions

(307)

DFTAG_MD Matte Channel Dimensions

(308)

DFTAG_MA Matte Channel Data

(309)

|.T Page 22 of 30

The HDF Group

February 23, 2012 TR THG 2011-07-18.v3

DFTAG_CCN Color Correction

(310)

DFTAG_CFM Color Format

(311)

DFTAG_AR Aspect Ratio

(312)

DFTAG_DRAW Composite Image

(400)

DFTAG_RUN Run Program or Script

(401)

DFTAG_XYP X-Y Position

(500)

DFTAG_MTO Machine Type Override If encountered, see also DFTAG_MT # 107

(501)

DFTAG_T14 Textronix 4014 data

(602)

DFTAG_T105 Textronix 4105 data

(603)

DFTAG_SDT Transposition See Table 9f in Spec and text after it in section 9.3.9. Says it is no longer

(709) written, but if encountered it is interpreted as originally intended.
If we encounter it in mapping, need to make sure Schema makes visible
in Preservation Metadata about bitstream.

12 Recommended Comments for HDF4 File Content Maps

In Section 2.1 we defined the primary audience the project is serving, and stated that they may not
have information or documentation about HDF4 or the HDF4 File Content Map Schema. The project
team felt that some direction should be given to this audience to help them understand how to
correctly interpret the information in the Maps, and how to use the information to retrieve and
process the necessary bytes from the binary HDF4 files. Because of the complexity of HDF4 and the
variety of storage layouts that are possible for the raw data, the steps involved in the processing can
be quite involved.

The decision was made to include two categories of comments in the HDF4 File Content Maps to
serve this purpose. The comments are not required by the HDF4 File Content Map Schema, but
should be included in every HDF4 File Content Map created for a NASA EOS HDF4 file. The HDF4 File
Content Map Writer (h4mapwriter) that was developed for the project writes these comments to
every Content Map it produces.

In developing the comments, the project team tried to strike a balance between file size and
completeness. Some sacrifices were made to readability in order to save space. The expectation is
that a person in the future may rely on the comments when they are first looking at a HDF4 File
Content Map and developing a reader for the Map and companion HDF4 file, but would not refer to
the comments for each and every file they process.

It is possible that HDF4 File Content Maps may also be used by other communities with different
audiences, and they may decide the comments are not necessary and can be omitted in their Maps.

|.T Page 23 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

The two categories of comments are presented in the next sections.

12.1 Comments Providing Explanation

The first type of comments serve as explanation for the elements in the HDF4 File Content Map and
the information they provide. The information in these comment blocks is always the same,
regardless of the contents of the HDF4 File Content Map where they appear.

12.1.1 Comment Block One: HDF4Fileinformation

The first comment block precedes the HDF4FileInformation element and briefly describes the
purpose of the file overall as well as the element.

<!--
This XML file provides access to data stored in a companion HDF4 file without requiring HDF4 software.
The HDF4FileInformation element provides information about the companion HDF4 file.

-->

12.1.2 Comment Block Two: HDF4FileContents

The second comment block precedes the HDF4FileContents element and is quite extensive. It
describes the elements and attributes that can occur in the file, and gives instructions regarding how
to use the information they contain to access and process data in the companion HDF4 file to retrieve
the raw data values.

<!--

The HDF4FileContents element maps the contents of the companion HDF4 file.
Some contents are available directly from this element.
Other contents can be located in the HDF4 file and decoded using information in this element.

Abbreviations:
obj = HDF4 object

elem = XML element
attr = XML attribute
Elem = Attribute, Group, Table, Array, Dimension, Raster or Palette elem

Read bytes = Using information from byteStream elem, read the indicated number of bytes, starting at the indicated
zero-based offset in the HDF4 file. If there are multiple byteStream elems for a given Elem, they will be subelems of
a byteStreamSet elem; read and concatenate the bytes from the multiple byteStreams in the order they appear.

Process = Using information from the datum elem, process the bytes read on a datum-by-datum basis, applying byteOrder
transformations if needed.

Access = Interpret the processed bytes based on the dataType to obtain the raw data values. Calibrate raw data values
if Elem has calibration Attribute elems.

HDF4FileContents:

-uses elems to represent objs in the HDF4 file

-uses nested elems and elem references to express relationships of objs to each other

-uses byteStream elems to provide maps to bytes in the HDF4 file that hold raw data for objs
-contains selected raw data values so the reader can verify binary data has been handled properly

Representations:

-Attribute elem represents Attribute or Annotation obj
-contains user metadata

-Group elem represents Vgroup obj
-used to associate related objs
-can form directed graphs

-Table elem represents Vdata obj
-organizes data into rows (records) and columns (fields)
-datatype specified per column
-number of entries per cell for a given column is constant for all rows and may be >1; all entries in a cell have
same datatype

|.T Page 24 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

-Array elem represents SDS obj
-organizes data into multi-dimensional array
-all cells have same datatype
-references Dimension elem for every dimension that has descriptive metadata
-Dimension elem represents Dimension obj
-contains descriptive metadata (name, attribute, scale value/coordinate variable) about a dimension for one or more
SDS objs
-Raster elem represents RIS8 or GR obj
-two-dimensional [row,column] array of component values representing pixels
-row @ corresponds to top of image; column @ corresponds to left of image
-one component value per pixel; all values have single-byte datatype
-references Palette elem to correlate pixel values to colors
-Palette elem represents Palette or Color Lookup Table obj
-provides colors for images
-each entry has 3 color components corresponding to Red, Green, Blue

Bytes in HDF4 file (general):
-Raw data are stored in binary format in the HDF4 file. The steps to convert bytes into meaningful raw data values
depend on the elem and the HDF4 features used when obj was written
-byteStream elems, together with other attrs and elems, provide the information required to convert the binary data
-A datum elem defines the atomic unit of raw data for the obj it applies to
-Each elem in this file that has raw data in the HDF4 file associated with it contains a datum subelem that describes
the data type, size, and format
-The number at the end of the dataType is the number of bits per datum; divide by 8 to get number of bytes to process
together
-Integers are twos-complement and floating point is IEEE 754-1985

Conversion Instructions:

==Attribute

Raw data stored as single stream of bytes in HDF4 file

-Read bytes
-If byteStreamSet elem for a given FileAttribute, multiple File Attribute objs were combined in the map file
Each byteStream elem can be processed separately to reproduce the contents of the individual objs if desired
(HDF4 limited the size of Attribute objs, so metadata was often split across multiple objs)

-Process

-Access

Note: stringValue (dataType=char8) and numericValues (other dataTypes) let reader access user metadata without

converting binary data; these have been pre-processed to make them more human-readable. They can also be used to

verify conversion

==Table
-If the Table does not have raw data content associated with it there will not be a tableData subelem
Only follow these instructions if tableData subelem

Raw data
-stored as one or more streams of bytes in the HDF4 file or as single stream of bytes in another external file
-stored by row or by column
-Read bytes
-If dataInExternalFile elem, get bytes from file in ExternalFile elem
-Prepare to process
-If >1 row or >1 column, storageOrder indicates if data stored by row or by column
-If a column has >1 entry, the entries for a given cell are always stored together, regardless of the storageOrder
-Process
-Follow storage order to determine "current" column and its datum element in this step
-Access
-Follow storage order to determine dataType
Note: comment block "row(s) for verification" can be used to verify conversion

==Array
-If the Array does not have raw data content associated with it there will not be an arrayData subelem
Only follow these instructions if arrayData subelem

Raw data
-may be stored as a complete array (as a whole) or as multi-dimensional sub-arrays (as chunks), indicated by chunks
subelem
-may be stored in a compressed format, indicated by compressionType attr
-are stored as one or more streams of bytes in the HDF4 file or as single stream of bytes in another external file
-are stored with either rightmost or leftmost array index varying fastest

==Array stored as a whole

|.T Page 25 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

-Read bytes
-If Array contains all fill values, there is a fillValues element and no bytes are read; use value in that element
as raw data value for all cells in Array then skip to -Access step
-If dataInExternalFile elem, get bytes from file in ExternalFile elem
-If data was compressed, uncompress using indicated algorithm
-Prepare to process
-fastestVaryingDimensionIndex attr indicates storage order when nDimensions >= 1
-Process
-Follow storage order when processing
-Access
Note: comment block "value(s) for verification" can be used to verify conversion

==Array stored as chunks

With chunked storage, the data for each chunk is processed individually and then positioned in the array

A chunk (sub-array) has the same number of dimensions as the complete array, and the dimension sizes for all chunks

are the same

Special Notes:

-When the dimension sizes for the complete array are not exact multiples of the dimension sizes for the chunks,
extra "ghost cells" are stored. Data in ghost cells is not meaningful, but must be read and processed to get proper
alignment of the actual array data values

-When all data values in a given chunk are equal to the fill value, no bytes are written to the HDF4 file for that
chunk. The data values for the chunk must all be set to the fill value.

-Read bytes for a single chunk
-If chunk contains all fill values, there is a fillValues elem instead of byteStream elem for the chunk and no bytes
are read; use value in fillValues elem as raw data value for all cells in chunk then skip to -Position data... step
-If data was compressed, uncompress using indicated algorithm
-Prepare to process
-fastestVaryingDimensionIndex attr indicates storage order
-since data stored chunk-by-chunk, storage order applies on a per-chunk basis
e.g., for 3x5 array dims, 2x3 chunk dims, and fastestVaryingDimensionIndex=1, data values will be assigned to chunk
indices [0,0], [0,1], [0,2], [1,0], [1,1], [1,2] as it is processed in the next step
-Process
-Follow storage order for chunk when processing
-Interpret the processed bytes based on the storage order and dataType to obtain the raw data values for the cells
in the current chunk
-Position data values for chunk within allocated array
-If there are ghost cells, the elem allocatedDimensionSizes indicates the size of the allocated array. If this elem
is not present, dataDimensionSizes (the dimensions for the actual array) indicates the size of the allocated array
-Use chunkPositionInArray offsets to position the data values for the current chunk within the allocated array
e.g., for 3x5 array, 2x4 chunks, 4x8 allocated array, and chunkPositionInArray of [2,4] for the data just read
allocated array[2,4] = chunk value[0,0] (only cell that isn't a ghost cell in this chunk)
allocated array[2,5] = chunk value[0,1]
allocated array[2,6] = chunk value[0,2]

allocated array[3,7] = chunk value[1,3]
-Repeat steps for each chunk in the array
-Access
-Ghost cells do not contain meaningful data values
Note: comment block "value(s) for verification" can be used to verify conversion

==Dimension

A Dimension elem will be present if a dimension has one or more of these: (1) a name (2) an attribute (3) values

If there are no values, the Dimension elem does not have raw data content associated with it and will not contain a
dimensionData subelem. Only follow these instructions if dimensionData subelem

Raw data stored as one or more streams of bytes in the HDF4 file

-Read bytes

-Process

-Access

Note: comment block "value(s) for verification" can be used to verify conversion

==Raster
-If the Raster does not have raw data content associated with it there will not be an rasterData subelem
Only follow these instructions if rasterData subelem

Raw data stored as single stream of bytes in HDF4 file

-Read bytes
-If Raster contains all fill values, there is a fillValues element and no bytes are read; use value in that element
as raw data value for all cells in Raster then skip to -Access step

|.T Page 26 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

-If data was compressed, uncompress using algorithm indicated by compressionType attr
-Prepare to process
-dimensionStorageOrder attr indicates order of values in file; last dimension always varies the fastest
-Process
-Follow storage order when processing
-Access
Note: comment block "value(s) for verification; [row,column]" can be used to verify conversion

==Palette
Raw data stored as single stream of bytes in HDF4 file
-Read bytes
-Prepare to process
-Storage order is entry[@][red]; entry[@][green]; entry[@][blue]; entry[1][red]...
-Process
-Follow storage order when processing
-Access
Note: comment block "value(s) for verification; csv format" can be used to verify conversion

Calibration:

Calibration Attribute elems (calibrated_nt, scale_factor, scale_factor_err, add_offset, add_offset_err) provide
calibration information for raw data values of an Elem. To compute original data values apply this formula:
original_data_value = scale_factor * (raw_data_value - add_offset)

scale_factor_err and offset_error give potential errors due to scaling and offset

calibrated_nt is encoded datatype of original data values: 3=uchar8 4=char8 5=float32 6=float64 7=float128
20=int8 21=uint8 22=intl16 23=uintl6 24=int32 25=uint32 26=int64 27=uint64 28=int128 30=uint128 42=charl6 43=ucharlé6

Note: Some files may use the calibration attributes in a manner different than the standard way described.

Consult relevant data product specifications for your particular HDF4 files.

Compression algorithms:
-deflate: also known as gzip or zlib; see IETF RFC1951
-rle: byte-wise run length encoding
Each run is preceded by a pseudo-count byte
Low seven bits of the byte indicate the adjusted number of bytes (n)
If high bit is 1, next byte should be replicated n+3 times
If high bit is ©, next n+l1 bytes should be included in whole

-->

12.1 Comments Providing Values for Verification

The second type of comments include raw data values for select cells in a Table (Vdata), Array (SDS),
Dimension, Raster, or Palette. These values are included in the comments so they can be compared
to the values a reader of the Content Map and binary HDF4 file retrieves at some point in the future,
using the instructions in section 12.1.2 . If the values do not match (within floating point precision
error), then the reader knows they have not processed the data correctly.

The information in these comment blocks varies depending on the contents in the HDF4 Map file.
The format of the comment blocks vary slightly depending on the type and dimensions of the object,
but were designed to be machine-parsable. The comment block follows the objectData element,

n u n u

where “object” can be “table”, “array”, “dimension”, “raster”, or “palette”.

Values for verification comments are shown for the various types of element, along with the
elements.

12.1.1 Table Element and Verification Comment

<h4:Table name="strip" path="/Strips/Strip" class="identification" nRows="1" nColumns="5" id="ID_T10">
<h4:Column name="strip id" nEntries="12" id="ID_C22">
<h4:datum dataType="char8"/>
</h4:Column>
<h4:Column name="time" nEntries="24" id="ID_C23">
<h4:datum dataType="char8"/>

|.T Page 27 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

</h4:Column>

<h4:Column name="node type" nEntries="10" id="ID_C24">
<h4:datum dataType="char8"/>

</h4:Column>

<h4:Column name="node value" nEntries="1" id="ID_C25">
<h4:datum dataType="float32" byteOrder="bigEndian" floatingPointFormat="IEEE"/>

</h4:Column>

<h4:Column name="event count" nEntries="1" id="ID_C26">
<h4:datum dataType="int32" byteOrder="bigEndian"/>

</h4:Column>

<h4:tableData>
<h4:byteStream offset="33765" nBytes="54"/>

</h4:tableData>

<!-- row(s) for verification; csv format
strip[@]="F 1 2 19950801","1995-©08-©01T0©2:10:14.000 ","A\SCENDING
",288.980011,42 -->

</h4:Table>

12.1.2 Array Element and Verification Comment

<h4:Array name="solzen" path="/L2_Support_atmospheric&surface_product/Data Fields" nDimensions="2" id="ID_A10">
<h4:ArrayAttribute name="_Fillvalue" id="ID_AA10">
<h4:datum dataType="float32" byteOrder="bigEndian" floatingPointFormat="IEEE"/>
<h4:attributeData>
<h4:byteStream offset="12214592" nBytes="4"/>
</h4:attributeData>
<h4:numericValues>-9999.000000</h4:numericValues>
</h4:ArrayAttribute>
<h4:dataDimensionSizes>45 30</h4:dataDimensionSizes>
<h4:dimensionRef name="GeoTrack:L2_Support_atmospheric&surface_product” dimensionIndex="@" ref="ID_D1"/>
<h4:dimensionRef name="GeoXTrack:L2_Support_atmospheric&surface_product” dimensionIndex="1" ref="ID_D2"/>
<h4:datum dataType="float32" byteOrder="bigEndian" floatingPointFormat="IEEE"/>
<h4:arrayData fastestVaryingDimensionIndex="1" compressionType="deflate" deflate_level="1">
<h4:byteStream offset="36946" nBytes="4384"/>
</h4:arrayData>
<!-- value(s) for verification
solzen[0,0]=154.012939
solzen[44,0]=147.946030
solzen[0,29]=169.183838
solzen[44,29]=158.630493
solzen[2,6]=158.270035
solzen[11,12]=160.616913
solzen[18,16]=161.228180
solzen[13,2]=155.559036
solzen[21,3]=155.322067
-->
</h4:Array>

12.1.3 Dimension Element and Verification Comment

<h4:Dimension name="Y_Axis" id="ID_D2">
<h4:datum dataType="float64" byteOrder="bigEndian" floatingPointFormat="IEEE"/>
<h4:dimensionData>
<h4:byteStream offset="14007" nBytes="128"/>
</h4:dimensionData>
<!-- value(s) for verification
Y_Axis[0]=0.000000
Y_Axis[15]=1.500000
Y_Axis[12]=1.200000
Y_Axis[8]=0.800000
Y_Axis[7]=0.700000
Y_Axis[3]=0.300000
Y_Axis[5]=0.500000

|.T Page 28 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

12.1.4 Raster Element and Verification Comment

<h4:Raster name="" height="1024" width="2048" id="ID_R2">
<h4:paletteRef ref="ID_P2"/>
<h4:datum dataType="ubyte8"/>
<h4:rasterData dimensionStorageOrder="row,column">
<h4:byteStream offset="2098254" nBytes="2097152"/>
</h4:rasterData>
<!-- value(s) for verification; [row,column]
[0,0]=2
[0,2047]=2
[1023,8]=255
[1023,20847]=255
[513,683]=211
-->
</h4:Raster>

12.1.5 Palette Element and Verification Comment

<h4:Palette nEntries="256" nComponentsPerEntry="3" id="ID_P2">
<h4:datum dataType="uint8"/>
<h4:paletteData>
<h4:byteStream offset="4195406" nBytes="768"/>
</h4:paletteData>
<!-- value(s) for verification; csv format
entry[@]="255,255,255"
entry[11]="100,100,100"
entry[129]="255,255,0"
entry[255]="0,0,0"
-->
</h4:Palette>

13 Additional Information

Additional information about the HDF4 Independent Mapping Project, including the HDF4 File
Content Map Schema, is available at: http://www.hdfgroup.org/projects/h4map/

Acknowledgements

This work was supported by a Cooperative Agreement and Contract with the National Aeronautics
and Space Administration (NASA) under NASA grant NNXO6AC83A and under the Earth Observing

System Data and Information Systems (EOSDIS) Evolution and Development (EED) Program under

prime Contract number NNG10HPO2.

Any opinions, findings, and conclusions or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of NASA.

Revision History
July 18, 2011: Version 1 published. Corresponds to version 1.0.0 of the schema.

October 31, 2011: Version 2 includes changes in Sections 9.4 and 12.1.2 to state that the
fastestVaryingDimensionIndex attribute of arrayData is absent if
nDimensions is 0. Corresponds to version 1.0.1 of the schema.

Also updated Acknowledgements.

|.T Page 29 of 30

The HDF Group

February 23, 2012 TRTHG 2011-07-18.v3

February 23, 2012 Version 3 includes changes in Section 10.3.1 noting that character BYTE
representation only used with raster data.

|.g: Page 30 of 30

The HDF Group

