HDF4 Reference Manual
HDF4 Release 2.5 « February 2010

|.u:

The HDF Group

The HDF Group

Copyright Notice and License Terms for Hierarchical Data Format (HDF)
Software Library and Utilities

Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 2006-2010 by The HDF Group (THG).

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2006 by the Board of Trustees of the University of Illinois.

All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata

Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment
Corporation (DEC).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commer-
cial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the following dis-
claimer in the documentation and/or materials provided with the distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledgethat it was devel oped by The HDF Group and by the National Center for Supercomputing Applications at the
University of Illinoisat Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse
or promote products derived from this software without specific prior written permission from THG, the University, or the
Contributor, respectively.

Disclaimer

THISSOFTWARE ISPROVIDED BY THEUNIVERSITY AND THE CONTRIBUTORS"ASIS' WITH NOWARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall the University or the Contributors be liable for any damages
suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Trademarks

Sun isaregistered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun Microsystems Inc.

UNIX isaregistered trademark of X/Open.

VAX and VMS are trademarks of Digital Equipment Corporation.

Macintosh isatrademark of Apple Computer, Inc.

CRAY and UNICOS are registered trademarks of Silicon Graphics, Inc.

IBM PC isaregistered trademark of International Business Machines Corporation.

MS-DOS isaregistered trademark of Microsoft Corporation.

The SZIP Science Data L ossess Compression Program is Copyright (C) 2001 Science & Technology Corporation @ UNM. All
rightsreleased. Copyright (C) 2003 Lowell H. Milesand Jack A. Venbrux. Licensed to ICs Corp. for distribution by the University
of lllinois National Center for Supercomputing Applications asa part of the HDF data storage and retrieval file format and soft-
ware libraryproducts package. All rights reserved. Do not modify or use for other purposes. See for further information regarding
terms of use.

THG and HDF Information and Contacts
Information regarding The HDF Group (THG) and HDF productsis available from the THG website: http://www.hdfgroup.org
HDF Help Desk assistance is available viaemail: help@hdfgroup.org
Business queries and contacts can be made through the website or by mail:
http://www.hdf group.org/about/contact.html
The HDF Group
1901 South First Street, Suite C-2
Champaign, IL 61801
USA

February 2010

Table of Contents HDF Reference Manual

Table of Contents

1.1 Overview of the HDF Interfacesot e e e e e e e 1-1
1.2 Low-Level Interface. . ..o 1-1
1.3 Multifile Application Interfaces oo 1-2
131 ScientificDataSets: SD Interface.t 1-2
1.3.2 Annotations: AN INterfateot e 1-2
1.3.3 Genera Raster Images: GRINterface.t e e e 1-2
134 Scientific DataSets: netCDF Interfacet e e 1-2
135 Vdata TheV S Interfaceo e e e e 1-2
1.3.6 VdataQuery: VSQ Interfate.ot 1-3
137 VdataFieds VEINterface e e e 1-3
1.3.8 Vgroups: V Interface.ot e 1-3
139 Vdata/Vgroups: VH INterfaceo e 1-3
1.3.10 Vgroup Inquiry: VQ INterfaceo ot e e 1-3
1.4 Single-File Application INterfaces oot e 1-3
1.4.1 24-bit Raster Image Sets: DF24 Interface.o oot e 1-3
1.4.2 8-hit Raster Image Sets: DFR8INterface ...t i 1-3
143 Paettes DFP INterfaceo e 1-4
1.4.4 Scientific DataSets: DFSD Interfaceo e e 1-4
145 Annotations: DFAN Interface. oo e e e 1-4
1.5 FORTRAN-77and C LangUage ISSUESo v vttt ettt ettt ettt et et e s 1-4
151 FORTRAN-77-t0-C Tranglation.t e et et et i 1-4
15,2 Case SaNS VIt . . ottt e 1-4
153 Name Length. e 1-5
154 Header Files.o e e 1-5
155 DataType SpeCifiCations.ot e 1-5
156 Stringand Array SPeCifiCationst e 1-6
157 FORTRAN-77,ANSI Cand K&R C i e e e e 1-6
16 EITOr COUBS. . . oo ittt ettt e e e e 1-6
2.1 Reference SECtioN OVEIVIBIW . ..ottt e e e e 2-13
ANannlen/afannleno 2-15
ANannlist/afannlist 2-16
ANatype2tag/af Ay PElag - - - . oot 2-17
ANCIEa e A CrEaEottt e e 2-18
ANCreatef[affCreate o e 2-19
ANeENd/ A eNd ... o 2-20
ANENdaCCEST af BNABCCESSttt e 2-21
ANfileinfol/affileinfo e 2-22
ANget tagref/afgettagref e 2-23
ANid2tagref/afidtagrel e 2-24
ANNUMANN I NUMENN . . e e e e e e e 2-25
ANreadann/afreadann 2-26
ANSE e A SEl B0t ... oo e 2-27
ANt At St arto 2-28
ANLag 28ty Pe At aga Y P . .« . . oo ot 2-29
ANtagref2id/aftagrefid o e 2-30
ANWHteaNN G WITEANN e 2-31
Lo (= 1= 110 o = | 2-34

February 2010

The HDF Group Table of Contents

GRENA/MEENG . ..o 2-36
GRENAACCEST MOENAEC . . . oottt e e e 2-37
GRfilaeinfa/mgiinfo 2-38
GRfindattr/mgfndat 2-39
GRgetattr/mggnatt/mggCattot 2-40
GRgetchunkinfo/mggichnKo e 2-41
GRgEtCOMPIiNfO/MGQCOMPIESS . . .\ vttt ettt e e e e e et 2-43
GRgetimMinfo/mMggiing ... 2-45
GRetlutid/mggltid 2-46
GRgetlutinfo/mgglinf e 2-47
GROENIULEMOONIULS . . . o e e 2-48
GRIAtOrEf Mg . .. 2-49
GRIUttOref Mg 2rT . .. e 2-50
GRNaMEt0iNAEX/MON2NOXttt e e e e 2-51
GRreadchunk/mgrechnk/mgrechnk oo 2-52
GRreadimage/mgrdimg/mgreimgot 2-53
GRreadiut/mgrdlut/mgrelut 2-55
GRreftoindex/mgr2idXot 2-56
GRregimagel l/mgrimil 2-57
GRreglutil/mgritil .. . 2-58
GRSEIECHMOSEI Ct . . o 2-59
GRSEIACCESSY PO MOSACED . . o v it ettt et e e e e e e e 2-60
GRsetattr/mgsnatt/MOSCaLto 2-61
GRSEtCOMPreST/MOSCOMPIESS . . ot vttt et et e e e e e et ettt e e e et e 2-63
GRsetchunk/mgsChnk 2-65
GRsetchunkcache/mgscchnk o 2-67
GRsetexternalfile/mgsxfil 2-68
GRStAI/MOStart . . . oot 2-69
GRwritechunk/mgwchnk/mgwechnk 2-70
GRwriteimage/mgwrimg/MOWCIMQottt e e e e e 2-71
GRwritelut/mgwrlut/mgwWCIUL e 2-73
HCIOSE/NCIOSE . . . oo e 2-75
Hgetfileversion/hgfilver 2-76
Hgetlibversion/hglibver 2-77
Hishdf/hishdff 2-78
HOPEN hOPEN . .. 2-79
HCget_config info oo 2-80
HDdont_atexit/hddontateXit i e e e e e e 2-82
HEprint/heprntf/neprnto 2-83
HESting/hestringf oo 2-84
HXsatereatedir/XiSCAiro 2-85
HXSatdir/hXiSair . ..o 2-86
SDattrinfo/sfgainfO 2-87
SDcheckempty/SfChemptyo 2-88
SDCrEat e/ SICrEae ot 2-89
SDAiminfo/sfgdinfo o 2-91
SDENA/SFENG . . . o 2-92
SDeNdaccess/SFENdaCCo 2-93
SDfilainfolsffinfo 2-94
SDfindattr/Sifattr 2-95
SDgetCal/SfgCal . . .o 2-96
SDgetchunkinfo/sfgichnk 2-97

iv February 2010

Table of Contents HDF Reference Manual

SDgetcoMPINfO/SIgCOMPIESS\t tee 2-99
SDgetdatastr sy Sf Oto 2-101
SDgetdimid/sfdimid 2-102
SDgetdimscale/sfgastale 2-103
SDgetdimStrs St GAMSEr oo 2-104
SDgEtf i eNaME . . .o 2-105
SDgetfillvalue/sfgfill/sfgefill e 2-106
SDGEtiNf O S GINTO . . .ttt 2-107
SO gEtNAME] €N . . .o 2-108
SDGEtNUMVAIS DYNamME . ..ot e 2-109
SDgEtraNgE SfgraNgE . . oottt 2-110
SDget MaXOPENfilES .. ot e 2-111
SDget NUMOPENTI IS . . o o 2-112
SDIAtOrEf SfId2rEf . . .o e e 2-113
RS o 11/ o= 2-114
SDISCOOrAVAN SI I SCVAr . . ottt e 2-115
SDisdimval_bwcomp/sfisdmue 2-116
SDISTECOrA/Sf iSO . . oot e e 2-117
SDNaMEtoiNAEX/SIN2INAEXottt e e e e e 2-118
S NAME O NAICES . . . ottt e e 2-119
SDreadattr/sfrnatt/Sfrcatto e 2-120
SDreadchunk/sfrechnk/sfrechnko e 2-121
SDreaddata/sfrdata/sfredata e 2-122
SDreftoindex/sSfref 2iNdeX e 2-125
SDreset_ maxopenfiles) 2-126
D SEl G/ SF S BCE . . . ottt e 2-127
SDsetacCesstype/SUfSacCto 2-128
S setattr/ S SNatt/ SFSCatto e 2-129
SDsethloCKSIZE SISz . . .o e 2-131
SDSECAl/SESCaAl . . vt 2-132
SDSetChUNK/SESCNNK . .. o e 2-133
SDsetchunkcache/sfscChnk e 2-136
SDSEtCOMPIESS/SFSCOMPIESS . . . o e et ettt et e e e e et e e e e et e 2-137
D SEtdatastr S/ Sf SOt St .« . . ottt e 2-140
SDsetdimname/sfSdmMName e 2-141
SDsetdimsCale/sfSASCAle oo e e 2-142
SDSetdimStrS/ S SAMISr . . .o e 2-143
SDsetdimval_comp/sSfSAmMVC o 2-144
SDsetexternalfile/sfseXtl e e 2-145
SDsetfillmode/sfStimd o e e 2-146
SDsetfillvalue/sfsfill/sfSCfill e e e 2-147
SDsetnbitdataset/sfsnbit e 2-148
SO SEraNgE S ANGE . . . o oottt e 2-150
RS IS = 1 /£ £ - 2-151
SDwritechunk/sfwehnk/sfweChnk e 2-152
SDwritedata/sfwdata/Stwedata oo e 2-153
Vaddtagref/Vfadtr 2-155
VattaCh/ VI a O . . e e 2-156
VAt OV AN O . . o e e e 2-157
VA ete/VAalBte e e 2-158
Vdeletetagref VIAtr 2-159
VAetaCh/VEAtCh . .. 2-160

February 2010

The HDF Group

RV 2= 16 A = o 2-161
VIOV 2-162
Viindattr/vEfdatt o 2-163
VINdClassiVINACIS . ..o 2-164
VElIOCAEIVITIOC . . . 2-165
Vgetattr /v gNatt/ VI gCatt o e 2-166
VOO aSSVI QLS . o oot 2-167
VOECIaSSNaME BN . . . oo 2-168
VAV . .o 2-169
VgEtNAmME VI gNaM . 2-170
VOB INAME BN . ..o e 2-171
NV OEINEX VT GNXE oo 2-172
Vet agref Vg . e 2-173
Vgettagref Vgt . . o 2-174
VOBtV Er S ON VG VEr . o 2-175
Vingtagref VEINQr . ..o 2-176
ViNQUITEVEING . ..o e 2-177
VNStV NS L o 2-178
R TSV A 1= o 2-179
VSV SV IO S Lo 2-180
VIONEIVE 0N . . e 2-181
VAt VINAIS . oo 2-182
VNP SNl S L 2-183
NV tagrel SV Nt 2-184
Vsatattr/VESnatt/VISCaLto 2-185
VSRl ATV STl . . e 2-186
VSNAMEVESNAM . o 2-187
VAtV At . o 2-188
VHmMakegroup/VhfmKgpo 2-189
VQUENYTEl VIl L e 2-190
VOQUENYEAO/VOLEG . . o o oottt e e e et e e e e e e e e e e e 2-191
Ve ZEIVITESIZ . . o oo 2-193
VIS ZEVI I SIZ .. 2-194
VHieldname/vifname 2-195
VHieldorder/Vifordr o 2-196
Ve Aty peIV Y PE . . 2-197
VNI dsVENfIaS . . oo 2-198
V SQUEryCoUNt/VSOINEIL . . . o 2-199
VSQueryfields/vsaffldso 2-200
VSQueryinterlace/Vsgfintr 2-201
V SQUENYNaAME/VSOINAME . . . o . ottt e e e e e e 2-202
N SQUENYTEf NV SOrEf . o 2-203
VSQUENYEAO/VSOLAD - . - o v ottt et e et e e e e e e e e e e 2-204
VSQUENYVSIZEIVSOIVSIZ . . oo 2-205
VHstoredata/vhfsd/VhsCd 2-207
VHstoredatam/vhfsdm/vhfscdm 2-209
V Sappendable/vsapp (ObSOlEte)o 2-211
VSattaCh/VsfatCh 2-212
VSattrinfo/vsfainf ... 2-213
NV SAE e VS Itot 2-214
VSdetaCh/VsfatCh o 2-215
VS VS OIS . o 2-216

vi

February 2010

Table of Contents

Table of Contents HDF Reference Manual

N SFdefine VS el . .. e 2-217
Y = B A G 2-218
VS NAIVSIN .. e 2-219
VSfindattr/vsffdato 2-220
VS INAC eSSV TS . 2-221
VS NAEX VS I OX oL e 2-222
N S A VS NaS . . .o 2-223
V Sfpack/vsfepak/VeiNpaK oo 2-224
V Sgetattr/ VS gNat/ VS gCat . . . oot 2-226
VSgetblockinfolvsfgethlinfo e 2-227
NV SOEtClasT VS GOl . . oo 2-228
VSgetfieldsvsigfldo 2-229
VS = 10 AT o o 2-230
VSgetinterlaCe/Vafgint e 2-231
V Sgetname/Vsignam 2-232
V SQEtV OIS ON VSV . . ettt ettt e e e e e e e 2-233
VSINQUIrEVSIING . . e 2-234
VSIS VSIISa . . oo oo 2-235
VOlONEIVSIIONE . . .o 2-236
VONattrSVSINGLS oo 2-237
VSread/vsirdivsfrde/vsreado 2-238
N SSBEK VS SBEK . o v\ttt e 2-240
VSsatattr/VsfSnat/VSfSCat 2-241
VSseathlocksize/vsfsethlsz o 2-242
N SSatClaSS VS SIS . . . oo 2-243
V Ssatexternalfile/vef sextf 2-244
V Ssatfields/ VS S I ... 2-245
V Ssatinterlace/VsfSinto 2-246
VSSatNamME/VSESNaIM 2-247
VSsetnumblocks/vsfsetnmbl 2-248
V SSIZEOf VS S Z . . 2-249
V SWrite/vsSwrt/VSIWICIVSIWEIT . . 2-250
DRF24addimage/d2aimg 2-253
DRF24getdims/d2gaims oo 2-254
DRF24getimage/d2gimg oot 2-255
DR 24l astref Q2Ar el . o 2-256
DR24Nimages/a2nimyg o e 2-257
DRF24putimage/d2pimgot e 2-258
DR24readref/d2rref 2-259
DR24reqil/d2redil 2-260
DR 24restart/O2f TS . ottt 2-261
DF24setcompPress/02SCOMIPt et et e e e e e e 2-262
(0122 oTo 1o o 2-264
(0122 o= 2-265
DF24satdims/d2SaimS . ..ottt 2-266
DF24setil/d2satilt 2-267
DFR8addimage/d8aimygttt 2-269
DFRBgetdims/d80dims oo e 2-270
DFRBGEtiMage/d8gimQ oottt e e e e 2-271
D RBOEL AT elot 2-272
DFRBIaSIIEl /ABITEft 2-273
DFRBNIMages/d8NimS e e 2-274

February 2010 vii

The HDF Group Table of Contents

DFRBPULIMAgE O8PIMgottt e e e e 2-275
DFR8readref/[A8Imef 2-276
DFRBrestart/dBfirstt 2-277
DFRBSEICOMPIEST A8 C0MP . . v vttt ettt e e e et ettt e 2-278
O8O0 . o .ottt 2-280
(01215 0= 2-281
DFR8setpalette/d8spalot 2-282
DFRBWIIteref [dBWIel . . . 2-283
DFPaddpal/dpapalo 2-285
DFPgEtpal/dpgRal . . oo 2-286
DR astref/dplref . ..o 2-287
DFPNPal S dpNPalS ..o 2-288
DFPPUtRal/dppRal . . oo e 2-289
DR Preadrel/aprref 2-290
DR Prestart/dprestot e 2-291
DFPwriteref/dpwrefo e 2-292
DN T SIZE .« . ittt et e e e e e 2-293
DRUfptoimage/duf2im 2-295
DFANadAfdS/daaldsttt e e e 2-297
DFANaddfid/daafid oo 2-298
DFANCIEaI/daCIEar e e 2-299
DFANGQEIESC/HagUEST . . oottt ettt e e e 2-300
DFANGgetdesclen/dagdien i 2-301
DFANGE ASdagids oo 2-302
DFANgetfdden/dagids]coo o 2-303
DFANGetfid/dagiid 2-304
DFANGgetfidlen/dagfidl i 2-305
DFANGgetlabel/daglab 2-306
DFANGgetlablen/dagllen 2-307
DFANIGDIIS/AaAlliStot 2-308
DFANIGSITEl /dalref . .. 2-309
DFANPULAESC/AaDAESC oo et 2-310
DFANputlabel/daplab 2-311
DFSDadddata/dsadatalo vt 2-313
DFSDCIear/ASCIEar oo 2-314
DFSDendslan/dseslab 2-315
DFSDENAS i CE/USESIC . . . vttt e e 2-316
DFSDQetcal/asgralt 2-317
DFSDQEtdata/dsgaalalo v vttt et et e e e 2-318
DFSDgetdatalen/dsgdalno oo 2-319
DFSDQetdatastrs/dsgaasto ottt 2-320
DFSDgetdimlen/dsgdiln o 2-321
DFSDOetdims/dsgaimsot 2-322
DFSDetdimscale/dsgaisC oo it 2-323
DFSDetdimstra/dsgdisto 2-324
DFSDgetfillvalue/dsgfill 2-325
DFSDGEINT/ASTNE .« . oo vttt ettt e e e e e e 2-326
DFSDEtrange/aSgrang . . .« o« v o v ettt e e e e e 2-327
DFSDOEtiCe/asgsC . .. oot e 2-328
DFSDIastref /ATlot 2-329
DFSDNAataSats/dSnUM et eeeee 2-330
DFSDPre32s0g/asp3250 . . .ottt 2-331

viii February 2010

Table of Contents HDF Reference Manual

DFSDPUtdata/dSpaata o vttt 2-332
DFSDPULS I CE/ASPSIC . . oot e 2-333
DR SDreadref /A el . . 2-334
DFSDreaddab/dsrslaho 2-335
DR SDrestart/dsfirst . . .ot 2-336
DFSDSEICAl/ASSCAl . ..ottt 2-337
DFSDSEtdatast rS/dSSUast . .. oo ottt 2-339
DFSDSetdima/dssaimsttt e e 2-340
DFSDSetdimSCal €/ aSSIiSC it ittt 2-341
DFSDSetdimatra/dssdist oottt e 2-342
DFSDsetfillvalueldssfill 2-343
DFSDsatlengths/dsslenso e 2-344
DS D SEIN T /SOt . . oottt e e e e e 2-345
DF SDSEraNGE OSSIANG .+« o v vt ettt e e e e e e 2-346
DFSDstartslab/dssslal 2-347
DFSDStartsliCE/dSSSICot e 2-348
DS DWWt el [ASWIES . . .o e 2-349
DFSDWriteslab/dswslab oo 2-350
Happendable 2-351
HCaChe . .. e e 2-352
HAeEldd ..o 2-353
HENQaCCESS . . . oo e e 2-354
HeNdbitattesso e e 2-355
HEXI St oottt e 2-356
HEdiNQUITE . o e 2-357
HEING . o e 2-358
HOE DIt . oo 2-359
HOt e ement . . . 2-360
HiNQUITE . o e e 2-361
HIONGth .« oo 2-362
HNEWIEr e e e 2-363
HNeXIrEad e e e 2-364
HNumbernUmMIDEY . .. e e 2-365
HOM Bt .o 2-366
HPULDIt . 2-367
HpUtE Ement . . . 2-368
HIBaO ..o 2-369
HSBEK oot 2-370
Hsat ength . . o e 2-371
HOULOWN . . e e e 2-372
HEagnewrel . .o 2-373
HEUNC . . e 2-374
H T . .o e e e e 2-375
HDFCIOSE hAfCIOSEo e e e e e e 2-377
HDFOpen/ hdfopen 2-378
HE G G . . o e 2-379
HEDUSHN .« oo 2-380
HErEPOI . . . 2-381
HEVAIUE ... e e e 2-382
3.1 DEfiNIION List OVEIVIBW . .o e e e e e e 3-383

February 2010

The HDF Group Table of Contents

X February 2010

Section

| ntroduction tothe HDF APIs

1.1

Overview of the HDF Interfaces

The HDF library structure consists of two interface layers and one application layer built upon a
physical file format. (See Figure 1a.) Thefirst layer, or the low-level interface, is generally
reserved for software devel opers because it provides support for low-level details such asfile 1/O,
error handling, and memory management. The second layer, containing the single and multifile
application interfaces, consists of a set of interfaces designed to simplify the process of storing
and accessing data. The single-file interfaces operate on onefile at atime, whereas the multifile
interfaces can operate on several files simultaneously. The highest HDF layer includes various
NCSA and commercial applications and a collection of command-line utilities that operate on
HDF files or the data objects they contain.

FIGURE la

1.2

Three Levelsof Interaction with the HDF File

General Applications

Utilities |7-| NCSA Applications |7-| Commercial Applications
[T | I 1

Multifile APIs
Scientifi B
ientific Bit [/] Varoups [7]Annotationd/] Vdata [/] " Daa
[

Data] Pactc |7|AnnTtat:onSV] glastelr 4 st — - I]]
U U U U U U U U

L ow-level Interface (Routines starting with H)

4 4

U U U

HDF File
Data Descriptor Block |7-|

Single-file APIs
Genera
Raster

24-Bit Scientific

Raster |/~

Data Elements

FileHeader [/

L ow-L evel I nterface

Thisisthe layer of HDF reserved for software developers and provides routines for error han-
dling, file 110, memory management, and physical storage. These routines are prefaced with "H’.
For a more detailed discussion of the low-level interface, consult the HDF Specifications and
Developer’s Guide from the HDF WWW home page at http://www.hdfgroup.org.

Thelow-level interface provides a collection of routines that are prefaced with either '"H’, "HE’, or
"HX'. TheH routinesare for managing HDF files. The HE routines provide error handlings. The
HX routines are for managing HDF external files.

Prior to HDF version 3.2, al low-level routines began with the prefix 'DF . As of HDF version
3.3, the DF interface was no longer recommended for use. It is only supported to maintain back-
ward compatibility with programs and files created under earlier versions of the HDF library.

February 2010 11

The HDF Group

Section 1

1.3

Multifile Application Interfaces

The HDF multifile interfaces are designed to allow operations on more than one file and more
than one data object at the same time. The multifile interfaces provided are AN, GR, SD, VS,
VSQ, VF, V, and VH. The AN interface isthe multifile version of the DFAN annotation interface.
The GRinterface isthe multifile version of the 8- and 24-bit raster image interfaces. The SD inter-
face isthe multifile version of the scientific data set interface. The VS, VSQ, and VF interfaces
support the vdata model. The V and VH interfaces provide support for the vgroup data model.

Like the single-file interfaces, the multifile interfaces are built upon the low-level H routines.
Unlike single-file operations, operations performed viaa multifile interface are not implicitly pre-
ceded by Hopen and followed by Hclose. Instead, each series of operations on afile must be pre-
ceded by an explicit call to open and close the file. Once the file is opened, it remains open until
an explicit call ismadeto closeit. This process allows operations on more than one file at atime.

1.3.1 Scientific Data Sets: SD Interface

The scientific data set interface provides a collection of routines for reading and writing arrays of
data. Multidimensional arrays accompanied by arecord of their dimension and number type are
called scientific data sets. Under the multifile interface, scientific data sets may include predefined
or user defined attribute records. Each attribute record is optional and describes a particular facet
of the environment from which the scientific data was taken.

The names of the routines in the multifile scientific data set interface are prefaced by 'SD’. The
equivalent FORTRAN-77 routine names are prefaced by 'sf’.

1.3.2 Annotations: AN Interface

The purpose of the AN multifile annotation interfaceis to permit concurrent operations on a set of
annotations that exist in more than one file. Annotations consist of labels and descriptions.

The C routine names of the multifile annotation interface are prefaced by the string’ AN’ and the
FORTRAN-77 routine names are prefaced by " af .

1.3.3 General Raster Images. GR Interface

Theroutinesin the GR interface provide multifile operations on genera raster image data sets.

The C routine names in the general raster interface have the prefix 'GR’ and the equivalent FOR-
TRAN-77 routine names are prefaced by 'mg’.

1.3.4 Scientific Data Sets; netCDF Interface

The SD interface is designed to be as compatibl e as possible with netCDF, an interface devel oped
by the Unidata Program Center. Consequently, the SD interface can read files written by the
netCDF interface, and the netCDF interface (asimplemented in HDF) can read both netCDF files
and HDF files that contain scientific data sets.

Further information regarding the netCDF interface routines and their equivaentsin the HDF
interface can befound inthe HDF User's Guide. Additional information on the netCDF interface
can be found in the netCDF User's Guide available by anonymous ftp from unidata.ucar. edu.

1.3.5 Vdata: TheVSInterface

TheVSinterface provides a collection of routinesfor reading and writing customized tables. Each
tableis comprised of a series of records whose values are stored in fixed length fields. In addition
to itsrecords, a vdata may contain four kinds of identifying information: a name, class, datatype
and a number of field names.

Routinesin the VS interface are prefaced by 'VS'. The equivalent FORTRAN-77 routine names
are prefaced by "vsf’.

1-2

February 2010

Introduction to the HDF APIs HDF Reference Manual

1.4

1.3.6 Vdata Query: VSQ Interface

The VSQ interface provides a collection of routines for inquiring about existing vdata. These rou-
tines provide information such as the number of recordsin avdata, its field names, number types,
and name. All routinesin the VSQ interface are prefaced by 'V SQ'. The equivalent FORTRAN-
77 routine names are prefaced by "vsg'.

1.3.7 Vdata Fidlds: VF Interface

The VF interface provides a collection of routines for inquiring about the fields in an existing
vdata. These routines provide information such as the field name, size, order, and number type.

All routines in the VF interface are prefaced by 'VF'. There are no equivalent FORTRAN-77
functions.

1.3.8 Vgroups: V Interface

The vgroup interface provides a collection of routines for grouping and manipulating HDF data
objectsin the file. Each vgroup may contain one or more vdatas, vgroups, or other HDF data
objects. In addition to its members, a vgroup may also be given a name and a class.

Every routine name in the vgroup interface are prefaced by 'V'. The equivalent FORTRAN-77
routine names are prefaced by 'vf’.

1.3.9 Vdata/Vgroups: VH Interface

The high-level VH interface provides a collection of routines for creating simple vdatas and
vgroups with asingle function call. All routines in thisinterface are prefaced by *VH’. The equiv-
alent FORTRAN-77 routine names are prefaced by "vh'.

1.3.10 Vgroup Inquiry: VQ Interface

The high-level VQ interface provides one routine that returns tag information from a specified
vgroup, and one routine that returns reference number information from a specified vgroup. All C
routine namesin thisinterface are prefaced by 'VQ'. The equivalent Fortran-77 routine names are
prefaced by 'vq'.

Single-File Application Interfaces

The HDF single-file application interfaces include several independent modules each is designed
to simplify the process of storing and accessing a specific type of data. These interfaces support
the 8-bit raster image(DFR8), 24-bit raster image (DF24), palette (DFP), scientific data (DFSD),
and annotation (DFAN) models. All single-file interfaces are built upon the H routines - unless
otherwise specified, al the low-level details can be ignored.

1.4.1 24-bit Raster Image Sets: DF24 | nterface

The HDF 24-hit raster interface provides a collection of routines for managing 24-bit raster image
sets. A 24-bit raster image set is comprised of a 24-bit raster image array and its accompanied
dimension record. Raster image sets may also include a pal ette.

The names of the routines in the 24-bit raster interface are prefaced by ' DF24’. The equivalent
FORTRAN-77 routine names are prefaced by 'd2'.

1.4.2 8-bit Raster Image Sets: DFR8 I nterface

The HDF 8-bit raster interface provides a collection of routines for managing 8-bit raster image
sets. An 8-hit raster image set is comprised of an 8-hit raster image array and its accompanied
dimension record. Raster image sets may also include a pal ette.

Every function in the 8-bit raster interface begins with the prefix 'DFR8'’. The equivalent FOR-
TRAN-77 functions use the prefix 'd8’.

February 2010 1-3

The HDF Group

Section 1

1.5

1.4.3 Palettes; DFP Interface

The HDF palette interface provides a collection of routines for managing palette data. Thisinter-
face is most often used for working with multiple palettes stored in asingle file or pal ettes not
specifically assigned to araster image.

The names of the routines in the palette interface are prefaced by ' DFP' . The equivaent FOR-
TRAN-77 routine names are prefaced by 'dp’.

1.4.4 Scientific Data Sets. DFSD Interface

There are two HDF interfaces that support multidimensional arrays: the single-file DFSD inter-
face described here, which permits accessto only onefile at atime, and the newer multifile SD
interface, which permits simultaneous access to more than one file. The existence of the single-
file scientific data set interface is simply to support backward compatibility for previously created
filesand applications. It is recommended that the multifile scientific data set interface isto be
used where possible.

Thesingle-file scientific data set interface provides a collection of routines for reading and writing
arrays of data. A scientific data set is comprised of ascientific data array and its accompanied
rank, name and number type. Scientific data sets may also include predefined attribute records.

The names of the routines in the single-file scientific data set interface are prefaced by 'DFSD’.
The equivalent FORTRAN-77 routine names are prefaced by 'ds'.

1.45 Annotations; DFAN Interface

The single-file annotation interface provides a collection of routines for reading and writing text
strings assighed to HDF data objects or files. Annotations consist of |abels and descriptions.

The names of the routines in the single-file annotation interface are prefaced by 'DFAN’. The
equivalent FORTRAN-77 routine names are prefaced by 'da’.

FORTRAN-77 and C Language | ssues

In order to make the FORTRAN-77 and C versions of each routine as similar as possible, some
compromises have been made in the process of simplifying the interface for both programming
languages.

1.5.1 FORTRAN-77-to-C Trandation

Nearly all of the HDF library code iswritten in C. The Fortran HDF API routines trandl ate all
parameter data types to C data types, then call the C routine that performs the main function. For
example, d8aimg is the FORTRAN-77 equivaent for DFR8addimage. Calls to either routine
execute the same C code that adds an 8-bit raster image to an HDF file - see the following figure.

FIGURE 1b

Use of a Function Call Converter to Route FORTRAN-77 HDF Callstothe C Library

Your Your
C FORTRAN-77to C FORTRAN-77
Program Program
DFR8addimage m—r- ‘d8aimg to DFR8addir d8aimg to DFR8addim DFR8addimage = d8aimg

1.5.2 Case Senditivity

FORTRAN-77 identifiers generally are not case sensitive, whereas C identifiers are. Although all
of the FORTRAN-77 routines shown in this manual are written in lower case, FORTRAN-77 pro-
grams can generally call them using either upper- or lower-case letters without |oss of meaning.

14

February 2010

Introduction to the HDF APIs HDF Reference Manual

1.5.3 Name Length

Because some FORTRAN-77 compilers only interpret identifier names with seven or fewer char-
acters, the first seven characters of the FORTRAN-77 HDF routine names are unique.

1.5.4 Header Files

Theinclusion of header filesis not generally permitted by FORTRAN-77 compilers. However, it
is sometimes available as an option. On UNIX systems, for example, the macro processorsma and
cpp let the compiler include and preprocess header files. If this capability is not available, the user
may have to copy the declarations, definitions, and values needed from the files dffunc. inc and
hdf . inc into the user application. If the capability is available, the files can be included in the
Fortran code. Thefilesresidein the inc1ude/ subdirectory of the directory where the HDF
library isinstalled on the user’s system.

1.5.5 Data Type Specifications

When mixing machines, compilers, and languages, it is difficult to maintain consistent data type
definitions. For instance, on some machines an integer is a 32-bit quantity and on others, a 16-bit
guantity. In addition, the differences between FORTRAN-77 and C lead to difficulties in describ-
ing the data types found in the argument lists of HDF routines. To maintain portability, the HDF

library expects assigned names for all data types used in HDF routines. (See Table 1A.)

TABLE 1A

Data Type Definitions

Definition Name Definition Value Description
B-DIt character type
DFNT_CHARS 4
Same as DFNT_CHARS
DFNT_CHAR 4
DFNT_UCHARS 3 B8-bit unsigned character type
Same as DFNT_UCHARS
DFNT_UCHAR 3 _
DFNT_INTS 20 B8-bit Integer type
DFNT_UINT8 21 8-bit unsigned integer type
DFNT_INT16 22 1b'b|t |nt®er type
DFNT_UINT16 23 16-bit unsigned integer type
DFNT_INT32 24 32-bit integer type
DFNT_UINT32 o5 32-bit unsigned Integer type
DFNT_FLOAT32 5 32-bit floating-point type
DFNT_FLOAT64 6 64-bit floating-point type
DFNT_NINT8 (DFNT_NATIVE | DFNT_INTS) g-bit native integer type
DFNT_NUINTS (DFNT_NATIVE | DFNT UINTS) g-bit native unsigned integer type
DFNT_NINT16 (DFNT_NATIVE | DFNT_INT16) 16-bit native integer type
DFNT_NUINT16 (DFNT_NATIVE | DFNT_UINT16) 16-bit native unsigned integer type
DFNT_NINT32 (DFNT_NATIVE | DFNT_INT32) SZ-bit native integer type

February 2010 1-5

The HDF Group Section 1

DFNT_NUINT32 (DFNT_NATIVE | DFNT_UINT32) S2-bit native unsigned integer type
32-bit native tloating-point type
DFNT_NFLOAT32 (DFNT_NATIVE | DFNT_FLOAT32)
o4-bit native tfloating-point type
DFNT_NFLOAT64 (DFNT_NATIVE | DFNT_FLOAT64)

When using a FORTRAN-77 data type that is not supported, the general practiceisto use another
data type of the same size. For example, an 8-bit signed integer can be used to store an 8-bit
unsigned integer variable unless the code relies on a sign-specific operation.

1.5.6 Sringand Array Specifications
In the declarations contained in the headers of FORTRAN-77 functions, the following conven-
tions are followed:

 character* (*) x meansthat x refersto astring of an indefinite number of characters. It isthe
responsibility of the calling program to all ocate enough space to hold the data to be stored in
the string.

* real x(*) meansthat x refersto an array of reals of indefinite size and of indefinite rank. It is
the responsibility of the calling program to allocate an actual array with the correct number
of dimensions and dimension sizes.

« <valid numeric data type > x meansthat x may have one of the numeric datatypeslistedin
the Description column of Table 1A on page 5.

» <valid data type > x means that x may have any of the data types listed in the Description
column of Table 1A on page 5.

157 FORTRAN-77,ANSI Cand K&R C

As much as possible, we have conformed the HDF API routines to those implementations of For-
tran and C that are in most common use today, namely FORTRAN-77, ANSI C and K&R C. Due
to theincreasing availability of ANSI C, future versions of HDF will no longer support K&R C.

As Fortran-90 is a superset of FORTRAN-77, HDF programs should compile and run correctly
when using a Fortran-90 compiler.

1.6 Error Codes
The error codes defined in the HDF library are listed in the following table.

TABLE 1B HDF Error Codes

Error Code Code Definition
NoO error.

DFE_NONE

File not found.

DFE_FNF

IAccess to file denied.

DFE_DENIED

File already open.

DFE_ALROPEN

00 many a1p'sor files open.

DFE_TOOMANY

Bad file name on open.

DFE_BADNAME

Bad file access mode.

DFE_BADACC

1-6 February 2010

Introduction to the HDF APIs

HDF Reference Manual

Error Code

Code Definition

DFE_BADOPEN

Miscellaneous open error.

DFE_NOTOPEN

File can't be closed because It hasn't been opened.

DFE_CANTCLOSE

fclose €rOr

DFE_READERROR

Read error.

DFE_WRITEERROR

rite error.

DFE_SEEKERROR

Seek error.

DFE_RDONLY

Fileisread only.

DFE_BADSEEK

Attempt to seek past end of element.

DFE_PUTELEM

Hputelement €TOI.

DFE_GETELEM

Hgetelement €TOI.

DFE_CANTLINK

Cannot Initialize link 1nformation.

DFE_CANTSYNC

Cannot synchronize memory with file.

DFE_BADGROUP

Error from Drdiread IN OpENing a group.

DFE_GROUPSETUP

Error from bDrdisetup 1N OPENiNg a group.

DFE_PUTGROUP

Error on putting a tag/reference number pair into agroup.

DFE_GROUPWRITE

Error when writing group contents.

DFE_DFNULL

Datafile reference 1sanull pointer.

DFE_ILLTYPE

Datafile contains an illegal type: internal error.

DFE_BADDDLIST

he DD list 1s non-existent: internal error.

DFE_NOTDFFILE

he current file1s not an HDF file and It 1s not zero length.

DFE_SEEDTWICE

he DD list aready seeded: internal error.

DFE_NOSUCHTAG

No such tag in the file: search failed.

DFE_NOFREEDD

here are no free DD's leit: internal error.

DFE_BADTAG

Illegal wiLpcarp tag.

DFE_BADREF

[llegal wiLpcarp reference number.

DFE_NOMATCH

No DDs (or no more DDs) that maich the specified tag/reference
number pair.

DFE_NOTINSET

arning: Set contained unknown tag. Tgnored.

DFE_BADOFFSET

[legal offset specified.

DFE_CORRUPT

Fileis corrupted.

DFE_NOREF

NO more reference numbers are avallable.

February 2010

1-7

The HDF Group

Section 1

Error Code

Code Definition

DFE_DUPDD

he new tag/reference number pair has been allocated.

DFE_CANTMOD

Old element doesn't exist. Cannot modify.

DFE_DIFFFILES

Attempt to merge objectsin different files.

DFE_BADAID

Aninvalid aIp was recelved.

DFE_OPENAID

Active arps still exist.

DFE_CANTFLUSH

Cannot flush DD back to file.

DFE_CANTUPDATE

Cannot update the DD block.

DFE_CANTHASH

Cannot add a DD to the hash table.

DFE_CANTDELDD

Cannot delete aDD In thefile.

DFE_CANTDELHASH

Cannot delete aDD from the hash table.

DFE_CANTACCESS

Cannot access specitied tag/reference number pair.

DFE_CANTENDACCESS

Cannot end access to data element.

DFE_TABLEFULL

Access table 1s full.

DFE_NOTINTABLE

Cannot find element In table.

DFE_UNSUPPORTED

Feature not currently supported.

DFE_NOSPACE

malloc falled.

DFE_BADCALL

Routine calls were In the wrong order.

DFE_BADPTR

NULL pointer argument was specified.

DFE_BADLEN

Invalid length was specified.

DFE_NOTENOUGH

Not enough space for the data.

DFE_NOVALS

alues were not available.

DFE_ARGS

Invalid arguments passed to the routine.

DFE_INTERNAL

Serious Internal error.

DFE_NORESET

oo late to modify this value.

DFE_GENAPP

Generic application level error.

DFE_UNINIT

Interface was not Initialized correctly.

DFE_CANTINIT

Cannot Initialize the Interface the operation requires.

DFE_CANTSHUTDOWN

Cannot shut down the interface the operation requires.

DFE_BADDIM

Negative number of dimensions, or zero dimensions, was specified.

DFE_BADFP

File contained an illegal floating point number.

1-8

February 2010

Introduction to the HDF APIs

HDF Reference Manual

Error Code

Code Definition

DFE_BADDATATYPE

Unknown or unavailable data type was specified.

DFE_BADMCTYPE

Unknown or unavallable machine type was specified.

DFE_BADNUMTYPE

Unknown or unavallable number type was specified.

DFE_BADORDER

Unknown or Illegal array order was specified.

DFE_RANGE

Improper range for attempted access.

DFE_BADCONV

Invalid data type conversion was specified.

DFE_BADTYPE

Incompatible types were specified.

DFE_BADSCHEME

Unknown compression scheme was specified.

DFE_BADMODEL

Invalid compression model was specified.

DFE_BADCODER

Invalid compression encoder was specified.

DFE_MODEL

Error in the modeling layer of the compression operation.

DFE_CODER

Error 1n the encoding layer of the compression operation.

DFE_CINIT

Error in encoding initialization.

DFE_CDECODE

Error In decoding compressed data.

DFE_CENCODE

Error In encoding compressed data.

DFE_CTERM

Error in encoding termination.

DFE_CSEEK

Error seeking In an encoded dataset.

DFE_MINIT

Error in modeling initialization.

DFE_COMPINFO

Invalid compression header.

DFE_CANTCOMP

Cannot compress an object.

DFE_CANTDECOMP

Cannot decompress an object.

DFE_NOENCODER

Encoder not available.

DFE_NOSZLIB

SZIP library not avallable.

DFE_COMPVERSION

ersion error from zlib
Note: when Z_ VERSION_ERROR (-6) returned from zlib.

DFE_READCOMP

Error In reading compressed data.

Note: when one of the following error codes returned from zlib:

7 ERRNO (-1

7 STREAM_ERROR (-2)
7 DATA_ERROR (-3)
7 MEM_ERROR (-4)
7 BUF_ ERROR (-5)

DFE_NODIM

/A dimension record was not associated with the image.

DFE_BADRIG

Error processing aRIG

February 2010

1-9

The HDF Group

Section 1

Error Code

Code Definition

DFE_RINOTFOUND

Cannot Tind raster image.

DFE_BADATTR

Invalid attribute.

DFE_BADTABLE

he nsdg table has incorrect information.

DFE_BADSDG

Error In processing an SDG.

DFE_BADNDG

Error in processing an NDG.

DFE_VGSIZE

00 many elementsin the vgroup.

DFE_VTAB

Element not Invtab[].

DFE_CANTADDELEM

Cannot add the tag/reference number pair to the vgroup.

DFE_BADVGNAME

Cannot set the vgroup name.

DFE_BADVGCLASS

Cannot set the vgroup class.

DFE_BADFIELDS

Invalid fields string passed to vset routine.

DFE_NOVS

Cannot find the vset in the file.

DFE_SYMSIZE

00 many symbolsin the users table.

DFE_BADATTACH

Cannot write to apreviously attached vdata

DFE_BADVSNAME

Cannot set the vdata name.

DFE_BADVSCLASS

Cannot set the vdata class.

DFE_VSWRITE

Error writing to the vdata

DFE_VSREAD

Error reading from the vdata.

DFE_BADVH

Error in the vdata header.

DFE_VSCANTCREATE

Cannot create the vdata

DFE_VGCANTCREATE

Cannot create the vgroup.

DFE_CANTATTACH

Cannot attach to a vdata or vset.

DFE_CANTDETACH

Cannot detach avdata or vset with write access.

DFE_BITREAD

A bit read error occurred.

DFE_BITWRITE

A bit write error occurred.

DFE_BITSEEK

A bit seek error occurred.

DFE_TBBTINS

Falled to insert the element Into tree.

DFE_BVNEW

Failed to create abit vector.

DFE_BVSET

Failed when setting a bit In a bit vector.

1-10

February 2010

Introduction to the HDF APIs

HDF Reference Manual

Error Code

Code Definition

DFE_BVGET

Faled when getting abit in abit vector.

DFE_BVFIND

Failed when finding abit in abit vector.

February 2010

-1

The HDF Group Section 1

1-12 February 2010

Section

HDF Routine Reference

21

Reference Section Overview

This section of the Reference Manual containsalisting of every routine contained in the HDF ver-
sion 4.1r4 library. For each interface, the pages are organized a phabetically according to the C
routine name. Each page addresses one C routine and the related FORTRAN-77 routines, and

takes the following form:

Routine_Name

return_type function_name(typel parameterl, type2 parameter?, ... , typeN parameterN)

parameter1 IN/ o .
OUT: Definition of the first parameter

parameter 2 IN/

OUT: Definition of the second parameter

parameterN IN/ o
ouT Definition of the Nth parameter

Purpose Section containing the functionality of the routine.

Return value Section describing the return value, if any.

Description This optional section describes the proper use of the routine, the specifica-
tion of the parameters, and any special circumstances surrounding the use of
the routine. This section also identifies any prerequisite routines and pro-
vides appropriate references.

FORTRAN This section provides a synopsis of the equivalent FORTRAN-77

routine or routines.

February 2010

2-13

The HDF Group Section 2

2-14 February 2010

ANannlen/afannlen

HDF Reference M anual

ANannlen/afannlen

int32 ANannlen(int32 ann_id)

ann_id

Purpose
Return value

Description

FORTRAN

IN: Annotation identifier returned by ANcreate, ANcreatef, or
ANselect

Returns the length of an annotation.
Returns the length of the annotation or a1z (or -1) otherwise.
ANannlen returns the number of characters contained in the annotation

specified by the parameter ann_id. This function is commonly used to
determine the size of a buffer to store the annotation upon reading.

integer function afannlen(ann id)

integer ann_ id

February 2010

2-15

The HDF Group ANannlist/afannlist

ANannlist/afannlist

intn ANannlist(int32 an_id, ann_type annot_type, uintl6 obj tag, uint16 obj_ref, int32 *ann_list)

an_id IN: AN interface identifier returned by ANstart
annot_type IN: Type of the annotation

obj_tag IN: Tag of the object

obj_ref IN: Reference number of the object

ann_list OUT: Buffer for the annotation identifiers
Purpose Retrieves the annotation identifiers of an object.

Return value Returns succeep (Or o) or a1 (Or -1) otherwise.

Description ANannlist obtains a list of identifiers of the annotations that are of the type
specified by the parameter annot_type and are attached to the object identified
by itstag, obj_tag, and its reference number, obj_ref.

Since this routine is implemented only to obtain the identifiers of data
annotations and not file annotations, the valid values of annot type are
aN_paTa 1aBEL (Or o) and an_pata pesc (or 1). To obtain file annotation
identifiers, use ANfileinfo to determine the number of file labels and
descriptions, and then use ANselect to obtain each file annotation identifier.

Sufficient space must be allocated for ann_list to hold the list of annotation
identifiers. This can be done by using ANnumann to obtain the number of
annotation identifiers to be retrieved, and then allocating memory for ann_list
using this number.

FORTRAN integer function afannlist(an_id, annot type, obj tag,
obj_ref, ann_ list)

integer ann list (*)

integer an_id, obj tag, obj ref, annot type

2-16 February 2010

ANatype2tag/afatypetag HDF Reference Manual

ANatype2tag/afatypetag

uint16 ANatype2tag(ann_type *annot_type)

annot_type IN: Type of the annotation

Purpose Returns the annotation tag corresponding to an annotation type.

Return value Returns the annotation tag (ann_tag) if successful, and prrac_nunn (Or o)
otherwise.

Description ANatype2tag returns the tag that corresponds to the annotation type specified

by the parameter annot_type.

The following table lists the valid values of annot_type in the left column and
the corresponding values for the returned annotation tag on the right.

Annotation Type Annotation Tag
AN DATA LABEL (or 0) | DFTAG DIL (or 104)

AN DATA DESC (or 1) DFTAG DIA (or 105)

AN FILE IABEL (or 2) | DFTAG FID (or 100)

AN FILE DESC (or 3) DFTAG FD (or 101)

FORTRAN integer function afatypetag(annot_ type)

integer annot_ type

February 2010 2-17

The HDF Group

ANcreate/afcreate

ANcreate/afcreate

int32 ANcreate(int32 an_id, uintl6 obj_tag, uint16 obj_ref, ann_type annot_type)

an_id
obj_tag
obj_ref

annot_type

Purpose

Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart
IN: Tag of the object to be annotated

IN: Reference number of the object to be annotated
IN: Type of the data annotation

Creates a data annotation for an object.

Returns the data annotation identifier (ann_id) if successful and ra1r (or -1)
otherwise.

ANCcreate creates a data annotation of type annot_type for the object specified
by its tag, obj tag, and its reference number, obj ref. The returned data
annotation identifier can represent either a data label or a data description.
Valid values for annot_type are an_paTa_ 1aBEL (OF 0) OF AN_DATA_DESC (OF 1).
Use ANcreatef to create afile annotation.

Currently, the user must write to a newly-created annotation before creating

another annotation of the same type. Creating two consecutive annotations of
the same type causes the second call to ANcreate to return razs (or -1).

integer function afcreate(an id, obj tag, obj ref,
annot type)

integer an id, obj tag, obj ref, annot type

2-18

February 2010

ANcreatef/affcreate

HDF Reference M anual

ANcreatef/affcreate

int32 ANcreatef(int32 an_id, ann_type annot_type)

an_id

annot_type

Purpose

Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart

IN: Type of the file annotation

Creates afile annotation.

Returns the file annotation identifier (ann_id) if successful and ra1z (or -1)
otherwise.

ANcreatef creates a file annotation of the type specified by the parameter
annot_type. The file annotation identifier returned can either represent a file
label or afile description.

Valid values for annot_type are an_r1rLE_1aBeL (OF 2) and an_FILE DESC (Or

3).
Use ANcreate to create a data annotation.
Currently, the user must write to a newly-created annotation before creating

another annotation of the same type. Creating two consecutive annotations of
the same type causes the second call to ANcreate to return razs (or -1).

integer function affcreate(an id, annot type)

integer an id, annot type

February 2010

2-19

The HDF Group ANend/afend

ANend/afend

int32 ANend(int32 an_id)

an_id IN: AN interface identifier returned by ANstart

Purpose Terminates accessto an AN interface.
Returnvalue Returns succeep (or o) if successful and ra1r (or -1) otherwise.
Description ANend terminates access to the AN interface identified by an_id, which is

previoudly initialized by a call to ANstart. Note that there must be one call to
ANend for each call to ANstart.

FORTRAN integer function afend(an_id)

integer an_id

2-20 February 2010

ANendaccess/afendaccess HDF Reference M anual

ANendaccess/af endaccess

intn ANendaccess(int32 ann_id)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect

Purpose Terminates access to an annotation.
Returnvalue Returns succeep (or o) if successful and ra1r (or -1) otherwise.
Description ANendaccess terminates access to the annotation identified by the parameter

ann_id. Note that there must be one call to ANendaccess for every call to
ANselect, ANcreate or ANcreatef.

FORTRAN integer function afendaccess(ann_id)

integer ann_ id

February 2010 2-21

The HDF Group ANfileinfo/affileinfo

ANfileinfo/affileinfo

intn ANfileinfo(int32 an_id, int32 *n _file labels, int32 *n_file_descs, int32 *n_data _labels, int32
*n_data_descs)
an_id IN: AN interface identifier returned by ANstart
n file labels OUT: Number of file labels
n file descs OUT: Number of file descriptions
n data labels OUT: Number of datalabels

n_data descs OUT: Number of data descriptions

Purpose Retrieves the number of annotations of each typein afile.
Returnvalue Returns succeep (or o) if successful or ra1L (or -1) otherwise.

Description ANfileinfo retrieves the total number of the four kinds of annotations and
stores them in the appropriate parameters. The total number of datalabels of all
data objects in the file is stored in n_data labels. The total humber of data
descriptions of all data objects in the file is stored in n_data_descs. The total
number of file labels is stored in n_file labels and the total number of file
descriptionsin n_file_descs.

Note that the numbers of data labels and descriptions refer to the total number
of data labels and data descriptions in the file, not for a specific object. Use
ANnumann to determine these numbers for a specific object.

This routine is generaly used to find the range of acceptable indices for
ANselect cdls.

FORTRAN integer function affileinfo(an_id, n_file_labels,
n_file descs, n_data_labels, n_data_descs)

integer an_id, n file labels, n file descs

integer n_data_labels, n_data_descs

2-22 February 2010

ANget_tagref/afgettagr ef

HDF Reference M anual

ANget_tagref/afgettagref

int32 ANget_tagref(int32 an_id, int32 index, ann_type annot_type, uintl6 *ann_tag, uint16 *ann_ref)

an_id
index
annot_type
ann_tag

ann_ref

Purpose

Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart
IN: Index of the annotation
IN: Type of the annotation

OUT: Tag of the annotation

OUT: Reference number of the annotation

Retrieves the tag/reference number pair of an annotation given its index and
type.

Returns succezp (or o) if successful or ra1L (or -1) otherwise.

ANget_tagref retrieves the tag and reference number of the annotation
identified by its index, the parameter index, and by its annotation type, the
parameter annot_type. The tag is stored in the parameter ann_tag and the
reference number is stored in the parameter ann_ref.

The parameter index is a nonnegative integer and is less than the total number
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each typein thefile.

Thefollowing tablelists the valid values of the parameter annot_typein the | eft
column, and the corresponding values of the parameter ann tag in the right
column.

Annotation Type Annotation Tag

AN DATA IABEL (or 0) | DFTAG DIL (or 104)

AN DATA DESC (or 1) DFTAG DIA (or 105)

AN FILE IABEL (or 2) | DFTAG FID (or 100)

AN _FILE DESC (or 3) DFTAG FD (or 101)

integer function afgettagref (an id, index, annot type,
ann_tag, ann ref)

integer an id, index, annot_ type

integer ann_tag, ann ref

February 2010

2-23

The HDF Group ANid2tagref/afidtagr ef

ANid2tagref/afidtagref

int32 ANid2tagref(int32 ann_id, uint16 *ann_tag, uintl6 *ann_ref)

ann_id IN: Annotation identifier returned by ANselect, ANcreate or ANcreatef
ann_tag OUT: Tag of the annotation

ann_ref OUT: Reference number of the annotation

Purpose Retrieves the tag/reference number pair of an annotation given its identifier.

Returnvalue Returns succeep (or o) if successful or ra1L (or -1) otherwise.

Description ANid2tagref retrieves the tag/reference number pair of the annotation
identified by the parameter ann_id. Thetag is stored in the parameter ann_tag
and the reference number is stored in the parameter ann_ref.

Possible values returned in ann_tag are prrac_prn (or 104) for a data label,

prTaG DIA (Or 105) for a data description, prrac r1p (Or 100) for afile label
and prrac_Fp (Or 101) for afile description.

FORTRAN integer function afidtagref (ann_id, ann_tag, ann ref)

integer ann_id, ann tag, ann ref

2-24 February 2010

ANnumann/afnumann

HDF Reference Manual

ANnumann/afnumann

intn ANnumann(int32 an_id, ann_type annot_type, uint16 obj_tag, uint16 obj_ref)

an_id
annot_type
obj_tag
obj_ref

Purpose
Return value

Description

FORTRAN

IN:
IN:
IN:
IN:

AN interface identifier returned by ANstart
Type of the annotation
Tag of the object

Reference number of the object

Returns the number of annotations of a given type attached to an object.

Returns the number of annotations or rarr (or -1) otherwise.

ANnumann returns the total number of annotations that are of type annot_type
and that are attached to the object identified by its tag, obj_tag, and its
reference number, obj_ref.

Since this routine is implemented only to obtain the total number of data
annotations and not file annotations, the valid values of annot_type are
aN DATA 1ABEL (Or 0) and an_paTa prsc (or 1). To obtain the total number of
file annotations or all data annotations, use ANfileinfo.

integer function afnumann(an_id, annot type, obj tag,

obj ref)

integer an id, obj tag, obj ref, annot type

February 2010

2-25

The HDF Group ANreadann/afreadann

ANreadann/afreadann

int32 ANreadann(int32 ann_id, char* ann_buf, int32 ann_length)

ann_id IN: Annotation identifier returned by ANcreate, ANcreatef or ANselect
ann_buf OUT: Buffer for the annotation

ann_length IN: Length of the buffer ann_buf

Purpose Reads an annotation.

Returnvalue Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description ANreadann reads the annotation identified by the parameter ann_id and stores
the annotation in the parameter ann_buf.

The parameter ann_length specifies the size of the buffer ann_buf. If the length
of the file or data Tabel to be read is greater than or equal to ann_length, the
label will be truncated to ann_length - 1 characters. If the length of the file or
data description is greater than ann_length, the description will be truncated to
ann_length characters. The HDF library adds a nuLL character to the retrieved
label but not to the retrieved description. The user must add a nurt character to
the retrieved description if the C library string functions are to operate on this
description.

FORTRAN integer function afreadann(ann_id, ann _buf, ann length)

integer ann_id, ann length

character* (*) ann buf

2-26 February 2010

ANsel ect/af sel ect

HDF Reference M anual

ANselect/afselect

int32 ANselect(int32 an_id, int32 index, ann_type annot_type)

an_id
index

annot_type

Purpose

Return value

Description

FORTRAN

IN: AN interface identifier returned by ANstart
IN: Location of the annotation in the file
IN: Type of the annotation

Obtains an existing annotation.

Returns the annotation identifier (ann_id) if successful or rarn (or -1)
otherwise.

ANSselect obtains the identifier of the annotation specified by its index, index,
and by its annotation type, annot_type.

The parameter index is a nonnegative integer and is less than the total number
of annotations of type annot_type in the file. Use ANfileinfo to obtain the total
number of annotations of each typein thefile.

Valid values of annot_type are an pata raBer (or 0), an_paTa pesc (Or 1),
AN FILE_LABEL (Or 2), and an_r1rLE_DESC (Or 3).

integer function afselect(an_id, index, annot type)

integer an id, index

integer annot_ type

February 2010

2-27

The HDF Group ANstart/afstart

ANstart/afstart

int32 ANstart(int32 file_id)

file id IN: File identifier returned by Hopen

Purpose Initializes the AN interface.

Returnvalue Returns the AN interface identifier (an_id) if successful and rarr (or -1)
otherwise.

Description ANstart initializes the AN interface for the file identified by the parameter
file_id. A call to ANstart isrequired before any AN functions can be invoked.

ANstart is used with the ANend function to define the extent of AN interface
session. A call to ANend isrequired for each call to ANstart.

FORTRAN integer function afstart (file_id)

integer file id

2-28 February 2010

ANtag?atype/aftagatype HDF Reference Manual

ANtag2atype/aftagatype

ann_type ANtag2atype(uint16 ann_tag)

ann_tag IN: Tag of the annotation

Purpose Returns the annotation type corresponding to an annotation tag.
Returnvalue Returnsthe annotation typeif successful or an_unper (or -1) otherwise.

Description ANtag?atype returns the annotation type that corresponds to the annotation tag
specified by the parameter ann_tag.

The following table lists the valid values of ann_tag in the left column and the
corresponding values of the returned annotation type in the right column.

Annctation Tag Annotation Type
DFTAG DIL (or 104) AN DATA IABEL (or 0)
DFTAG DIA (or 105) AN DATA DESC (or 1)
DFTAG FID (or 100) AN FILE IABEL (or 2)
DFTAG_FD (or 101) AN FILE DESC (or 3)
FORTRAN integer function aftagatype (ann_tag)

integer ann tag

February 2010 2-29

The HDF Group ANtagref2id/aftagr efid

ANtagref2id/aftagrefid

int32 ANtagref2id(int32 an_id, uintl6 ann_tag, uint16 ann_ref)

an_id IN: AN interface identifier returned by ANstart

ann_tag IN: Tag of the annotation

ann_ref IN: Reference number of the annotation

Purpose Returns the identifier of an annotation given its tag/reference number pair.

Returnvalue Returns the annotation identifier (ann_id) if successful and ra1z (or -1)
otherwise.

Description ANtagref2id returns the identifier of the annotation specified by its tag,
ann_tag, and its reference number, ann_ref.

Valid values of ann_tag are prrac_pi1L (Or 104) for adatalabel, prrac_p1a (Or
105) for a data description, prrac_r1p (Or 100) for afile label, and prrac FD
(or 101) for afile description.

FORTRAN integer function aftagrefid(an_id, ann_tag, ann_ref)

integer an id, ann tag, ann ref

2-30 February 2010

ANwriteann/afwriteann

HDF Reference M anual

ANwriteann/afwriteann

int32 ANwriteann(int32 ann_id, char* ann, int32 ann_length)

ann_id
ann

ann_length

Purpose
Return value

Description

FORTRAN

IN: Annotation identifier returned by ANcreate, ANcreatef, or ANselect
IN: Text to be written to the annotation
IN: Length of the annotation text

Writes an annotation.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

ANwriteann writes the annotation text provided in the parameter ann to the
annotation specified by the parameter ann_id. The parameter ann_length
specifies the number of charactersin the annotation text.

If the annotation has aready been written with text, ANwriteann will
overwrite the current text.

integer function afwriteann(ann id, ann, ann length)

integer ann_id, ann length

character* (*) ann

February 2010

2-31

The HDF Group ANwriteann/afwriteann

2-32 February 2010

HDF Reference M anual

GRattrinfo/mgatinf

intn GRattrinfo(int32 [obj]_id, int32 attr_index, char *name, int32 *data_type, int32 * count)

[obj]_id

attr_index
name
data_type

count

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

IN: Index of the attribute

OUT: Buffer for the name of the attribute
OUT: Datatype of the attribute

OUT: Number of attribute values

Retrieves information about an attribute.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

GRattrinfo retrieves the name, data type, and number of values of the
attribute, specified by itsindex, attr_index, for the data object identified by the
parameter obj_id. The name is stored in the parameter name, the data type is
stored in the parameter data type, and the number of values is stored in the
parameter count. If the value of any of the output parameters is nurz, the
corresponding information will not be retrieved.

The value of the parameter attr_index can be obtained using GRfindattr,
GRnametoindex or GRreftoindex, depending on available information. Valid
values of attr_index range from O to the total number of attributes attached to
the object - 1. The total number of attributes attached to the file can be obtained
using the routine GRfileinfo. The total number of attributes attached to an
image can be obtained using the routine GRgetiminfo .

integer function mgatinf ([obj] id, attr index, name,
data_type, count)

integer [obj] id, data type, attr_ index, count

character* (*) name

February 2010

2-33

The HDF Group

GRcreate/mgcr eat

GRcreate/mgcreat

int32 GRcreate(int32 gr_id, char * name, int32 ncomp, int32 data_type, int32 interlace_mode, int32

or_id

name

ncomp
data_type
interlace_mode

dim sizes

Purpose
Return value

Description

dim_sizeg[2])
IN: GR interface identifier returned by GRstart
IN: Name of the raster image
IN: Number of pixel componentsin the image
IN: Type of the image data
IN: Interlace mode of the image data
IN: Size of each dimension of the image

Creates anew raster image.
Returns araster image identifier if successful and raz1 (or -1) otherwise.

GRcreate creates a raster image with the values provided in the parameters
name, ncomp, data_type, interlace_mode and dim_sizes.

The parameter name specifies the name of the image and must not be nutr.
The length of the name should not be longer than Max cr name (Of 256).

The parameter ncomp specifies the number of pixel components in the raster
image and must have avalue of at least 1.

The parameter data_type specifies the type of the raster image data and can be
any of the data types supported by the HDF library. The data types supported
by HDF arelisted in Table 1A in Section | of this manual.

The parameter interlace_mode specifies the interlacing in which the raster
image is to be written. The valid vaues of interlace mode are
MFGR_INTERLACE PIXEL (Of 0), MFGR_INTERLACE LINE (Or 1) and
MFGR_INTERLACE COMPONENT (OF 2).

The array dimsizes specifies the size of the two dimensions of the image. The
dimensions must be specified and their values must be greater than o.

Once araster image has been created, it is not possible to change its name, data
type, dimension sizes or number of pixel components. However, it is possible
to create a raster image and close the file before writing any data values to it.
Later, the values can be added to or modified in the raster image, which then
can be obtained using GRselect.

Images created with the GR interface are actually written to disk in pixel
interlace mode; any user-specified interlace mode is stored in the file with the
image and the image is automatically converted to that mode when it is read
with a GR interface function.

2-34 February 2010

GRcreate/mgcreat

HDF Reference M anual

Note

FORTRAN

Regar ding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucia difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the APl parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
0 For SDreaddata, those parameters are expressed in (y,x) or
[row,column] order. For example, start [0] isthe starting point in the
Y dimension and start [1] is the starting point in the X dimension.
The same ordering holds true for al SD data set manipulation
functions.
0 For GRreadimage, those parameters are expressed in (Xx)y) or
[column,row] order. For example, start [0] isthe starting point in the
X dimension and start [1] is the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

integer function mgcreat (gr id, name, ncomp, data type,
interlace mode, dim sizes)

integer gr id, data_type, interlace mode, ncomp,
dim sizes(2)

character* (*) name

February 2010

2-35

The HDF Group GRend/mgend

GRend/mgend
intn GRend(int32 gr_id)

or_id IN: GR interface identifier returned by GRstart

Purpose Terminates the GR interface session.

Return value Returns succeep (or 0) if successful and rarr (or -1) otherwise.

Description GRend terminates the GR interface session identified by the parameter gr_id.
GRend, together with GRstart, defines the extent of a GR interface session.
GRend disposes of the internal structures initialized by the corresponding call
to GRstart. There must be a call to GRend for each call to GRstart; failing to
provide one may cause loss of data.
GRstart and GRend do not manage file access; use Hopen and Hclose to

open and close HDF files. Hopen must be called before GRstart and Hclose
must be called after GRend.

FORTRAN integer function mgend(gr id)

integer gr id

2-36 February 2010

GRendaccessymgendac

HDF Reference M anual

GRendaccesssmgendac

intn GRendaccess(int32 ri_id)

ri_id

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier returned by GRcreate or GRselect

Terminates access to a raster image.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRendaccess terminates access to the raster image identified by the parameter
ri_id and disposes of the raster image identifier. This access is initiated by
either GRselect or GRcreate. There must be a call to GRendaccess for each
call to GRselect or GRcreate; failing to provide thiswill result in loss of data.
Attempts to access a raster image identifier disposed of by GRendaccess will
result in an error condition.

integer function mgendac(ri id)

integer ri id

February 2010

2-37

The HDF Group GRfileinfo/mgfinfo

GRfileinfo/mgfinfo

intn GRfileinfo(int32 gr_id, int32 *n_images, int32 *n_file_attrs)

or_id IN: GR interface identifier returned by GRstart

n_images OUT: Number of raster imagesin thefile

n file attrs OUT: Number of global attributesin the file

Purpose Retrieves the number of raster images and the number of global attributes in
thefile.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description GRfileinfo retrieves the number of raster images and the number of global
attributes for the GR interface identified by the parameter gr_id, and stores
them into the parameters n_images and n_file_attrs, respectively.

The term “global attributes’ refers to attributes that are assigned to the file
instead of individual raster images. These attributes are created by GRsetattr
with the object identifier parameter set to a GR interface identifier (gr_id)
rather than araster image identifier (ri_id).

GRfileinfo is useful in finding the range of acceptable indices for GRselect
cals.

FORTRAN integer function mgfinfo(gr id, n images, n file attrs)

integer gr id, n_images, n file attrs

2-38 February 2010

GRfindattr/mgfndat

HDF Reference M anual

GRfindattr/mgfndat

int32 GRfindattr(int32 [obj]_id, char *attr_name)

[obj]_id

attr_name

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

IN: Name of the attribute

Finds the index of a data object’s attribute given an attribute name.
Returns the index of the attribute if successful and razw (or -1) otherwise.

GRfindattr returns the index of the attribute whose name is specified by the
parameter attr_name for the object identified by the parameter obj_id.

integer function mgfndat ([obj] id, attr name)

integer [obj] id

character* (*) attr name

February 2010

2-39

The HDF Group GRgetattr/mggnatt/mggcatt

GRagetattr/mggnatt/mggcatt

intn GRgetattr(int32 [obj] _id, int32 attr_index, VOIDP values)

[obj]_id IN: Raster image identifier (ri_id), returned by GRcreate or GRselect,
or GR interface identifier (gr_id), returned by GRstart

attr_index IN: Index of the attribute

values OUT: Buffer for the attribute values

Purpose Reads the val ues of an attribute for a data object.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description GRgetattr obtains al values of the attribute that is specified by its index,
attr_index, and is attached to the object identified by the parameter obj_id.
The values are stored in the buffer values.

The value of the parameter attr_index can be obtained by using GRfindattr,
GRnametoindex, or GRreftoindex, depending on available information.
Valid values of attr_index range from 0 to the total number of attributes of the
object - 1. The total number of attributes attached to the file can be obtained
using the routine GRfileinfo. The total number of attributes attached to the
image can be obtained using the routine GRgetiminfo.

GRgetattr only reads all values assigned to the attribute and not a subset.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mggnatt) and the other for character data (mggcatt).

FORTRAN integer function mggnatt ([obj]_ id, attr index, values)

integer [obj] id, attr index

<valid numeric data type> values(*)

integer function mggcatt ([obj]_ id, attr index, values)

integer [obj] id, attr index

character* (*) values

2-40 February 2010

GRgetchunkinfo/mggichnk

HDF Reference M anual

GRgetchunkinfo/mggichnk

intn GRgetchunkinfo(int32 ri_id, HDF_CHUNK _DEF *cdef, int32 *flag)

ri_id

Conly:
cdef

flag

Fortran only:
dim_length
flag

Purpose
Return value

Description

IN: Raster image identifier returned by GRcreate or GRselect

OUT: Pointer to the chunk definition

OUT: Pointer to the compression flag

OUT: Array of chunk dimensions
OUT: Compression flag

Retrieves chunking information for a raster image.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRgetchunkinfo retrieves chunking information about the raster image
identified by the parameter ri_id into the parameters cdef and flags in C, and
into the parameters dim length and flag in Fortran. Note that only chunk
dimensions are retrieved, compression information is not available.

The value returned in the parameter flag indicates if the raster image is not
chunked, chunked, or chunked and compressed. The following table shows the
possible values of the parameter flag and the corresponding characteristics of
the raster image.

. Values of fla -
Values of flagin C . 9 Raster Image Characteristics
in Fortran
HDF_NONE -1 Not chunked
HDF CHUNK 0 Chunked and not compressed
1 Chunked and compressed
with either the run-length
HDF CHUNK | HDF COMP encoding (RLE), Skipping
Huffman or GZIP compres-
sion algorithms

In C, if theraster image is chunked and not compressed, GRgetchunkinfo fills
the array chunk lengths in the union cder with the values of the
corresponding chunk dimensions. If the raster image is chunked and
compressed, GRgetchunkinfo fills the array chunk_1engths in the structure
comp Of the union cdef with the values of the corresponding chunk
dimensions. Refer to the page on GRsetchunk in this manual for specific
information on the union upr_cuunk per. In Fortran, chunk dimensions are
retrieved into the array dim_1ength. If the chunk length for each dimension is
not needed, nuLL can be passed in as the value of the parameter cdef in C.

February 2010

2-41

The HDF Group GRgetchunkinfo/mggichnk

FORTRAN integer function mggichnk (ri_ id, dim_ length, flag)

integer ri id, dim length, flag

2-42 February 2010

GRgetcompinfo/mggcompress

HDF Reference M anual

GRgetcompinfo/mggcompress

intn GRgetcompinfo(int32 ri_id, comp_coder_t *comp_type, comp_info *c_info)

ri_id
comp_type

Conly:
c_info

Fortran only:
comp_prm

Purpose
Return value

Description

IN: Raster image identifier returned by GRcreate or GRselect

OUT: Type of compression

OUT: Pointer to compression information structure

OUT: Compression parameters array

Retrieves raster image data compression type and compression information.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRgetcompinfo retrieves the compression type and compression information
for the specified raster image. GRgetcompinfo replaces GRgetcompress
because this function has flaws, causing failure for some chunked and
chunked/compressed data.

The compression method is returned in the parameter comp_type. Valid values
of comp_type are as follows:

comp_copE_NoNE (Or o) for no compression

comp_copk_RrLE (Or 1) for RLE run-length encoding
comp_cope_skpHUFF (Or 3) for Skipping Huffman compression
comp_copk_DEFLATE (Or 4) for GZIP compression
comp_copk_sz1p (or s) for SZIP compression
comp_cope_Jpeg (or 7) for JPEG compression

When a compression method requires additional parameters, those values are
returned inthe c_info struct in C and the array parameter comp_prmin Fortran.

The c_info struct is of type comp info, contains algorithm-specific
information for the library compression routines, and is described in the
hcomp.h header file and in the GRsetcompress entry in this reference
manual..

The comp_prm parameter is an array of one element:

0 With Skipping Huffman compression, comp_prm(1) contains the skip
value, skphuff skp size.

0 In the case of GZIP compression, comp_prm(1) contains the deflation
value, deflate value.

0 comp_prm is ignored with other compression methods. (There are no
relevant RLE parameters and the quality and force baseline data
are not available for JPEG images. If GRgetcompinfo is called for
either an RLE or a JPEG image, the function will return only the
compression type; ¢_info will contain only zeros.)

0 Currently, Fortran GR interface doesn’t support Szip compression.

February 2010

2-43

The HDF Group GRgetcompinfo/mggcompress

FORTRAN integer function mggcompress(ri id, comp_ type, comp_ prm)

integer ri id, comp_ type, comp prm(1)

2-44 February 2010

GRgetiminfo/mggiinf

HDF Reference M anual

GRgetiminfo/mggiinf

intn GRgetiminfo(int32 ri_id, char *gr_name, int32 *ncomp, int32 *data_type, int32 *interlace_mode,

ri_id

gr_name
ncomp
data_type
interlace_mode
dim sizes

num_attrs

Purpose
Return value

Description

FORTRAN

int32 dim_sizes[2], int32 *num_attrs)

IN: Raster image identifier returned by GRcreate or GRselect
OUT: Buffer for the name of the raster image

OUT: Number of componentsin the raster image

OUT: Datatype of the raster image data

OUT: Interlace mode of the stored raster image data

OUT: Sizes of raster image dimension

OUT: Number of attributes attached to the raster image

Retrieves general information about a raster image.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRgetiminfo retrieves the name, number of components, data type, interlace
mode, dimension sizes, and number of attributes of the raster image identified
by the parameter ri_id.

GRgetiminfo stores the name, number of components, data type, interlace
mode and dimension sizes of the image in the parameters gr_name, ncomp,
data type, interlace_mode, and dim sizes, respectively. It aso retrieves the
number of attributes attached to the image into the parameter num_attrs. If the
value of any of the output parameters are set to nurt in C, the corresponding
information will not be retrieved.

The buffer gr_name is assumed to have sufficient space allocated to store the
entire name of the raster image.

The valid values of the parameter data_type are listed in Table 1A in Section |
of thismanual.

integer function mggiinf (ri id, gr name, ncomp, data_ type,

interlace mode, dim sizes, num attrs)
integer ri id, ncomp, data_ type, interlace mode, num attrs
integer dim sizes[2]

character* (*) gr name

February 2010

2-45

The HDF Group GRgetlutid/mggltid

GRagetlutid/mggltid

int32 GRgetlutid(int32 ri_id, int32 pal_index)

ri_id IN: Raster image identifier returned by GRcreate or GRselect
pal_index IN: Index of the palette
Purpose Gets the identifier of a palette given itsindex.

Return value Returns the palette identifier if successful and ratz (or -1) otherwise.

Description GRgetlutid gets the identifier of the palette attached to the raster image
identified by the parameter ri_id. The palette is identified by its index,
pal_index.

Currently, only one palette can be assigned to a raster image, which means that
pal_index should alwaysbe setto 0.

FORTRAN integer function mggltid(ri_id, pal_ index)

integer ri id, pal index

2-46 February 2010

GRgetlutinfo/mgglinf

HDF Reference Manual

GRagetlutinfo/mgglinf

intn GRgetlutinfo(int32 pal_id, int32 *ncomp, int32 *data_type, int32 *interlace_mode, int32

pal_id

ncomp
data_type
interlace_mode

num_entries

Purpose
Return value

Description

FORTRAN

*num_entries)

IN: Palette identifier returned by GRgetlutid
OUT: Number of componentsin the palette
OUT: Datatype of the palette

OUT: Interlace mode of the stored pal ette data

OUT: Number of color lookup table entriesin the palette

Retrieves information about a palette.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRgetlutinfo retrieves the number of pixel components, data type, interlace
mode, and number of color lookup table entries of the palette identified by the
parameter pal_id. These values are stored in the parameters ncomp, data_type,
interlace_mode, and num_entries, respectively. In C if the value of any of the
output parameters are set to nuLr, the corresponding information will not be
retrieved.

integer function mgglinf (pal id, ncomp, data type,
interlace mode, num_entries)

integer pal id, ncomp, data type, interlace mode,
num_entries

February 2010

2-47

The HDF Group GRgetnluts/mggnluts

GRgetnlutsmggnluts

intn GRgetnluts(int32 ri_id)

ri_id IN: Data set identifier returned by GRcreate or GRsdlect

Purpose Retrieves the number of palettes for an image.
Return value Returns number of palettes (1 or o) if successful and rarr (or -1) otherwise.

Description GRgetnluts retrieves the number of palettes (or color look-up tables,
commonly abbreviated as LUTS) avail able for the specified raster image.

There can currently be either O or 1 palettes assigned to an image. If multiple
palettes are supported in a future release, this function may return values
greater than 1.

FORTRAN integer function mggnluts(ri_id)

integer ri id

2-48 February 2010

GRidtoref/mgid2rf

HDF Reference Manual

GRidtoref/mgid2rf

uint16 GRidtoref(int32 ri_id)

ri_id

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier returned by GRselect or GRcreate

Maps araster image identifier to a reference number.
Returns the reference number of the raster image if successful and o otherwise.

GRidtoref returns the reference number of the raster image identified by the
parameter ri_id.

This routine is commonly used for the purpose of annotating the raster image
or including the raster image within a vgroup.

integer function mgid2rf (ri id)

integer ri id

February 2010

2-49

The HDF Group GRIuttoref/mglt2rf

GRIuttoref/mglt2rf

uint16 GRIluttoref(int32 pal_id)

pal_id IN: Palette identifier returned by GRgetlutid

Purpose Maps a palette identifier to a reference number.
Return value Returns the reference number of the palette if successful or o otherwise.

Description GRluttoref returns the reference number of the palette identified by the
parameter pal_id.

This routine is commonly used for the purpose of annotating the palette or
including the pal ette within a vgroup.

FORTRAN integer function mglt2rf (pal id)

integer pal id

2-50 February 2010

GRnametoindex/mgn2ndx

HDF Reference M anual

GRnametoindex/mgn2ndx

int32 GRnametoindex(int32 gr_id, char *gr_name)

or_id

ri_name

Purpose
Return value

Description

FORTRAN

IN: GR interface identifier returned by GRstart

IN: Name of the raster image

Maps the name of araster image to an index.
Returns the index of the raster image if successful and ra1r (or -1) otherwise.

GRnametoindex returns, for the GR interface identified by the parameter
gr_id, the index (index) of the raster image named gr_name.

The value of index can be passed into GRselect to obtain the raster image
identifier (ri_id).

integer function mgn2ndx(gr id, gr name)

integer gr id

character* (*) gr name

February 2010

2-51

The HDF Group GRreadchunk/mgrchnk/mgrcchnk

GRreadchunk/mgrchnk/mgrcchnk

intn GRreadchunk(int32 ri_id, int32 *origin, VOIDP datap)

ri_id IN: Raster image identifier returned by GRcreate or GRselect
origin IN: QOrigin of the chunk to be read

datap IN: Buffer for the chunk to be read

Purpose Reads a data chunk from a chunked raster image (pixel-interlace only)

Return value Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

Description GRreadchunk reads the entire chunk of data from the chunked raster image
identified by the parameter ri_id and stores it in the buffer datap. Chunk to be
read is specified by the parameter origin. This function has less overhead than
GRreadimage and should be used whenever an entire chunk of datais to be
read.

GRreadchunk will return razr (or -1) when an attempt is made to use it to
read from a non-chunked raster image.

The parameter origin is a two-dimensional array which specifies the
coordinates of the chunk according to the chunk position in the overall chunk
array. Refer to Chapter 8, "General Raster Images (GR API),” in the HDF
User’s Guide.

The buffer datap contains the chunk data organized in pixel interlace mode.

FORTRAN integer mgrchnk (ri id, origin, datap)

integer ri id, origin(2)

<valid numeric_datatype> datap (*)

integer mgrcchnk (ri id, origin, char datap)

integer ri id, origin(2)

character* (*) char datap

2-52 February 2010

GRreadimage/mgr dimg/mgrcimg

HDF Reference M anual

GRreadimage/mgrdimg/mgrcimg

intn GRreadimage(int32 ri_id, int32 start[2], int32 stride] 2], int32 edge[2], VOIDP data)

ri_id

start

stride

edge

data
Purpose

Return value

Description

IN: Raster image identifier returned by GRcreate or GRselect

IN: Array specifying the starting location from where raster image data
isread

IN: Array specifying the interval between the values that will be read
along each dimension

IN: Array specifying the number of values to be read along each
dimension

OUT: Buffer for theimage data

Reads a raster image.
Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

GRreadimage reads the subsample of the raster image specified by the
parameter ri_id into the buffer data. The subsample is defined by the values of
the parameters start, stride and edge.

The array start specifies the starting location of the subsample to beread. Valid
values of each element in the array start are o to (the size of the corresponding
raster image dimension - 1). The first element of the array start specifies an
offset from the beginning of the array data along the fastest-changing
dimension, which is the second dimension in C and the first dimension in
Fortran. The second element of the array start specifies an offset from the
beginning of the array data along the second fastest-changing dimension,
which is the first dimension in C and the second dimension in Fortran. For
example, if the first value of the array start is 2 and the second value is 3, the
starting location of the subsample to be read is at the fourth row and third
column in C, and at the third row and fourth column in Fortran.

The array stride specifies the reading pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be read. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the array data will be read, and so on. The
correspondence between elements of the array stride and the dimensions of the
array data is the same as described above for the array start.

Each element of the array edges specifies the number of data elements to be
read along the corresponding dimension. The correspondence between the
elements of the array edges and the dimensions of the array data is the same as
described above for the array start.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgrdimg) and the other for character data (mgrcimg).

February 2010

2-53

The HDF Group

GRreadimage/mgrdimg/mgrcimg

Note

FORTRAN

Regar ding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manua pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the APl parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
0 For SDreaddata, those parameters are expressed in (y,x) or
[row, column] order. For example, start [0] isthe starting point in
the Y dimension and start[1] is the starting point in the X
dimension. The same ordering holds true for all SD data set
mani pulation functions.
0 For GRreadimage, those parameters are expressed in (x,y) or
[column, row] order. For example, start [0] is the starting point in
the X dimension and start[1] is the starting point in the Y
dimension. The same ordering holds true for al GR functions
mani pul ating image data.

integer function mgrdimg(ri id, start, stride, edge, data)

integer ri id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgrcimg(ri id, start, stride, edge, data)

integer ri id, start(2), stride(2), edge(2)

character* (*) data

2-54

February 2010

GRreadlut/mgrdlut/mgrclut

HDF Reference M anual

GRreadlut/mgrdlut/mgrclut

intn GRreadlut(int32 pal_id, VOIDP pal_data)

pal_id
pal_data

Purpose
Return value

Description

FORTRAN

IN: Palette identifier returned by GRgetlutid
OUT: Buffer for the palette data

Reads a pal ette.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

GRreadlut reads the palette specified by the parameter pal_id into the buffer
pal_data.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgrdlut) and the other for character data (mgrclut).

integer function mgrdlut (pal id, pal data)

integer pal id

<valid numeric data type> pal data(¥)

integer function mgrclut (pal id, pal data)

integer pal id

character* (*) pal data

February 2010

2-55

The HDF Group GRreftoindex/mgr 2idx

GRreftoindex/mgr 2idx

int32 GRreftoindex(int32 gr_id, uint16 gr_ref)

or_id IN: GR interface identifier returned by GRstart
gr_ref IN: Reference number of the raster image
Purpose Maps the reference number of araster image to an index.

Return value Returnsthe index of theimage if successful and ra1t (or -1) otherwise.

Description GRreftoindex returns the index of the raster image specified by the parameter
or_ref.
FORTRAN integer function mgr2idx(gr id, gr ref)

integer gr id, gr ref

2-56 February 2010

GRregimageil/mgrimil

HDF Reference Manual

GRregimageil/mgrimil

intn GRregimageil(int32 ri_id, intninterlace_mode)

ri_id

interlace_mode

Purpose

Return value

Description

FORTRAN

IN: Raster image identifier returned by GRcreate or GRselect

IN: Interlace mode

Specifies the interlace mode to be used in the subsequent raster image read
operation(s).

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRregimageil requests that the subsequent read operations on the image
identified by the parameter ri_id use the interlace mode specified by the
parameter interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the data
will be stored in memory when being read. Valid values of the parameter
interlace_mode are MFGR_INTERLACE PIXEL (O 0), MFGR_INTERLACE LINE (Of
1) and MFGR_INTERLACE_COMPONENT (Of 2.)

In the file, the image is always stored in pixel interlace mode, i.e
MFGR INTERLACE PIxXEL. The interlace mode of the raster image specified at
creation timeis stored in the file along with the raster image. If GRregimageil
is not called prior to the call to GRreadimage, the raster image will be read
and stored in memory according to the interlace mode specified at creation. If
GRregimageil is called before GRreadimage, GRreadimage will read the
raster image and store it according to the interlace mode specified in the call to
GRregimageil.

integer function mgrimil (ri id, interlace mode)

integer ri id, interlace mode

February 2010

2-57

The HDF Group

GRreglutil/mgrltil

GRreglutil/mgrltil

intn GRreglutil(int32 ri_id, intn interlace_mode)

ri_id

interlace_mode

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier returned by GRcreate or GRselect

IN: Interlace mode

Specifies the interlace mode to be used in the next palette read operation(s).
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRreglutil requests that the subsequent read operations on the pal ette attached
to the image identified by the parameter ri_id, use the interlace mode
interlace_mode.

The parameter interlace_mode specifies the interlace mode in which the data
will be stored in memory when being read. Valid values of the parameter

interlace_mode are MFGR_INTERLACE PIXEL (O 0), MFGR_INTERLACE LINE (OF
1) and MFGR_INTERLACE_COMPONENT (Of 2).

integer function mgrltil(ri id, interlace mode)

integer ri id, interlace mode

2-58

February 2010

GRselect/mgselct

HDF Reference M anual

GRsdlect/mgselct

int32 GRsalect(int32 gr_id, int32 index)

or_id

index

Purpose
Return value

Description

FORTRAN

IN: GR interface identifier returned by GRstart

IN: Index of the raster imagein thefile

Selects the existing raster image.
Returns the raster image identifier if successful or a1z (or -1) otherwise.

GRselect obtains the identifier of the raster image specified by the its index,
index.

Valid values of the parameter index range from o to (the total number of raster
imagesin thefile - 1). The total number of the raster images in the file can be
obtained by using GRfileinfo.

integer function mgselct (gr id, index)

integer gr id, index

February 2010

2-59

The HDF Group GRsetaccesstype/mgsactp

GRsetaccesstype/mgsactp

intn GRsetaccesstype(int32 ri_id, uintn accesstype)

ri_id IN: Raster image identifier returned by GRcreate or GRselect
accesstype IN: Accesstype
Purpose Setsthe access for an RI to be either serial or parallel 110

Return value Returns succeep (or o) if the Rl data can be accessed via accesstype and ra1L
(or -1) otherwise.

Description GRsetaccesstype sets the access type to be either serial or parallel 1/O for the
raster image specified by ri_id. Access types can be pracc_serian (or 1),
DFACC_PARALLEL (Of 11), Of DFACC DEFAULT (OF 0.)

FORTRAN integer function mgsactp(ri_id, type)

integer ri_id, type

2-60 February 2010

GRsetattr/mgsnatt/mgscatt

HDF Reference Manual

GRsetattr/mgsnatt/mgscatt

intn GRsetattr(int32 [obj] _id, char *attr_name, int32 data_type, int32 count, VOIDP values)

[obj]_id

attr_name
data_type
count

values

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier (ri_id), returned by GRcreate or GRselect or
GR interface identifier (gr_id), returned by GRstart

IN: Name of the attribute

IN: Data type of the attribute

IN: Number of valuesin the attribute

IN: Buffer for the attribute values

Assigns an attribute to araster image or afile.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

GRsetattr attaches the attribute to the object specified by the parameter
obj_id. The attribute is defined by its name, attr_name, data type, data_type,
number of attribute values, count, and the attribute values, values. GRsetattr
provides a generic way for users to define metadata. It implements the 1abel
= value data abstraction.

If an GR interface identifier (gr_id) is specified as the parameter obj_id, a
global attribute is created which applies to al objects in the file. If a raster
image identifier (ri_id) is specified as the parameter obj_id, an attribute is
attached to the specified raster image.

The parameter attr_name can be any ASCII string.

The parameter data_type can contain any data type supported by the HDF
library. These data types are listed in Table 1A in Section | of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the parameter count . If more than one value is stored, all
values must have the same data type. If an attribute with the given name, data
type and number of values exists, it will be overwritten. Currently, the only
predefined attribute is the fill value, identified by the rrrr_aTTr definition.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgsnatt) and the other for character data (mgscatt).

integer function mgsnatt ([obj] id, attr name, data_ type,
count, values)

integer ri id, comp type, comp prm(*)

integer [obj] id, data type, count

character* (*) attr name

<valid numeric data type> values(*)

February 2010

2-61

The HDF Group GRsetattr/mgsnatt/mgscatt

integer function mgscatt ([obj] id, attr name, data_ type,
count, values)

integer [obj] id, data type

integer count

character* (*) values, attr name

2-62 February 2010

GRsetcompress/mgscompr ess

HDF Reference M anual

GRsetcompress/mgscompr ess

intn GRsetcompress(int32 ri_id, int32 comp_type, comp_info *c_info)

ri_id
comp_type

Conly:
c_info

Fortran only:
comp_prm

Purpose

Return value

Description

IN: Raster image identifier returned by GRcreate or GRselect
IN: Compression method for the image data

IN: Pointer to the comp_info union

IN: Compression parameters array

Specifies if the raster image will be stored in a file as a compressed raster
image.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

GRsetcompress specifies if the raster image specified by the parameter ri_id
will be stored in the filein compressed format.

The compression method is specified by the parameter comp_type. Valid
values of the parameter comp_type are:

comp_cope_NoNE (Or o) for no compression

comp_cope_RrLE (Or 1) for RLE run-length encoding
comp_cope_skpHUFF (Or 3) for Skipping Huffman compression
comp_cobk_DEFLATE (Or 4) for GZIP compression
comp_cope_sz1p (or s5) for SZIP compression
comp_cope_Jpeg (or 7) for JPEG compression

The compression method parameters are specified by the parameter c_infoin C
and the parameter comp_prm in Fortran. The parameter c info has type
comp_info, which is described in the hcomp.h header file. It contains
algorithm-specific information for the library compression routines.

The skipping size for the Skipping Huffman algorithm is specified in the field
c_info.skphuff.skp size in C and in the parameter comp_prm(1) in
Fortran.

The deflate level for the GZIP algorithm is specified in the field
c_info.deflate.level in Candin the parameter comp_prm(1) in Fortran.

February 2010

2-63

The HDF Group GRsetcompress/mgscompress

The parameter ¢_info is a pointer to aunion structure of type comp_info. This
union structure is defined as follows:

typedef union tag comp_ info

{

struct

{

/* Not used by GRsetcompress */
} Jpeg;

struct
/* Not used by GRsetcompress */
} nbit;

struct

{ /* struct to contain info about how to compress size of the
elements when skipping */
intn skp size;

} skphuff;

struct
{ /* struct to contain info about how to compress or decom-

press
gzip encoded dataset how hard to work when compressing
data*/
intn level;
} deflate;
struct
{
int32 options_mask; /* IN */
int32 pixels per block; /* IN */

int32 pixels per scanline; /* OUT: computed */
int32 bits per pixel; /* OUT: size of NT */
int32 pixels; /* OUT: size of dataset or chunk */

}
szip; /* for szip encoding */
comp info;
} comp_

FORTRAN integer mgscompress(ri id, comp type, comp prm)

integer ri id, comp type, comp prm(*)

2-64 February 2010

GRsetchunk/mgschnk HDF Reference Manual

GRsetchunk/mgschnk

intn GRsetchunk(int32 ri_id, HDF_CHUNK _DEF cdef, int32 flags)

ri_id IN: Raster image identifier returned by GRcreate or GRselect
Conly:

cdef IN: Chunk definition

flags IN: Compression flags

Fortran only:

dim_length IN: Chunk dimensions array

comp_type IN: Type of compression

comp_prm IN: Compression parameters array

Purpose Makes a raster image a chunked raster image.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description GRsetchunk makes the raster image specified by the parameter ri_id a
chunked raster image according to the chunking and compression information
provided in the parameters cdef and flags in C, or in the parameters comp_type
and comp_prmin Fortran.

Conly:

The parameter cdef is a union of type HDF_CHUNK DEF, Which is defined as
follows:

typedef union hdf chunk def u

{

int32 chunk lengths[2]; /* chunk lengths along each dim */

struct
int32 chunk lengths([2];
int32 comp_type; /* compression type */
struct comp_info cinfo;
} comp ;

struct
/* is not used in GR interface */
} nbit;

} HDF CHUNK DEF

February 2010 2-65

The HDF Group

GRsetchunk/mgschnk

FORTRAN

Valid values of the parameter flags are upr _cuunk for chunked and
uncompressed dataand (upr_cuunk | upr_comp) for chunked and compressed
data. Data can be compressed using run-length encoding (RLE), Skipping
Huffman, GZIP, or Szip compression algorithms.

If the parameter flags has a value of upr_cuunk, the chunk dimensions must be
specified in the field cdef . chunk lengths[]. If the parameter flags has a
value of (upF_cuunk | upr_comp), the following must be specified:

1) Thechunk dimensionsinthefield cdef.comp.chunk lengths(].
2) The compression typein thefield cdef . comp.comp_type. Valid values of
compression type values are listed below.

comp_cope_NoNE (Or o) for uncompressed data
comp_cope_RLE (Or 1) for RLE compression
comp_copk_skpHUFF (Or 3) for Skipping Huffman compression
comp_copk_DEFLATE (Or 4) for GZIP compression
comp_cope_szip (or s5) for Szip compression

For Skipping Huffman and GZIP compression, parameters are passed in
corresponding fields of the structure cinfo.

0 Specify skipping size for Skipping Huffman compression in the field
cdef.comp.cinfo.skphuff.skp size, which must be an integer
of value 1 or greater.

0 Specify the deflate level for GZIP compression in the field
cdef.comp.cinfo.deflate level. Valid deflate level values are
integers between 0 and 9 inclusive.

0 Specify the options mask and the number of pixels per block for Szip
compression in the fields c info.szip.options mask and
c_info.szip.pixels per block, respectively.

Refer to the SDsetcompress entry in this reference manual for details on these
parameters.

Fortran only:
The dim_length array specifies the chunk dimensions.

The parameter comp_type specifies the compression type. Valid compression
types and their values used are defined in the hdf.inc file, and are listed bel ow.

comp_cope_NoNE (Or o) for uncompressed data
comp_cope_RLE (Or 1) for RLE compression
comp_cope_skpaUFF (Or 3) for Skipping Huffman compression
comp_copk_DEFLATE (Or 4) for GZIP compression

The parameter comp_prm specifies the compression parameters for the
Skipping Huffman and GZIP compression methods. It contains only one
element which is set to the skipping size for Skipping Huffman compression or
the deflate level for GZIP compression. Currently, Fortran GR interface does
not support Szip compression.

integer function mgschnk(ri id, dim length, comp_ type,
comp_prm)

integer ri id, dim length, comp type, comp prm

2-66

February 2010

GRsetchunkcache/mgscchnk

HDF Reference M anual

GRsetchunkcache/mgscchnk

intn GRsetchunkcache(int32 ri_id, int32 maxcache, int32 flags)

ri_id
maxcache

flags

Purpose

Return value

Description

FORTRAN

IN: Raster image identifier returned by GRcreate or GRselect
IN: Maximum number of chunksto cache
IN: Flags determining the behavior of the routine

Specifies the maximum number of chunks to cache.

Returns the value of the parameter maxcache if successful and ratn (or -1)
otherwise.

GRsetchunkcache sets the maximum number of chunks to be cached for the
chunked raster image specified by the parameter ri_id. The maximum number
of the chunksis specified by the parameter maxcache.

Currently, the only valid value of the parameter flagsis o.

If GRsetchunkcache is not called, the maximum number of chunks in the
cache is set to the number of chunks along the fastest-changing dimension.

Refer to the discussion of the GRsetchunkcache routine in the HDF User’s
Guide for more specific information on the routine’s behavior.

integer function mgscchnk(ri id, maxcache, flags)

integer ri id, maxcache, flags

February 2010

2-67

The HDF Group

GRsetexter nalfile/mgsxfil

GRsetexter nalfile/mgsxfil

intn GRsetexternalfile(int32 ri_id, char *filename, int32 offset)

ri_id
filename

offset

Purpose
Return value

Description

FORTRAN

IN: Raster image identifier returned by GRcreate or GRselect
IN: Name of the external file
IN: Offset in bytes from the beginning of the externa file to where the

datawill be written

Specifies that the raster image will be written to an external file.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

GRsetexternalfile specifies that the raster image identified by the parameter
ri_id will be written to the external file specified by the parameter filename at
the offset specified by the parameter offset.

Data can only be moved once for any given raster image, and it is the user's
responsibility to make sure the external datafileis kept with the“original” file.

If the raster image already exists, its data will be moved to the external file .
Space occupied by the data in the primary file will not be released. To release
the space in the primary file use the hdfpack command-line utility. If the
raster image does not exist, its data will be written to the externa file during
the subsequent callsto GRwritedata.

See the reference manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

integer function mgsxfil (ri id, filename, offset)

integer ri_id, offset

character* (*) filename

2-68

February 2010

GRstart/mgstart

HDF Reference M anual

GRstart/mgstart

int32 GRstart(int32 file_id)

file id

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen

Initializes the GR interface.
Returnsthe GR interface identifier if successful and ra1L (or -1) otherwise.

GRstart initializes the GR interface for the file specified by the parameter
file_id.

This routine is used with the GRend routine to define the extent of the GR
interface session. As with the start routines in the other interfaces, GRstart
initializes the internal interface structures needed for the remaining GR
routines. Use the general purpose routines Hopen and Hclose to manage file
access. The GR routines will not open and close HDF files.

integer function mgstart (file id)

integer file id

February 2010

2-69

The HDF Group GRwritechunk/mgwchnk/mgwecchnk

GRwritechunk/mgwchnk/mgwcchnk

intn GRwritechunk(int32 ri_id, int32 *origin, const VOIDP datap)

ri_id IN: Raster image identifier returned by GRcreate or GRselect
origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk to be written

Purpose Writes a data chunk to a chunked raster image (pixel-interlace only)

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

GRwritechunk returns ra1r (or -1) when an attempt is made to use it to write
to a non-chunked raster image.

Description GRwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked raster image identified by the parameter ri_id. Writing starts at the
location specified by the parameter origin. This function has less overhead
than GRwriteimage and should be used whenever an entire chunk of dataisto
be written.

The parameter origin is a two-dimensional array which specifies the
coordinates of the chunk according to the chunk position in the overall chunk
array. Refer to Chapter 8, "General Raster Images (GR API),” in the HDF
User’s Guide.

The datap buffer contains the chunk’s data organized in a pixel interlace mode.

FORTRAN integer mgwchnk (ri id, origin, datap)

integer ri id, origin(2)

<valid numeric datatype> datap(*)

integer mgwcchnk (ri id, origin, char datap)

integer ri id, origin(2)

character* (*) char datap

2-70 February 2010

GRwriteimage/mgwrimg/mgwcimg

HDF Reference M anual

GRwriteimage/mgwrimg/mgwcimg

intn GRwriteimage(int32 ri_id, int32 start[2], int32 stride[2], int32 edge[2], VOIDP data)

ri_id

start

stride

edge

data
Purpose

Return value

Description

IN: Raster image identifier returned by GRcreate or GRselect

IN: Array containing the two-dimensional coordinate of the initial
location for the write

IN: Array containing the number of data locations the current location is
to be moved forward before each write

IN: Array containing the number of data elements that will be written
along each dimension

IN: Buffer containing the image data

Writes araster image.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

GRwriteimage writes the subsample of the raster image data stored in the
buffer data to the raster image specified by the parameter ri_id. The subsample
is defined by the values of the parameters start, stride and edge.

The array start specifies the starting location of the subsample to be written.
Valid values of each element in the array start are o to (the size of the
corresponding raster image dimension - 1). Thefirst element of the array start
specifies an offset from the beginning of the array data along the fastest-
changing dimension, which is the second dimension in C and the first
dimension in Fortran. The second element of the array start specifies an offset
from the beginning of the array data along the second fastest-changing
dimension, which is the first dimension in C and the second dimension in
Fortran. For example, if the first value of the array start is 2 and the second
value is 3, the starting location of the subsample to be written is at the fourth
row and third columnin C, and at the third row and fourth column in Fortran.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the array data will be written. If one of
the elements of the stride array is 2, then every other element along the
corresponding dimension of the array data will be written, and so on. The
correspondence between elements of the array stride and the dimensions of
the array data is the same as described above for the array start.

Each element of the array edges specifies the number of data elements to be
written along the corresponding dimension. The correspondence between the
elements of the array edges and the dimensions of the array data isthe same as
described above for the array start.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgwrimg) and the other for character data (mgwcimg).

February 2010

2-71

The HDF Group

GRwriteimage/mgwrimg/mgwcimg

Note

FORTRAN

Regar ding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the APl parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
0 For SDreaddata, those parameters are expressed in (y,x) or
[row, column] order. For example, start [0] isthe starting point in
the Y dimension and start[1] is the starting point in the X
dimension. The same ordering holds true for all SD data set
mani pulation functions.
0 For GRreadimage, those parameters are expressed in (x,y) or
[column, row] order. For example, start [0] is the starting point in
the X dimension and start[1] is the starting point in the Y
dimension. The same ordering holds true for al GR functions
mani pul ating image data.

integer function mgwrimg(ri id, start, stride, edge, data)

integer ri id, start(2), stride(2), edge(2)

<valid numeric data type> data(*)

integer function mgwcimg(ri id, start, stride, edge, data)

integer ri id, start(2), stride(2), edge(2)

character* (*) data

2-72

February 2010

GRwritelut/mgwrlut/mgwclut

HDF Reference M anual

GRwritelut/mgwr lut/mgwclut

intn GRwritetlut(int32 pal_id, int32 ncomp, int32 data_type, int32 interlace_mode, int32 num_entries,

pal_id

ncomp
data_type
interlace_mode
num_entries

pal_data

Purpose
Return value

Description

FORTRAN

VOIDP pal_data)

IN: Palette identifier returned by GRgetlutid
IN: Number of components in the palette

IN: Data type of the palette data

IN: Interlace mode of the stored pal ette data
IN: Number of entriesin the palette

IN: Buffer for the palette data to be written
Writes a palette.

Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

GRwritelut writes a pal ette with the number of pixel components specified by
the parameter ncomp, the data type of the palette data specified by the
parameter data type, the interlace mode specified by the parameter
interlace_mode, and the number of entries in the palette specified by the
parameter num_entries. The palette data itself is stored in the pal_data buffer.
Currently only “old-style” palettes are supported, i.e ncomp = 3,
num_entries = 2se¢, data_type = uints.

The parameter ncomp specifies the number of pixel components in the palette
and must have avalue of at least 1.

The parameter data_type specifies the type of the palette data and can be any
of the data types supported by the HDF library. The data types supported by
HDF are listed in Table 1A in Section | of this manual.

The parameter interlace_mode specifies the interlacing in which the palette is
to be written. The valid values of interlace_mode are; MFGR_INTERLACE PIXEL
(or 0), MFGR_INTERLACE_ LINE (Or 1) and MFGR_INTERLACE_COMPONENT (Of 2.)

The buffer pal_data is assumed to have sufficient space allocated to store all of
the palette data.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (mgwr lut) and the other for character data (mgwclut).

integer function mgwrlut (pal id, ncomp, data type,
interlace mode, num entries, pal data)

integer pal id, ncomp, data type, interlace mode,
num_entries

<valid numeric data type> pal data(*)

February 2010

2-73

The HDF Group GRwritelut/mgwr lut/mgwclut

integer function mgwclut (pal id, ncomp, data type,
interlace mode, num entries, pal data)

integer pal id, ncomp, data type, interlace mode,
num_entries

character* (*) pal data

2-74 February 2010

Hclose/hclose

HDF Reference M anual

Hclose/hclose

intn Helose(int32 file id)

file id

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen

Closes the access path to the file.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Thefileidentifier file idisvalidated before the fileis closed. If the identifier is
valid, the function closes the access path to thefile.

If there are still access identifiers attached to the file, the error pre_opeNAID iS
placed on the error stack, Fa1r (or -1) is returned, and the file remains open.

This is a common error when developing new interfaces. Refer to the
Reference Manual page on Hendaccess for a discussion of this problem.

integer function hclose(file_id)

integer file id

February 2010

2-75

The HDF Group Hgetfileversion/ngfilver

Hgetfilever sion/hgfilver

intn Hgetfileversion(int32 file_id, uint32 *major_v, uint32 *minor_v, uint32 *release, char string[])

file id IN: File identifier returned by Hopen
major_v OUT: Major version number

minor_v OUT: Minor version number

release OUT: Release number

string OUT: Version number text string

Purpose Retrieves version information for an HDF file.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description It is still an open question as to what exactly the version number of a file
should mean, so we recommend that code not depend on this buffer. The string
argument islimited to alength of LiBvsTR LEN (Or 80) charactersasdefinedin
hfile.h.

FORTRAN integer function hgfilver (file_id, major_v, minor v, release,
string)

integer file id, major_v, minor_ v, release

character* (*) string

2-76 February 2010

Hagetlibver sion/hglibver

HDF Reference M anual

Hgetlibversion/hglibver

intn Hgetlibversion(uint32 *major_v, uint32 *minor_v, uint32 *release, char string(])

major_v
minor_v
release

string

Purpose
Return value

Description

FORTRAN

OUT:
OUT:
OUT:
OUT:

Magjor version number
Minor version number
Release number

Version number text string

Retrieves the version information of the current HDF library.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

The version information is compiled into the HDF library, so it is not necessary
to have any open files for this function to execute. The string buffer is limited
to alength of LiBvsTR LEN (Or 80) charactersasdefined inhfile.h.

integer function hglibver (major_v, minor v, release, string)

integer major_ v, minor_v, release

character* (*) string

February 2010

2-77

The HDF Group Hishdf/hishdff

Hishdf/hishdff

intn Hishdf(char *filename)

filename IN: Complete path and filename of the file to be checked.

Purpose Determinesif afileisan HDF file.
Return value Returns truk (or 1) if thefileisan HDF file and rarnse (or o) otherwise.
Description Thefirst four bytes of afileidentify it asan HDF file. It is possible that Hishdf

will identify afile asan HDF file but Hopen will be unable to open thefile; for
example, if the data descriptor list is corrupted.

FORTRAN integer function hishdff (filename)

character* (*) filename

2-78 February 2010

Hopen/hopen

HDF Reference M anual

Hopen/hopen

int32 Hopen(char *filename, intn access, int16 n_dds)

filename
access

n_dds

Purpose

Return value

Description

FORTRAN

IN: Complete path and filename for the file to be opened
IN: Access code definition (preceded by pracc)
IN: Number of data descriptorsin ablock if anew fileisto be created

Provides an access path to an HDF file by reading all the data descriptor blocks
into memory.

Returnsthe file identifier if successful and raz1 (or -1) otherwise.

If given a new file name, Hopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
Hopen will open the file using the specified access type and ignore the n_dds
argument.

The number of data descriptors in a block, n_dds, is a non-negative integer
with a default value of per_npps (0r 16) and aminimum value of min_~pps (or
4). If the specified value of n_dds is less than m1n_npps, then it will be set to
MIN_NDDS.

HDF provides several access code definitions:

pracc_creaTelf file exists, deleteit, then open anew file for read/write.
pracc_reapOpen for read only. If file does not exist, return an error.
pracc_wriTEOpeN for read/write. If file does not exist, createit.

If a file is opened and an attempt is made to reopen the file using
pracc_creATE, HDF will issue the error code pre arroren. If the file is
opened with read-only access and an attempt is made to reopen the file for
write access using pracc_wriTE, HDF will attempt to reopen the file with read
and write permissions.

Upon successful exit, the specified file is opened with the relevant
permissions, the data descriptors are set up in memory, and the associated
file_idisreturned. For new files, the appropriate file headers are al so set up.

Note that it has been reported that opening/closing file in loops is very slow;

thus, it is not recommended to perform such operations too many times,
particularly, when datais being added to the file between opening/closing.

integer function hopen(filename, access, n_dds)

character* (*) filename

integer access, n_dds

February 2010

2-79

The HDF Group

HCget_config_info

HCget_config_info

intn HCget_config_info(comp_coder_t coder_type, uint32 * compression_config_info)

coder_type

IN: Type of compression

compression_config_info OUT: Flagsindicating status of compression method

Purpose
Return value

Description

Retrieves information about the configuration of a compression method.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

HCget_config_info retrieves the configuration status of the compression type
specified by coder_type, returning that status information as flags in
compression_config_info.

Valid values of coder_type are as follows:

COMP_CODE_NONE NO COMpression

COMP_CODE_RLE RLE run-length encoding
comp_cope_NBIT NBIT compression
comp_CODE_SKpHUFFSKipping Huffman compression
comp_cope_DEFLATEGZIP compression
COMP_CODE_SzIP Szip compression
comp_cobe_gpec JPEG compression

The compression method, coder_type, used for a data set can be obtained as
the returned value of the comp_type parameter in an SDgetcompinfo call.

The configuration flags returned in compression _config info include the
following:
o Compression method is not enabled.
coMP_DECODER ENABLED Decoding is enabled.
CcoMP_ENCODER_ENABLED Encoding isenabled.

If the returned value is coMp_DECODER_ENABLED | COMP_ENCODER_ENABLED, the
compression method is enabled for both encoding and decoding.

In the general case, any available compression type can be configured in any
mode;

COMP_DECODER_ENABLED

COMP_ENCODER_ENABLED

COMP_DECODER ENABLED |COMP_ ENCODER ENABLED

As of this writing (HDF4 Release 2.1, February 2005), only the Szip
compression library is actually used with the HDF libraries in more than one
configuration (see immediately below.) As a third-party product, it is
distributed in both decode-only and encode/decode configurations. All other
compression methods are currently distributed or used in an encode/decode
configuration if they are available at all, and HCget_config_info returns either
0 OF COMP_DECODER ENABLED | COMP_ENCODER_ENABLED When they are used.

2-80

February 2010

HCget_config_info

HDF Reference M anual

Note

See also

FORTRAN

Dueto licensing requirements, the Szip library is available in both decode-only
and encode/decode configurations. Therefore, the full range of values can be
returned for Szip compression.

o If the Szip version available on a system is decode-only,
HCget _config info will return comp_DECODER ENABLED in
compression_config_info.

o If the avalable Szip library is configured as encode/decode,
compression_config_info will contain the value
COMP_DECODER_ENABLED | COMP_ENCODER_ENABLED UPON return.

Regarding Szip compression in HDF4:

Szip compression is available only through the SD interface and is documented
in the SDsetcompress and SDgetcompinfo reference manual entries. Aside
from the configuration discovery capability documented in
HCget_config_info, Szip compression is not accessible through the HC
interface.

Regar ding Szip usage and licensing:
See http://hdf.ncsa.uiuc.edu/doc_resource/szIip/ for information
regarding the use of Szip in HDF products and Szip licensing.

Regar ding compression in HDF4:

See the SDsetcompress and SDgetcompinfo entries in this reference manual
for amore general description of dataset compression information.

currently unavailable

February 2010

2-81

The HDF Group HDdont_atexit/hddontatexit

HDdont_atexit/hddontatexit

intn HDdont_atexit(void)

Purpose Indicatesto the library that an atexit() routineis_not_ to be installed.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description This routine indicates to the library that an atexit() cleanup routine should not
be installed. The purpose for this is in situations where the library is
dynamically linked into an application and is unlinked from the application
before exit() gets called. In those situations, a routine installed with atexit()
would jump to aroutine which was no longer in memaory, causing errors.

In order to be effective, this routine must be called before any other HDF
function calls, and must be called each time the library is loaded/linked into the
application (the first time and after it has been unloaded).

If this routine is used, certain memory buffers will not be deallocated,
although in theory a user could call HPend on their own.

FORTRAN integer hddontatexit ()

2-82 February 2010

HEprint/heprntf/heprnt

HDF Reference M anual

HEprint/heprntf/heprnt

VOID HEprint(FILE *stream, int32 level)

stream

level

Purpose

Return value

Description

FORTRAN

IN: Stream to print error message to

IN: Level of error stack to print

Prints information to the error stack.
None.
Fortran function returns o (zero) on successor -1 on failure.

If level is o, al of the errors currently on the error stack are printed. Output
from this function is sent to the file pointed to by stream.

The following information is printed: the ASCII description of the error, the
reporting routine, the reporting routine as source file name, and the line at
which the error was reported. If the programmer has supplied extrainformation
by means of HEreport, thisinformation is printed as well.

The FORTRAN-77 routine heprnt uses one less parameter than the C routine
because it doesn't allow the user to specify the print stream. Instead, it always
printsto stdout.

The FORTRAN-77 routine heprntf isavailable on all platforms; heprnt is not
supported on Microsoft Windows platforms.

The heprntf parameter filename is the name of the file to which error output is
to be written. If the value of filename is an empty string (- +), error output will
be written to standard output, stdout.

integer function heprntf (filename, level)
character* (*) filename

integer level

integer function heprnt (level)

integer level

February 2010

2-83

The HDF Group HEstring/hestringf

HEstring/hestringf

const char *HEstring(hdf_err_code t error_code)

error_code IN: HDF error code

Purpose Returns the error message associated with specified error code.

Return value Returns a pointer to a string associated with the error code, if successful.

Description Returns a text description of the given error code. These strings are statically
declared and should not be deallocated from memory (using the free routine)

by the user. If a defined text description cannot be found a generic default
message is returned.

FORTRAN integer function hestringf (error_code, error message)

integer error_ code

character* (*) error message

2-84 February 2010

HXsetcreatedir /hxiscdir

HDF Reference M anual

H X setcreatedir/hxiscdir

intn HX setcreatedir(char *dir)

dir

Purpose

Return value

Description

FORTRAN

IN: Target directory of the external file to be written

Initializes the directory environment variable, identifying the location of the
external fileto be written.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

The contents of dir is copied into the private memory of the HDF library. If dir
is nuLL, the directory variable is unset. If HXsetcreatedir encounters an error
condition, the directory variable is not changed. When a new external element
is created (via the routines HXcreate or SDsetexternal), the HDF library
accesses the externa file just like the open cal by default. Refer to the
Reference Manual page on HXcreate for a description of when anew or an old
file should be opened.

Users may override the default action by calling HXsetcreatedir or by
defining the environment variable suprexTcrREATEDIR. The HDF library will
access the externa file in the directory according to the environment variable
setting. The precedence is HXsetcreatedir, then supxexTp1r, in the manner of
open.

Note that the above override does not apply to absolute pathnames - i.e,
filenames starting with a forward dash. HDF will access the absolute
pathname without change. Also note that HXsetcreatedir and
$HDFEXTCREATEDIR are not symmetrical to HXsetdir and suprexTtnIR. The
former pair permits only single directory values and is used to compose the
filename for access. The later pair permits multiple directory values which are
used for searching an existing file.

The dir_len parameter in the FORTRAN-77 routine specifies the length of the
dir character string.

integer function hxiscdir(dir, dir_ len)

character* (*) dir

integer dir len

February 2010

2-85

The HDF Group

H X setdir/hxisdir

H X setdir/hxisdir

intn HX setdir(char *dir)

dir

Purpose

Return value

Description

FORTRAN

IN: Target directory of the external file to be located

Initializes the directory environment variable, identifying the location of the
external file to be located.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

HXsetdir sets the directory variable for locating an externa file according to
dir which may contain multiple directories separated by vertical bars (e.g.,
“dirl|dir2"). The content of dir is copied into the private memory of the HDF
library. If dir isNULL, the directory variable is unset.

If HXsetdir encounters any error, the directory variable is not changed. By
default, the HDF library locates the external file just like the open call. It also
searches for the external file in the directories specified by the user
environment variable $HDFEXTDIR, if defined, and the directory variable set by
HXsetdir. The searching precedence is directory variable, if set, then
$HDXEXTDIR, then in the manner of open.

The searching differs if the external filename is an absolute pathname - i.e,
starting with a forward slash. HDF will try open first. If open fails and if
$HDFEXTDIR is defined or the directory variableis set via HX setdir, HDF will
remove al directory components of the absolute pathname (e.g., “/usr/groupA/
projectB/Data001” becomes “Data001”) and search for that filename with the
strategy described in the previous paragraph.

The dir_len parameter in the FORTRAN-77 routine specifies the length of the
dir character string.

integer function hxisdir(dir, dir_len)

character* (*) dir

integer dir len

2-86

February 2010

SDattrinfo/sfgainfo

HDF Reference M anual

SDattrinfo/sfgainfo

intn SDattrinfo(int32 obj_id, int32 attr_index, char *attr_name, int32 *data_type, int32 * count)

obj_id

attr_index
attr_name
data_type

count

Purpose
Return value

Description

FORTRAN

IN: Identifier of the object to which the attribute is attached to
IN: Index of the attribute

OUT: Name of the attribute

OUT: Datatype of the attribute values

OUT: Total number of values in the attribute

Retrieves information about an attribute.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDattrinfo retrieves the name, data type, and number of values of the attribute
specified by its index, attr_index, and stores them in the parameters
attr_name, data_type, and count, respectively. This routine should be used
before reading the values of an attribute with SDreadattr.

The parameter obj_id can be either an SD interface identifier (sd_id), returned
by SDstart, adata set identifier (sds_id), returned by SDselect, or adimension
identifier (dim_id), returned by SDgetdimid.

Valid values of the parameter attr_index range from o to the number of
attributes attached to the object - 1.

Valid values of the parameter data_type can be found in Table 1A of Section |
of this manual.

integer function sfgainfo(obj_id, attr_index, attr name,
data_type, count)

character* (*) attr_name

integer obj_id, attr index, data_type, count

February 2010

2-87

The HDF Group SDcheckempty/sfchempty

SDcheckempty/sfchempty

int32 SDcheckempty(int32 sds id, intn *emptySDS)

sds id IN: SDSidentifier
emptySDS OUT: Boolean value indicating whether the SDS is empty
Purpose Determines whether a scientific dataset (an SDS) is empty.

Return value Returns succeep (or 0) if successful and ra1t (or -1) otherwise.

Description SDcheckempty sets the parameter emptySDSto TRUE if the dataset identified
by sds _id has not been written with data, and to FAL SE, otherwise.

The Fortran routine, sfchempty, returns 1 in emptySDSif the dataset is empty
and 0 otherwise.

FORTRAN integer function sfchempty(sds_id, emptySDS)

integer sds_id, emptySDS

2-88 February 2010

SDcr eate/sfcreate

HDF Reference M anual

SDcreate/sfcreate

int32 SDcreate(int32 sd_id, char *name, int32 data_type, int32 rank, int32 dimsizes[])

sd_id
name
data_type
rank

dimsizes

Purpose
Return value

Description

IN: SD interface identifier returned by SDstart
IN: Name of the data set

IN: Data type for the values in the data set

IN: Number of the data set dimensions

IN: Array containing the size of each dimension
Creates anew data set.

Returnsthe data set identifier (sds_id) if successful and rarr (or -1) otherwise.

SDcreate creates a data set with the name specified by the parameter name, the
values of the data type specified by parameter data type, the number of
dimensions specified by the parameter rank, and the dimension sizes specified
by the array dimsizes.

Once a data set has been created, it is not possible to change its name, data
type, or rank. However, it is possible to create a data set and close the file
before writing any data values to it. The values can be added or modified at a
future time. To add data or modify an existing data set, use SDselect to get the
data set identifier instead of SDcreate.

If the parameter name is nuLL in C or an empty string in Fortran, the default
name “Data Set” will be generated. The length of the name specified by the
name parameter is no longer limited to 64 characters starting in HDF 4.2r2.
Note that when an older version of the library reads a data set, which was
created by a library of version 4.2r2 or later and has the name that is longer
than 64 characters, the retrieved name will contain some garbage after 64
characters.

The calling program must ensure that the length of the dimsizes array is the
value of the rank parameter, which is between o and vax_var_pims (Or 32).
Note that, in order for HDF4 and NetCDF models to work together, HDF
allows SDS to have rank 0. However, there is no intention for data to be
written to this type of SDS, but only to store attribute as part of the data
description. Consequently, setting compression and setting chunk are
disallowed.

To create a data set with an unlimited dimension, assign the vaue of
sp_uNLIMITED (Of 0) to dimsizeg[Q] in C and to dimsizes(rank) in Fortran.

The data_type parameter can contain any data type supported by the HDF
library. These datatypes are listed in Table 1A in Section | of this manual.

See the notes regarding the potential performance impact of unlimited
dimension data setsin Section 14.4.3, "Unlimited Dimension Data Sets (SDSs
and Vdatas) and Performance” the HDF User’s Guide.

February 2010

2-89

The HDF Group

SDcreate/sfcreate

Note

FORTRAN

Regar ding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manua pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucial difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the APl parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (yx) or
[row,column] order. For example, start [0] iSthe starting point in the
Y dimension and start [1] iS the starting point in the X dimension.
The same ordering holds true for al SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (X)y) or
[column,row] order. For example, start [0] iSthe starting point in the
X dimension and start[1] iS the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

integer function sfcreate(sd_id, name, data_type, rank,
dimsizes)

character* (*) name

integer sd_id, data_type, rank, dimsizes(*)

2-90

February 2010

SDdiminfo/sfgdinfo

HDF Reference M anual

SDdiminfo/sfgdinfo

intn SDdiminfo(int32 dim _id, char *name, int32 *size, int32 *data_type, int32 *num_attrs)

dim_id
name
size
data_type

num_attrs

Purpose
Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid
OUT: Name of thedimension

OUT: Sizeof thedimension

OUT: Data type of the dimension scale

OUT: Number of attributes assigned to the dimension

Retrieves information about a dimension.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDdiminfo retrieves the name, size, data type, and number of values of the
dimension specified by the parameter dim_ id, and stores them in the
parameters name, size, data_type, and num_attrs, respectively.

If the output value of the parameter size is set to o, then the dimension
specified by the dim_id parameter is unlimited. To get the number of records of
an unlimited dimension, use SDgetinfo.

If scale information has been stored for this dimension via SDsetdimscale, the
data_type parameter will contain the data type. Valid data types can be found
in Table 1A of Section | of thismanual. |If no scale information has been stored
for this dimension, the value returned in the data_type parameter will be o.

If the user has not named the dimension via SDsetdimname, a default
dimension name of “fakepim(x1” Will be generated by the library, where (x]
denotes the dimension index. If the name is not desired, the parameter name
can be set to nuLs in C and an empty string in Fortran.

integer function sfgdinfo(dim id, name, size, data_ type,
num_attrs)

character* (*) name

integer dim id, size, data_type, num attrs

February 2010

2-91

The HDF Group SDend/sfend

SDend/sfend
intn SDend(int32 sd_id)

sd id IN: SD interface identifier returned by SDstart

Purpose Terminates access to an SD interface.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description SDend closes the file and frees memory allocated by the library when SD
interface activities are compl eted. If the calling program exits without invoking

this routine, recent changes made to the in-core file data are likely not to be
flushed to the file. Note that each SDstart must have a matching SDend.

FORTRAN integer function sfend(sd_id)

integer sd_id

2-92 February 2010

SDendaccess/'sfendacc

HDF Reference M anual

SDendaccess/sfendacc

intn SDendaccess(int32 sds id)

sds id IN: Data set identifier returned by SDcreate or SDselect

Purpose Terminates access to a data set.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description SDendaccess frees the memory taken up by the HDF library’s data structures
devoted to the data set identified by the parameter sds id.
Failing to call this routine after al operations on the specified data set are
complete may result in loss of data. This routine must be called once for each
cal to SDcreate or SDselect.

FORTRAN integer function sfendacc(sds_id)
integer sds_id

February 2010 2-93

The HDF Group SDfileinfo/sffinfo

SDfileinfo/sffinfo

intn SDfileinfo(int32 sd_id, int32 *num_datasets, int32 *num_global _attrs)

sd id IN: SD interface identifier returned by SDstart
num_datasets OUT: Number of datasetsin thefile

num_global_attrs OUT: Number of global attributesin thefile

Purpose Retrieves the number of data sets and the number of global attributesin afile.
Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description SDfileinfo returns the number of data sets in the parameter num_datasets and
the number of global attributes in the parameter num_global_attrs. The term
“global attributes” refers to attributes that are assigned to the file. The global
attributes are created by SDsetattr using an SD interface identifier (sd_id)
rather than a data set identifier (sds_id).

The value returned by the parameter num_datasets includes the number of
coordinate variable data sets. To determine if the data set is a coordinate
variable, use SDiscoordvar.

FORTRAN integer function sffinfo(sd_id, num datasets, num global attrs)

integer sd_id, num datasets, num global attrs

2-94 February 2010

SDfindattr/sffattr

HDF Reference M anual

SDfindattr/sffattr

int32 SDfindattr(int32 obj_id, char *attr_name)

obj_id

attr_name

Purpose
Return value

Description

FORTRAN

IN: Identifier of the object to which the attribute is attached

IN: Name of the attribute

Finds the index of an attribute given its name.
Returnsthe index if successful and razt (or -1) otherwise.

SDfindattr retrieves the index of the object’s attribute with the name specified
by the parameter attr_name.

The attribute is attached to the object specified by the parameter obj_id. The
parameter obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds id), returned by SDselect, or a dimension
identifier (dim _id), returned by SDgetdimid.

Wildcard characters are not allowed in the parameter attr_name. SDfindattr

searches for the name specified in the parameter attr_name in a case-sensitive
manner.

integer function sffattr(obj_id, attr name)

integer obj_id

character* (*) attr_name

February 2010

2-95

The HDF Group

SDgetcal/sfgcal

SDgetcal/sfgcal

intn SDgetcal (int32 sds id, float64 *cal, float64 *cal_err, float64 * offset, float64 * offset_err, int32

sds id

cal
cal_err
offset
offset_err

data_type

Purpose
Return value

Description

FORTRAN

*data_type)

IN: Data set identifier returned by SDcreate or SDselect
OUT: Cdlibration factor

OUT: Cdlibration error

OUT: Uncdlibrated offset

OUT: Uncaibrated offset error

OUT: Datatype of uncalibrated data

Retrieves the calibration information associated with a data set.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDgetcal reads the calibration record attached to the data set identified by the
parameter sds id. A calibration record is comprised of four 64-bit floating
point values followed by a 32-bit integer. The information is listed in the
following table:

cal calibration factor

ca_err calibration error

offset uncalibrated offset

offset_err uncalibrated offset error
data_type datatype of the uncalibrated data

The relationship between a calibrated value ca1_value and the original value
orig_valueISdeﬂnedaSorig_value = cal * (cal_value - offset).

The variable offset_err contains a potential error of offset, and cal err
contains a potential error of ca1. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

integer function sfgcal(sds_id, cal, cal_err, offset, offset_err,
data_type)

integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err

2-96 February 2010

SDgetchunkinfo/sfgichnk

HDF Reference M anual

SDgetchunkinfo/sfgichnk

intn SDgetchunkinfo(int32 sds_id, HDF_CHUNK _DEF *cdef, int32 *flag)

ds id

Conly:
cdef
flag

Fortran only:
dim_length
flag

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect

OUT: Pointer to the chunk definition

OUT: Compression flag

OUT: Array of chunk dimensions
OUT: Compression flag

Retrieves chunking information for a data set.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

SDgetchunkinfo retrieves chunking information about the data set identified
by the parameter sds id into the parameters cdef and flag in C, and to the
parameters dim_length and flag in Fortran.

Currently, only information about chunk dimensions is retrieved into the
corresponding cdef structure element for each type of compressionin C, and in
the dim_length array in Fortran. No information on compression parametersis
available in the comp structure of the upr_cuunk_per union. Refer to the page
on SDsetchunk in this manual for specific information on the uor_cuunk DEF
union.

The value returned in the flag parameter indicates the data set type (i.e., if the
data set is not chunked, chunked, and chunked and compressed).

If the chunk length for each dimension is not needed, nur.t can be passed in as
the value of the cdef parameter in C.

The following table shows the type of the data set, possible values of the flag
parameter, and the corresponding cdef structure element filled with the chunk’s
dimensions.

Values of fla Values of cdef Sructure Ele-
Type of Data Set inC 9 flagin ment Filled with the
Fortran Chunk’s Dimensions
Not chunked HDF NONE -1 None
Chunked HDF_CHUNK 0 cdef.chunk_lengthd[]
February 2010 2-97

The HDF Group

SDgetchunkinfo/sfgichnk

FORTRAN

Values of fl Values of cdef Sructure Ele-
Type of Data Set esottlag flagin ment Filled with the
inC . .
Fortran Chunk’s Dimensions
Chunked and com- HDF_CHUNK | 1 cdef.comp.chunk_lengths]
pressed with either the HDF_COMP]
run-length encoding
(RLE), Skipping Huff-
man, GZIP, or Szip
compression agorithms
Chunked and com- HDF_CHUNK | 2 cdef.nbit.chunk_lengthg[]
pressed with NBIT HDF_NBIT
compression

integer function sfgichnk(sds_id, dim_length,

integer sds_id, dim_length(*),

flag

flag)

2-98

February 2010

SDgetcompinfo/sfgcompress

HDF Reference Manual

SDgetcompinfo/sfgcompress

intn SDgetcompinfo(int32 sds id, comp_coder_t *comp_type, comp_info *c_info)

ds id
comp_type

c_info

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect
OUT: Type of compression

OUT: Pointer to compression information structure

Retrieves data set compression type and compression information.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDgetcompinfo retrieves the compression type and compression information
for a data set, when the data is either compressed, chunked or chunked and
compressed. SDgetcompinfo replaces SDgetcompress because this function
has flaws, causing failure for some chunked and chunked/compressed data.

The compression method is returned in the parameter comp_type. Valid values
of comp_type are as follows:

comp_cope_NoNE for no compression

comp_cope_RrLE for RLE run-length encoding
comp_cope_nBIT for NBIT compression
comp_cope_skpaurr for Skipping Huffman compression
comp_cope_DEFLATE for GZIP compression
comp_cope_szrp for Szip compression

Additional compression method parameters are returned in the ¢_info struct in
C and the array parameter comp_prm in Fortran. Note that ¢ info and
comp_prm come into place only with compression modes that require
additional parameters (i.e., other than comp_type); they are ignored in other
cases.

Thec_info struct is of type comp_info, contains algorithm-specific information
for the library compression routines, and is described in the SDsetcompress
entry in this reference manual and in the hcomp . h header file.

The comp_prm parameter is an array returning one or more parameters, as
required by the compression method in use. Each compression parameter is
returned as an element of the array, as follows:

o With Skipping Huffman compression, comp_prm is a 1-element array
and comp_prm(1) containsthe skip value, skphuff skp size.

o Inthe case of GZIP compression, comp_prmis also a 1-element array
and comp_prm(1) contains the deflation value, deflate value.

o Inthe case of NBIT compression, comp_prm is a 4-element array with
sign_ext in comp_prm(1), £i11 _one in comp_prm(2), start_bit in
comp_prm(3), and bit_len in comp _prm(4). The fields sign_ext,
£fill one, start bit, and bit len are discussed in the
SDsetnbitdataset/sfsnbit entry of this reference manual.

o Inthe case of Szip compression, comp_prm is a 5-element array with
option mask in comp_prm(1l), pixels per block in comp_prm(2),
pixels_per scanline in comp_prm(3), bits_per pixel in
comp_prm(4), and pixels in comp_prm (5).

February 2010

2-99

The HDF Group

SDgetcompinfo/sfgcompress

Note

Note

FORTRAN

In the general case, any available compression type can be configured in any
mode;

comp_DECODER ENABLED Decode data only

COMP_ENCODER ENABLED Encode data only

COMP_DECODER_ENABLED |COMP_ENCODER ENABLED

Decode and encode data

As of this writing (HDF4 Release 2.1, February 2005), only the Szip
compression library is actually used with the HDF libraries in more than one
configuration (see immediately below). As a third-party product, it is
distributed in both decode-only and encode/decode configurations. All other
compression methods are currently distributed or used in an encode/decode
configuration if they are available at all. See also HCget_config_info.

SDgetcompinfo will succeed for an Szip-compressed dataset whether the
available Szip library is configured either for encoding/decoding or for
decoding-only.

If the Szip configuration is decode-only, i.e., an HCget_config_info call on
the dataset will return only COMP_DECODER_ENABLED in
compression_config_info. Note that in such a case the file must be opened in
read-only mode, i.e. with SDstart (filename, pracc rpowLy).

If the Szip configuration is encode/decode, i.e., an HCget_config_info call on
the dataset will return comMp ENCODER ENABLED |COMP DECODER_ENABLED IN
compression_config_info. In this case, the file and dataset can be opened in
read/write mode.

Regar ding uncompressed data or an empty data set:
SDgetcompinfo will succeed and the parameter comp_type will have the value
comp_cope_nonE if either of the following conditions exists:

o Thedataset isnot compressed.

o No data has been written to the SDS.

Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/szip/ for information
regarding the use of Szip in HDF products and Szip licensing.

integer function sfgcompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)

2-100

February 2010

SDgetdatastrg/sfgdtstr

HDF Reference M anual

SDgetdatastr g/sfgdtstr

intn SDgetdatastrs(int32 sds _id, char *label, char *unit, char *format, char * coordsys, intn length)

sds id
label

unit
format
coordsys

length

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
OUT: Label (predefined attribute)

OUT: Unit (predefined attribute)

OUT: Format (predefined attribute)

OUT: Coordinate system (predefined attribute)

IN: Maximum length of the above predefined attributes

Retrieves the predefined attributes of a data set.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

SDgetdatastrs retrieves the predefined attributes for the data set specified by
the parameter sds id. The predefined attributes are label, unit, format, and
coordinate system. They are then stored in the parameters label, unit, format,
and coordsys, respectively. Refer to Section 3.10 of the HDF User’s Guide for
more information on predefined attributes.

If a particular data string is not stored, the first character of the corresponding
SDgetdatastrs parameter is"\o' in C. In FORTRAN, the parameter contains an
empty string. Each string buffer must include the space to hold the null
termination character. In C, if a user does not want a string back, nurt can be
passed in for that string. Data strings are set by the SDsetdatastr s routine.

integer function sfgdtstr(sds_id, label, unit, format, coordsys,
length)

integer sds_id, length

character* (*) label, unit, format, coordsys

February 2010

2-101

The HDF Group SDgetdimid/sfdimid

SDgetdimid/sfdimid

int32 SDgetdimid(int32 sds id, intn dim_index)

sds id IN: Data set identifier returned by SDcreate or SDselect

dim_index IN: Index of the dimension

Purpose Returns the identifier of a dimension given itsindex.

Return value Returns the dimension identifier (dim_id) if successful and rarir (or -1)
otherwise.

Description SDgetdimid returns the identifier of the dimension specified by its index, the

parameter dim_index.

The dimension index is a nonnegative integer and is less than the total number
of data set dimensions returned by SDgetinfo.

FORTRAN integer function sfdimid(sds_id, dim_ index)

integer sds_id, dim_index

2-102 February 2010

SDgetdimscal e/sfgdscale

HDF Reference M anual

SDgetdimscale/sfgdscale

intn SDgetdimscale(int32 dim id, VOIDP scale_buf)

dim_id

scale_buf

Purpose
Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid
OUT: Buffer for the scale values

Retrieves the scale values for adimension.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDgetdimscale retrieves the scale values of the dimension identified by the
parameter dim_id and stores the values in the buffer scale_buf.

SDdiminfo should be used to determine whether a scae has been sat for the
dimengion, i.e, that the dimension scale datatypeis avaid HDF data type (not o).
Also use SDdiminfo to obtain the number of scale values for space allocation
before calling SDgetdimscale.

It isnot possible to read a subset of the scale values. SDgetdimscale returns all
of the scale values stored with the given dimension.

The fact that SDgetdimscale returns succeep should not be interpreted to
mean that scale values have been defined for the data set. Thisfunction should
aways be used with SDdiminfo, which is used first to determine whether a
scale has been set, the number of scale values, their data type, etc. |If
SDdiminfo indicates that no scale values have been set, the values returned by
SDgetdimscalein data should be ignored.

integer function sfgdscale(dim id, scale buf)

integer dim id

<valid numeric data type> scale buf (*)

February 2010

2-103

The HDF Group SDgetdimstr s/sfgdmstr

SDgetdimstr s/sfgdmstr

intn SDgetdimstrs(int32 dim_id, char *label, char *unit, char *format, intn length)

dim id IN: Dimension identifier returned by SDgetdimid

label OUT: Label (predefined attribute)

unit OUT: Unit (predefined attribute)

format OUT: Format (predefined attribute)

length IN: Maximum length of the above predefined attributes
Purpose Retrieves the predefined attributes of a dimension.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description SDgetdimstr s retrieves the predefined attributes associated with the dimension
identified by the parameter dim_id. The predefined attributes are label, unit,
and format. These predefined attributes are stored in the parameters label,
unit, and format, respectively. Refer to Section 3.10 of the HDF User’s Guide
for more information on predefined attributes.

If a particular data string was not stored, the first character of the
corresponding SDgetdimstr s parameter is'\o'. Each string buffer must include
space for the null termination character. If a user does not want a string
returned, the corresponding parameter can be set to nurL in C and an empty
string in Fortran. The predefined attributes are set by SDsetdimstrs.

FORTRAN integer function sfgdmstr(dim id, label, unit, format, length)

integer dim_id, length

character* (*) label, unit, format

2-104 February 2010

SDgetfilename/ HDF Reference Manual

SDgetfilename/

intn SDgetfilename(int32 file_id, char *filename)

file_id IN: A fileidentifier

filename OUT: Nameof thefile

Purpose Given afileidentifier, retrieves the name of thefile.

Return value Returns the length of the file name, without "\o', on success, and rarr,
otherwise.

FORTRAN Currently unavailable

February 2010 2-105

The HDF Group

SDgetfillvalue/sfgfill/sfgcfill

SDgetfillvalue/sfgfill/sfgcfill

intn SDgetfillvalue(int32 sds_id, VOIDPfill_value)

ds id

fill_value

Purpose

Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
OUT: Buffer for the returned fill value

Reads the fill value of adata set, if the value has been set.

Returns succeep (or o) if afill valueis retrieved and ra1n (or -1) otherwise,
including when thefill valueis not set.

SDgetfillvalue reads the fill value which has been set for the data set specified
by the parameter sds id. Itisassumed that the data type of thefill valueisthe
same as that of the data set.

Note that there are two FORTRAN-77 versions of this routine: sfgfill and

sfgcfill. The sfdfill routine reads numeric fill value data and sfgcfill reads
character fill value data.

integer function sfgfill(sds_id, £fill value)

integer sds_id

<valid numeric data type> fill value

integer function sfgcfill(sds_id, fill value)

integer sds_id

character* (*) fill value

2-106

February 2010

SDgetinfo/sfginfo

HDF Reference Manual

SDgetinfo/sfginfo

intn SDgetinfo(int32 sds_id, char *sds_name, int32 *rank, int32 dimsizeq[], int32 *data_type, int32

sds id
sds name
rank
dimsizes
data_type

num_attrs

Purpose

Return value

Description

FORTRAN

*num_attrs)

IN: Data set identifier returned by SDcreate and SDselect
OUT: Nameof the data set

OUT: Number of dimensionsin the data set

OUT: Array containing the size of each dimension in the data set
OUT: Datatype for the data stored in the data set

OUT: Number of attributes for the data set

Retrieves the name, rank, dimension sizes, data type and number of attributes
for a data set.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDgetinfo retrieves the name, number of dimensions, sizes of dimensions, data
type, and number of attributes of the data set identified by sds id, and stores
them in the parameters sds_name, rank, dimsizes, data type, and num attrs,
respectively.

The buffer sds_name can have at most 64 characters. If the name of the data set
is not desired, then the parameter sds name can be set to ~unn in C and an
empty string in Fortran.

The maximum value of the rank parameter isvax_var p1ms (Or 32).

If the data set is created with an unlimited dimension, then in the C interface,
the first element of the dimsizes array (corresponding to the slowest-changing
dimension) contains the number of records in the unlimited dimension; in the
FORTRAN-77 interface, the last element of the dimsizes array (corresponding
to the slowest-changing dimension) contains this information. Use SDisrecord
to determineif the data set has an unlimited dimension.

integer function sfginfo(sds_id, sds_name, rank, dimsizes,
data_type, num_attrs)

character* (*) sds_name
integer sds_id, rank, dimsizes(*)

integer data_type, num_attrs

February 2010

2-107

The HDF Group SDgetnamelen/

SDgetnamelen/

intn SDgetnamelen(int32 obj_id, uint16 name len)

obj_id IN: Identifier of the object
name_len OUT: Length of the object’s name
Purpose Retrieves the length of the name of afile, adataset, or adimension.

Return value Returns the length of the object’s name on success, and ra1z, otherwise.

Description Given an identifier of afile, adataset, or adimension, SDgethamelen retrieves
the length of its name into name len. The length does not include the
character "\o".

FORTRAN Currently unavailable

2-108 February 2010

SDgetnumvars _byname

HDF Reference M anual

SDgetnumvars_byname

intn SDgetnumvars_byname(int32 sd_id, char *sds_name, unsigned *n_vars)

sd_id
sds name

n_vars

Purpose
Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
IN: Name of the data set

OUT: Number of variables named sds_name

Get the number of data sets having the same name.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.
SDgetnumvars_byname retrieves the number of variables with the name
specified by the parameter sds_name. The variables may include both data sets

or coordinate variables. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner.

Currently unavailable

February 2010

2-109

SDgetrange/sfgrange
intn SDgetrange(int32 sds_id, VOIDP max, VOIDP min)

sds id IN: Data set identifier returned by SDcreate or SDselect

max OUT: Maximum value of the range

min OUT: Minimum value of the range

Purpose Retrieves the maximum and minimum values of the range.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description SDgetrange retrieves the maximum value of the range into the parameter max
and the minimum value into the parameter min. The maximum and minimum
values must be previously set viaa call to SDsetrange.

It is assumed that the data type for the maximum and minimum range values
are the same asthat of the data.

FORTRAN integer function sfgrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min

2-110

February 2010

SDget_maxopenfiles/

HDF Reference Manual

SDget_maxopenfiles/

intn SDget_maxopenfiles(intn *curr_max, intn *sys_limit)

cu
curr_max

sys _limit

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
OUT: Current number of open files

OUT: Maximum number of open files

Retrieves current and maximum number of open files.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.
SDget_maxopenfiles retrieves the current number of open files alowed in

HDF, curr_max, and the maxinum number of open files allowed on the system,
sys limit. If either of the valuesis not desired, then nurt can be passed in.

Currently unavailable

February 2010

2-111

The HDF Group SDget_numopenfiles/

SDget_numopenfiles/
intn SDget_numopenfiles()

Purpose Returns the number of files currently being opened.

Return value Returns the number of files currently being opened.

FORTRAN Currently unavailable

2-112 February 2010

SDidtor ef/sfid2r ef HDF Reference M anual

SDidtor ef/sfid2r ef

int32 SDidtoref(int32 sds id)

sds id IN: Data set identifier returned by SDcreate or SDsdlect

Purpose Returns the reference number assigned to a data set.

Return value Returns the data set reference number if successful and raz1w (or -1) otherwise.

Description SDidtoref returns the reference number of the data set specified by the
parameter sds id. The reference number is assigned by the HDF library when
the data set is created. The specified reference number can be used to add the

data set to avgroup as well as a means of using the HDF annotations interface
to annotate the data set.

FORTRAN integer function sfid2ref (sds_id)

integer sds_id

February 2010 2-113

The HDF Group SDidtype/
SDidtype/
hdf_idtype_t SDidtype(int32 obj_id)
obj_id IN: Identifier of the object
Purpose Given an id, return the type of object the id represents.
Return value Returns avalue of typehdf_idtype_t.
Description SDidtype returns a value of type hdf_idtype t, which can be one of the

following:
o noT_spap1_1D (Or -1)not an SD API id
o sp_1p (oro)SD id
o sps_1p (or 1)SDSid
o pim_1D (or 2)Dimension id

SDidtype returnsnot_spap1_1p for either
+ when obj_idisnot avalid HDFid, or
+ when obj_idisavalid HDF id, but not one of theid typesin
the SD interface, which are SD id, SDSid, and dimension id.

FORTRAN Currently unavailable

2-114

February 2010

SDiscoor dvar /sfiscvar

HDF Reference Manual

SDiscoordvar /sfiscvar

intn SDiscoordvar(int32 sds id)

ds id

Purpose

Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect

Determines if adata set is a coordinate variable.

Returns trug (or 1) if the data set is a coordinate variable, and rarse (or o)
otherwise.

SDiscoordvar determinesif the data set specified by the parameter sds idisa
coordinate variable.

Coordinate variables are created to store metadata associated with dimensions.
To ensure compatibility with netCDF, coordinate variables are implemented as
data sets.

integer function sfiscvar(sds_id)

integer sds_id

February 2010

2-115

The HDF Group SDisdimval_bwcomp/sfisdmvc

SDisdimval_bwcomp/sfisdmvc

intn SDisdimval_bwcomp(int32 dim id)

dim id IN: Dimension identifier returned by SDgetdimid

Purpose Determines whether a dimension has the old and new representations or the
new representation only.

Refer to Chapter 3, "Scientific Data Sets (SD API)" of the HDF User’s Guide,
for information on old and new dimension representations.

Return value Returns sb_DIMVAL_BW_comP (or 1) if backward compatible,
SD_DIMVAL_BW_INCOMP (or 0) if incompatible, FAIL (or -1) if error.

Description SDisdimval_bwcomp will flag the dimension specified by the parameter
dim _id as backward-compatible if a vdata with a class name of “DimVal0.0"
does not exist in the vgroup for that dimension. If the vdata does exist, the
specified dimension will be identified by SDisdimval_bcomp as backward-
incompatible.

The compatibility mode can be changed by callsto SDsetdimval_comp at any
time between the calls to SDstart and SDend.

FORTRAN integer function sfisdmvc(dim_id)

integer dim_id

2-116 February 2010

SDisrecord/sfisrcrd

HDF Reference M anual

SDisrecord/sfisrcrd

int32 SDisrecord(int32 sds id)

ds id

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect

Determines whether a data set is appendable.
Returns truk (or 1) if the data set is appendable, and raLsk (or o) otherwise.
SDisrecord will determine if the data set specified by the parameter sds id is

appendable, which means that the slowest-changing dimension was declared
unlimited when the data set was created.

integer sfisrcrd(sd_id)

integer sd_id

February 2010

2-117

The HDF Group

SDnametoindex/sfn2index

SDnametoindex/sfn2index

int32 SDnametoindex(int32 sd_id, char *sds_name)

«d_id

sds name

Purpose

Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart

IN: Name of the data set

Determines the index of a data set given its name.

Returns the index of the data set (sds_index) if the data set is found and rFa1L
(or -1) otherwise.

SDnametoindex returns the index of the data set with the name specified by
the parameter sds_name. The routine does not accept wildcards in the specified
data set name. It also searches on that name in a case-sensitive manner. If there
are more than one data set with the same name, the routine will return the index
of thefirst one.

Note that if there are more than one data set with the same name in the file,
writing to a data set returned by this function without verifying that it is the
desired data set could cause data corruption.

SDgetnumvars _byname can be used to get the number of data sets (or
variables, which includes both data sets and coordinate variables) with the

same name. SDnametoindices can be used to get a list of structures
containing the indices and the types of all the variables of that same name.

integer function sfn2index(sd_id, sds_name)

integer sd_id

character* (*) sds_name

2-118

February 2010

SDnametoindices

HDF Reference M anual

SDnametoindices

intn SDnametoindices(int32 sd_id, char *sds_name, varlist_t* var_list)

sd_id
sds name

var_list

Purpose
Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
IN: Name of the data set

OUT: List of all variables of same name

Retrievesindices of al variables with the same name.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDnametoindices retrieves a list of structures variist_t, containing the
indices and the types of all variables of the same name sds_name.

The structure variist_t isdefined as:

typedef struct varlist
int32 var index; /* index of a variable */

vartype t var_type; /* type of a variable
} varlist t;

Thetype of avariable vartype t isdefined as:

IS _SDSVAR=0 : variable is an actual SDS
IS_CRDVAR=1 : variable is a coordinate variable
UNKNOWN=2 : variable is created before HDF4.2r2, unknown type

The routine does not accept wildcards in the specified data set name. It also
searches on that name in a case-sensitive manner.

Currently unavailable

February 2010

2-119

The HDF Group

SDreadattr/sfr natt/sfr catt

SDreadattr/sfrnatt/sfrcatt

intn SDreadattr(int32 obj_id, int32 attr_index, VOIDP attr_buf)

obj_id
attr_index

attr_buf

Purpose
Return value

Description

FORTRAN

IN: Identifier of the object the attribute is attached to
IN: Index of the attribute to be read
OUT: Buffer for the attribute values

Reads the values of an attribute.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

SDreadattr reads the values of the attribute specified by the parameter
attr_index and stores the values in the buffer attr_buf. It is assumed that the
user has called SDattrinfo to retrieve the number of attribute values and
alocate sufficient space for the buffer. Note that the routine does not read a
subset of attribute values.

The value of obj_id can be either an SD interface identifier (sd_id), returned by
SDstart, a data set identifier (sds id), returned by SDselect, or a dimension
identifier (dim_id), returned by SDgetdimid.

Thevalue of attr_index isapositive integer and is less than the total number of
attributes. The index value can be obtained using the routines SDnametoindex
and SDreftoindex. The total number of attributes for the object can be
obtained using the routines SDgetinfo, SDattrinfo, SDdiminfo and
SDfileinfo.

Note that this routine returns an array of characters, not a standard null-
terminated string. If an application is running in an environment where a null-
terminated string is expected, the application must add the null character
before saving the string or using it further.

Note that this routine has two FORTRAN-77 versions: sfrnatt and sfrcatt. The
sfrnatt routine reads numeric attribute data and sSfrcatt reads character
attribute data.

integer function sfrnatt (obj_id, attr index, attr buffer)

integer obj_id, attr index

<valid numeric data> attr buffer(*)

integer function sfrcatt(obj_id, attr_ index, attr buffer)

integer obj_id, attr_index

character* (*) attr_buffer

2-120

February 2010

SDreadchunk/sfrchnk/sfrcchnk

HDF Reference M anual

SDreadchunk/sfrchnk/sfrcchnk

intn SDreadchunk(int32 sds id, int32 *origin, VOIDP datap)

sds id
origin

datap

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
IN: QOrigin of the chunk to be read
OUT: Buffer for the chunk to be read

Reads a data chunk from a chunked data set.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDreadchunk reads the entire chunk of data from the chunked data set
identified by the parameter sds id, and stores the data in the buffer datap.
Reading starts at the location specified by the parameter origin. SDreadchunk
is used when an entire chunk of dataisto be read. SDreaddata is used when
the read operation is to be done regardless of the chunking scheme used in the
data set.

The parameter origin specifies the coordinates of the chunk according to the
chunk position in the chunked array. Refer to the Chapter 3, "Scientific Data
Sets (SD API)" of the HDF User’s Guide, for a description of the organization
of chunksin a data set.

SDreadchunk will return razz (or -1) when an attempt is made to read from a
non-chunked data set.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (sfrchnk) and one for character data (sfrcchnk).

integer sfrchnk(sds_id, origin, datap)

integer sds_id, origin(¥)

<valid numeric data type> datap(*)

integer sfrcchnk(sds_id, origin, datap)

integer sds_id, origin(¥)

character* (*) datap (*)

February 2010

2-121

The HDF Group

SDreaddata/sfr data/sfrcdata

SDreaddata/sfrdata/sfrcdata

intn SDreaddata(int32 sds id, int32 start[], int32 stride[], int32 edgel], VVOIDP buffer)

ds id
start

stride

edge

buffer

Purpose

Return value

Description

IN: Data set identifier returned by SDcreate or SDselect

IN: Array specifying the starting location from where datais read

IN: Array specifying the interval between the values that will be read
along each dimension

IN: Array specifying the number of values to be read along each
dimension

OUT: Buffer to store the data read

Reads a subsample of data from a data set or coordinate variable.

Returns succeep (or o) if successful or if the data set or coordinate variable
contains no data and ra1r (or -1) otherwise.

SDreaddata reads the specified subsample of data from the data set or
coordinate variable identified by the parameter sds id. Theread datais stored
in the buffer buffer. The subsample is defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample will be
read. Valid values of each element in the array start are from 0 to the size of the
corresponding dimension of the data set - 1. The dimension sizes are returned
by SDgetinfo.

The array edge specifies the number of values to read along each data set
dimension.

The array stride specifies the reading pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be read. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be read, and so on. Specifying
stride value of nuLL in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous reading of data. If all valuesin
the array stride are set to o or any value causes striding beyond the end of the
associate dimension, SDreaddata returns rarw (or -1). No matter what stride
value is provided, datais always placed contiguously in the buffer.

When reading data from a “chunked” data set using SDreaddata,
consideration should be given to the issues presented in the section on
chunking in Chapter 3, "Scientific Data Sets (SD API)" and Chapter 14, "HDF
Performance Issues" in the HDF User’s Guide.

Note that there are two FORTRAN-77 versions of this routine; sfrdata and
sfrcdata. The sfrdata routine reads numeric scientific data and sfrcdata reads
character scientific data

2-122

February 2010

SDreaddata/sfr data/sfrcdata

HDF Reference Manual

Note

Note

Note

FORTRAN

Regar ding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

When writing applications or tools to manipulate both images and two-
dimensional SDs, this crucia difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the APl parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (yx) or
[row,column] order. For example, start [0] iSthe starting point in the
Y dimension and start [1] iS the starting point in the X dimension.
The same ordering holds true for al SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (Xx)y) or
[column,row] order. For example, start [0] iSthe starting point in the
X dimension and start[1] iS the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

It is sometimes necessary to determine whether and how a dataset is
compressed and whether the software necessary to read that data is available.
The compression method used on the dataset can be determined with
SDgetcompinfo and the availability and configuration of the compression
software with HCget_config_info. Further information is available in the
respective entries in this reference manual.

Regar ding Szip-compr essed data:
SDreaddata can succeed for an Szip-compressed dataset whether the available
Szip library is configured either for encoding/decoding or for decoding-only.

If the available Szip configuration is decode-only, HCget_config_info will
return only comp DECODER_ENABLED iNn compression_config_info; the returned
flags will not include comp_Encoper EnaBrLED. In such a case, the file must
have been opened in read-only mode, i.e. with spstart (filename,
DFACC_RDONLY) .

If the Szip avaiable configuration is encode/decode, HCget_config_info will
return coMp_ENCODER ENABLED|COMP_DECODER ENABLED. |nsuchacase, thefile
and dataset can be opened in read/write mode.

See the HCget_config_info and SDgetcompinfo entries in this reference
manual for further information.

Regar ding Szip usage and licensing:

See http://www.hdfgroup.org/doc_resource/SzIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

integer function sfrdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

<valid numeric data type> buffer (*)

February 2010

2-123

The HDF Group SDreaddata/sfrdata/sfrcdata

integer function sfrcdata(sds_id, start, stride, edge, buffer)

integer sds_id, start(*), stride(*), edge(*)

character* (*) buffer

2-124 February 2010

SDr eftoindex/sfref2index

HDF Reference M anual

SDreftoindex/sfref2index

int32 SDreftoindex(int32 sd_id, int32 sds ref)

sd_id
sds ref

Purpose

Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart

IN: Reference number of the data set

Returns the index of a data set given the reference number.

Returns the index of the data set (sds_index) if the data set is found and rFa1L
(or -1) otherwise.

SDreftoindex returns the index of adata set identified by its reference number,
sds ref.

The value of sds_index returned by SDreftoindex can be passed to SDselect to
obtain adata set identifier (sds_id).

integer function sfref2index(sd_id, sds_ref)

integer sd_id, sds_ref

February 2010

2-125

The HDF Group

SDreset_maxopenfiles/

SDreset_maxopenfiles/

intn SDreset_maxopenfiles(intn req_max)

req_max

Purpose

Return value

Description

FORTRAN

IN: Requested maximum number of opened files allowed

Resets the maximum number of files can be opened at the same time.

Returns the current maximum number of opened files alowed if successful
and ra1L (or -1) otherwise.

Prior to release 4.2r2, the maximum number of files that can be opened at the
same time was limited to 32. In HDF 4.2r2 and later versions, if this limit is
reached, the library will increase it to the system limit minus 3 to account for
stdin, stdout, and stderr.

This function can be called anytime to change the maximum number of open
filesalowed in HDF to req_ max. If req maxiso, SDreset_maxopenfileswill
simply return the current maximum number of open files allowed. If req_max
exceeds system limit, SDreset_maxopenfiles will reset the maximum number
of open files to the system limit, and return that value.

Furthermore, if the system maximum limit is reached, the library will push the

error code pre_TooMany onto the error stack. User applications can detect this
after an SDstart fails.

Currently unavailable

2-126

February 2010

SDselect/sfselect

HDF Reference M anual

SDsel ect/sf select

int32 SDselect(int32 sd_id, int32 sds_index)

«d_id

sds _index

Purpose

Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
IN: Index of the data set

Obtains the data set identifier (sds_id) of a data set.

Returns the data set identifier (sds id) if successful and ra1n (or -1)
otherwise.

SDselect obtains the data set identifier (sds_id) of the data set specified by its
index, sds_index.

The integration with netCDF has required that a dimension (or coordinate
variable) is stored as a data set in the file. Therefore, the value of sds_index
may correspond to the coordinate variable instead of the actual data set. Users
should use the routine SDiscoor dvar to determine whether the given dataset is
acoordinate variable.

Thevalue of sds_index is greater than or equal to 0 and |ess than the number of
data sets in the file. The total number of data sets in a file may be obtained
from a call to SDfileinfo. The SDnametoindex routine can be used to find the
index of a data set if its name is known. However, when multiple data sets
have the same name, SDnametoindices can be used to obtains al the indices.

integer function sfselect(sd_id, sds_index)

integer sd_id, sds_index

February 2010

2-127

The HDF Group SDsetaccesstype/sdfsacct

SDsetaccesstype/sdfsacct

intn SDsetaccesstype(int32 sds_id, uintn access type)

sds id IN: Data set identifier returned by SDcreate or SDselect
accesstype IN: Accesstype
Purpose Setsthe 1/0 access type of an SDS.

Return value Returns succeep (or o) if the SDS data can be accessed via access _type and
FarL (Or -1) otherwise.

Description SDsetaccesstype sets the type of 1/O (seria, parale,...) for accessing the data
of the data set identified by sds id. Accesstypes can be pracc_seriaL (Or 1),
DFACC_PARALLEL (Of 11), and pracc_DEFAULT (OF 0).

FORTRAN integer function sdfsacct(sds_id, access_type)

integer sds_id, access_type

2-128 February 2010

SDsetattr/sfsnatt/sfscatt

HDF Reference M anual

SDsetattr/sfsnatt/sfscatt

intn SDsetattr(int32 obj_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

obj_id
attr_name
data_type
count

values

Purpose
Return value

Description

FORTRAN

IN: Identifier of the object the attribute is to be attached to
IN: Name of the attribute

IN: Data type of the valuesin the attribute

IN: Total number of values to be stored in the attribute

IN: Data values to be stored in the attribute

Attaches an attribute to an object.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDsetattr attaches the attribute to the object specified by the obj_id parameter.
The attribute is defined by its name, attr_name, data type, data_type, number
of attribute values, count, and the attribute values, values. SDsetattr providesa
generic way for users to define metadata. It implements the label = value data
abstraction.

The value of obj_id can be an SD interface identifier (sd_id), returned by
SDcreate, a data set identifier (sds_id), returned by SDselect, or a dimension
identifier (dim _id), returned by SDgetdimid.

If an SD interface identifier (sd_id) is specified as the obj_id parameter, a
global attribute is created which applies to all objects in the file. If a data set
identifier (sds_id) is specified as the obj_id parameter, an attribute is attached
to the specified data set. If a dimension identifier (dim_id) is specified as the
obj_id parameter, an attribute is attached to the specified dimension.

The attr_name argument can be any ASCII string.

The data_type parameter can contain any data type supported by the HDF
library. These datatypes are listed in Table 1A in Section | of this manual.

Attribute values are passed in the parameter values. The number of attribute
values is defined by the count parameter. If more than one value is stored, all
values must have the same data type. If an attribute with the given name, data
type and number of values exists, it will be overwritten.

Note that there are two FORTRAN-77 versions of this routine; sfsnatt and
sfscatt. The sfsnatt routine writes numeric attribute data and sfscatt writes
character attribute data.

integer function sfsnatt (obj_id, attr name, data_type, count,
values)

integer obj_id, data_type, count
character* (*) attr_name

<valid numeric data type> values (*)

February 2010

2-129

The HDF Group SDsetattr/sfsnatt/sfscatt

integer function sfscatt (obj_id, attr name, data_type, count,
values)

integer obj_id, data_type, count

character* (*) attr_name, values

2-130 February 2010

SDsetblocksize/sfsblsz

HDF Reference M anual

SDsetblocksize/sfsblsz

intn SDsetblocksize(int32 sd_id, int32 block size)

«d_id

block size

Purpose
Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
IN: Size of the block in bytes

Sets the block size used for storing data sets with unlimited dimensions.
Returns succeep (or 0) if successful and ra1r (or -1) otherwise.
SDsetblocksize sets the block size defined in the parameter block size for all
data setsin the file. SDsetblocksize is used when creating new data sets only;
it has no effect on pre-existing data sets.

SDsetblocksize must be used after calls to SDcreate or SDselect and before
the call to SDwritedata.

The block_size parameter should be set to a multiple of the desired buffer size.

integer sfsblsz(sd_id, block size)

integer sd_id, block size

February 2010

2-131

The HDF Group

SDsetcal/sfscal

SDsetcal/sfscal

intn SDsetcal (int32 sds _id, float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32

sds id

cal
cal_err
offset
offset_err

data_type

Purpose
Return value

Description

FORTRAN

data_type)
IN: Data set identifier returned by SDcreate or SDselect
IN: Calibration factor
IN: Calibration error
IN: Uncalibrated offset
IN: Uncalibrated offset error
IN: Data type of uncalibrated data

Sets the calibration information.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDsetcal stores the calibration record associated with a data set. A calibration
record contains the following information:

ca Calibration factor
cal_err Calibration error
offset Uncalibrated offset

offset_err Uncalibrated offset error

daia type Datatype of uncalibrated data

The relationship between a value ca1 value stored in a data set and the
original valueisdefined as: orig value = cal * (cal_value - offset).

The variable offset_err contains a potential error of offset, and cal err
contains a potential error of ca1. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

The calibration information is automatically cleared after acall to SDreaddata

or SDwritedata. Therefore, SDsetcal must be called once for each data set that
isto beread or written.

integer function sfscal(sds_id, cal, cal _err, offset, offset err,
data_type)

integer sds_id, data_type

real*8 cal, cal_err, offset, offset_err

2-132

February 2010

SDsetchunk/sfschnk

HDF Reference M anual

SDsetchunk/sfschnk

intn SDsetchunk(int32 sds id, HDF_CHUNK _DEF cdef, int32 flag)

ds id

Conly:
cdef
flag

Fortran only:
dim_length
comp_type

comp_prm

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect
IN: Pointer to the chunk definition

IN: Compression flag

IN: Chunk dimensions array

IN: Type of compression

IN: Compression parameters array

Sets the chunk size and the compression method, if any, of a data set.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

SDsetchunk makes the data set specified by the parameter sds id a chunked
data set according to the chunking and compression information provided in
the parameters cdef and flag in C, and in the parameters comp_type and
comp_prmin Fortran.

Conly:

The parameter flag specifies the type of the data set, i.e, if the data set is
chunked or chunked and compressed with either RLE, Skipping Huffman,
GZIP, Szip, or NBIT compression methods. Valid values of flag are asfollows:
o upr_cuunk for a chunked data set with no compression
o upF_cHuNK | upF_comp for a chunked data set compressed with RLE,
Skipping Huffman, GZIP, or Szip compression methods
o upr_cHunk | upF_NBIT for achunked and NBIT-compressed data set

Chunking and compression information are passed in the parameter cdef. The
parameter cdef has a type of HDF_CHUNK_DEF, defined in the HDF library as
follows:

February 2010

2-133

The HDF Group

SDsetchunk/sfschnk

typedef union hdf chunk def u

{

int32 chunk lengths[2]; /* chunk lengths along each dim */

struct
int32 chunk lengths[2];
int32 comp_type; /* compression type */
struct comp_info cinfo;

} comp ;

struct

{
int32 chunk lengths[2];
intn start bit;
intn bit len;
intn sign_ext;
intn £ill one;

} nbit;

} HDF_CHUNK DEF

There are three pieces of chunking and compression information which should
be specified: chunking dimensions, compression type, and, if needed,
compression parameters.

If the data set is chunked, i.e., flag value isupr_crunk, then chunk_lengths[]
elements of cdef union (cdef.chunk_lengths[]) have to be initialized to the
chunk dimensions.

If the data set is chunked and compressed using RLE, Skipping Huffman, Szip,
or GZIP methods (i.e., flag value is set up to upr_cuunk | upF_comp), then the
elements chunk_lengths[] Of the structure comp in the union cdef
(cdef.comp.chunk lengths[]) haveto beinitialized to the chunk dimensions.

If the data set is chunked and NBIT compression is applied (i.e., flag valuesis
set up to upF _cHunNk | HDF NBIT), then the elements chunk lengths[] Of the
structure nbit in the union cdef (cdef.nbit.chunk lengths(]) have to be
initialized to the chunk dimensions.

Compression types are passed in the field comp_type Of the structure cinfo ,
which is an element of the structure comp in the union cdef
(cdef.comp.cinfo.comp type). Refer to the SDsetcompress page in this
manual for the definition of structure comp_info. Valid compression methods
are;

comp_cope_NoNE for no compression

comp_cope_RrLE for RLE run-length encoding

comp_cope_skpuurF for Skipping Huffman compression

comp_cope_perLATE for GZIP compression

comp_cope_szrp for Szip compression

2-134

February 2010

SDsetchunk/sfschnk

HDF Reference M anual

FORTRAN

For Skipping Huffman and GZIP compression, parameters are passed in
corresponding fields of the structure cinfo.

o Specify skipping size for Skipping Huffman compression in the field
cdef .comp.cinfo.skphuff.skp size, Which must be an integer of
value 1 or greater.

o Specify the deflate level for GZIP compression in the field
cdef.comp.cinfo.deflate level. Valid deflate level values are
integers between 0 and 9 inclusive.

o Specify the options mask and the number of pixels per block for Szip
COI'T]pI'OI'I in the fields c_info.szip.options_mask and
c_info.szip.pixels per block, r&pectively.

Refer to the SDsetcompress entry in this reference manual for details on these
parameters.

NBIT compression parameters are specified in the fields start_bit, bit 1len,
sign_ext,and £i11_one inthe structure nbit of the union cdef.

Fortran only:
The dim_length array specifies the chunk dimensions.

The comp_type parameter specifies the compression type. Valid compression
types and their values are defined in the nat . inc file, and are listed below:

comp_copE_NoNE (Of o) for no compression

comp_cope_RrLE (Or 1) for RLE compression algorithm
comp_cope_NBIT (Or 2) for NBIT compression algorithm
comp_cope_skpaUFF (Or 3) for Skipping Huffman compression
comp_cope_DEFLATE (Or 4) for GZIP compression algorithm
comp_cope_sz1p (or s) for Szip compression algorithm

The comp_prm(1) parameter specifies the skipping size for the Skipping
Huffman compression method and the deflate level for the GZIP compression
method. The skipping size value must be 1 or greater; the deflate level must be
an integer value between 0 and 9 inclusive.

For NBIT compression, the four elements of the array comp_prm correspond
to the four NBIT compression parameters listed in the structure nbit. The
value of comp_prm(1) should be set to the value of start bit, the value of
comp_prm(2) should be set to the value of it 1en, the value of comp_prm(3)
should be set to the value of sign_ext, and the value of comp_prm(4) should
be set to the value of £111_one. See the upor_cuunk pEF UNioON description and
the description of SDsetnbitdataset function for NBIT compression
parameters definitions.

For Szip compression, the first two elements of the array comp _prm
correspond to the first two Szip compression parameters listed in the structure

szip. The value of comp_prm(1) should be set to the value of option mask
and the value of comp_prm(2) should be set to the value of pixels per block.

integer sfschnk(sds_id, dim length, comp type, comp_prm)

integer sds_id, dim_length, comp_type, comp prm(*)

February 2010

2-135

The HDF Group

SDsetchunkcache/sfscchnk

SDsetchunkcache/sfscchnk

intn SDsetchunkcache(int32 sds id, int32 maxcache, int32 flag)

sds id
maxcache

flag

Purpose

Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
IN: Maximum number of chunksin the cache

IN: Flag determining the behavior of the routine

Sets the size of the chunk cache.

Returns the maximum number of chunks that can be cached (the value of the
parameter maxcache) if successful and ra1z (or -1) otherwise.

SDsetchunkcache sets the size of the chunk cache to the value of the
parameter maxcache.

Currently the only allowed value of the parameter flag is o, which designates
default operation.

By default, when a generic data set is promoted to be a chunked data set, the
parameter maxcache is set to the number of chunks along the fastest changing
dimension and a cache for the chunksis created.

If the chunk cache is full and the value of the parameter maxcache is greater
then the current maxcache value, then the chunk cacheis reset to the new value
of maxcache. Otherwise the chunk cache remains at the current value of
maxcache. If the chunk cache is not full, then the chunk cache is set to the new
value of maxcache only if the new maxcache value is greater than the current
number of chunks in the cache.

Do not set the value of maxcache to be less than the number of chunks along
the fastest-changing dimension of the biggest slab to be written or read via
SDreaddata or SDwritedata. Doing thiswill cause internal thrashing. See the
section on chunking in Chapter 14, "HDF Performance Issues' in the HDF
User’s Guide, for more information on this.

integer sfscchnk(sds_id, maxcache, flag)

integer sds_id, maxcache, flag

2-136

February 2010

SDsetcompr ess/sfscompress

HDF Reference M anual

SDsetcompr ess/sfscompr ess

intn SDsetcompress(int32 sds id, int32 comp_type, comp_info *c_info)

ds id

comp_type

Conly:

c_info

Fortran only:

comp_prm

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect
IN: Compression method

IN: Pointer to the comp_info union

IN: Compression parameters array

Compresses the data set with the specified compression method.
Returns succeep (or 0) if successful and ra1r (or -1) otherwise.

SDsetcompress compresses the data set identified by the parameter sds id
according to the compression method specified by the parameter comp_type and
the compression information specified by the parameter ¢ info in C and
comp_prmin Fortran. SDsetcompr ess compresses the data set data at the time it
is called, not during the next call to SDwritedata.

SDsetcompress is a simplified interface to the HCcreate routine and should be
used instead of HCcreate, unless the user is familiar with working with the
lower-level routines.

The parameter comp_type is the compression type definition and is set to one of
the following:

coMp_CODE_NONE for no compression

comp_cope_rrLEe for run-length encoding (RLE)

comp_copk_skpHUrF for Skipping Huffman

comp_copk_DEFLATE for GZIP compression

comp_cope_szip for Szip compression

The parameter ¢_info is a pointer to a union structure of type comp_info. This
union structure is defined as follows:

February 2010

2-137

The HDF Group

SDsetcompr ess/sfscompr ess

typedef union tag comp_ info

{

struct

{

/* Not used by SDsetcompress */
} Jpeg;

struct

{

/* Not used by SDsetcompress */
} nbit;

struct

{ /* struct to contain info about how to compress size of the

elements when skipping */
intn skp size;
} skphuff;

struct

{ /* struct to contain info about how to compress or decompress
gzip encoded dataset how hard to work when compressing

data*/
intn level;
} deflate;

struct

{ /* struct to contain info about how

szip encoded dataset*/
int32 options_mask;
int32 pixels per block;
int32 pixels per scanline;
int32 bits per pixel;
int32 pixels;

} szip;

} comp_info;

/*
/*
/*
/*
/*

to compress or decompress

IN */
IN */
ouT */
ouT */
ouT */

The skipping size for the Skipping Huffman algorithm must be 1 or greater and
isspecifiedinthefield c_info.skphuff.skp size in Cand in the parameter

comp_prm(1) in Fortran.

The deflate level for the GZIP agorithm is specified in the
c_info.deflate.level field in C and inthe parameter comp_prm(1) in Fortran.
Valid values are integers between 0 and 9 inclusive.

The Szip options mask and the number of pixels per block in a chunked and
Szip-compressed dataset are specified in c_info.szip.options mask and
c_info.szip.pixels per block, respectively.

The options mask can contain either of the following values:
sz _EC_OPTION Mask - Specifiesentropy coding method
Sz NN_OPTION MASK - Specifies nearest neighbor coding method

2-138 February 2010

SDsetcompr ess/sfscompress

HDF Reference M anual

Note

FORTRAN

The following guidelines may be helpful in selecting the encoding method:
o The entropy coding method, the EC option specified by
Sz _EC_OPTION MASK, iS best suited for data that has been processed. The
EC method works best for small numbers.
o The nearest neighbor coding method, the NN option specified by
Sz NN_OPTION MASK, preprocessesthe datathen appliesthe EC method as
above.
Other factors may affect results, but the above criteria provide a good starting
point for optimizing data compression.

The Szip values of the number of pixels per scanline, the number of bitsin a
pixel, and the number of pixelsin an image, are computed by the HDF4 library
and provided to the wuser in ¢ info.szip.pixels per scanline,
c_info.szip.bits_per_pixel,andc_info.szip.pixels,NEDGCUde.

SDsetcompresswill succeed in setting Szip compression for adataset only if the
Szip library is available and configured for encoding, i.e.,, HCget_config_info
must return the flag comp DECODER ENABLED|COMP ENCODER ENABLED IN
compression_config_info.

Regar ding Szip usage and licensing:

See http://www.hdfgroup.org/doc_resource/SzIP/ for information
regarding the use of Szip in HDF products and Szip licensing.

integer sfscompress(sds_id, comp_type, comp_prm)

integer sds_id, comp_type, comp_prm(*)

February 2010

2-139

The HDF Group SDsetdatastr s/sfsdtstr

SDsetdatastr s/sfsdtstr

intn SDsetdatastrs(int32 sds id, char *label, char *unit, char *format, char * coordsys)

sds id IN: Data set identifier returned by SDcreate or SDselect
label IN: Label (predefined attribute)

unit IN: Unit (predefined attribute)

format IN: Format (predefined attribute)

coordsys IN: Coordinate system (predefined attribute)

Purpose Sets the predefined attributes for a data set.

Return value Returns succeep (or o) if successful and a1 (or -1) otherwise.

Description SDsetdatastrs sets the predefined attributes of the data set, identified by
sds id, to the values specified in the parameters label, unit, format and
coordsys. The predefined attributes are label, unit, format, and coordinate
system. If the user does not want a string returned, the corresponding
parameter can be set to nurs in C and an empty string in Fortran.

For more information about predefined attributes, refer to Section 3.10,
"Predefined Attributes" of the HDF User’s Guide.

FORTRAN integer function sfsdtstr(sds_id, label, unit, format, coordsys)

integer sds_id

character* (*) label, unit, format, coordsys

2-140 February 2010

SDsetdimname/sfsdimname

HDF Reference M anual

SDsetdimname/sfsdmname

intn SDsetdimname(int32 dim _id, char *dim_name)

dim_id

dim_name

Purpose
Return value

Description

Note

FORTRAN

IN: Dimension identifier returned by SDgetdimid

IN: Name of the dimension

Assigns a name to a dimension.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDsetdimname sets the name of the dimension identified by the parameter
dim _id to the value specified in the parameter dim_name. Dimensions that are
not explicitly named by the user will have the default name of “fakeDim[x]”
specified by the HDF library, where [x] denotes the dimension index.

If another dimension exists with the same name it is assumed that they refer to
the same dimension object and changes to one will be reflected in the other. If
the dimension with the same name has a different size, an error condition will
result.

The length of the parameter dim_name can be at most 64 characters.

Naming dimensionsis optional but encouraged.

Regar ding naming a dimension the same asan SDS' hame:

Prior to HDF4.2r2, when a dimension was named the same as that of a one-
dimensional SDS, data corruption will occur after certain operations, such as

setting attribute or setting dimension scae. The corrupted data was
unrecoverable. However, this problem has been fixed for future data.

integer function sfsdmname (dim_id, dim_name)

integer dim_id

character* (*) dim name

February 2010

2-141

The HDF Group

SDsetdimscale/sfsdscale

SDsetdimscal e/sfsdscale

intn SDsetdimscale(int32 dim _id, int32 count, int32 data_type, VOIDP data)

dim_id
count
data_type

data

Purpose
Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid
IN: Total number of values along the dimension
IN: Data type of the values along the dimension
IN: Value of each increment along the dimension

Stores the values of adimension.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.
SDsetdimscale stores scale information for the dimension identified by the
parameter dim _id. Note that it is possible to store dimension scale values
without naming the dimension.

For fixed-size arrays, the value of count must be equal to the the dimension
size or the routine will fail.

Note that, due to the existence of the parameter data type, the dimension
scales need not have the same data type as the data set.

Note that if SDsetdimscale is called and SDsetdimname is subsequently

called for the same dimension, SDsetdimscale must be caled again to
reassoci ate the scale with the new name.

integer function sfsdscale(dim id, count, data type, data)

integer dim id, count, data_type

<valid data type> data(*)

2-142

February 2010

SDsetdimstr s/sfsdmstr

HDF Reference M anual

SDsetdimstr s/sfsdmstr

intn SDsetdimstrs(int32 dim_id, char *label, char *unit, char *format)

dim id
|abel
unit

format

Purpose
Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid
IN: Label (predefined attribute)

IN: Unit (predefined attribute)

IN: Format (predefined attribute)

Setsthe predefined attribute of adimension.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

SDsetdimstrs sets the predefined attribute (label, unit, and format) for a
dimension and its scale to the values specified in the parameters label, unit and
format. If a parameter is set to nurL in C and an empty string in Fortran, then
the attribute corresponding to that parameter will not be written. For more
information about predefined attributes, refer to Section 3.10, "Predefined
Attributes' of the HDF User’s Guide.

integer function sfsdmstr(dim_id, label, unit, format)

integer dim_id

character* (*) label, unit, format

February 2010

2-143

The HDF Group

SDsetdimval _comp/sfsdmvc

SDsetdimval_comp/sfsdmvc

intn SDsetdimval_comp(int32 dim_id, intn comp_mode)

dim_id

comp_mode

Purpose

Return value

Description

FORTRAN

IN: Dimension identifier returned by SDgetdimid

IN: Compeatibility mode to be set

Determines whether a dimension will have the old and new representations or
the new representation only.

Returns succeep (or 0) if successful and rar1 (or -1) otherwise.

SDsetdimval_comp sets the compatibility mode specified by the comp_mode
parameter for the dimension identified by the dim id parameter. The two
possible compatibility modes are: “backward-compatible” mode, which
implies that the old and new dimension representations are written to the file,
and “backward-incompatible” mode, which implies that only the new
dimension representation is written to thefile.

Unlimited dimensions are aways backward-compatible, therefore
SDsetdimval_comp takes no action on unlimited dimensions.

As of HDF version 4.1r1, the default mode is backward-incompatible.
Subsequent calls to SDsetdimval_comp will override the settings established
in previous calls to the routine.

The comp_mode parameter can be set to sp_prmvar_sw_comp (or 1), which

specifies backward-compatible mode, or sp_pimvar,_Bw 1ncome (OF o), which
specifies backward-incompatible mode.

integer function sfsdmvc (dim_id, comp_ mode)

integer dim_id, comp mode

2-144

February 2010

SDsetexter nalfile/sfsextf

HDF Reference M anual

SDsetexter nalfile/sfsextf

intn SDsetexternalfile(int32 sds _id, char *filename, int32 offset)

sds id
filename

offset

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
IN: Name of the external file
IN: Number of bytes from the beginning of the external file to where the

datawill be written

Stores data in an external file.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDsetexternalfile allows users to move the actual data values (i.e.,, not
metadata) of a data set, sds id, into the externa data file named by the
parameter filename, and started at the offset specified by the parameter offset.
The metadata remains in the original file. Note that this routine works only
with HDF post-version 3.2 files.

Data can only be moved once for any given data set, and it is the user's
responsibility to make sure the external datafileis kept with the“original” file.

If the data set already exists, its data will be moved to the externa file. Space
occupied by the data in the primary file will not be released. To release the
space in the primary file use the hdfpack command-line utility. If the data set
does not exigt, its datawill be written to the external file during the consequent
callsto SDwritedata.

See the reference manual entries for HXsetcreatedir and HXsetdir for more
information on the options available for accessing external files.

integer function sfsextf(sds_id, file name, offset)

integer sds_id, offset

character* (*) file name

February 2010

2-145

The HDF Group

SDsetfillmode/sfsfimd

SDsetfillmode/sfsfimd

intn SDsetfillmode(int32 sd_id, intn fill_mode)

«d_id

fill_mode

Purpose

Return value

Description

FORTRAN

IN: SD interface identifier returned by SDstart
IN: Fill mode

Sets the current fill mode of afile.

Returns the fill mode value before it was reset if successful and rarrn (or -1)
otherwise.

SDsetfillmode applies the fill mode specified by the parameter fill_mode to all
data sets contained in the file identified by the parameter sd_id.

Possible values of fill_mode are sp r1nn (of 0) and sp woriLL (Or 256).
sp_rr1wnL isthe default mode, and indicates that fill values will be written when
the data set is created. sp_norr1ww indicates that fill values will not be written.

When a data set without unlimited dimensions is created, by default the first
SDwritedata call will fill the entire data set with the default or user-defined fill
value (set by SDsetfillvalue). In data sets with an unlimited dimension , if a
new write operation takes place along the unlimited dimension beyond the last
location of the previous write operation, the array locations between these
written areas will be initialized to the user-defined fill value, or the default fill
value if auser-defined fill value has not been specified.

If it is certain that all data set values will be written before any read operation
takes place, thereis no need to write thefill values. Simply call SDsetfillmode
with fill_mode value set to sp_nor1Lr, which will eliminate al fill value write
operations to the data set. For large data sets, this can improve the speed by
almost 50%.

integer function sfsflmd(sd_id, £ill mode)

integer sd_id, fill mode

2-146

February 2010

SDsetfillvalue/sfsfill/sfscfill

HDF Reference M anual

SDsetfillvalue/sfsfill/sfscfill

intn SDsetfillvalue(int32 sds _id, VOIDP fill_value)

ds id

fill_value

Purpose
Return value

Description

FORTRAN

IN: Data set identifier returned by SDcreate or SDselect
IN: Fill value

Sets thefill value for adata set.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

SDsetfillvalue sets the fill value specified by the fill_value parameter for the
data set identified by the sds_id parameter.

Thefill valueis assumed to have the same data type as the data set.

It is recommended to call SDsetfillvalue before writing data.

integer function sfsfill(sds_id, £fill value)

integer sds_id

<valid numeric data type> fill value

integer function sfscfill(sds_id, fill value)

integer sds_id

character* (*) fill value

February 2010

2-147

The HDF Group

SDsetnbitdataset/sfsnbit

SDsetnbitdataset/sfsnbit

intn SDsetnbitdataset(int32 sds id, intn start_bit, intn bit_len, intn sign_ext, intn fill_one)

sds id
start_bit
bit_len
sign_ext

fill_one

Purpose
Return value

Description

IN: Data set identifier returned by SDcreate or SDselect
IN: Leftmost bit of the field to be written

IN: Length of the bit field to be written

IN: Sign extend specifier

IN: Background bit specifier

Specifies a non-standard bit length for the data set values.
Returns a positive value if successful and ra1r (or -1) otherwise.

SDsetnbitdataset allows the HDF user to specify that the data set identified by
the parameter sds id contains data of a non-standard length defined by the
parameters start_bit and bit_len. Additional information about the non-
standard bit length decoding are specified in the parameters sign_ext and
fill_one.

Any length between 1 and 32 bits can be specified. After SDsetnbitdataset has
been called for the data set array, any read or write operations will involve a
conversion between the new data length of the data set array and the data
length of the read or write buffer.

Bit lengths of all data types are counted from the right of the bit field starting
with 0. In a hit field containing the values 01111011, bits2 and 7 are set to o
and al the other bitsare set to 1.

The start_bit parameter specifies the leftmost position of the variable-length
bit field to be written. For example, in the bit field described in the preceding
paragraph a start_bit parameter set to 4 would correspond to the fourth bit
value of 1 from theright.

The bit_len parameter specifies the number of bits of the variable-length bit
field to be written. This number includes the starting bit and the count proceeds
toward the right end of the bit field - toward the lower-bit numbers. For
example, starting at bit 5 and writing 4 bits of the bit field described in the
preceding paragraph would result in the bit field 1110 being written to the data
set. Thiswould correspond to a start_bit value of s and a bit_len value of 4.

The sign_ext parameter specifies whether to use the leftmost bit of the
variable-length bit field to sign-extend to the leftmost bit of the data set data.
For example, if 9-bit signed integer datais extracted from bits 17-25 and the bit
in position 25 is 1, then when the datais read back from disk, bits 26-31 will be
set to 1. Otherwise bit 25 will be o and bits 26-31 will be set to o. The sign_ext
parameter can be set to True (or 1) or FanLse (Or o) - specify TruE to sign-
extend.

The fill_one specifies whether to fill the “background” bits with the value 1 or
0. This parameter can also be set to TrRUE Or FALSE.

2-148

February 2010

SDsetnbitdataset/sfsnbit

HDF Reference M anual

FORTRAN

The “background” bits of avariable-length data set are the bitsthat fall outside
of the variable-length bit field stored on disk. For example, if five bits of an
unsigned 16-bit integer data set located in bits 5 to 9 are written to disk with
the fill_one parameter set to true (or 1), then when the data is reread into
memory bits 0 to 4 and 10 to 15 would be set to 1. If the same 5-bit data was
written with afill_one value of rarsk (or o), then bits 0to 4 and 10 to 15 would
be set to o.

This bit operation is performed before the sign-extend bit-filling. For example,
using the sign_ext example above, bits 0 to 16 and 26 to 31 will first be set to
the “background” hit value, and then bits 26 to 31 will be set to 1 or o based on
the value of the 25th bit.

integer function sfsnbit(sds_id, start_bit, bit_len, sign_ext,
fill one)

integer sds_id, start bit, bit len, sign ext, fill one

February 2010

2-149

The HDF Group SDsetrange/sfsrange

SDsetrange/sfsrange

intn SDsetrange(int32 sds _id, VOIDP max, VOIDP min)

sds id IN: Data set identifier returned by SDcreate or SDselect
max IN: Maximum value of the range
min IN: Minimum value of the range
Purpose Sets the maximum and minimum range values for a data set.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description SDsetrange sets the maximum and minimum range values of the data set
identified by the parameter sds id with the values of the parameters max and
min. The term “range” is used here to describe the range of numeric values
stored in a data set.

It is assumed that the data type for the maximum and minimum range values
are the same as the data type of the data.

This routine does not compute the maximum and minimum range values, it
only stores the values as given. As aresult, the maximum and minimum range

values may not always reflect the actual maximum and minimum range values
in the data set data.

FORTRAN integer function sfsrange(sds_id, max, min)

integer sds_id

<valid numeric data type> max, min

2-150 February 2010

SDstart/sfstart

HDF Reference M anual

SDstart/sfstart

int32 SDstart(char *filename, int32 access mode)

filename

access_mode

Purpose
Return value

Description

Note

Note

FORTRAN

IN: Name of the HDF file

IN: The file access mode in effect during the current session

Opens an HDF file and initializes an SD interface.
Returns an SD interface identifier if successful and ra1z (or -1) otherwise.

SDstart opens the file with the name specified by the parameter filename, with
the access mode specified by the parameter access mode, and returns an SD
interface identifier (sd_id). Thisroutine must be called for each file before any
other SD calls can be made on that file.

The type of identifier returned by SDstart is currently not the same as the
identifier returned by Hopen. As aresult, the SD interface identifiers (sd_id)
returned by this routine are not understood by other HDF interfaces.

To mix SD API calls and other HDF API calls, use SDstart and Hopen on the
same file. SDstart must precede all SD calls, and Hopen must precede all
other HDF function calls. To terminate access to the file, use SDend to dispose
of the SD interface identifier, sd_id, and Hclose to dispose of thefile identifier,
file_id.

The file identified by the parameter filename can be any one of the following:
an XDR-based netCDF file, “old-style” DFSD file or a“new-style” SD file.

The value of the parameter access mode can be one of the following:

pracc_READ - Open existing file for read-only access. If the file does not exist,
specifying this mode will cause SDstart to return razs (or -1).

pracc_wWrRITE - Open existing file for read and write access. If the file does not
exist, specifying this mode will cause SDstart to return ra1r (Or -1).
pracc_crEATE - Create a new file with read and write access. If the file has
already existed, its contents will be replaced.

Starting from HDF 4.2r2, the maximum number of open files is no longer
limited to 32. It can be up to what the system allowed.

It has been reported that opening/closing file in loopsis very slow; thus, it is

not recommended to perform such operations too many times, particularly,
when datais being added to the file between opening/closing.

integer function sfstart (filename, access_mode)

character* (*) filename

integer access_mode

February 2010

2-151

The HDF Group SDwr itechunk/sfwchnk/sfwechnk

SDwr itechunk/sfwchnk/sfwechnk

intn SDwritechunk(int32 sds id, int32 *origin, VOIDP datap)

sds id IN: Data set identifier returned by SDcreate or SDselect
origin IN: Origin of the chunk to be written

datap IN: Buffer for the chunk datato be written

Purpose Writes a data chunk to a chunked data set.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description SDwritechunk writes the entire chunk of data stored in the buffer datap to the
chunked data set identified by the parameter sds id. Writing starts at the
location specified by the parameter origin. SDwritechunk is used when an
entire chunk of data is to be written. SDwritedata is used when the write
operation is to be done regardless of the chunking scheme used in the data set.

SDwritechunk will return rarn (or -1) when an attempt is made to use it to
write to a non-chunked data set.

The parameter origin specifies the coordinates of the chunk according to the
chunk position in the overall chunk array. Refer to Chapter 3, "Scientific Data
Sets (SD API)" in the HDF User’s Guide, for a description of the organization
of chunksin a data set.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (sfwchnk) and one for character data (sfwcchnk).

Note Regar ding Szip-compr essed data:
SDwritechunk can succeed only when the available Szip library is configured
for encoding/decoding, i.e, when HCget config info returns

COMP_ENCODER ENABLED|COMP_DECODER ENABLED iN compression_config_info.

See the SDgetcompinfo and HCget_config_info entries in this reference
manual for further discussion of compression methods and configuration.

Note Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SzIpP/ for information
regarding the use of Szip in HDF products and Szip licensing.

FORTRAN integer sfwchnk(sds_id, origin, datap)

integer sds_id, origin

<valid numeric data type> datap(*)

integer sfwcchnk(sds_id, origin, datap)

integer sds_id, origin

character* (*) datap(*)

2-152 February 2010

SDwr itedata/sfwdata/sfwcdata

HDF Reference Manual

SDwr itedata/sfwdata/sfwcdata

intn SDwritedata(int32 sds id, int32 start[], int32 stride[], int32 edge{], VOIDP buffer)

sds id
start
stride
edge

buffer

Purpose
Return value

Description

Note

IN: Data set identifier returned by SDcreate or SDselect

IN: Array specifying the starting location of the datato be written

IN: Array specifying the number of values to skip along each dimension

IN: Array specifying the number of values to be written along each
dimension

IN: Buffer for the valuesto be written

Writes a subsample of datato a data set or to a coordinate variable.
Returns succeep (or o) if successful and rarr (or -1) otherwise.

SDwritedata writes the specified subsample of data to the data set or
coordinate variable identified by the parameter sds id. The data is written
from the buffer buffer. The subsampleis defined by the parameters start, stride
and edge.

The array start specifies the starting position from where the subsample will
be written. Valid values of each element in the array start arefrom o to thesize
of the corresponding dimension of the data set - 1. The dimension sizes are
returned by SDgetinfo.

The array edge specifies the number of values to write along each data set
dimension.

The array stride specifies the writing pattern along each dimension. For
example, if one of the elements of the array stride is 1, then every element
along the corresponding dimension of the data set will be written. If one of the
elements of the array stride is 2, then every other element along the
corresponding dimension of the data set will be written, and so on. Specifying
stride value of nurt in the C interface or setting all values of the array stride
to 1 in either interface specifies the contiguous writing of data. If all valuesin
the array stride are set to 0, SDwritedata returns razs (or -1).

When writing data to a chunked data set using SDwritedata, consideration
should be given to be issues presented in the section on chunking in Chapter 3,
"Scientific Data Sets (SD API)" and Chapter 14, "HDF Performance Issues’ in
the HDF User’s Guide.

Note that there are two FORTRAN-77 versions of this routine; sfwdata and
sfwedata. The sfwdata routine writes numeric data and sfwcdata writes
character scientific data.

Regar ding an important difference between the SD and GR interfaces:
The SD and GR interfaces differ in the correspondence between the dimension
order in parameter arrays such as start, stride, edge, and dimsizes and the
dimension order in the data array. See the SDreaddata and GRreadimage
reference manual pages for discussions of the SD and GR approaches,
respectively.

February 2010

2-153

The HDF Group

SDwr itedata/sfwdata/sfwcdata

Note

Note

Note

FORTRAN

When writing applications or tools to manipulate both images and two-
dimensiona SDs, this crucia difference between the interfaces must be taken
into account. While the underlying data is stored in row-major order in both
cases, the APl parameters are not expressed in the same way. Consider the
example of an SD data set and GR image that are stored as identically-shaped
arrays of X columns by Y rows and accessed via the SDreaddata and
GRreadimage functions, respectively. Both functions take the parameters
start, stride, and edge.
o For SDreaddata, those parameters are expressed in (y,x) or
[row, column] order. For example, start [0] iSthe starting point in the
Y dimension and start[1] iS the starting point in the X dimension.
The same ordering holds true for al SD data set manipulation
functions.
o For GRreadimage, those parameters are expressed in (x,y) or
[column, row] Order. For example, start [0] iSthe starting point in the
X dimension and start[1] iS the starting point in the Y dimension.
The same ordering holds true for all GR functions manipulating image
data.

Regarding compressed data sets:

If a data set is compressed, it may be necessary to determine whether the
compression method is available on the current system and configured so that
data can be encoded before being written. The compression method can be
determined through the use of SDgetcompinfo and the configuration of that
method on the current system through HCget_config_info.

Regarding Szip-compressed data:

SDwritedata can succeed only when the available Szip library is configured
for encoding/decoding, 1.e, when HCget config info returns
COMP_ENCODER ENABLED | COMP_DECODER ENABLED in compression_config_info.

Regarding Szip usage and licensing:
See http://www.hdfgroup.org/doc_resource/SzIpP/ for information
regarding the use of Szip in HDF products and Szip licensing.

integer function sfwdata(sds_id, start, stride, edge, buffer)

integer sds_id
integer start(*), stride(*), edge(*)

<valid numeric data type> buffer (*)

integer function sfwcdata(sds_id, start, stride, edge, buffer)

integer sds_id
integer start(*), stride(*), edge(*)

character* (*) buffer (*)

2-154

February 2010

Vaddtagref/vfadtr

HDF Reference M anual

Vaddtagr ef/vfadtr

int32 Vaddtagref(int32 vgroup_id, int32 tag, int32 ref)

vgroup_id
tag
ref

Purpose

Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach
IN: Tag of the object
IN: Reference number of the object

Inserts an object into a vgroup.

Returns the number of objects in the vgroup if successful and ra1r (or -1)
otherwise.

Vaddtagref inserts the object identified by the parameters tag and ref into the
vgroup identified by the parameter vgroup_id.

If an object to be inserted is a data set, duplication of the tag/reference number
pair will be allowed. Otherwise, the tag/reference number pair must be unique
among the elements within the vgroup or the routine will return razz (or -1).

Note that Vaddtagr ef does not verify that the tag and reference number exist.

integer function vfadtr(vgroup id, tag, ref)

integer vgroup_ id, tag, ref

February 2010

2-155

The HDF Group

Vattach/vfatch

Vattach/vfatch

int32 Vattach(int32 file_id, int32 vgroup_ref, char * access)

file_id
vgroup_ref

access

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen
IN: Reference number for the vgroup
IN: Type of access

Initiates access to a new or existing vgroup.

Returns the vgroup identifier (vgroup_id) if successful and ratr (or -1)
otherwise.

Vattach opens a vgroup with access type specified by the parameter accessin
the file identified by the parameter file_id. The vgroup is identified by the
reference number, vgroup_ref.

Vattach returns the vgroup identifier, vgroup_id, for the accessed vgroup. The
vgroup_id is used for al subsequent operations on this vgroup. Once
operations are complete, the vgroup identifier must be disposed of viaacall to
Vdetach. Multiple attaches may be made to the same vgroup simultaneously,
and several vgroup identifiers can be created for the same vgroup. Each
vgroup identifier must be disposed of independently.

The parameter file id is the file identifier of an opened file. The parameter
vgroup_ref specifies which vgroup in the file to attach to. If vgroup_ref is set
to -1, anew vgroup will be created. If vgroup_ref is set to a positive number,
the vgroup with that as a reference number is attached.

Possible values for the parameter access are “r” for read access and “w” for
write access.

integer function vfatch(file_id, vgroup ref, access)

integer file id, vgroup ref

character*l access

2-156

February 2010

Vattrinfo/vfainfo

HDF Reference M anual

Vattrinfo/vfainfo

intn Vattrinfo(int32 vgroup_id, intn attr_index, char *attr_name, int32 *data_type, int32 * count, int32

*size)
vgroup_id IN: Vgroup identifier returned by Vattach
attr_index IN: Index of the attribute
attr_name OUT: Nameof the attribute
data_type OUT: Datatype of the attribute
count OUT: Number of valuesin the attribute
size OUT: Size, in bytes, of the attribute values.
Purpose Retrieves the name, data type, number of values, and value size of an attribute

Return value

Description

FORTRAN

for avgroup.
Returns succeep (or 0) if successful and ra1t (or -1) otherwise.

Vattrinfo retrieves the name, datatype, number of values, and value size of an
attribute identified by its index, attr_index, in the vgroup, vgroup_id. Name,
data type, number of values and size are retrieved into the parameters
attr_name, data_type, count, and size, respectively.

If the attribute’s name, data type, number of values, or value size are not
needed, the corresponding output parameters can be set to NuLL.

The valid value attr_index range from O to the total number of attributes

attached to a vgroup - 1. The number of vgroup attributes can be obtained
using Vnattrs.

integer function vfainfo(vgroup id, attr index, attr name,
data_type, count, size)

integer vgroup_id, attr_index, data_type, count, size

character* (*) attr_name

February 2010

2-157

The HDF Group

Vdelete/vdelete

Vddete/vdeete

int32 Vdelete(int32 file id, int32 vgroup_ref)

file_id
vgroup_ref

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen

IN: V group reference number returned by Vattach

Remove avgroup from afile.
Returns succeep (or 0) if successful and ra1t (or -1) if not successful.

Vdelete removes the vgroup identified by the parameter vgroup_ref from the
file identified by the parameter file id.

This routine will remove the vgroup from the internal data structures and from
thefile.

integer function vdelete(file_ id, vgroup ref)

integer file id, vgroup ref

2-158

February 2010

Vdeletetagr ef/vfdtr

HDF Reference M anual

Vdeletetagref/vidtr

int32 Vdeletetagref (int32 vgroup_id, int32 tag, int32 ref)

vgroup_id
tag
ref

Purpose

Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach
IN: Tag of the object
IN: Reference number of the object

Deletes an object from a vgroup.

Returns succzep (or 0) if successful and ra1r (or -1) if not successful or the
given tag/reference number pair is not found in the vgroup.

Vdeletetagref deletes the object specified by the parameters tag and ref from
the vgroup identified by the parameter vgroup_id. Vingtagref should be used
to check if the tag/reference number pair exists before calling this routine.

If duplicate tag/reference number pairs are found in the vgroup, V deletetagr ef

deletes the first occurrence. Vingtagref should be used to determine if
duplicate tag/reference number pairs exist in the vgroup.

integer function vfdtr(vgroup_id, tag, ref)

integer vgroup_id, tag, ref

February 2010

2-159

The HDF Group Vdetach/vfdtch

Vdetach/vfdtch

int32 Vdetach(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Terminates access to a vgroup.
Return value Returns succeep (or 0) if successful and rarr (or -1) otherwise.

Description Vdetach detaches the currently-attached vgroup identified by vgroup_id and
terminates access to that vgroup.

All space associated with the vgroup, vgroup_id, will be freed. Each attached
vgroup must be detached by calling this routine before the file is closed.
Vdetach aso updates the vgroup information in the HDF file if any changes
occur. The identifier vgroup id should not be used after the vgroup is
detached.

FORTRAN integer function vfdtch(vgroup id)

integer vgroup id

2-160 February 2010

Vend/vfend

HDF Reference M anual

Vend/vfend

intn Vend(int32 file_id)

file id

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen

Terminates access to a vgroup and/or vdata interface.
Returns succeep (or 0) if successful and rarr (or -1) otherwise.

Vend terminates access to the vgroup and/or vdata interfaces initiated by
Vstart and all internal data structures allocated by Vstart.

Vend must be called after al vdata and vgroup operations on thefilefile_id are
completed. Further attempts to use vdata or vgroup routines after calling Vend
will result in ararL (or -1) being returned.

integer function vfend(file_id)

integer file id

February 2010

2-161

The HDF Group Vfind/vfind

Vfind/vfind

int32 Vfind(int32 file_id, char *vgroup_name)

file id IN: File identifier returned by Hopen
vgroup_name IN: Name of the vgroup
Purpose Returns the reference number of a vgroup given its name.

Return value Returns the reference number of the vgroup if successful and o otherwise.

Description Vfind searchesthe file identified by the parameter file_id for a vgroup with the
name specified by the parameter vgroup_name, and returns the corresponding
reference number.

If more than one vgroup has the same name, Vfind will return the reference
number of the first one.

FORTRAN integer function vfind(file id, vgroup_ name)

integer file id

character* (*) vgroup_name

2-162 February 2010

Vfindattr/vffdatt HDF Reference M anual

Vfindattr/vffdatt

intn Vfindattr(int32 vgroup_id, char *attr_name)

vgroup_id IN: Vgroup identifier returned by Vattach
attr_name IN: Name of the attribute
Purpose Returns the index of avgroup attribute given its name.

Return value Returnsthe index of an attribute if successful and ratz (or -1) otherwise.

Description Vfindattr searches the vgroup identified by the parameter vgroup_id for the
attribute with the name specified by the parameter attr_name, and returns the
index of that attribute.

If more than one attribute has the same name, Vfindattr will return the index
of thefirst one.

FORTRAN integer function vffdatt (vgroup_id, attr name)

integer vgroup id

character* (*) attr_name

February 2010 2-163

The HDF Group Vfindclass/vfndcls

Vfindclass/vfndcls

int32 Vfindclass(int32 file_id, char *vgroup _class)

file id IN: File identifier returned by Hopen
vgroup_class IN: Class name of the vgroup
Purpose Returns the reference number of avgroup specified by its class name.

Return value Returns the reference number of the vgroup if successful and o otherwise.

Description Vfindclass searches the file identified by the parameter file id for the vgroup
with the class name specified by the parameter vgroup_class, and returns the
reference number of that vgroup.

If more than one vgroup has the same class name, Vfindclass will return the
reference number of the first one.

FORTRAN integer function vfndcls(file id, vgroup_ class)

integer file id

character* (*) vgroup_ class

2-164 February 2010

Vflocate/vifloc

HDF Reference M anual

Vflocate/vffloc

int32 Vflocate(int32 vgroup_id, char *field_name)

vgroup_id

fidd_name list

Purpose

Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach
IN: List of field names

Locates avdatain avgroup given alist of field names.

Returns the reference number of the vdata if successful and ra1rn (or -1)
otherwise.

Vflocate searches the vgroup identified by the parameter vgroup_id for avdata

that contains all of the fields listed in the parameter field name list. If that
vdatais found, Vflocate will return its reference number.

integer function vffloc(vgroup id, field name)

integer vgroup_id

character* (*) field name

February 2010

2-165

The HDF Group V getattr /vfgnatt/vigcatt

Vgetattr/vfgnatt/vigcatt

intn Vgetattr(int32 vgroup_id, intn attr_index, VOIDP attr_values)

vgroup_id IN: Vgroup identifier returned by Vattach
attr_index IN: Index of the attribute

attr_values OUT: Buffer for the attribute values
Purpose Retrieves the values of avgroup attribute.

Return value Returns succeep (or 0) if successful and ra1t (or -1) otherwise.

Description Vgetattr retrievesthe values of the attribute identified by itsindex, attr_index,
into the buffer attr_values for the vgroup identified by the parameter
vgroup_id.

The valid values of the parameter attr_index range from 0 to the total number
of vgroup attributes - 1. The total humber of attributes can be obtained using
Vnattrs. To determine the amount of memory sufficient to hold the attribute

values, the user can obtain the number of attribute values and the attribute
value size using Vattrinfo.

FORTRAN integer function vfgnatt (vgroup id, attr_ index, attr_values)

integer vgroup id, attr index

<valid numeric data type> attr values

integer function vfgcatt (vgroup id, attr index, attr values)

integer vgroup id, attr index

character* (*) attr_values

2-166 February 2010

Vgetclassivfgcls

HDF Reference M anual

Vgetclassivigcls

int32 Vgetclass(int32 vgroup _id, char *vgroup _class)

vgroup_id

vgroup_class

Purpose
Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach

OUT: Classname of the vgroup

Retrieves the class name of avgroup.
Returns succeep (or 0) if successful and razt (or -1) otherwise.

Vgetclass retrieves the class name of the vgroup identified by the parameter
vgroup_id in the buffer vgroup_class.

The maximum length of the name is defined by venavMELENMAX (or 64).

integer function vfgcls(vgroup id, vgroup_class)

integer vgroup_id

character* (*) vgroup_class

February 2010

2-167

The HDF Group Vgetclassnamelen/

Vgetclassnamelen/

int32 V getclassnamelen(int32 vgroup_id, uint16 *classname_len)

vgroup_id IN: Vgroup identifier returned by Vattach

classname len OUT: Length of the vgroup’s class name

Purpose Retrieves the length of avgroup’s class name.
Return value Returns succeep (or 0) if successful and ra1t (or -1) otherwise.

Description Vgetclassnamelen retrieves the length of a vgroup’s class name into
classname_len. Thevgroup isidentified by the parameter vgroup_id.

FORTRAN Currently unavailable

2-168 February 2010

Vgetid/vfgid

HDF Reference M anual

Vgetid/vfgid

int32 Vgetid(int32 file_id, int32 vgroup_ref)

file_id
vgroup_ref

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen

IN: Reference number of the current vgroup

Returns the reference number of the next vgroup.

Returns the reference number of the next vgroup if successful and ra1t (Or -1)
otherwise.

Vgetid sequentially searches the file identified by the parameter file id and
returns the reference number of the vgroup following the vgroup that has the
reference number specified by the parameter vgroup_ref.

The search is initiated by calling this routine with a vgroup_ref value of -1.

This will return the reference number of the first vgroup in the file. Searching
past the last vgroup in the file will cause VVgetid to return razz (or -1).

integer function vfgid(file id, vgroup_ref)

integer file id, vgroup ref

February 2010

2-169

The HDF Group Vgetname/vignam

Vgetname/vignam

int32 Vgetname(int32 vgroup_id, char *vgroup_name)

vgroup_id IN: Vgroup identifier returned by Vattach

vgroup_name OUT: Name of the vgroup

Purpose Retrieves the name of a vgroup.
Return value Returns succeep (or 0) if successful and ra1t (or -1) otherwise.
Description Vgetname retrieves the name of the vgroup identified by the parameter

vgroup_id into the buffer vgroup_name. The maximum length of the name is
defined by venameELENMAX (OF 64).

FORTRAN integer function vfgnam(vgroup id, vgroup name)

integer vgroup_ id

character* (*) vgroup_name

2-170 February 2010

Vgethamelen/ HDF Reference Manual

Vgetnamelen/

int32 Vgetnamelen(int32 vgroup_id, uint16 *name |en)

vgroup_id IN: Vgroup identifier returned by Vattach
name_len OUT: Length of the vgroup’s name
Purpose Retrieves the length of avgroup’s name.

Return value Returns succeep (or 0) if successful and ra1t (or -1) otherwise.

Description Vgetnamelen retrieves the length of a vgroup’s name into name len. The
vgroup is identified by the parameter vgroup_id into the buffer.

FORTRAN Currently unavailable

February 2010 2-171

The HDF Group

Vgetnext/vfgnxt

Vgetnext/vignxt

int32 Vgetnext(int32 vgroup_id, int32 v_ref)

vgroup_id
v_ref

Purpose

Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach

IN: Reference number of the vgroup or vdata

Gets the reference number of the next member (vgroup or vdata only) of a
vgroup.

Returns the reference number of the vgroup or vdata if successful and razw (or
-1) otherwise.

Vgetnext searches in the vgroup identified by the parameter vgroup_id for the
object following the object specified by its reference number v_ref. Either of
the two objects can be a vgroup or avdata. If v_ref is set to -1, the routine will
return the reference number of the first vgroup or vdata in the vgroup.

Note that this routine only gets a vgroup or a vdata in a vgroup. Vgettagrefs
gets any object in avgroup.

integer function vfgnxt (vgroup id, v_ref)

integer vgroup id, v_ref

2-172

February 2010

Vgettagr ef/vfgttr

HDF Reference M anual

Vgettagref/vigttr

intn Vgettagref(int32 vgroup _id, int32 index, int32 *tag, int32 *ref)

vgroup_id
index

tag

ref

Purpose

Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach
IN: Index of the object in the vgroup
OUT: Tag of the object

OUT: Reference number of the object

Retrieves the tag/reference number pair of an object given its index within a
vgroup.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Vgettagref retrieves the tag/reference number pair of the object specified by
itsindex, index, within the vgroup identified by the parameter vgroup_id. Note
that this routine is different from Vgettagrefs, which retrieves the tag/
reference number pairs of a number of objects.

The valid values of index range from O to the total number of objects in the
vgroup - 1. The total humber of objects in the vgroup can be obtained using
Vinquire.

The tag is stored in the buffer tag and the reference number is stored in the
buffer ref.

integer function vfgttr(vgroup_ id, index, tag, ref)

integer vgroup_id, index

integer tag, ref

February 2010

2-173

The HDF Group Vgettagrefsivigttrs

Vgettagrefsivigttrs

int32 Vgettagrefs(int32 vgroup_id, int32 tag_array[], int32 ref_array[], int32 num_of _pairs)

vgroup_id IN: Vgroup identifier returned by Vattach

tag_array OUT: Array of tags

ref_array OUT: Array of reference numbers

num_of pairs IN: Number of tag/reference number pairs

Purpose Retrieves the tag/reference number pairs of the HDF objects belonging to a
vgroup.

Return value Returns the number of tag/reference number pairs obtained from a vgroup if
successful and ra1r (or -1) otherwise.

Description Vgettagrefs retrieves at most num_of pairs number of tag/reference number
pairs belonging to the vgroup, vgroup_id, and stores them in the buffers
tag_array and ref_array.

The input parameter num_of pairs specifies the maximum number of tag/

reference number pairs to be returned. The size of the arrays, tag_array and
ref_array, must be at least num_of pairs.

FORTRAN integer function vfgttrs(vgroup_id, tag_array, ref_ array,
num_of pairs)

integer vgroup_id, num_of_ pairs

integer tag_array(*), ref array(*)

2-174 February 2010

Vgetver sion/vfgver

HDF Reference M anual

Vgetver sion/vigver

int32 Vgetversion(int32 vgroup_id)

vgroup_id

Purpose
Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach

Gets the version of a vgroup.
Returns the vgroup version number if successful, and rarr (or -1) otherwise.
Vgetversion returns the version number of the vgroup identified by the

parameter vgroup_id. There are three valid version numbers:
VSET OLD_VERSION (Of 2), VSET VERSION (Or 3), and vseT NEw VERSION (Of

4).

VSET _OLD_VERSION iS returned when the vgroup is of a version that
corresponds to an HDF library version before version 3.2.

VSET_VERSION iS returned when the vgroup is of a version that corresponds to
an HDF library version between versions 3.2 and 4.0 release 2.

VSET _NEW_VERSION IS returned when the vgroup is of the version that
corresponds to an HDF library version of version 4.1 release 1 or higher.

integer function vfgver (vgroup_id)

integer vgroup id

February 2010

2-175

The HDF Group Vingtagr ef/vfingtr

Vingtagr ef/vfingtr

intn Vingtagref(int32 vgroup _id, int32 tag, int32 ref)

vgroup_id IN: Vgroup identifier returned by Vattach
tag IN: Tag of the object

ref IN: Reference number of the object
Purpose Checks whether an object belongs to a vgroup.

Return value Returns true (or 1) if the object belongs to the vgroup, and rarse (Or o)
otherwise.

Description Vinqtagref checks if the object identified by its tag, tag, and its reference
number, ref, belongs to the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfingtr (vgroup id, tag, ref)

integer vgroup_ id, tag, ref

2-176 February 2010

Vinquire/vfing

HDF Reference M anual

Vinquire/vfing

intn Vinquire(int32 vgroup_id, int32 *n_entries, char *vgroup_name)

vgroup_id
n_entries

vgroup_name

Purpose
Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach
OUT: Number of entriesin avgroup

OUT: Name of avgroup

Retrieves the number of entriesin avgroup and its name.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Vinquire retrieves the name of and the number of entries in the vgroup
identified by the parameter vgroup _id into the buffer vgroup_name and the
parameter n_entries, respectively.

The maximum length of the vgroup name is defined by venaveLENMAX (OF 64).

integer function vfing(vgroup_id, n_entries, vgroup_name)

integer vgroup_id, n_entries

character* (*) vgroup_ name

February 2010

2-177

The HDF Group Vinsert/vfinsrt

Vinsert/vfinsrt

int32 Vinsert(int32 vgroup_id, int32 v_id)

vgroup_id IN: Vgroup identifier returned by Vattach
v_id IN: Identifier of the vdata or vgroup
Purpose Inserts avdata or vgroup into a vgroup.

Return value Returns the position (index) of the inserted element within the vgroup if
successful and ra1r (or -1) otherwise.

Description Vinsert inserts the vdata or vgroup identified by the parameter v_id into the
vgroup identified by the parameter vgroup _id.

Essentially, Vinsert only inserts a vgroup or vdata. To insert any objectsinto a
vgroup, use Vaddtagr ef.

The returned value, index, is either 0 or a positive value, which indicates the
position of the inserted element in the vgroup.

FORTRAN integer function vfinsrt (vgroup id, v_id)

integer vgroup id, v_id

2-178 February 2010

Visvg/vfisvg HDF Reference Manual

Visvg/vfisvg

intn Visvg(int32 vgroup_id, int32 obj_ref)

vgroup_id IN: Vgroup identifier returned by Vattach

obj_ref IN: Reference number of the object

Purpose Determines whether an element of a vgroup is a vgroup and a member of
another vgroup.

Return value Returns truk (or 1) if the object is avgroup and raLse (or o) otherwise.

Description Visvg determines if the object specified by the reference number, obj_ref, isa
vgroup within the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfisvg(vgroup id, obj_ ref)

integer vgroup id, obj ref

February 2010 2-179

The HDF Group Visvs/vfisvs

Visvs/vfisvs

intn Visvs(int32 vgroup _id, int32 obj_ref)

vgroup_id IN: Vgroup identifier returned by Vattach
obj_ref IN: Reference number of the object
Purpose Determines whether a data object is a vdata within a vgroup.

Return value Returns True (or 1) if the object isavdataand ravLse (or o) otherwise.

Description Visvs determines if the object specified by the reference number, obj_ref, isa
vdata within the vgroup identified by the parameter vgroup_id.

FORTRAN integer function vfisvs(vgroup id, obj_ ref)

integer vgroup id, obj ref

2-180 February 2010

Vlone/vflone

HDF Reference M anual

Vlonelvflone

int32 Vlone(int32 file id, int32 ref_array[], int32 max_refs)

file_id
ref_array

max_refs

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen
OUT: Array of reference numbers

IN: Maximum number of lone vgroups to be retrieved

Retrieves the reference numbers of lone vgroups, i.e., vgroups that are at the
top of the grouping hierarchy, in afile.

Returns the total number of lone vgroups if successful and ratr (or -1)
otherwise.

Vlone retrieves the reference numbers of lone vgroups in the file identified by
the parameter file id. Although Vlone returns the total number of lone
vgroups in the file, only at most max_refs reference numbers are retrieved and
stored in the buffer ref_array. The array must have at least max_refs elements.

An array size of 65,000 integers for ref_array is more than adequate if the user
chooses to declare the array statically. However, the preferred method is to
dynamically allocate memory instead; first call VIone with a value of o for
max_refs, and then use the returned value to allocate memory for ref_array
before calling Vlone again.

integer function vflone(file id, ref array, max refs)

integer file id, ref array(*), max refs

February 2010

2-181

The HDF Group Vnattr s/vfnatts

Vnattrs/vfnatts

intn Vnattrs(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of attributes assigned to a vgroup.

Return value Returns the total number of attributes assigned to the specified vgroups if
successful and ra1r (or -1) otherwise.

Description Vnattrs gets the number of attributes assigned to the vgroup identified by the
parameter vgroup_id.

FORTRAN integer function vfnatts (vgroup_ id)

integer vgroup_id

2-182 February 2010

Vnrefsivnrefs

HDF Reference M anual

Vnrefs/vnrefs

int32 Vnrefs(int32 vgroup_id, int32 tag_type)

vgroup_id

tag_type

Purpose
Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach
IN: Type of the tag

Returns the number of tags of a given tag type in a vgroup.
Returns O or the total number of tagsif successful and razw (or -1) otherwise.

Vnrefs returns O or the number of tags having the type specified by the
parameter tag_type in the vgroup identified by the parameter vgroup_id.

See Appendix A, Reserved HDF Tags, in the HDF User’'s Guide, for a
discussion of tag types.

integer function vnrefs(vgroup id, tag_type)

integer vgroup id, tag_type

February 2010

2-183

The HDF Group Vntagrefsivintr

Vntagrefs/vintr
int32 Vntagrefs(int32 vgroup_id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the number of objectsin avgroup.

Return value Returns o or a positive number representing the number of HDF objects linked
to the vgroup if successful or ra1r (or -1) otherwise.

Description Vntagrefs returns the number of objects in a vgroup identified by the
parameter vgroup_id.

Vntagrefsis used together with V gettagrefs, or with Vgettagref to look at the
data objects linked to a given vgroup.

FORTRAN integer function vfntr(vgroup id)

integer vgroup_id

2-184 February 2010

V setattr /vfsnatt/viscatt

HDF Reference Manual

Vsetattr /vfsnatt/vfscatt

intn Vsetattr(int32 vgroup_id, char *attr_name, int32 data_type, int32 count, VOIDP values)

vgroup_id IN: Vgroup identifier returned by Vattach

attr_name IN: Name of the attribute

data_type IN: Data type of the attribute

count IN: Number of values the attribute contains

values IN: Buffer containing the attribute values

Purpose Attaches an attribute to a vgroup.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description Vsetattr attaches an attribute to the vgroup identified by the parameter

vgroup_id. The attribute name is specified by the parameter attr_name and the
attribute data type is specified by the parameter data_type. The values of the
attribute are specified by the parameter values, and the number of valuesin the
attribute is specified by the parameter count. Refer to Table 1A in Section | of
this manual for alisting of all valid data types.
If the attribute already exists, the new values will replace the current ones,
provided the data type and the number of attribute values have not been
changed. If either the data type or the order have been changed, Vsetattr will
return ratL (Or -1).

FORTRAN integer vfsnatt (vgroup id, attr name, data type, count, values)
integer vgroup id, data_type, count
<valid numeric data type> values (*)
character* (*) attr_name
integer vfscatt (vgroup_ id, attr name, data type, count, values)
integer vgroup id, data_type, count
character* (*) attr name, values(*)

February 2010 2-185

The HDF Group Vsetclass/vfscls

Vsetclass/vfscls

int32 Vsetclass(int32 vgroup _id, char *vgroup_class)

vgroup_id IN: Vgroup identifier returned by Vattach
vgroup_class IN: Class name of avgroup
Purpose Sets the class name of avgroup.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description Vsetclass sets the class name specified by the parameter vgroup_class to the
vgroup identified by the parameter vgroup_id.

A vgroup initialy has a class name of nuLL. The class name may be set more
than once. Class names, like vgroup names, can be of any character strings.
They exist solely as meaningful labels for user applications.

The class nameis limited to vsnameLENMAX (OF 64) Characters.

FORTRAN integer function vfscls(vgroup id, vgroup class)

integer vgroup id

character* (*) vgroup_ class

2-186 February 2010

Vsetname/vfsnam

HDF Reference M anual

Vsetname/vfsnam

int32 Vsetname(int32 vgroup_id, char *vgroup_name)

vgroup_id

vgroup_name

Purpose
Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach

IN: Name of avgroup

Sets the name of avgroup.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Vsetname sets the name specified by the parameter vgroup_name for the
vgroup identified by the parameter vgroup_id.

A vgroup initialy has a name of ~uLw, and may be renamed more than once
during the scope of the vgroup identifier (vgroup_id). Note that the routine
does not check for uniqueness of vgroup names.

Vgroup names are optional, but recommended. They serve as meaningful

labels for user applications. If used, they should be unique. The name length is
limited to vsnaMeLENMAX (OF 64) Characters.

integer function vfsnam(vgroup id, vgroup_name)

integer vgroup_id

character* (*) vgroup_ name

February 2010

2-187

The HDF Group Vstart/vfstart

Vstart/vistart

intn Vstart(int32 file_id)

file id IN: File identifier returned by Hopen

Purpose Initializes the vdata and/or vgroup interface.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Vstart initializes the vdata and/or vgroup interfaces for the file identified by
the parameter file id.

Vstart must be called before any vdata or vgroup operation is attempted on an
HDF file. Vstart must be called once for each file involved in the operation.

FORTRAN integer function vfstart(file id)

integer file id

2-188 February 2010

VHmakegroup/vhfmkgp

HDF Reference Manual

VHmakegroup/vhfmkgp

int32 VHmakegroup(int32 file id, int32 tag_array[], int32 ref_array[], int32 n_objects, char

file_id
tag_array
ref_array
n_objects
vgroup_name

vgroup_class

Purpose

Return value

Description

FORTRAN

*vgroup_name, char *vgroup_class)

IN: File identifier returned by Hopen
IN: Array of tags

IN: Array of reference numbers

IN: Number of data objects to be stored
IN: Name of the vgroup

IN: Class of the vgroup

Creates avgroup.

Returns the reference number of the newly-created vgroup if successful, FaTw
(or -1) otherwise.

VHmakegroup creates a vgroup with the name specified by the parameter
vgroup_name and the class name specified by the parameter vgroup_class in
the file identified by the parameter file id. The routine inserts n_objects
objects into the vgroup. The tag and reference numbers of the objects to be
inserted are specified in the arraystag_array and ref_array.

Creating empty vgroups with VHmakegroup is allowed. VHmakegroup does
not check if the tag/reference number pair isvalid, or if the corresponding data
object exists. However, all of the tag/reference number pairs must be unique.

Vstart must precede any calls to VHmakegroup. It is not necessary, however,
to call Vattach or Vdetach in conjunction with VHmakegroup.

The elements in the arrays tag_array and ref_array are the matching tag/
reference number pairs of the objects to be inserted, that means tag_array[o]
and ref_array[o] refer to one data object, and tag_array[1] and ref_array[1] to
another, etc.

integer function vhfmkgp (file id, tag array, ref array, n_objects,
vgroup_name, vgroup_class)

integer file id, n_objects
character* (*) vgroup_ name, vgroup_class

integer tag_array(*), ref array(*)

February 2010

2-189

The HDF Group VQueryref/vqref

VQueryref/vgref
int32 VQueryref(int32 vgroup _id)

vgroup_id IN: Vgroup identifier returned by Vattach

Purpose Returns the reference number of a vgroup.
Return value Returns the reference number if successful, and a1z (or -1) otherwise.

Description VQueryref returns the reference number of the vgroup identified by the
parameter vgroup_id.

FORTRAN integer function vgref (vgroup id)

integer vgroup_ id

2-190 February 2010

VQuerytag/vqgtag

HDF Reference M anual

VQuerytag/vgtag

int32 VQuerytag(int32 vgroup_id)

vgroup_id

Purpose
Return value

Description

FORTRAN

IN: Vgroup identifier returned by Vattach

Returns the tag of a vgroup.
Returnsthetag if successful, and rart (or -1) otherwise.

VQuerytag returns the tag of the vgroup identified by the parameter
vgroup_id.

integer function vgtag(vgroup_ id)

integer vgroup id

February 2010

2-191

The HDF Group VQuerytag/vgtag

2-192 February 2010

VFfieldesize/vifesiz

HDF Reference M anual

VFfieldesizelvffesiz

int32 VFfieldesize(int32 vdata,_id, int32 field_index)

vdata,id
field_index

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: Vdatafield index

Returns the size, as stored on disk, of avdatafield.
Returnsthe vdata field size if successful and ra1r (or -1) otherwise.

VFfieldesize returns the size, as stored on disk, of a vdata field identified by
the parameter field_index in the vdataidentified by the parameter vdata_id.

The value of the parameter field index ranges from 0O to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

integer function vffesiz(vdata_ id, field index)

integer vdata_id, field index

February 2010

2-193

The HDF Group VFfieldisize/vffisiz

VFfieldisize/vffisiz

int32 VFfieldisize(int32 vdata_id, int32 field_index)

vdata id IN: Vdataidentifier returned by V Sattach
field_index IN: Vdatafield index
Purpose Returnsthe size, as stored in memory, of avdatafield.

Return value Returnsthe vdata field size if successful and ra1r (or -1) otherwise.

Description VFfieldisize returnsthe size, as stored in memory, of avdatafield identified by
the parameter field_index in the vdataidentified by the parameter vdata_id.

The value of the parameter field index ranges from 0O to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffisiz(vdata id, field index)

integer vdata_id, field index

2-194 February 2010

VFfieldname/vffname HDF Reference M anual

VFfieldname/vffname

char *VFfieldname(int32 vdata_id, int32 field_index)

vdata id IN: Vdata identifier returned by V Sattach
field_index IN: Vdatafield index
Purpose Returns the name of avdatafield.

Return value Returns a pointer to the vdata field name if successful and nurt otherwise. The
FORTRAN-77 version of thisroutine, vffname, returns succeep (Or 0) Or FAIL
(or -1).

Description VFfieldname returns the name of the vdata field identified by the parameter
field_index in the vdataidentified by the parameter vdata_id.

The value of the parameter field index ranges from 0O to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

The FORTRAN-77 version of this routine, vffname, returns the field name in
the parameter fname.

FORTRAN integer function vffname (vdata id, field index, fname)

integer vdata_id, field index

character* (*) fname

February 2010 2-195

The HDF Group V Ffieldorder/vifordr

VFfieldorder/vffordr

int32 VFfieldorder(int32 vdata id, int32 field_index)

vdata id IN: Vdataidentifier returned by V Sattach
field_index IN: Vdatafield index
Purpose Returns the order of avdata field.

Return value Returns the order of the field if successful and ra1r (or -1) otherwise.

Description VFfieldorder returns the order of the vdata field identified by its index,
field_index, in the vdata identified by the parameter vdata _id.

The value of the parameter field index ranges from O to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

FORTRAN integer function vffordr(vdata id, field index)

integer vdata_id, field index

2-196 February 2010

VFfieldtypelvfftype

HDF Reference M anual

VFfieldtypelvfftype

int32 VFfieldtype(int32 vdata,_id, int32 field_index)

vdata,id
field_index

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: Vdatafield index

Returns the data type of avdatafield.
Returns the data type if successful and razr (or -1) otherwise.

VFfieldtype returns the data type of the vdata field identified by its index,
field_index, in the vdata identified by the parameter vdata _id.

The value of the parameter field index ranges from 0O to the total number of
fields in the vdata - 1. The number of vdata fields is returned by VFnfields
function.

integer function vfftype(vdata id, field index)

integer vdata_id, field index

February 2010

2-197

The HDF Group VFnfieds/vinflds

VEnfieds/ivinflds

int32 VFnfields(int32 vdata_id)

vdata id IN: Vdataidentifier returned by V Sattach

Purpose Returns the total number of fieldsin avdata
Return value Returns the total number of fields if successful and rarrw (or -1) otherwise.

Description VFnfields returns the total number of fields in the vdata identified by the
parameter vdata_id.

FORTRAN integer function vfnflds(vdata_ id)

integer vdata_id

2-198 February 2010

V SQuer ycount/vsgfnelt HDF Reference Manual

V SQuer ycount/vsgfnelt

intn V SQuerycount(int32 vdata id, int32 *n_records)

vdata id IN: Vdata accessidentifier returned by V Sattach
n_records OUT: Number of recordsin the vdata
Purpose Retrieves the number of recordsin avdata.

Return value Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

Description VSQuerycount retrieves the number of records in the vdata identified by
vdata_id in the parameter n_records.

FORTRAN integer function vsgfnelt (vdata_id, n_records)

integer vdata_id, n_records

February 2010 2-199

The HDF Group VSQueryfieldsivsgfflds

V SQueryfieds/ivsgfflds
intn V SQueryfields(int32 vdata id, char *field_name list)

vdata id IN: Vdata accessidentifier returned by V Sattach
fidd name list OUT: List of field names

Purpose Retrieves the names of the fieldsin a vdata.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description V SQuer yfields retrieves the names of the fields in the vdata identified by the
parameter vdata_id into the parameter field_name list.

The parameter field_name list is a comma-separated list of the fields in the
vdata. (i.e., “PX,PY,PZ" in C and ' PX,PY,PZ’ in Fortran).

FORTRAN integer function vsgfflds(vdata id, field name list)

integer vdata_id

character* (*) field name list

2-200 February 2010

V SQueryinterlace/vsgfintr

HDF Reference M anual

V SQueryinterlace/vsgfintr

intn V SQueryinterlace(int32 vdata id, int32 *interlace_mode)

vdata,id

interlace_mode

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach

OUT: Interlace mode

Retrieves the interlace mode of the vdata.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

V SQueryinterlace retrieves the interlace mode of the vdata identified by the
parameter vdata_id into the parameter interlace_mode.

Valid values for interlace_mode are rFuLL_1NTERLACE (OF 0) @and NO_INTERLACE
(or 1).

integer function vsqgfintr(vdata_id, interlace_mode)

integer vdata_id, interlace mode

February 2010

2-201

The HDF Group V SQueryname/vsgfname

V SQueryname/vsgfname

intn V SQueryname(int32 vdata_id, char *vdata_name)

vdata id IN: Vdataidentifier returned by V Sattach
vdata_name OUT: Nameof the vdata
Purpose Retrieves the name of avdata.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description VSQueryname retrieves the name of the vdata identified by the parameter
vdata_id into the buffer vdata _name.

The buffer vdata name should be set to at least vsnameLEnMAx bytes.
vsnaMeLENMAX 1S defined by the HDF library.

FORTRAN integer function vsqgfname (vdata id, vdata_name)

integer vdata_id

character* (*) vdata name

2-202 February 2010

V SQuer yref/vsgr ef

HDF Reference M anual

V SQueryref/vsgref

int32 V SQueryref(int32 vdata_id)

vdata,id

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach

Returns the reference number of avdata

Returns the reference number of the vdata if successful and rarn (or -1)
otherwise.

VSQueryref returns the reference number of the vdata identified by the
parameter vdata_id.

integer function vsqgref (vdata_id)

integer vdata_id

February 2010

2-203

The HDF Group V SQuer ytag/vsgtag

V SQuer ytag/vsgtag
int32 V SQuerytag(int32 vdata _id)

vdata id IN: Vdataidentifier returned by V Sattach

Purpose Returns the tag of the specified vdata.
Return value Returns the tag of the vdata if successful and rarr (or -1) otherwise.

Description Returns the tag of the vdata identified by the parameter vdata_id.

FORTRAN integer function vsqgtag(vdata_ id)

integer vdata_id

2-204 February 2010

V SQuer yvsizelvsgfvsiz HDF Reference Manual

V SQueryvsizelvsgfvsiz

intn VSQueryvsize(int32 vdata_id, int32 *vdata_size)

vdata id IN: Vdataidentifier returned by V Sattach
vdata_size OUT: Sizeof the vdatarecord
Purpose Retrieves the size of arecord in avdata.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description VSQueryvsize retrieves the size, in bytes, of arecord in the vdataidentified by
the parameter vdata_id into the parameter vdata_size. The returned size value
is machine dependent.

FORTRAN integer function vsqgfvsiz(vdata id, vdata_size)

integer vdata_id, vdata_size

February 2010 2-205

The HDF Group VSQueryvsizelvsgfvsiz

2-206 February 2010

VHstor edata/vhfsd/vhfscd

HDF Reference M anual

VHstoredata/vhfsd/vhfscd

int32 VHstoredata(int32 file_id, char *fieldname, uint8 buf[], int32 n_records, int32 data_type, char

file_id
fieldname
buf
n_records
data_type
vdata_name

vdata_class

Purpose

Return value

Description

FORTRAN

*vdata_name, char *vdata_class)

IN: File identifier returned by Hopen

IN: Field name for the new vdata

IN: Buffer containing the records to be stored
IN: Number of records to be stored

IN: Type of datato be stored

IN: Name of the vdatato be created

IN Class of the vdata to be created

Creates and writes to asingle-field vdata.

Returns reference number of the newly-created vdata if successful, and ra1L
(or -1) otherwise.

VHstoredata creates a single-field vdata in the file, file id, and stores data
from the buffer buf in it. Vdata name, class name and data type are specified by
the parameters vdata_name, vdata_class, and data_type, respectively. Number
of records in a vdata is specified by the parameter n_records. Field name is
specified by the parameter fieldname.

Vstart must precede VHstoredata. It is not necessary, however, to call
V Sattach or V Sdetach in conjunction with VHstoredata.

This routine provides a high-level method for creating single-order, single-
field vdatas.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (vhfsd) and the other for character data (vhfsdc).

integer function vhfsd(file id, fieldname, buf, n records,
data_type, vdata name, vdata class)

integer file id, n records, data_type
character* (*) vdata_name, vdata_class, fieldname

<valid numeric data type> buf (*)

integer function vhfscd(file id, fieldname, buf, n records,
data_type, vdata_name, vdata_class)

integer file id, n_records, data_type

February 2010

2-207

The HDF Group VHstoredata/vhfsd/vhfscd

character* (*) vdata_name, vdata_class, fieldname

character* (*) buf

2-208 February 2010

VHstor edatam/vhfsdm/vhfscdm HDF Reference M anual

V Hstoredatam/vhfsdm/vhfscdm

int32 VHstoredatam(int32 file_id, char *fieldname, uint8 buf[], int32 n_records, int32 data_type, char
*vdata_name, char *vdata_class, int32 order)

file_id IN: File identifier returned by Hopen
fieldname IN: Field name

buf IN: Buffer containing the records to be stored
n_records IN: Number of records to be stored

data_type IN: Type of datato be stored

vdata_name IN: Name of the vdata to be created
vdata_class IN: Class of the vdata to be created

order IN: Field order

Purpose Creates and writes to a multi-order, single-field vdata.

Return value Returns the reference number of the newly created vdata if successful, and
FarL (Or -1) otherwise.

Description VHstoredatam creates a vdata with the name specified by the parameter
vdata_name and a class name specified by the parameter vdata_classin thefile
identified by the parameter file id. The data type of the vdata is specified by
the parameter data_type. The vdata contains one field with the name specified
by the parameter fieldname. The order of the field, order, indicates the number
of vdata values stored per field. The vdata contains the number of records
specified by the parameter n_records. The buf parameter should contain
n_records records that will be stored in the vdata.

Vstart must precede VHstoredatam. It is not necessary, however, to call
V Sattach or V Sdetach in conjunction with VHstoredatam.

This routine provides a high-level method for creating multi-order, single-field
vdatas.

Note that there are two FORTRAN-77 versions of this routine; one for numeric
data (vhfsdm) and the other for character data (vhfscdm).

FORTRAN integer function vhfsdm(file id, fieldname, buf, n records,

integer file id, n_records, data_type, order
character* (*) vdata_name, vdata_class, fieldname

<valid numeric data types> buf (*)

integer function vhfscdm(file_id, fieldname, buf, n_records,
data_type, vdata_name, vdata_ class, order)

February 2010 2-209

The HDF Group VHstoredatam/vhfsdm/vhfscdm

integer file id, n_records, data_type, order
character* (*) vdata_name, vdata_class, fieldname

character* (*) buf

2-210 February 2010

V Sappendable/vsapp (Obsolete) HDF Reference Manual

V Sappendable/vsapp (Obsolete)

int32 V Sappendabl e(int32 vdata _id, int32 block size)

vdata id IN: Vdataidentifier returned by V Sattach
block size IN: Standard block size of appended data
Purpose Makes it possible to append to a vdata.

Return value Retrieves succeep (or o) if successful and ra1r (or -1) otherwise.

Description The HDF library makes al vdatas appendable upon creation. Therefore, this
routine has been made obsol ete.

FORTRAN integer function vsapp (vdata_id, block_size)

integer vdata id, block_size

February 2010 2-211

The HDF Group V Sattach/vsfatch

V Sattach/vsfatch

int32 V Sattach(int32 file id, int32 vdata_ref, char *access)

file id IN: File identifier returned by Hopen
vdata_ref IN: Reference number of the vdata

access IN: Access mode

Purpose Attaches to an existing vdata or creates a new vdata.

Return value Returns a vdataidentifier if successful and ra1r (or -1) otherwise.

Description V Sattach attaches to the vdata identified by the reference number, vdata ref,
in the file identified by the parameter file id. Access to the vdata is specified
by the parameter access. V Sattach returns an identifier to the vdata, through
which all further operations on that vdata are carried out.

An existing vdata may be multiply-attached for reads. Only one attach with
write access to avdatais allowed.

The default interlace mode for anew vdatais Furr_1nTerRLACE (OF 0). This may
be changed using V Ssetinterlace.

The value of the parameter vdata ref may be -1. Thisis used to create a new
vdata

Valid values for access are “ " for read access and “w” for write access.

If access is “r”, then vdata ref must be the valid reference number of an
existing vdata returned from any of the vdata and vgroup search routines (e.g.,
Vgetnext or VSgetid). It is an error to attach to a vdata with a vdata_ref of -1
with “r" access.

If access is “w”, then vdata ref must be the valid reference number of an
existing vdata or -1. An existing vdatais generally attached with “w” access to
replace part of its data, or to append new datato it.

FORTRAN integer function vsfatch(file id, vdata_ref, access)

integer file id, vdata_ref

character*1l access

2-212 February 2010

V Sattrinfo/vsfainf

HDF Reference M anual

V Sattrinfo/vsfainf

intn V Sattrinfo(int32 vdata_id, int32 field index, intn attr_index, char *attr_name, int32 *data_type,
int32 *count, int32 *size)

vdata_id
field_index
attr_index
attr_name
data_type
count

size

Purpose
Return value

Description

FORTRAN

IN:
IN:
IN:

OUT:
OUT:
OUT:
OUT:

Vdataidentifier returned by V Sattach
Index of thefield

Index of the attribute

Name of the attribute

Data type of the attribute

Attribute value count

Size of the attribute

Retrieves attribute information of a vdata or avdata field.

Returns succeep (or 0) if successful and rarr (or -1) otherwise.

V Sattrinfo gets information on the attribute attached to the vdata, vdata_id, or
tothe vdatafield. Vdatafield is specified by itsindex, field_index. Attribute is
specified by its index, attr_index. The attribute name is returned into the
parameter attr_name, the data type is returned into the parameter data type,
the number of values of the attribute is returned into the parameter count, and
the size of the attribute is returned into the parameter size.

The parameter field_index in VSattrinfo is the same as the parameter
field_index in V Ssetattr. It can be set to either an integer field index for the
vdatafield attribute, or _upr_voata (Or -1) to specify the vdata attribute.

In C the values of the parameters attr_name, data_type, count and size can be
set to nuLL if the information returned by these parameters is not needed.

integer function vsfainf (vdata_id,

integer vdata_id,

field index, attr_ index,

attr_name, data_type, count, size)

character* (*) attr_name

integer data_type, count, size

field index, attr_index

February 2010

2-213

The HDF Group V Sdelete/vsfdlte

VSdeletelvstdite

int32 VSdelete(int32 file_id, int32 vdata_ref)

file id IN: File identifier returned by Hopen
vdata_ref IN: Vdata reference number returned by V Sattach
Purpose Remove avdatafrom afile.

Return value Returns succeep (or 0) if successful and ra1t (or -1) if not successful.

Description V Sdelete removes the vdata identified by the parameter vdata_ref from thefile
identified by the parameter file id.

FORTRAN integer function vsfdlte(file id, vdata_ref)

integer file id, vdata_ref

2-214 February 2010

V Sdetach/vsfdtch

HDF Reference M anual

V Sdetach/vsfdtch

int32 V Sdetach(int32 vdata id)

vdata,id

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach

Detaches from the current vdata, terminating further access to that vdata.
Returns succeep (or 0) if successful and rarr (or -1) otherwise.

VSdetach detaches from the vdata identified by the parameter vdata_id and
updates the vdata information in the file if there are any changes. All memory
used for that vdata is freed.

The vdata_id identifier should not be used after that vdatais detached.

integer function vsfdtch(vdata_id)

integer vdata_id

February 2010

2-215

The HDF Group V Selts/vsfelts

VSdtg/vsfelts

int32 VSeltg(int32 vdata id)

vdata id IN: Vdataidentifier returned by V Sattach

Purpose Determines the number of recordsin avdata

Return value Returns the number of records in the vdata if successful and rarr (or -1)
otherwise.

Description V Selts returns the number of records in the vdata identified by vdata id.

FORTRAN integer function vsfelts(vdata id)

integer vdata_id

2-216 February 2010

V Sfdefine/vsffdef

HDF Reference M anual

V Sfdefine/vsffdef

intn V Sfdefing(int32 vdata id, char *fieldname, int32 data_type, int32 order)

vdata_id
fieldname
data_type

order

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: Name of the field to be defined

IN: Data type of the field values

IN: Order of the new field

Defines anew field for in avdata.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

V Sfdefine defines a field with the name specified by the parameter fieldname,
of the data type specified by the parameter data_type, of the order specified by
the parameter order, and within the vdata identified by the parameter vdata id.

VSfdefine is only used to define fields in a new vdata; it does not set the
format of avdata. Note that defining afield using V Sfdefine does not prepare
the storage format of the vdata. Once the fields have been defined, the routine
V Ssetfields must be used to set the format. V Sfdefine may only be used with a
new empty vdata. Once there is data in a vdata, definitions of vdata fields may
not be modified or deleted.

There are certain field names the HDF library recognizes as predefined. A list
of these predefined field types can be found in the HDF User’s Guide.

A field is defined by its name (fieldname), its type (data_type) and its order
(order). A fieldname is any sequence of characters. By convention, fieldnames
are usually a mnemonic, e.g. “PRESSURE". The type of a field specifies
whether a field is float, integer, etc. Thus, data type may be one of the data
typeslisted in Table 1A in Section | of this manual.

The order of a field is the number of components in that field. A field
containing the value of a simple variable, such atime or pressure, would have
an order of 1. Compound variables have an order greater than 1. For example, a
field containing the values associated with a variable for velocity in three
dimensions would have an order of 3.

integer function vsffdef (vdata id, fieldname, data_type, order)

integer vdata_id, data_type, order

character* (*) fieldname

February 2010

2-217

The HDF Group V Sfexist/vsfex

V Sfexist/vsfex

intn V Sfexist(int32 vdata_id, char *field_name _list)

vdata id IN: Vdataidentifier returned by V Sattach
fidd name list IN: List of field names
Purpose Checksto seeif certain fields exist in the current vdata.

Return value Returnsavalue of 1if all field(s) exist and ra1r (or -1) otherwise.

Description VSfexist checks if al fields with the names specified in the parameter
field_name_list exist in the vdata identified by the parameter vdata_id.

The parameter field_name list isastring of comma-separated fieldnames (e.g.,
“PX,PY,PZ” in C and ' PX,PY,PZ’ in Fortran).

FORTRAN integer function vsfex(vdata_id, field name list)

integer vdata_id

character* (*) field name list

2-218 February 2010

VSfind/vsffnd

HDF Reference M anual

V Sfind/vsffnd

int32 VSfind(int32 file_id, char *vdata_name)

file id

vdata_name

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen

IN: Name of the vdata

Returns the reference number of avdata, given its name.

Returns the vdata reference number if successful and o if the vdatais not found
Or an error occurs.

V Sfind returns the reference number of the vdata with the name specified by
the parameter vdata_name in the file specified by the parameter file id. If there

is more than one vdata with the same name, VSfind will only find the
reference number of the first vdatain the file with that name.

integer function vsffnd(file id, vdata_name)

integer file id

character* (*) vdata name

February 2010

2-219

The HDF Group V Sfindattr /vsffdat

V Sfindattr /vsffdat

intn V Sfindattr(int32 vdata_id, int32 field_index, char *attr_name)

vdata id IN: Vdataidentifier returned by V Sattach
field_index IN: Field index

attr_name IN: Attribute name

Purpose Returns the index of an attribute of avdata or vdatafield.

Return value Returnsthe index of the attribute if successful and ra1r (or -1) otherwise.

Description VSfindattr returns the index of the attribute with the name specified by the
parameter attr_name in the vdataidentified by the parameter vdata_id.

To return the index of the attribute attached to the vdata , set the value of the
parameter field index to upr_voata (or -1). To return the index of the
attribute of afield in the vdata, set the value of the parameter field_index to the
field index. Vaid values of field_index range from 0 to the total number of the
vdatafields - 1. The number of the vdatafieldsisreturned by VFnfields.

FORTRAN integer function vsffdat (vdata id, field index, attr name)

integer vdata_id, field index

character* (*) attr_name

2-220 February 2010

V Sfindclass/vffcls HDF Reference M anual

V Sfindclass/vffcls

int32 V Sfindclass(int32 file_id, char *vdata_class)

file id IN: File identifier returned by Hopen
vdata class IN: Class of the vdata
Purpose Returns the reference number of the first vdata with a given vdata class name

Return value Returns the reference number of the vdataif successful and o if the vdatais not
found or an error occurs.

Description VSfindclass returns the reference number of the vdata with the class name
specified by the parameter vdata _class in the file identified by the parameter
file_id.

FORTRAN integer function vffcls(vdata_id, vdata_class)

integer vdata_id

character* (*) vdata_class

February 2010 2-221

The HDF Group V Sfindex/vsffidx

V Sfindex/vsffidx

intn V Sfindex(int32 vdata _id, char *fieldname, int32 *field_index)

vdata id IN: Vdataidentifier returned by V Sattach
fieldname IN: Name of the field

field_index OUT: Index of the field

Purpose Retrieves the index of afield within a vdata.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description VSfindex retrieves theindex, field_index, of the field with a name specified by
the parameter fieldname, within the vdataidentified by the parameter vdata _id.

FORTRAN integer function vsffidx(vdata id, fieldname, field index)

integer vdata_id, field index

character* (*) fieldname

2-222 February 2010

V Sfnattr s/vsffnas

HDF Reference M anual

V Sfnattr sivsffnas

int32 V Sfnattrs (int32 vdata _id, int32 field_index)

vdata,id
field_index

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: Index of thefield

Returns the number of attributes attached to a vdata or the number of attributes
attached to avdatafield.

Returns the number of attributes assigned to this vdata or its fields when
successful, and rarw (or -1) otherwise.

V Sfnattrs returns the number of attributes attached to a vdata specified by the
parameter vdata id, or the number of attributes attached to a vdata field,
specified by the field index, field_index.

To return the number of attributes attached to the vdata , set the value of
field_indexto wupr vpata (or -1). To return the number of attributes of afield
in the vdata , set the value of field_index to the field index. Field index is a
nonnegative integer less than the total number of the vdata fields. The number
of vdatafieldsis returned by VFnfields.

V Sfnattrsis different from the V Snattr s routine, which returns the number of
attributes of the specified vdata and the fields contained in it.

integer function vsffnas(vdata id, field index)

integer vdata_id, field index

February 2010

2-223

The HDF Group

V Sfpack/vsfcpak/vsfnpak

vdata_id
action
fields_in_buf
buf

buf size
n_records
field_name list

bufptrs

Purpose

Return value

Description

V Sfpack/vsfcpak/vsfnpak

intn V Sfpack(int32 vdata _id, intn action, char *fields in_buf, VOIDP buf, intn buf_size, intn n_records,
char *field_name_list, VOIDP bufptrg[])

IN: Vdataidentifier returned by V Sattach

IN: Action to be performed

IN: Names of the fieldsin buf

IN/OUT: Buffer containing the values of the packed fields to write to or read
from the vdata

IN: Buffer size in bytes

IN: Number of records to pack or unpack

IN: Names of the fields to be packed or unpacked

IN/OUT: Array of pointersto the field buffers

Packs field data into a buffer or unpacks buffered field data into vdata field(s)
for fully interlaced fields.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

V Sfpack packs or unpacks the field(s) listed in the parameter field name list
to or from the buffer buf according to the specified action in the parameter
action.

Valid values for action are _upr_vseack (or o) which packs field values from
bufptrs (the field buffers) to buf, or _upr vsuneack (or 1) which unpacks vdata
field values from buf into bufptrs.

When V Sfpack is called to pack field values into buf, fields_in_buf must list
al fields of the vdata. When VSfpack is caled to unpack field values,
fields_in_buf may be a subset of the vdata fields. To specify all vdata fieldsin
fields_in_buf, nurz. can be used in C and a blank character (* *) in Fortran.

The name(s) of the field(s) to be packed or unpacked are specified by the
field_name_list. In C, the names in the parameter field_name list can be a
subset of or all field names listed in fields in_buf. To specify all vdata fields,
nuLL can beused in C.

The FORTRAN-77 versions of this routine can pack or unpack only one field
at atime. Therefore, field_name list will contain the name of the field that will
be packed or unpacked.

The calling program must allocate sufficient space for buf to hold all of the
packed fields. The size of the buf buffer should be at least n_records * (the
total size of al fields specified in fields_in_buf).

Note that there are two FORTRAN-77 versions of this routine: vsfnpak to
pack or unpack a numeric field and vsfcpak to pack or unpack a character
field.

Refer to the HDF User's Guide for an example on how to use this routine.

2-224

February 2010

V Sfpack/vsfcpak/vsfnpak HDF Reference Manual

FORTRAN integer function vsfnpak(vdata id, action, fields_in buf, buf,
buf size, n records, field name list, bufptrs)

integer vdata_id, action, buf(*), buf size, n_ records
character* (*) fields_in buf, field name list

<valid numeric data type> bufptrs(*)

integer function vsfcpak(vdata id, action, fields_ in buf, buf,
buf_ size, n_records, field name_list, bufptrs)

integer vdata_id, action, buf(*), buf_size, n_records

character* (*) fields_in buf, field name_ list, bufptrs(*)

February 2010 2-225

The HDF Group

V Sgetattr/vsfgnat/vsfgcat

V Sgetattr /vsfgnat/vsfgcat

intn V Sgetattr(int32 vdata id, intn field_index, int32 attr_index, VOIDP values)

vdata_id
field_index
attr_index

values

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: Index of the field
IN: Index of the attribute

OUT: Buffer for the attribute values

Retrieves the attribute values of avdata or vdatafield.
Returns succeep (or 0) if successful and rarr (or -1) otherwise.

V Sgetattr retrieves the attribute values of the vdataidentified by the parameter
vdata_id or the vdata field specified by the field index, field_index, into the
buffer values.

If field_index issetto _upr_vpata (or -1), the value of the attribute attached
tothevdataisreturned. If field_index is set to the field index, attribute attached
to a vdata field is returned. Field index is a nonnegative integer less than the
total number of the vdata fields. The number of vdata fields is returned by
VFnfields

Attribute to be retrieved is specified by its index, attr_index. Index is a
nonnegative integer less than the total number of the vdata or vdata field
attributes. Use VSfnattrs to find the number of the vdata or vdata field
attributes.

integer function vsfgnat (vdata_id, field index, attr index,
values)

integer vdata_id, field index, attr_index

<valid numeric data type> values (*)

integer function vsfgcat (vdata_id, field index, attr_ index,
values)

integer vdata_id, field index, attr_ index

character* (*) values

2-226

February 2010

V Sgetblockinfolvsfgetblinfo

HDF Reference Manual

V Sgetblockinfo/vsfgetblinfo

intn V Sgetblockinfo(int32 vdata_id, int32 *block_size, int32 *num_blocks)

vdata_id
block size

num_blocks

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier
OUT: Block sizein bytes
OUT: Number of linked blocks

Retrieves the block size and the number of blocks for a linked-block Vdata
element.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

V Sgetblockinfo retrieves the block size and the number of linked blocks for a
linked-block Vdata element.

If no response is desired for either returned value, block size and num_blocks
may be set to nuLL.

integer function vsfgetblinfo(vdata_id, block_size, num blocks)

integer vdata_id, num blocks, block_size

February 2010

2-227

The HDF Group V Sgetclassivsfgcls

V Sgetclass/vsfgcls

int32 V Sgetclass(int32 vdata id, char *vdata_class)

vdata id IN: Vdataidentifier returned by V Sattach
vdata _class OUT: Vdataclass name
Purpose Retrieves the vdata class name, if any.

Return value Returns succeep (or 0) if successful and ra1t (or -1) otherwise.

Description V Sgetclass retrieves the class name of the vdata identified by the parameter
vdata_id and placesit in the buffer vdata_class.

Space for the buffer vdata class must be alocated by the calling program

before V Sgetclass is called. The maximum length of the class name is defined
by the macro vsNaAMELENMAX (or 64).

FORTRAN integer function vsfgcls(vdata id, vdata_class)

integer vdata_id

character* (*) vdata class

2-228 February 2010

V Sgetfields/vsfgfld

HDF Reference M anual

V Sgetfieldsivsfgfld

int32 V Sgetfields(int32 vdata _id, char *field_name_list)

vdata,id

fidd_name list

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
OUT: Field namelist

Retrieves the field names of all of thefieldsin aVdata.

Returns the number of fields in the Vdata if successful and ra1rn (Or -1)
otherwise.

V Sgetfields retrieves the names of the fields in the Vdata identified by the
parameter vdata_id into the buffer field_name _list.

The parameter field_name list is a character string containing a comma-
separated list of names (e.g., “PX,PY,PZ” in C or ‘PX,PY,PZ’ in Fortran).

The user must allocate the memory space for the buffer field_name _list before
calling V Sgetfields.

If the Vdata does not have any fields, anull string isreturned in the parameter
field_name_list.

The maximum length of aVVdata name is defined by vsnameLENMAX (OF 64).

integer function vsfgfld(vdata_ id, field name list)

integer vdata_id

character* (*) field name list

February 2010

2-229

The HDF Group

VSgetid/ivsfgid

V Sgetidivsigid

int32 VSgetid(int32 file_id, int32 vdata_ref)

file_id
vdata_ref

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen

IN: Vdata reference number

Sequentially searches through afile for vdatas.

Returns the reference number for the next vdata if successful and ratw (or -1)
otherwise.

V Sgetid sequentially searches through afile identified by the parameter file id
and returns the reference number of the next vdata after the vdata that has
reference number vdata ref. This routine is generally used to sequentialy
search the file for vdatas. Searching past the last vdatain afile will result in an
error condition.

To initiate a search, this routine must be called with the value of vdata ref
equal to -1. Doing so returns the reference number of the first vdatain thefile.

integer function vsfgid(file_ id, vdata_ref)

integer file id, vdata_ref

2-230

February 2010

V Sgetinter lace/vsfgint

HDF Reference M anual

V Sgetinter lace/vsfgint

int32 V Sgetinterlace(int32 vdata_id)

vdata,id

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by VSattach

Returns the interlace mode of a vdata.

Returns FuLL_INTERLACE (OF 0) O No_1NTERLACE (Or 1) if successful and Fatr
(or -1) otherwise.

V Sgetinterlace returns the interlace mode of the vdata identified by the
parameter vdata_id.

integer function vsfgint (vdata_id)

integer vdata_id

February 2010

2-231

The HDF Group V Sgetname/vsfgnam

V Sgetname/vsfgnam

int32 V Sgetname(int32 vdata_id, char *vdata_name)

vdata id IN: Vdataidentifier returned by V Sattach
vdata_name OUT: Vdataname
Purpose Retrieves the name of avdata.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description VSgethame retrieves the name of the vdata identified by the parameter
vdata_id into the buffer vdata name.

The user must allocate the memory space for the buffer vdata_name before
calling VSgetname. If the vdata does not have a name, a null string is returned
in the parameter vdata name . The maximum length of a vdata name is
defined by vsnameLENMAX (OF 64)

FORTRAN integer function vsfgnam(vdata id, vdata_ name)

integer vdata_id

character* (*) vdata_ name

2-232 February 2010

V Sgetver sion/vsgver

HDF Reference M anual

V Sgetver sion/vsgver

int32 V Sgetversion(int32 vdata_id)

vdata,id

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach

Returns the version number of a vdata.

Returns the version number if successful and ra1r (or -1) otherwise.
VSgetversion returns the version number of the vdata identified by the
parameter vdata_id. There are three valid version numbers: vSET oLD_VERSION

(or 2), vseT version (Or 3), and vSET NEW VERSION (Of 4).

VSET OLD_VERSION iS returned when the vdata is of a version that corresponds
to an HDF library version before version 3.2.

vsSET vERSION IS returned when the vdatais of aversion that corresponds to an
HDF library version between versions 3.2 and 4.0 release 2.

VSET _NEW_VERSION iS returned when the vdata is of the version that
corresponds to an HDF library version of version 4.1 release 1 or higher.

integer vsgver (vdata_id)

integer vdata_id

February 2010

2-233

The HDF Group

VSinquire/vsfing

VSinquirelvsfing

intn VSinquire(int32 vdata_id, int32 *n_records, int32 *interlace_mode, char *field_name _list, int32
*vdata_size, char *vdata_name)

vdata_id
n_records
interlace_mode
field_name_list
vdata_size

vdata_name

Purpose

Return value

Description

Note

FORTRAN

IN: Vdataidentifier returned by V Sattach
OUT: Number of records

OUT: Interlace mode of the data

OUT: List of field names

OUT: Sizeof arecord

OUT: Name of the vdata

Retrieves general information about a vdata.

Returns succeep (or o) if successful and ratrn (or -1) if it is unable to return
any of the requested information.

VSinquire retrieves the number of records, the interlace mode of the data, the
name of the fields, the size, and the name of the vdata, vdata id, and stores
them in the parameters n_records, interlace mode, field name list,
vdata_size, and vdata_name, respectively. In C, if any of the output parameters
are nuLL, the corresponding information will not be retrieved. Refer to the
Reference Manual pages on VSdts, VSgetfields, VSgetinterlace, V Ssizeof
and VSgetname for other routines that can be used to retrieve specific
information.

Possible returned values for interlace_mode are rurr_1inTerRLACE (Or 0) and
No_INTERLACE (Or 1). Thereturned value of vdata_size isthe number of bytes
in arecord and is machine-dependent.

The parameter field_name list is a character string that contains the names of
al the vdata fields, separated by commas. (e.g., “PX,PY,PZ" in C and
"PX,PY,PZ’ in Fortran).

The user must allocate the memory space for the buffer vdata_name before
calling VSinquire. If the vdata does not have a name, a null string is returned
in the parameter vdata name . The maximum length of a vdata name is
defined by vsnameLENMAX (OF 64)

VSinquire will return rarw if it is called before VSdefine and V Ssetfield on
the same vdata.

integer function vsfing(vdata_id, n_records, interlace,
field name_ list, vdata_size, vdata_ name)

integer vdata_id, n_records, interlace, vdata_size

character* (*) field name_list, vdata_name

2-234

February 2010

V Sisattr /vsfisat HDF Reference M anual

V Sisattr/vsfisat

intn VSisattr(int32 vdata_id)

vdata id IN: Vdataidentifier returned by V Sattach

Purpose Determines whether a vdatais an attribute.
Return value Returns truk (or 1) if the vdatais an attribute, and rarse (or o) otherwise.

Description VSisattr determines whether the vdata identified by the parameter vdata_id is
an attribute.

As attributes are stored by the HDF library as vdatas, a means of testing
whether or not a particular vdata is an attribute is needed, and is provided by
this routine.

FORTRAN integer function vsfisat (vdata id)

integer vdata_id

February 2010 2-235

The HDF Group

VSlone/vsflone

V Slone/vsflone

int32 VSlone(int32 file_id, int32 ref_array[], int32 maxsize)

file_id
ref_array

max_refs

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen
OUT: Array of reference numbers

IN: Maximum number of lone vdatas to be retrieved

Retrieves the reference numbers of all lone vdatas, i.e., vdatas that are not
grouped with other objects, in afile.

Returns the total number of lone vdatas if successful and ratn (or -1)
otherwise.

V Slone retrieves the reference numbers of lone vgroups in the file identified
by the parameter file_id. Although V Slone returns the number of lone vdatas
inthefile, only at most max_refs reference numbers are retrieved and stored in
the buffer ref_array. The array must have at least max_refs elements.

An array size of 65,000 integersfor ref_array is more than adequate if the user
chooses to declare the array statically. However, the preferred method is to
dynamically allocate memory instead; first call VSlone with a value of 0O for
max_refs to return the total number of lone vdatas, then use the returned value
to allocate memory for ref_array before calling VSlone again.

integer function vsflone(file_id, ref_ array, max_refs)

integer file id, ref array(*), max refs

2-236

February 2010

V Snattrs/vsfnats HDF Reference M anual

V Snattrs/vsfnats

intn V Snattrs(int32 vdata _id)

vdata id IN: Vdataidentifier returned by V Sattach

Purpose Returns the total number of attributes of avdata and of itsfields.
Return value Returns the total number of attributes if successful and rarr (or -1) otherwise.

Description V Snattrs returns the total number of attributes of the vdata, vdata_id, and of
itsfields.

V Snattrsis different from the V Sfnattr s routine, which returns the number of
attributes of a specified vdataor of afield contained in a specified vdata.

FORTRAN integer function vsfnats(vdata id)

integer vdata_id

February 2010 2-237

The HDF Group

V Sread/vsfrd/vsfrdc/vsfread

V Sread/vsfrd/vsfrdc/vsfread

int32 V Sread(int32 vdata_id, uint8 *databuf, int32 n_records, int32 interlace_mode)

vdata_id
databuf
n_records

interlace_mode

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
OUT: Buffer to store the retrieved data
IN: Number of records to be retrieved

IN: Interlace mode of the data to be stored in the buffer

Retrieves datafrom avdata.

Returns the total number of records read if successful and rarrn (or -1)
otherwise.

VSread reads n_records records from the vdata identified by the parameter
vdata_id and stores the data in the buffer databuf using the interlace mode
specified by the parameter interlace_mode.

The user can specify the fields and the order in which they are to be read by
calling VSsetfields prior to reading. VSread stores the requested fields in
databuf in the specified order.

Valid values for interlace_mode are FurLr,_1NTERLACE (OF 1) @8nd NO_INTERLACE
(or o). Selecting rFuLL_1nTERLACE Causes databuf to be filled by record and is
recommended for speed and efficiency. Specifying no INTERLACE CauUses
databuf to be filled by field, i.e., al values of afield in n_records records are
filled before moving to the next field. Note that the default interlace mode of
the buffer is FuLL_INTERLACE.

As the data is stored contiguously in the vdata, V Sfpack should be used to
unpack thefields after reading. Refer to the discussion of VSfpack inthe HDF
User’s Guide for more information.

Note that there are three FORTRAN-77 versions of this routine: vsfrd is for
buffered numeric data, vsfrdc is for buffered character data and vsfread is for
generic packed data.

See the notes regarding the potential performance impact of appendable data

setsin the HDF User’s Guide Section 14.4.3, "Unlimited Dimension Data Sets
(SDSs and Vdatas) and Performance.”

On Windows systems, this function is available only for an integer data buffer.

integer function vsfrd(vdata_id, databuf, n records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

<valid numeric data type> databuf (*)

2-238

February 2010

V Sread/vsfrd/vsfrdc/vsfread HDF Reference M anual

integer function vsfrdc(vdata_id, databuf, n records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character* (*) databuf

integer function vsfread(vdata_ id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

integer databuf (*)

February 2010 2-239

The HDF Group

V Sseek /vsfseek

V Sseek/vsfseek

int32 V Sseek(int32 vdata id, int32 record_pos)

vdata,id

record_pos

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach

IN: Position of the record

Provides a mechanism for random-access /O within a vdata.

Returns the record position (zero or a positive integer) if successful and ratL
(or -1) otherwise.

V Sseek moves the access pointer within the vdata identified by the parameter
vdata_id to the position of the record specified by the parameter record _pos.
The next call to VSread or VSwritewill read from or write to the record where
the access pointer has been moved to.

The value of record pos is zero-based. For example, to seek to the third record
in the vdata, set record pos to 2. The first record position is specified by
specifying a record pos value of 0. Each seek is constrained to a record
boundary within the vdata.

See the notes regarding the potential performance impact of appendable data
setsin the HDF User’s Guide Section 14.4.3, "Unlimited Dimension Data Sets
(SDSs and Vdatas) and Performance.”

integer function vsfseek(vdata_ id, record pos)

integer vdata_id, record pos

2-240

February 2010

V Ssetattr /vsfsnat/vsfscat

HDF Reference M anual

V Ssetattr/vsfsnat/vsfscat

intn V Ssetattr(int32 vdata_id, int32 field index, char *attr_name, int32 data_type, int32 count, VOIDP

vdata_id
field_index
attr_name
data_type
count

values

Purpose
Return value

Description

FORTRAN

val ues)

IN: Vdataidentifier returned by V Sattach
IN: Index of thefield

IN: Name of the attribute

IN: Data type of the attribute

IN: Number of attribute values

IN: Buffer containing the attribute values

Sets an attribute of avdata or avdatafield.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

VSsetattr defines an attribute that has the name specified by the parameter
attr_name, the data type specified by the parameter data_type, and the number
of values specified by the parameter count, and that contains the values
specified in the parameter values. The attribute is set for either the vdata or a
vdata field depending on the value of the parameter field_index.

If the field already has an attribute with the same name, the current values will
be replaced with the new values if the new data type and order are the same as
the current ones. Any changes in the field data type or order will result in a
value of Fa1L (Or -1) to be returned.

If field_index valueissetto upr vpata (Or -1), the attribute will be set for the
vdata. If field_index is set to the field index, attribute will be set for the vdata
field. Field index is a honnegative integer less than the total number of the
vdata fields. The number of vdata fields can be obtained using VFnfields.

The value of the parameter data_type can be any one of the data types listed in
Table 1A in Section | of this manual.

integer function vsfsnat (vdata id, field index, attr name,
data_type, count, values)

integer vdata_id, field index, data_type, count, values(*)

character* (*) attr_name

integer function vsfscat(vdata_id, field index, attr_ name,
data_type, count, values)

integer vdata_id, field index, data_type, count

character* (*) attr_name, values(*)

February 2010

2-241

The HDF Group

V Ssetblock size/vsfsetblsz

V Ssetblocksize/vsfsetblsz

intn V Ssetblocksize(int32 vdata id, int32 block size)

vdata,id

block size

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier

IN: Size of each block in bytes

Sets linked-block Vdata element block size.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

V Ssetblock size sets the block size for linked-block elements that will be used
to store Vdatas.

The default block size isupr_appENDABLE_BLOCK_LEN, Which is set to 4096 in
thelibrary asit is distributed. V Ssetblocksize modifies that default value and
must be called before the first write to the Vdata. Once the linked-block
element is created, the block size cannot be changed.

The following note may be of interest to users who must pay very close
attention to performance issues. V Ssetblocksize sets the block size only for
blocks following the first block. The first block can be arbitrarily large; the
library continuesto write to it until it encounters an obstacle, at which point the
linked block mechanism is invoked. For example, a Vdata A that is the last
item in afile can continue to grow, simply extending thefile. If anew VdataB
is then written, that new object is (normally) placed at the end of the file,
blocking off extension of the prior Vdata, A. At this point, new writes to A
will write data to linked blocks per the block_size and num_blocks settings.

integer function vsfsetblsz(vdata_ id, block size)

integer vdata_id, block_size

2-242

February 2010

V Ssetclass/vsfscls HDF Reference M anual

V Ssetclass/vsfscls

int32 V Ssetclass(int32 vdata _id, char *vdata_class)

vdata id IN: Vdataidentifier returned by V Sattach
vdata class IN: Name of the vdata class
Purpose Sets the class name of avdata

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description VSsetclass sets the class name of the vdata identified by the parameter
vdata_id to the value of the parameter vdata_class.

At creation, the class name of a vdata is nurr. The class name may be reset
more than once. Class names, like vdata names, can be any character string.
They exist solely as meaningful labels to user applications and are not used by
the HDF library in any way. Class names will be truncated to vsnameLENMAX
(or 64) characters.

FORTRAN integer function vsfscls(vdata id, vdata_class)

integer vdata_id

character* (*) vdata class

February 2010 2-243

The HDF Group V Ssetexter nalfilef/vsfsextf

V Ssetexter nalfile/vsfsextf

intn V Ssetexternalfile(int32 vdata _id, char *filename, int32 offset)

vdata id IN: Vdataidentifier returned by V Sattach

filename IN: Name of the external file

offset IN: Offset, in bytes, of the location in the external file the new dataisto
be written

Purpose Stores vdata information in an externa file.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description V Ssetexter nalfile writes data in the vdata identified by the parameter vdata id
in the file named filename, at the byte offset specified by the parameter offset.

Only the datawill be stored externally. Attributes and all metadata will remain
in the primary HDF file.

IMPORTANT: The user must ensure that the external files are relocated along
with the primary file.

Read the Reference Manual page on SDsetexter nalfile for more information
on using the externa file feature.

FORTRAN integer function vsfsextf (vdata id, filename, offset)

integer vdata_id, offset

character* (*) filename

2-244 February 2010

V Ssetfields/vsfsfld

HDF Reference M anual

V Ssetfields/vsfsfld

intn V Ssetfields(int32 vdata_id, char *field_name list)

vdata,id

fidd_name list

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: List of the field names to be accessed
Specifies the fields to be accessed.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

V Ssetfields specifies that the fields, whose names are listed in the parameter
field_name_list, of the vdata identified by the parameter vdata id will be
accessed by the next call to VSread or VSwrite. VSsetfields must be called
before any call to VSread or VSwrite.

For reading from a vdata, a call to V Ssetfields sets up the fields that are to be
retrieved from the records in the vdata. If the vdatais empty, V Ssetfields will
return ratL (Or -1).

For writing to avdata, V Ssetfields can only be called once, to set up the fields
in a vdata. Once the vdata fields are set, they may not be changed. Thus, to
update some fields of a record after the first write, the user must read al the
fields to a buffer, update the buffer, then write the entire record back to the
vdata.

The parameter field name list is a character string that contains a comma-
separated list of fieldnames (i.e., “PX,PY,PZ” in C and’ PX,PY,PZ’ in Fortran).
The combined width of the fields in a vdata must be less than max_rrzro_s1ze
(or 65535) bytes. If an attempt to create a larger record is made, V Ssetfields
will return ra1z (OF -1).

If the vdatais attached with an “ " access mode, the parameter field_name list
must contain only the fields that already exist in the vdata. If the vdata is

attached with a“w" access mode, field_name_list can contain the names of any
fields that have been defined by V Sfdefine or any predefined fields.

integer function vsfsfld(vdata_id, field name_list)

integer vdata_id

character* (*) field name_list

February 2010

2-245

The HDF Group V Ssetinter lace/vsfsint

V Ssetinterlace/vsfsint

intn V Ssetinterlace(int32 vdata_id, int32 interlace_mode)

vdata id IN: Vdataidentifier returned by V Sattach
interlace mode IN: Interlace mode of the data to be stored in the vdata
Purpose Sets the interlace mode of a vdata.

Return value Returns succeep (or o) if successful and ratr (or -1) otherwise.

Description V Ssetinter lace sets the interlace mode of the vdata, vdata id, to that specified
by the parameter interlace_mode. This routine can only be used when creating
new vdatas with write access.

The value of interlace mode may be either ruri inTERLACE (Or 0) OF
No_1NTERLACE (Or 1). If thisroutine is not called, the default interlace mode of
the vdata is FuLL_1nNTERLACE. The FULL_INTERLACE Option is more efficient
than no_1nTERLACE although both require the same amount of disk space.

Specifying FuLL_INTERLACE accesses the vdata by record; in other words, all
values of all fields in arecord are accessed before moving to the next record.
Specifying no_1NTERLACE accesses the vdata by field; in other words, al field
values are accessed before moving to the next field. Thus, for writing data, all
record data must be available before the write operation is invoked.

Note that the interlace mode of the data to be written is specified by a
parameter of the VSwrite routine.

FORTRAN integer function vsfsint (vdata_ id, interlace mode)

integer vdata_id, interlace mode

2-246 February 2010

V Ssetname/vsfsnam

HDF Reference M anual

V Ssetname/vsfsnam

int32 V Ssetname(int32 vdata _id, char *vdata_name)

vdata,id

vdata_name

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by VSattach

IN: Name of the vdata

Assigns anameto avdata.
Returns succeep (or o) if successful and a1 (or -1) otherwise.

V Ssethame sets the name of the vdataidentified by the parameter vdata_id to
the value of the parameter vdata_name.

At creation, the name of the vdata is nurL. The name may be reset more than
once. Vdata names, like class names, can be any character string. They exist
solely as a meaningful label for user applications and are not used by the HDF
library in any way. Vdata names will be truncated to vsnameLENMAX (OF 64)
characters.

integer function vsfsnam(vdata_ id, vdata name)

integer vdata_id

character* (*) vdata name

February 2010

2-247

The HDF Group V Ssetnumblocks/vsfsetnmbl

V Ssetnumblock s/vsfsetnmbl

intn V Ssetnumbl ocks(int32 vdata_id, int32 num_blocks)

vdata id IN: Vdataidentifier
num_blocks IN: Number of blocks to be used for the linked-block element
Purpose Sets the number of blocks for alinked-block V data element.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description V Ssetnumblocks sets the number of blocks in linked-block elements that will
be used to store Vdatas.

The default number of blocks is upr_appENDABLE BLOCK NUM, Which is set to
16 inthelibrary asit is distributed. V Ssethnumblocks modifies that default

value and must be called before the first write to the Vdata. Once the linked-
block element is created, the number of blocks cannot be changed.

FORTRAN integer function vsfsetnmbl (vdata id, num blocks)

integer vdata_id, num blocks

2-248 February 2010

V Ssizeof/vsfsiz

HDF Reference M anual

V Ssizeof /vsfsiz

int32 V Ssizeof (int32 vdata_id, char *field_name list)

vdata,id

fidd_name list

Purpose
Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach
IN: Name(s) of the fields to check

Computes the size, in bytes, of the given field(s) for the local machine.
Returnsthe fields size if successful and ra1r (or -1) otherwise.

V Ssizeof computes the size, in bytes, of the fields specified in the parameter
field_name_list in the vdata identified by the parameter vdata id.

The parameter field name list specifies a single field or severa comma
separated fields. The field or fields should already exist in the vdata. If more

than one field is specified, VSsizeof will return the total sizes of al of the
fields.

integer function vsfsiz(vdata_id, field name_list)

integer vdata_id

character* (*) field name_list

February 2010

2-249

The HDF Group

V Swrite/vsfwr t/vsfwr tc/vsfwrit

V Swritelvsfwrt/vsfwr tc/vsfwrit

int32 VSwrite(int32 vdata id, uint8 *databuf, int32 n_records, int32 interlace_mode)

vdata_id
databuf
n_records

interlace_mode

Purpose

Return value

Description

FORTRAN

IN: Vdataidentifier returned by V Sattach

IN: Buffer of records to be written to the vdata
IN: Number of records to be written

IN: Interlace mode of the buffer in memory
Writes data to a vdata

Returns the total number of records written if successful and rarr (or -1)
otherwise.

V Swrite writes the data stored in the buffer databuf into the vdataidentified by
the parameter vdata id. The parameter n_records specifies the number of
records to be written. The parameter interlace_mode defines the interlace
mode of the vdata fields stored in the buffer databuf.

Valid values for interlace_mode are FurLs,_1NTERLACE (OF 0) @8nd NO_INTERLACE
(or 1). Selecting Furt_1nterRLACE fills databuf by record and is recommended
for speed and efficiency. Specifying no_1nTERLACE causes databuf to be filled
by field, i.e,, all values of afield in al records must be written before moving
tothe next field. Thus, all data must be available before writing. If the dataisto
be written to the vdata with an interlace mode different from that of the buffer,
V Ssetinterlace must be called prior to VSwrite. Note that the default interlace
mode of avdatais FULL_INTERLACE.

It is assumed that the datain databuf is organized as specified by the parameter
interlace_mode. The number and order of the fields organized in the buffer
must correspond with the number and order of the fields specified in the call to
V Ssetfields, which finalizes the vdata fields definition. Since VSwrite writes
the datain databuf contiguously to the vdata, V Sfpack must be used to remove
any “padding”, or non-data spaces, used for vdata field aignment. This
process is called packing. Refer to the discussion of VSfpack in the HDF
User’s Guide for more information.

Before writing data to a newly-created vdata, V Sdefine and V Ssetfields must
be called to define the fields to be written.

Note that there are three FORTRAN-77 versions of this routine: vsfwrt is for

buffered numeric data, vsfwrtc is for buffered character data and vsfwrit isfor
generic packed data.

On Windows systems, this function is available only for an integer data buffer.

integer function vsfwrt (vdata_id, databuf, n records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

<valid numeric data type> databuf (*)

2-250

February 2010

V Swrite/vsfwr t/vsfwr tc/vsfwrit HDF Reference M anual

integer function vsfwrtc(vdata id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character* (*) databuf

integer function vsfwrit (vdata_ id, databuf, n_records,
interlace_mode)

integer vdata_id, n_records, interlace_mode

character* (*) databuf

February 2010 2-251

The HDF Group V Swrite/vsfwrt/vsfwrtc/vsfwrit

2-252 February 2010

DF24addimage/d2aimg

HDF Reference M anual

DF24addimage/d2aimg

intn DF24addimage(char *filename, VOIDP image, int32 width, int32 height)

filename
image
width
height

Purpose
Return value

Description

FORTRAN

IN: Name of thefile

IN: Pointer to the image array

IN: Number of columnsin the image
IN Number of rowsin the image

Writes a 24-bit image to the specified file.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

DF24addimage appends a 24-bit raster image set to the file. Array image is
assumed to be width x height x 3 bytes. In FORTRAN-77, the dimensions of
the array image must be the same as the dimensions of the image data.

The order in which dimensions are declared is different between C and
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are stored in
column-major order, while C arrays are stored in row-major order. (Row-major
order implies that the last coordinate varies fastest).

When DF24addimage writes an image to afile, it assumes row-major order.
The FORTRAN-77 declaration that causes an image to be stored in this way
must have the width as its first dimension and the height as its second
dimension. In other words, the image must be built “on its side”.

integer function d2aimg(filename, image, width, height)

character* (*) filename
<valid numeric data type> image

integer width, height

February 2010

2-253

The HDF Group

DF24getdims/d2gdims

DF24getdims/d2gdims

intn DF24getdims (char *filename, int32 *width, int32 *height, intn *interlace_mode)

filename
width
height

interlace_mode

Purpose
Return value

Description

FORTRAN

IN: Name of the file
OUT: Width of theimage
OUT: Height of theimage

OUT: Fileinterlace mode of the image

Retrieves dimensions and interlace storage scheme of next image.
Returns succeep (or o) if successful and rarr (or -1) otherwise.

DF24getdims retrieves the dimensions and interlace of the image. If the fileis
being opened for the first time, DF24getdims returns information about the
first image in the file. If an image has already been read, DF24getdims finds
the next image. In this way, images are read in the same order in which they
were written to thefile.

If the dimensions and interlace of the image are known beforehand, there is no
need to call DF24getdims. Simply allocate arrays with the proper dimensions
for the image and invoke DF24getimage to read the images. If, however, you
do not know the values of width and height, you must call DF24getdimsto get
them and then use them to determine the amount of memory to allocate for the
image buffer.

Successive callsto DF24getdims and DF24getimage retrieve all of the images
in the file in the sequence in which they were written.

Theinterlace mode codes are: o for pixel interlacing, 1 for scan-line interlacing
and 2 for scan-plane interlacing.

integer function d2gdims(filename, width, height, interlace_mode)

character* (*) filename

integer width, height, interlace_mode

2-254

February 2010

DF24getimage/d2gimg

HDF Reference M anual

DF24getimage/d2gimg

intn DF24getimage(char *filename, VOIDP image, int32 width, int32 height)

filename
image
width
height

Purpose
Return value

Description

FORTRAN

IN: Name of the HDF file
OUT: Pointer to image buffer
IN: Number of columnsin the image

IN: Number of rowsin theimage

Retrieves an image from the next 24-bit raster image set.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.
DF24getimage retrieves the image and stores it in an array. If DF24getdims
has not been called, DF24getimage finds the next image in the same way that
DF24getdims does.

The amount of space alocated for the image should be width x height x 3
bytes.

To specify that the next call to DF24getimage should read the raster image

using an interlace other than the interlace used to store the image in the file,
first call DF24reqil.

integer function d2gimg(filename, image, width, height)

character* (*) filename, image

integer width, height

February 2010

2-255

The HDF Group DF24lastref/d2Iref
DF24|astref/d2Ir ef
uintl6 DF24lastref()

Purpose Retrieves the last reference number written to or read from a 24-bit raster
image set.

Return value Returns the non-zero reference number if successful and rarr (or -1)
otherwise.

Description This routine is primarily used for attaching annotations to 24-bit images and
adding 24-bit images to vgroups. DF24lastr ef returns the reference number of
the last 24-bit raster image read or written.

FORTRAN integer function d2lref ()

2-256 February 2010

DF24nimages/d2nimg

HDF Reference M anual

DF24nimages/d2nimg

intn DF24nimages(char *filename)

filename

Purpose

Return value

Description

FORTRAN

IN: Name of thefile

Counts the number of 24-bit raster images contained in an HDF file.

Returns the number of 24-bit images in the file if successful and ra1r (or -1)
otherwise.

DF24nimages counts the number of 24-bit images stored in the file.

integer function d2nimg(filename)

character* (*) filename

February 2010

2-257

The HDF Group DF24putimage/d2pimg

DF24putimage/d2pimg

intn DF24putimage(char *filename, VOIDP image, int32 width, int32 height)

filename IN: Name of thefile

image IN: Pointer to the image array

width IN: Number of columnsin the image

height IN: Number of rowsin the image

Purpose Writes a 24-bit image as the first image in thefile.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.
Description The array image is assumed to be width x height x 3 bytes. DF24putimage

overwrites any information that existsin the HDF file. To append a new image
to afileinstead of overwriting an existing file, use DF24addimage.

FORTRAN integer function d2pimg(filename, image, width, height)

character* (*) filename
<valid numeric data type> image

integer width, height

2-258 February 2010

DF24readref/d2rref

HDF Reference M anual

DF24readref/d2rr ef

intn DF24readref(char *filename, uint16 ref)

filename

ref

Purpose

Return value

Description

FORTRAN

IN: Name of thefile

IN: Reference number for the next call to DF24getimage

Specifies the reference number of the next image to be read when
DF24getimage is next called.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

DF24readref is commonly used in conjunction with DFANIablist, which
returns a list of labels for a given tag together with their reference numbers. It
provides a means of non-sequentially accessing 24-bit raster images in afile.
There is no guarantee that reference numbers appear in sequence in an HDF

file. Therefore, it is not safe to assume that a reference number is the index of
an image.

integer function d2rref (filename, ref)

character* (*) filename

integer ref

February 2010

2-259

The HDF Group

DF24reqil/d2reqil

DF24reqil/d2reqil

intn DF24reqil (intnil)

Purpose
Return value

Description

FORTRAN

IN Memory interlace of the next image read

Specifies the interlace mode for the next call to DF24getimage will use.
Returns succeep (or o) if successful and FAIL (or -1) otherwise.

Regardless of what interlace scheme is used to store the image, DF24reqil
causes the image to be loaded into memory and be interlaced according to the
specification of il.

Because a call to DF24reqil may require a substantial reordering of the data,
slower 1/0O performance could result than would be achieved if no change in
interlace were requested.

The interlace mode codes are; o for pixel interlacing,1 for scan-line interlacing
and 2 for scan-plane interlacing.

integer function d2reqgil (il)

integer il

2-260

February 2010

DF24restart/d2fir st HDF Reference M anual

DF24restart/d2fir st

intn DF24restart()
Purpose Specifies that the next 24-bit image read from the file will be the first one
rather than the 24-bit image following the one most recently read.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

FORTRAN integer function d2first()

February 2010 2-261

The HDF Group

DF24setcompr ess/d2scomp

DF24setcompress/d2scomp

intn DF24setcompress(int32 type, comp_info * cinfo)

type

cinfo

Purpose
Return value

Description

IN: Type of compression

IN: Pointer to compression information structure

Set the type of compression to use when writing the next 24-bit raster image.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

This routines provides a method for compressing the next raster image written.
The type can be one of the following values: covMp_NONE, COMP_JPEG, COMP_RLE,
coMp_IMCOMP, coMP_NONE iS the default for storing images if this routine is not
called, therefore images are not compressed by default. comp_gpEG cOmpresses
images with a JPEG agorithm, which is a lossy method. cove rRLE USES
lossless run-length encoding to store the image. comp_1mMcomp uses a lossy
compression algorithm called IMCOMP, and is included for backward
compatibility only.

The comp_info union contains algorithm-specific information for the library
routines that perform the compression and is defined in the hcomp . h header
fileasfollows:

typedef union tag comp_ info

{

struct
intn quality;
intn force baseline;
} Jpeg;
struct
int32 nt;
intn sign_ext;
intn fill one;
intn start_bit;
intn bit_len;
} nbit;
struct
intn skp_size;
} skphuff;
struct
intn level;
} deflate;

}

comp_info

2-262 February 2010

DF24setcompr ess/d2scomp

HDF Reference M anual

FORTRAN

Thisunionis defined to provide future expansion, but is currently only used by
the comp_gpEG cOmpression type. A pointer to a valid comp _info union is
required for all compression types other than comp_gpEg, but the values in the
union are not used. The comp _info union isdeclared in the header file hdf.h
and is shown here for informative purposes only, it should not be re-declared in
auser program.

For covp_gpec compression, the quality member of the jpeg structure must be
set to the quality of the stored image. This humber can vary from 100, the best
quality, to o, terrible quality. All images stored with comp_gpEc compression
are stored in a lossy manner, even images stored with a quality of 100. The
ratio of size to perceived image quality varies from image to image, some
experimentation may be required to determine an acceptable quality factor for
a given application. The force baseline parameter determines whether
the quantization tables used during compression are forced to the range o-255.
The force baseline parameter should normaly be set to 1 (forcing
baseline results), unless special applications require non-baseline images to be
used.

If the compression type is JPEG, d2scomp defines the default JPEG

compression parameters to be used. If these parameters must be changed | ater,
the d2sjpeg routine must be used. (See the Reference Manual entry for

d2s peg)

integer function d2scomp (type)

integer type

February 2010

2-263

The HDF Group dZScomp

d2scomp

integer d2scomp(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description d8g peg changes the JPEG compression parameter settings set in the d8scomp
routine.

2-264 February 2010

d2g peg HDF Reference Manual

d2speg

integer d2sjpeg(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description d2g peg changes the JPEG compression parameter settings set in the d2scomp
routine.

February 2010 2-265

The HDF Group DF24setdims/d2sdims

DF24setdims/d2sdims

intn DF24setdims(int32 width, int32 height)

width IN: Number of columnsin the image
height IN: Number or rows in the image
Purpose Set the dimensions of the next image to be written to afile.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

FORTRAN integer function d2sdims (width, height)

integer width, height

2-266 February 2010

DF24setil/d2s¢til

HDF Reference M anual

DF24setil/d2setil

intn DF24setil(intn il)

Purpose
Return value

Description

FORTRAN

IN: Interlace mode

Specifies the interlace mode to be used on subsequent writes.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

DF24setil sets the interlace mode to be used when writing out the raster image
set for a 24-hit image by determining the interlace mode of the image data in
memory. If DF24setil is not called, the interlace mode is assumed to be o.

The interlace mode codes are: o for pixel interlacing, 1 for scan-line
interlacing and 2 for scan-plane interlacing.

integer function d2setil (il)

integer il

February 2010

2-267

The HDF Group DF24setil/d2setil

2-268 February 2010

DFR8addimage/d8aimg HDF Reference Manual

DFR8addimage/d8aimg

intn DFR8addimage(char *filename, VOIDP image, int32 width, int32 height, uint16 compress)

filename IN: Name of thefile

image IN: Array containing the image data
width IN: Number of columnsin the image
height IN: Number of rowsin the image
compress IN: Type of compression to useg, if any
Purpose Appends the RIS8 for the image to thefile.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description DFR8addimage is functionally equivalent to DFR8putimage, except that
DFR8putimage cannot append image data; it only overwrites.

FORTRAN integer function d8aimg(filename, image, width, height, compress)

character* (*) filename, image
integer width, height

integer compress

February 2010 2-269

The HDF Group DFR8getdims/d8gdims

DFR8getdims/d8gdims

intn DFR8getdims(char *filename, int32 *width, int32 *height, intn *ispalette)

filename IN: Name of the HDF file

width OUT: Number of columnsin the next imagein thefile

height OUT: Number of rowsin the next image in thefile

ispalette OUT: Indicator of the existence of a palette

Purpose Opens thefile, finds the next image, retrieves the dimensions of the image, and

determines whether there is a pal ette associated with the image.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description DFR8getdims retrieves the dimensions of the image and indicates whether a
palette is associated and stored with the image. If the file is being opened for
the first time, DFR8getdims returns information about the first image in the
file. If an image has already been read, DFR8getdims finds the next image.
Thus, images are read in the same order in which they were written to the file.

Normally, DFR8getdims is called before DFR8getimage so that if necessary,
space alocations for the image and pal ette can be checked, and the dimensions

can be verified. If thisinformation is already known, DFR8getdims need not
be called.

Valid values of ispalette are: 1 if there isa palette, or o if not.

FORTRAN integer function d8gdims(filename, width, height, ispalette)

character* (*) filename
integer width, height

integer ispalette

2-270 February 2010

DFR8getimage/d8gimg

HDF Reference M anual

DFR8getimage/d8gimg

intn DFR8getimage(char *filename, uint8 *image, int32 width, int32 height, uint8 * pal ette)

filename
image
width
height
palette

Purpose

Return value

Description

FORTRAN

IN: Name of thefile

OUT: Buffer for the returned image
IN: Width of the image data buffer
IN: Height of the image data buffer
OUT: Palette data

To retrieve the image and its palette, if it is present, and store them in the
specified arrays.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

In C, if palette is nurt, no palette is loaded, even if one is stored with the
image. In FORTRAN-77, an array must be allocated to store the pal ette, even if
no palette is expected to be stored. If the image in the file is compressed,
DFR8getimage automatically decompresses it. If DFR8getdims has not been
called, DFR8getimage finds the next image in the same way that
DFR8getdims does.

The width and height parameters specify the number of columns and rows,
respectively, in the array which you've allocated in memory to store the image.
The image may be smaller than the allocated space.

The order in which you declare dimensions is different between C and
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are stored in
column-major order, while C arrays are stored in row-major order. (Row-major
order implies that the horizontal coordinate varies fastest). When d8gimg reads
an image from a file, it assumes row-magjor order. The FORTRAN-77
declaration that causes an image to be stored in this way must have the width
asitsfirst dimension and the height as its second dimension. To take this into
account as you read image in your program, the image must be built “on its
side’.

integer function d8gimg(filename, image, width, height, palette)

character* (*) filename, image, palette

integer width, height

February 2010

2-271

The HDF Group DFR8getpalref

DFR8getpalr ef

intn DFR8getpalref(uint16 *pal_ref)

pal_ref OUT: Reference number of the palette
Purpose Retrieves the reference number of the palette associated with the last image
accessed.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Make certain that DFR8getdimsis called before DFR8getpalr ef.

2-272 February 2010

DFR8lastref/d8lIref HDF Reference M anual

DFR8lastref/d8Ir ef

uint16 DFR8lastref()

Purpose Retrieves the last reference number written to or read from an RIS8.

Return value Returns a non-zero reference number if successful and rarw (or o) otherwise.

Description This routine is primarily used for attaching annotations to images and adding
images to vgroups. DFR8lastref returns the reference number of last raster
image set read or written.

FORTRAN integer function d8lref()

February 2010 2-273

The HDF Group DFR8nimages/d8nims

DFR8nimages/d8nims

intn DFR8nimages(char *filename)

filename IN: Name of the HDF file

Purpose Retrieves the number of 8-bit raster images stored in the specified file.

Return value Returns the number of raster images in the file if successful and razn (or -1)
otherwise.

FORTRAN integer function d8nims (filename)

character* (*) filename

2-274 February 2010

DFR8putimage/d8pimg

HDF Reference M anual

DFR8putimage/d8pimg

intn DFR8putimage(char *filename, VOIDP image, int32 width, int32 height, uint16 compress)

filename
image
width
height

compress

Purpose

Return value

Description

FORTRAN

IN: Name of thefileto store the raster imagein
IN: Array withimageto put infile

IN: Number of columnsin the image

IN: Number of rows in the image

IN: Type of compression used, if any

Writes the RIS8 for the image as the first image in the file, overwriting any
information previously in thefile.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

The compress parameter identifies the method to be used for compressing the
data, if any. If IMCOMP compression is used, the image must include a
palette.

DFR8putimage overwrites any information that exists in the HDF file. To
write an image to a file by appending it, rather than overwriting it, use
DFR8addimage.

In FORTRAN-77, the dimensions of the image array must be the same as the
dimensions of the image itself.

The order in which dimensions are declared is different between C and
FORTRAN-77. Ordering varies because FORTRAN-77 arrays are stored in
column-major order, while C arrays are stored in row-major order. (Row-major
order implies that the horizontal coordinate varies fastest). When
DFR8putimage writes an image to a file, it assumes row-major order. The
FORTRAN-77 declaration that causes an image to be stored in this way must
have the width asitsfirst dimension and the height as its second dimension, the
reverse of the way it is done in C. To take this into account as you build your
image in your FORTRAN-77 program, the image must be built “on its side”.

integer function d8pimg(filename, image, width, height, compress)

character* (*) filename, image

integer width, height, compress

February 2010

2-275

The HDF Group DFR8readref/d8rref
DFR8readref/d8rref
intn DFR8readref (char *filename, uint16 ref)
filename IN: Name of thefile
ref IN: Reference number for next DFR8getimage
Purpose Specifies the reference number of the image to be read when DFR8getimage
isnext called.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.
Description DFR8readref isusualy used in conjunction with DFANIablist, which returns
a list of labels for a given tag together with their reference numbers. It
provides, in a sense, a random access to images. There is no guarantee that
reference numbers appear in sequence in an HDF file; therefore, it isnot safe to
assume that a reference number is the index of an image.
FORTRAN integer function d8rref (filename, ref)

character* (*) filename

integer ref

2-276

February 2010

DFR8restart/d8fir st HDF Reference M anual

DFR8restart/d8fir st

intn DFR8restart()

Purpose Causes the next get command to read from the first raster image set in thefile.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

FORTRAN integer function d8first()

February 2010 2-277

The HDF Group

DFR8setcompress/d8scomp

DFR8setcompress/d8scomp

intn DFR8setcompress(int32 type, comp_info * cinfo)

type

cinfo

Purpose
Return value

Description

IN: Type of compression

IN: Pointer to compression information structure

Sets the compression type to be used when writing the next 8-bit raster image.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

This routine provides a method for compressing the next raster image written.
The type can be one of the following values: covMp_NONE, COMP_JPEG, COMP_RLE,
comp_IMCOMP. coMP_NONE iS the default for storing images if this routine is not
called, therefore images are not compressed by default. comp_gpEG cOmpresses
images with a JPEG agorithm, which is a lossy method. cove rRLE USES
lossless run-length encoding to store the image. comp_1mMcomp uses a lossy
compression algorithm called IMCOMP, and is included for backward
compatibility only.

The comp_info union contains algorithm-specific information for the library
routines that perform the compression and is defined in the hcomp . h header
file asfollows (refer to the header file for inline documentation):

typedef union tag comp_ info

{

struct
intn quality;
intn force baseline;
} Jpeg;
struct
int32 nt;
intn sign_ext;
intn fill one;
intn start_bit;
intn bit_len;
} nbit;
struct
intn skp_size;
} skphuff;
struct
intn level;
} deflate;

}

comp_info;

2-278 February 2010

DFR8setcompress/d8scomp

HDF Reference M anual

FORTRAN

Thisunionis defined to provide future expansion, but is currently only used by
the comp_gpec compression type. A pointer to a valid comp_info union is
required for all compression types other than comp_gpEg, but the values in the
union are not used. The comp_info union is declared in the header file hdf.h
and is shown here for informative purposes only, it should not be re-declared in
auser program.

For covp_gpec compression, the quality member of the jpeg structure must be
set to the quality of the stored image. This humber can vary from 100, the best
quality, to o, terrible quality. All images stored with comp_gpEc compression
are stored in a lossy manner, even images stored with a quality of 100. The
ratio of size to perceived image quality varies from image to image, some
experimentation may be required to determine an acceptable quality factor for
a given application. The force baseline parameter determines whether the
quantization tables used during compression are forced to the range o-25s. It
should normally be set to 1 (forcing baseline results), unless special
applications require non-baseline images to be used.

If the compression type is JPEG, d8scomp defines the default JPEG

compression parameters to be used. If these parameters must be changed | ater,
the d8gpeg routine must be used. (Refer to the Reference Manual page on

d8s peg).

integer function d8scomp (type)

integer type

February 2010

2-279

The HDF Group dSScomp

d8scomp

integer d8scomp(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description d8g peg changes the JPEG compression parameter settings set in the d8scomp
routine.

2-280 February 2010

d8s peg HDF Reference Manual

d8speg

integer d8sjpeg(integer quality, integer baseline)

quality IN: JPEG quality specification

baseline IN: JPEG baseline specification

Purpose Fortran-specific routine that sets the parameters needed for the JPEG
algorithm.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description d8g peg changes the JPEG compression parameter settings set in the d8scomp
routine.

February 2010 2-281

The HDF Group DFR8setpalette/d8spal

DFR8setpalette/d8spal

intn DFR8setpal ette(uint8 * pal ette)

pal ette IN: Palettedata

Purpose Indicate which palette, if any, isto be used for subseguent image sets.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description The specified palette remains the default palette until changed by a subsequent
call to DFR8setpalette.

FORTRAN integer function d8spal (palette)

character* (*) palette

2-282 February 2010

DFR8writeref/d8wr ef

HDF Reference M anual

DFR8writeref/d8wr ef

intn DFR8writeref(char *filename, uint16 ref)

filename

ref

Purpose

Return value

Description

FORTRAN

IN: Name of the HDF file

IN: Reference number for next call to DFR8putimage or
DFR8addimage

Specifies the reference number of the image to be written when
DFR8addimage or DFR8putimage is next called.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

It is unlikely that you will need this routine, but if you do, use it with caution.
There is no guarantee that reference numbers appear in sequence in an HDF
file; therefore, it is not safe to assume that a reference number isthe index of an

image. In addition, using an existing reference number will overwrite the
existing 8-bit raster image data.

integer function d8wref (filename, ref)

character* (*) filename

integer ref

February 2010

2-283

The HDF Group DFR8wr iteref/d8wref

2-284 February 2010

DFPaddpal/dpapal HDF Reference Manual

DFPaddpal/dpapal

intn DFPaddpal (char *filename, V OIDP paltte)

filename IN: Name of the HDF file
pal ette IN: Buffer containing the palette to be written
Purpose Appends a palette to afile.

Return value Returns succeep (or o) if successful and a1 (or -1) otherwise.

Description If the named file does not exigt, it is created and the palette written to it. The
palette buffer should beat least 768 bytes in length.

FORTRAN integer function dpapal (filename, palette)

character* (*) filename, palette

February 2010 2-285

The HDF Group DFPgetpal/dpgpal

DFPgetpal/dpgpal

intn DFPgetpal (char *filename, VOIDP palette)

filename IN: Name of the HDF file
pal ette OUT: Buffer for the returned palette
Purpose Retrieves the next palette from file and stores it in the buffer palette.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description The palette buffer is assumed to be at least 768 bytes long. Successive calls to
DFPgetpal retrieve the pal ettes in the sequence they are stored in the file.

FORTRAN integer function dpgpal (filename, palette)

character* (*) filename. palette

2-286 February 2010

DFPlastref/dplref HDF Reference Manual

DFPlastref/dplr ef

uint16 DFPlastref(void)
Purpose Returns the value of the reference number most recently read or written by a
palette function call.

Return value Returns the reference number if successful and rarr (or -1) otherwise.

FORTRAN integer function dplref ()

February 2010 2-287

The HDF Group DFPnpals/dpnpals

DFPnpals/dpnpals
intn DFPnpals(char *filename)

filename IN: Name of thefile

Purpose Indicates the number of palettesin the specified file.

Return value Returns the number of palettesif successful and razr. (or -1) otherwise.

FORTRAN integer function dpnpals(filename)

character* (*) filename

2-288 February 2010

DFPputpal/dpppal

HDF Reference M anual

DFPputpal/dpppal

intn DFPputpal (char *filename, VOIDP palette, intn overwrite, char *filemode)

filename
pal ette
overwrite

filemode

Purpose
Return value

Description

FORTRAN

IN: Name of thefile

IN: Buffer containing the palette to be written
IN: Flag identifying the palette to be written
IN: File access mode

Writes a palette to the file.

Returns succeep (or o) if successful and rar1r (or -1) otherwise.

This routine provides more control of palette write operations than
DFPaddpal. Note that the combination filemode="w" and overwrite=1 has no
meaning and will result in an error condition. To overwrite a palette, filename
must be the same filename as the last file accessed through the DFP interface.

Valid values for overwrite are: 1 to overwrite last palette; o to write a new
palette.

Valid values for filemode are: “a’ to append the palette to the file and “w” to
create anew file.

The palette buffer must be at least 768 bytesin length.

integer function dpppal (filename, palette, overwrite, filemode)

character* (*) filename, palette, filemode

integer overwrite

February 2010

2-289

The HDF Group DFPreadref/dprref

DFPreadref/dprref

intn DFPreadref(char *filename, uint16 ref)

filename IN: Name of thefile

ref IN: Reference number to be used in next DFPgetpal call

Purpose Retrieves the reference number of the palette to be retrieved next by
DFPgetpal.

Return value Returns succeep (or o) if the palette with the specified reference number exists
and rarL (or -1) otherwise.

Description Used to set the reference number of the next palette to be retrieved.

FORTRAN integer function dprref (filename, ref)

character* (*) filename

integer ref

2-290 February 2010

DFPrestart/dprest HDF Reference Manual

DFPrestart/dprest

intn DFPrestart()
Purpose Specifies that DFPgetpal will read the first palette in the file, rather than the
next unread pal ette.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

FORTRAN integer function dprest()

February 2010 2-291

The HDF Group DFPwriteref/dpwref

DFPwriteref/dpwref

intn DFPwriteref (char *filename, uint16 ref)

filename IN: Name of thefile
ref IN: Reference number to be assigned to the next pal ette written to afile
Purpose Determines the reference number of the next palette to be written.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description Thefile nameisignored. The next palette written, regardless of the filename, is
assigned the reference number ref.

FORTRAN integer function dpwref (filename, ref)

character* (*) filename

integer ref

2-292 February 2010

DFKNTsize HDF Reference M anual

DFKNTsze

int DFKNTSsize(int32 data_type)

data_type IN: Datatype

Purpose Determines the size of the specified datatype.

Return value Returnsthe size, in bytes, of the specified datatypeif successful and ra1r (or -
1) otherwise.

February 2010 2-293

The HDF Group DFKNTsize

2-294 February 2010

DFUfptoimage/duf2im HDF Reference Manual

DFUfptoimage/duf2im

int DFUfptoimage(int32 hdim, int32 vdim, float32 max, float32 min, float32 * hscale, float32 *vscale,
float32 * data, uint8 * palette, char *outfile, int ct_method, int32 hres, int32 vres,

int compress)
hdim IN: Horizontal dimension of the input data
vdim IN: Vertical dimension of the input data
max IN: Maximum value of the input data
min IN: Minimum value of the input data
hscale IN: Horizontal scale of the input data (optional)
vscale IN: Vertical scale of the input data (optional)
data IN: Buffer containing the input data
palette IN: Pointer to the palette data
outfile IN: Name of the file the image datawill be stored in
ct_method IN: Color transformation method
hres IN: Horizontal resolution to be applied to the output image
vres IN: Vertical resolution to be applied to the output image
compress IN: Compression flag
Purpose Converts floating point data to 8-bit raster image format and stores the

converted image data in the specified file.

Return value Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

Description Thisroutine is very similar to the utility fptohdf, which takes its input from
one or more files, rather than from internal memory. Another differenceis that
this routine allows compression (run-length encoding), whereas fptohds does
not at present.

As this routine is meant to mimic many of the features of NCSA DataScope,
much of the code has been taken directly from the DataScope source.

Valid values for ct_method are: 1 (or expanp) for expansion and 2 (Or INTERP)
for interpolation.

Valid values for compress are: o for no compression and 1 for compression

enabled.
FORTRAN integer function duf2im(hdim, vdim, max, min, hscale, vscale,
data, palette, outfile, ct_method, hres, vres,
compress)

integer hdim, vdim

February 2010 2-295

The HDF Group DFUfptoimage/duf2im

real max, min, hscale, vscale, data
character* (*) palette, outfile

integer ctmethod, hres, vres, compress

2-296 February 2010

DFANaddfds/daafds

HDF Reference M anual

DFANaddfds/daafds

intn DFANaddfds(int32 file_id, char * description, int32 desc_len)

file_id
description

desc len

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen
IN: Sequence of ASCII characters (may include nuLr or '\ o")

IN: Length of the description

Adds afile description to afile.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

These annotations are associated with the file, not with any particular object
within the file. The parameter description can contain any sequence of ASCII
characters. It does not have to be a string. Use the general purpose routines

Hopen and Hclose to manage file access as the file annotation routines will not
open and close HDF files.

integer function daafds(file_id, description, desc_len)

integer file id, desc_len

character* (*) description

February 2010

2-297

The HDF Group

DFANaddfid/daafid

DFANaddfid/daafid

intn DFANaddfid(int32 file _id, char *label)

file id
|abel

Purpose
Return value

Description

FORTRAN

IN: Thefileidentifier returned by Hopen.

IN: A null-terminated string.

Writes afile label to afile.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

These annotations are associated with the file, not with any particular object
within the file. The label must be a single string. Use the general purpose
routines Hopen and Hclose to manage file access because the file annotation
routines will not open and close HDF files for you.

In the FORTRAN-77 version, the string length for the label should be close to
the actual expected string length, because in FORTRAN-77 string lengths
generaly are assumed to be the declared length of the array that holds the
string.

integer function daafid(file_ id, label)

integer file id

character* (*) label

2-298

February 2010

DFANCclear/daclear

HDF Reference M anual

DFANCclear/daclear

intn DFANCclear()

Purpose

Return value

Description

FORTRAN

Resets dl internal library structures and parameters of the DFAN annotation
interface.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.
When a file is regenerated in a single run by a library routine of another

interface (such as DFSDputdata), DFANCclear should be called to reset the
interface.

integer function daclear()

February 2010

2-299

The HDF Group DFANgetdesc/dagdesc

DFANgetdesc/dagdesc

intn DFANgetdesc(char *filename, uint16 tag, uint16 ref, char *desc_buf, int32 buf_|en)

filename IN: Name of the file

tag IN: Tag of the data object assigned the description

ref IN: Reference number of the data object assigned the description

desc_buf OUT: Buffer alocated to hold the description

buf len IN: Size of the buffer alocated to hold the description

Purpose Reads the description assigned to the data object with the given tag and
reference number.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.
Description The parameter buf_len specifies the storage space available for the description.

Thelength of buf_len must account for the null termination character appended
to the description.

FORTRAN integer function dagdesc(filename, tag, ref, desc_buf, buf_ len)

character* (*) filename, desc_buf
integer tag, ref

integer buf_len

2-300 February 2010

DFANgetdesclen/dagdien

HDF Reference M anual

DFANgetdesclen/dagdlen

int32 DFANgetdesclen(char *filename, uint16 tag, uint16 ref)

filename
tag
ref

Purpose

Return value

Description

FORTRAN

IN: Name of the file
IN: Tag of the data object assigned the description
IN: Reference number of the data object assigned the description

Retrieves the length of a description of the data object with the given tag and
reference number.

Returns the length of a description if successful and ra1r (or -1) otherwise.

This routine should be used to insure that there is enough space allocated for a
description before actually reading it.

integer function dagdlen(filename, tag, ref)

character* (*) filename

integer tag, ref

February 2010

2-301

The HDF Group DFANgetfds/dagfds

DFANgetfds/dagfds

int32 DFANgetfds(int32 file id, char *desc_buf, int32 buf_len, intn isfirst)

file id IN: File identifier returned by Hopen

desc_buf OUT: Thebuffer alocated to hold the description

buf_len IN: Size of the buffer alocated to hold the description

isfirst IN: Determines the description to be retrieved

Purpose Reads the next file description.

Return value Returns the length of the file description if successful and rarrn (or -1)
otherwise.

Description If isfirstis o, DFANgetfds gets the next file description from an HDF file. For

example, if there are three file descriptions in a file, three successive calls to
DFANgetfdswill get all three descriptions. If isfirst is 1, DFANgetfds getsthe
first file description.

Valid values for isfirst are: 1 to read the first description and o to read the next
description.

FORTRAN integer function dagfds(file id, desc buf, buf len, isfirst)

integer file id, buf len, isfirst

character* (*) desc_buf

2-302 February 2010

DFANgetfdslen/dagfdsl

HDF Reference M anual

DFANgetfdslen/dagfdd

int32 DFANgetfdden(int32 file id, intn isfirst)

file id
isfirst

Purpose

Return value

Description

FORTRAN

IN: File identifier returned by Hopen

IN: Determines the description the retrieved length information applies
to

Returns the length of afile description.

Returns the length of the file description if successful and rarrn (or -1)
otherwise.

When DFANgetfdslen isfirst caled for agivenfile, it returns the length of the
first file description. In order to get the lengths of successive file descriptions,
you must call DFANgetfds between calls to DFANgetfdslen. Successive calls
to DFANgetfdslen without calling DFANgetfds between them will return the
length of the same file description.

Valid values for isfirst are: 1 to read the length of the first description and o to
read the length of the next description.

integer function dagfdsl(file_id, isfirst)

integer file id, isfirst

February 2010

2-303

The HDF Group DFANgetfid/dagfid

DFANGgetfid/dagfid

int32 DFANgetfid(int32 file_id, char *desc_buf, int32 buf_len, intn isfirst)

file id IN: File identifier returned by Hopen

label_buf OUT: The buffer alocated to hold the label

buf len IN: Size of the buffer allocated to hold the label

isfirst IN: Determines thefile label to be retrieved

Purpose Reads afile label from afile.

Return value Returns the length of the file description if successful and rarrn (or -1)
otherwise.

Description If isfirst is o, DFANgetfid gets the next file label from the file. If isfirst is 1,

DFANGgetfid gets the first file label in the file. If buf_len is not large enough,
the label istruncated to buf_len-1 charactersin the buffer label _buf.

Valid values of isfirst are: 1 to read the first label, o to read the next |abel

FORTRAN integer function dagfid(file_id, label buf, buf len, isfirst)

integer file id, buf_len, isfirst

character* (*) label buf

2-304 February 2010

DFANGgetfidlen/dagfidl HDF Reference Manual

DFANgetfidlen/dagfidl

int32 DFANgetfidlen(int32 file_id, intnisfirst)

file id IN: File identifier returned by Hopen
isfirst IN: Determines the file label the retrieved length information appliesto
Purpose Returns the length of afile label.

Return value Returns the length of the file label if successful and a1z (or -1) otherwise.

Description When DFANgetfidlen isfirst caled for agiven file, it returns the length of the
first file label. In order to retrieve the lengths of successive file labels,
DFANgetfid must be called between calls to DFANgetfidlen. Otherwise,
successive callsto DFANgetfidlen will return the length of the samefile label.

Valid values of isfirst are: 1 to read thefirst label, and o to read the next label.

FORTRAN integer function dagfidl (file id, isfirst)

integer file id, isfirst

February 2010 2-305

The HDF Group DFANgetlabel/daglab

DFANgetlabel/daglab

intn DFANgetlabel (char *filename, uint16 tag, uint16 ref, char *label _buf, int32 buf_len)

filename IN: Name of the HDF file

tag IN: Tag of the data object assigned the label

ref IN: Reference number of the data object assigned the label

label_buf OUT: Buffer for the label

buf len IN: Size of the buffer allocated for the label

Purpose Reads the label assigned to the data object identified by the given tag and
reference number.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.
Description The parameter buf_|len specifies the storage space available for the label. The

length of buf_len must account for the null termination character appended to
the annotation.

FORTRAN integer function daglab(filename, tag, ref, label buf, buf_ len)

character* (*) filename, label buf

integer tag, ref, buf_len

2-306 February 2010

DFANgetlablen/dagllen

HDF Reference M anual

DFANgetlablen/dagllen

int32 DFANgetlablen(char *filename, uint16 tag, uint16 ref)

filename
tag
ref

Purpose

Return value

Description

FORTRAN

IN: Name of the file
IN: Tag of the data object assigned the label
IN: Reference number the data object assigned the label

Returns the length of a label assigned to the object with a given tag and
reference number.

Returns the length of the label if successful and ra1L (or -1) otherwise.

This routine should be used to insure that there is enough space allocated for a
label before actually reading it.

integer function dagllen(filename, tag, ref)

character* (*) filename

integer tag, ref

February 2010

2-307

The HDF Group

DFANIablist/dallist

DFANIablist/dallist

int DFANIablist(char *filename, uint16 tag, unit16 ref_list[], char *label_list, int list_len, intn

filename
tag
ref_list
label_list
list_len
label_len

start_pos

Purpose

Return value

Description

FORTRAN

label_len, intn start_pos)

IN: Name of the file
IN: Tag to be queried
OUT: Buffer for the returned reference numbers

OUT: Buffer for the returned labels

IN: Size of the reference number list and the label list
IN: Maximum length allowed for alabel
IN: Starting position of the search

Returns a list of all reference numbers and labels (if labels exist) for a given
tag.

Returns the number of reference numbers found if successful and razw (or -1)
otherwise.

Entries are returned from the start_pos entry up to thelist_len entry.

The list_len determines the number of available entries in the reference
number and label lists, label_len is the maximum length allowed for a label,
and start_postellswhich label to start reading for the given tag. (If start_posis
1, for instance, all labels will be read; if start posis 4, all but the first 3 labels
will be read.) The ref_list contains a list of reference numbers for all objects
with agiven tag. Thelabel_list contains a corresponding list of labels, if any. If
thereis no label stored for a given object, the corresponding entry in label _list
isan empty string.

Taken together, the ref_list and label_list constitute a directory of all objects
and their labels (where they exist) for agiven tag. The label_list parameter can
display al of the labels for a given tag. Or it can be searched to find the
reference number of a data object with a certain label. Once the reference
number for a given label is found, the corresponding data object can be
accessed by invoking other HDF routines. Therefore, this routine provides a
mechanism for the direct access to data objects in HDF files.

integer function dallist (filename, tag, ref list, label list,
list_len, label_len, start_pos)

character* (*) filename, label list
integer ref list (*)

integer list_len, label_len, start_pos

2-308 February 2010

DFANIlastref/dalr ef HDF Reference M anual

DFANIlastref/dalr ef

uint16 DFANIastref()

Purpose Returns the reference number of the annotation last written or read.

Return value Returns the reference number if successful and rarr (or -1) otherwise.

FORTRAN integer function dalref ()

February 2010 2-309

The HDF Group

DFANputdesc/dapdesc

DFANputdesc/dapdesc

int DFANputdesc(char *filename, uint16 tag, uint16 ref, char *description, int32 desc_len)

filename
tag

ref
description

desc len

Purpose

Return value

Description

FORTRAN

IN: Name of the file

IN: Tag of the data object to be assigned the description

IN: Reference number the data object to be assigned the description
IN: Sequence of ASCII characters (may include nuLr or '\ o')

IN: Length of the description

Writes a description for the data object with the given tag and reference
number.

Returns succeep (or o) if successful and ra1w (or -1) otherwise.
The parameter description can contain any sequence of ASCII characters; it

does not have to be a string. If DFANputdesc is called more than once for the
same tag/reference number pair, only the last description is stored in the file.

integer function dapdesc (filename, tag, ref, description,
desc_len)

character* (*) filename, description

integer tag, ref, desc_len

2-310

February 2010

DFANputlabel/daplab

HDF Reference M anual

DFANputlabel/daplab

intn DFANputlabel (char *filename, uint16 tag, uint16 ref, char *label)

filename
tag

ref

label

Purpose

Return value

FORTRAN

IN:
IN:
IN:
IN:

Name of the file

Tag of the data object to be assigned the label

Reference number the data object to be assigned the label
Null-terminated label string

Assigns alabel to the data object with the given tag/reference number pair.

Returns succeep (or o) if successful and rarr (or -1) otherwise.

integer function daplab(filename, tag, ref, label)

character* (*) filename, label

integer tag, ref

February 2010

2-311

The HDF Group DFANputlabel/daplab

2-312 February 2010

DFSDadddata/dsadata

HDF Reference Manual

DFSDadddata/dsadata

intn DFSDadddata(char *filename, intn rank, int32 dimsizeq[], VOIDP data)

filename
rank
dimsizes

data

Purpose

Return value

Description

FORTRAN

IN:
IN:
IN:
IN:

Name of the HDF file
Number of dimensionsin the data array to be written
Array containing the size of each dimension

Array containing the data to be stored

Appends a scientific dataset in its entirety to an existing HDF file if the file
exists. If not, anew fileis created.

Returns succeep (or o) if successful and rarr (or -1) otherwise.

In addition to appending a multidimensional array of data to an HDF file,
DFSDadddata automatically stores any information pertinent to the dataset. It
will not overwrite existing data in the file. The array data can be of any valid
type. However, if no data type has been set by DFSDsetNT, it is assumed that
thedatais of type f1oat32.

Calling DFSDadddata will write the scientific dataset and all associated
information. That is, when DFSDadddata is called, any information set by a
DFSDset* call iswritten to the file, along with the data array itself.

integer function dsadata(filename, rank, dimsizes, data)

character* (*) filename

integer rank

integer dimsizes(*), data(*)

February 2010

2-313

The HDF Group DFSDclear/dsclear

DFSDclear /dsclear

intn DFSDclear()

Purpose Clears al values set by DFSDset* routines.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description After acall to DFSDclear, values set by any DFSDset* call will not be written
unless they have been set again.

FORTRAN integer function dsclear()

2-314 February 2010

DFSDendslab/dseslab HDF Reference M anual

DFSDendslab/dseslab
intn DFSDendslab()
Purpose Terminates a sequence of slab calls started by DFSDstartslab by closing the
file.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

FORTRAN integer function dseslab()

February 2010 2-315

The HDF Group DFSDendslice/dsesic

DFSDenddlice/dsesic

intn DFSDendslice()

Purpose Terminates the write operation after storing a slice of data in a scientific
dataset.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description DFSDendslice must be called after all the slices are written. It checksto ensure
that the entire dataset has been written, and if it has not, returns an error code.
DFSDendslice is obsolete in favor of DFSDendslab. DFSDendslab is the
recommended function call to use when terminating hyperslab (previousy
known as data slices) operations. HDF will continue to support DFSDendslice
only to maintain backward compatibility with earlier versions of the library.

FORTRAN integer function dseslc()

2-316 February 2010

DFSDgetcal/dsgcal

HDF Reference M anual

DFSDgetcal/dsgcal

int32 DFSDgetcal (float64 * cal, float64 *cal_err, float64 * offset, float64 * offset_err, int32 *data_type)

cal
cal_err
offset
offset_err

data_type

Purpose
Return value

Description

FORTRAN

OUT: Cdlibration factor

OUT: Cdlibration error

OUT: Uncalibrated offset

OUT: Uncalibrated offset error
OUT: Datatype of uncalibrated data

Retrieves the calibration record, if thereis one, attached to a scientific dataset.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

A calibration record contains four 64-bit floating point values followed by a
32-bit integer.

The relationship between avalue iy stored in a dataset and the actual value y
is defined as:

y =cd * (iy - offset)

The variable of fset_err contains a potential error of offset, and cal_err
contains a potential error of cal. Currently the calibration record is provided for
information only. The SD interface performs no operations on the data based
on the calibration tag.

As an example, suppose the values in the calibrated dataset iy [] are the
following integers:

iy[6] ={2, 4,5, 11, 26, 81}

By definingcal = 0.50andoffset = -200.0 and applying the calibration
formula, the calibrated dataset iy [] returns to its original form as a floating
point array:

y[6] = {1001.0, 1002.0, 1002.5, 1005.5, 1013.0,1040.5}

integer function dsgcal(cal, cal_err, offset, offset err,
data_type)

real cal, cal_err, offset, offset err

integer data_type

February 2010

2-317

The HDF Group

DFSDgetdata/dsgdata

DFSDgetdata/dsgdata

intn DFSDgetdata(char *filename, intn rank, int32 dimsizeg[], VOIDP data)

filename
rank
dimsizes

data

Purpose
Return value

Description

FORTRAN

IN: Name of thefile
IN: Number of dimensions
IN: Dimensions of the data buffer

OUT: Buffer for the data

Reads the next dataset in thefile.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

If the values of rank or dimsizes aren’t known, DFSDgetdims must be called
to retrieve them and then use them to determine the buffer space needed for the
array data. If the data type of the data in a scientific dataset isn't know,
DFSDgetNT must be called to retrieve it. Subsegquent calls to DFSDgetdata
(or to DFSDgetdims and DFSDgetdata)will sequentialy read scientific
datasets from the file. For example, if DFSDgetdata is called three times in
succession, the third call reads data from the third scientific dataset in the file.

If DFSDgetdims or DFSDgetdata is called and there are no more scientific

datasets left in the file, an error code is returned and nothing is read.
DFSDrestart can be used to override this convention.

integer function dsgdata(filename, rank, dimsizes, data)

character* (*) filename
integer rank

integer dimsizes(*), data(*)

2-318

February 2010

DFSDgetdatalen/dsgdaln

HDF Reference M anual

DFSDgetdatalen/dsgdaln

intn DFSDgetdatalen(intn *label_len, intn *unit_len, intn *format_len, intn *coords len)

label_len
unit_len
format_len

coords len

Purpose
Return value

Description

FORTRAN

OUT: Maximum length of the label string
OUT: Maximum length of the unit string
OUT: Maximum length of the format string

OUT: Maximum length of the coordinate system string

Retrieves the lengths of the label, unit, format, and coordinate system strings.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.
The space alocated for the label, unit, format, and coordinate system strings

must be at |east one byte larger than the actual length of the string to account
for the null termination.

integer function dsgdaln(label len, unit_len, format_len,
coords_len)

integer label len, unit len, format len, coords_len

February 2010

2-319

The HDF Group

DFSDgetdatastr dsgdast

DFSDgetdatastr s/dsgdast

intn DFSDgetdatastrs(char *label, char *unit, char *format, char * coordsys)

label
unit
format

coordsys

Purpose

Return value

Description

FORTRAN

OUT:
OUT:
OUT:
OUT:

Label describing the data
Unit to be used with the data
Format to be used in displaying data

Coordinate system

Retrieves information about the label, unit, and format attribute strings
associated with the data.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

The parameter coordsys gives the coordinate system that is to be used for
interpreting the dimension information.

integer function dsgdast (label, unit, format, coordsys)

character* (*) label, unit, format, coordsys

2-320

February 2010

DFSDgetdimlen/dsgdiln

HDF Reference M anual

DFSDgetdimlen/dsgdiln

intn DFSDgetdimlen (intn dim, intn *label_len, intn *unit_len, intn *format_len)

dim
label_len
unit_len

format_len

Purpose

Return value

Description

FORTRAN

IN: Dimension the label, unit, and format refer to
OUT: Length of the label

OUT: Length of the unit

OUT: Length of the format

Retrieves the length of the label, unit, and format attribute strings associated
with the specified dimension.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.
The space alocated to hold the label, unit, and format strings must be at least

one byte larger than the actual length of the string, to account for the null
termination.

integer function dsgdiln(dim, label_len, unit_len, format_len)

integer dim, label len, unit_len, format_len

February 2010

2-321

The HDF Group

DFSDgetdims/dsgdims

DFSDgetdims/dsgdims

intn DFSDgetdims(char *filename, intn *rank, int32 dimsizeq], intn maxrank)

filename
rank
dimsizes

maxrank

Purpose

Return value

Description

FORTRAN

IN: Name of the HDF file
OUT: Number of dimensions
OUT: Buffer for the returned dimensions

IN: Size of the storage buffer dimsizes

Retrieves the number of dimensions (rank) of the dataset and the sizes of the
dimensions (dimsizes) for the next scientific dataset in the file.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

The maxrank parameter tells DFSDgetdims the size of the array that is
allocated for storing the dimsizes array. The value of rank must not exceed the
value of maxrank.

The alocation of a buffer for the scientific dataset data should correspond to
the values retrieved by DFSDgetdims. The first value in the array dimsizes
should equal the first dimension of the array that is allocated to hold the
dataset; the second value in dimsizes should equal the second dimension of the
dataset, and so forth.

integer function dsgdims (filename, rank, dimsizes, maxrank)

character* (*) filename
integer rank, maxrank

integer dimsizes(*)

2-322

February 2010

DFSDgetdimscale/dsgdisc HDF Reference Manual

DFSDgetdimscale/dsgdisc

intn DFSDgetdimscale(intn dim, int32 size, VOIDP scal€)

dim IN: Dimension this scale corresponds to

size IN: Size of the scale buffer

scale OUT: Array of vaues defining reference points along a specified
dimension

Purpose Gets the scale corresponding to the specified dimension.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.
Description The DFSD interface requires the dimension scales to be of the same data type

as the corresponding data. To store dimension scales of a different data type
than the corresponding data, use the multifile SD interface.

FORTRAN integer function dsgdisc(dim, size, scale)

integer dim, size

integer scale(*)

February 2010 2-323

The HDF Group DFSDgetdimstr s/dsgdist

DFSDgetdimstr s/dsgdist

intn DFSDgetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label OUT: Label that describes this dimension

unit OUT: Unit to be used with this dimension

format OUT: Format to be used in displaying scale for this dimension

Purpose Retrieves the label, unit, and format attribute strings corresponding to the

specified dimension.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description The space alocated for the label, unit, and format string must be at least one
byte larger than the length of the string to accommodate the null termination. If
the length is unknown when the program is written, declare the array size as

l+maxlen label, maxlen unit, Of maxlen format after they are set by
DFSDsetlengths. The maximum default string lengthis 255s.

FORTRAN integer function dsgdist (dim, label, unit, format)

integer dim

character* (*) label, unit, format

2-324 February 2010

DFSDgetfillvalue/dsgfill

HDF Reference Manual

DFSDgetfillvalue/dsgfill

intn DFSDgetfillvalue(V OIDP fill_value)

fill_value

Purpose
Return value

Description

FORTRAN

OUT: Fill value

Retrieves the fill value of a DFSD scientific dataset.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

The fill value is set by DFSDsetfillvalue and returned in the variable
£i11 value. Note that DFSDgetfillvalue does not take a file name as an

argument. Asaresult,aDFSD call to initialize the file information structuresis
required before calling DFSDgetfillvalue. One such call is DFSDgetdims.

integer function dsgfill(fill value)

character* (*) fill value

February 2010

2-325

The HDF Group

DFSDgetNT/dsgnt

DFSDgetNT/dsgnt

intn DFSDgetNT(int32 *data_type)

data_type

Purpose
Return value

Description

FORTRAN

OUT: Datatype of datain the scientific dataset

Retrieves the data type of the next dataset to be read.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Note that DFSDgetNT does not take a file name as an argument. Asaresult, a
DFSD cdl toinitialize the file information structures is required before calling
DFSDgetNT. One such call is DFSDgetdims.

Valid values for data_type are of the general form DFNT _. The following are
valid symbolic names and their data types:

32-bit float DFNT FLOAT32 5
64-bit float DFNT FLOAT64 6
8-bit signed int DFNT INT8 20
8-bit unsigned int DFNT UINTS 21
16-bit signed int DFNT INT16 22
16-bit unsigned int DENT UINT16 23
32-bit signed int DFNT INT32 24
32-bit unsigned int DFNT UINT32 25
8-bit character DFNT CHARS 4

integer function dsgnt (num_type)

integer num_type

2-326

February 2010

DFSDgetrange/dsgrang

HDF Reference M anual

DFSDgetrange/dsgrang

intn DFSDgetrange(VOIDP max, VOIDP min)

min

Purpose
Return value

Description

FORTRAN

OUT: Maximum value stored with the scientific dataset

OUT: Maximum value stored with the scientific dataset

Retrieves the maximum and minimum values stored with the scientific dataset.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

The max and min values are set via a call to DFSDsetrange. They are not
automatically stored when a dataset is written to a file. The data type of these
values is the data type of the dataset array. One implication of thisisthat in the
C version of DFSDgetrange the arguments are pointers, rather than smple
variables, whereas in the FORTRAN-77 version they are simple variables of
the same type as the data array.

Neither DFSDgetrange nor DFSDgetdata compare the max and min values
stored with the dataset to the actual values in the dataset; they merely retrieve
the data. As a result, the maximum and minimum values may not always
reflect the actual maximum and minimum values in the dataset. In some cases
the max and min values may actualy lie outside the range of values in the
dataset.

integer function dsgrang(max, min)

character* (*) max, min

February 2010

2-327

The HDF Group

DFSDgetslice/dsgsic

DFSDgetslice/dsgsic

intn DFSDgetslice(char *filename, int32 wingt[], int32 windims[], VOIDP data, int32 dimg[])

filename
winst
windim
data

dims

Purpose
Return value

Description

FORTRAN

IN: Name of HDF file
IN: Array containing the coordinates for the start of the slice
IN: Array containing the dimensions of the dice

OUT: Array for returning sice

OUT: Dimensionsof array data

Reads part of a scientific dataset from afile.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

DFSDgetslice accesses the dataset last accessed by DFSDgetdims. If
DFSDgetdims has not been called for the named file, DFSDgetslice gets a
slice from the next dataset in the file. Array winst specifies the coordinates of
the start of the dice. Array windims gives the size of the slice. The number of
elements in winst and windims must be equal to the rank of the dataset. For
example, if the file contains a three-dimensional dataset, winst may contain the
values {2, 4, 3}, whilewindimscontainsthevalues {3, 1, 4} andthedims
should be at least {3, 1, 4}, the same size asthe dlice. Thiswill extract a 3 x
4, two-dimensional slice, containing the elements between (2, 4, 3) and (4,
4, 6) fromtheoriginal dataset.

The data array isthe array into which the sliceisread. It must be at |east as big
as the desired dice. The dims array is the array containing the actual
dimensions of the array data. The user assigns values to dims before calling
DFSDgetdlice.

All parameters assume FORTRAN-77-style one-based arrays.

DFSDgetslice is obsolete in favor of DFSDreadslab. DFSDreadslab is the
recommended function call to use when reading hyperslabs (previously known
as data slices). HDF will continue to support DFSDgetdlice only to maintain

backward compatibility with HDF applications built on earlier versions of the
library.

integer function dsgslc(filename, winst, windims, data, dims)

character* (*) filename, data

integer winst(*), windims(*), dims(*)

2-328

February 2010

DFSDlastref/ddr ef HDF Reference M anual

DFSDlastref/dslr ef

intn DFSDlastref()
Purpose Retrieves the most recent reference number used in writing or reading a
scientific dataset.

Return value Returns the reference number for the last accessed scientific dataset if
successful and ra1r (or -1) otherwise.

Description DFSDlastref returns the value of the last reference number of a scientific
dataset read from or written to thefile.

FORTRAN integer function dslref()

February 2010 2-329

The HDF Group DFSDndatasets/dsnum

DFSDndatasets/dsnum

intn DFSDndatasets(char *filename)

filename IN: Name of the HDF file

Purpose Returns the number of scientific datasetsin thefile.

Return value Returns the number of datasetsif successful and ra1r (or -1) otherwise.

Description In HDF version 3.3, DFSDndatasets replaced DFSDnumber. In order to
maintain backward compatibility with existing HDF applications, HDF will

continue to support DFSDnumber. However, it is recommended that all new
applications use DFSDndatasets instead of DFSDnumber.

FORTRAN integer function dsnum(filename)

character* (*) filename

2-330 February 2010

DFSDpre32sdg/dsp32sd

HDF Reference M anual

DFSDpre32sdg/dsp32sd

intn DFSDpre32sdg(char *filename, uint16 ref, intn *ispre32)

filename
ref
ispre32

Purpose

Return value

Description

FORTRAN

IN: The name of the HDF file containing the scientific dataset
IN: Reference number of SDG

OUT: Pointer to results of the pre-HDF version 3.2 inquiry

Tests if the scientific dataset with the specified reference number was created
by an HDF library earlier than version 3.2.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.
If the scientific dataset was created with aversion of HDF prior to version 3.2,

ispre32 will be set to 1, otherwise it will be set to 0. Based on thisinformation,
programmers can decide whether or not to transpose the corresponding array.

integer function dsp32sd(filename, ref, ispre32)

character* (*) filename

integer ref, ispre32

February 2010

2-331

The HDF Group

DFSDputdata/dspdata

DFSDputdata/dspdata

intn DFSDputdata(char *filename, intn rank, int32 dimsizes[], VOIDP data)

filename
rank
dimsizes

data

Purpose
Return value

Description

FORTRAN

IN:
IN:
IN:
IN:

Name of the HDF file
Number of dimensions of data array to be stored
Buffer for the dimension sizes

Buffer for the data to be stored

Writes a scientific data and related information to an HDF file.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

DFSDputdata will write data to an existing file by destroying the contents of
the original file. Use it with caution. If a new filename is used, DFSDputdata
functions exactly like DFSDadddata.

integer function dspdata(filename, rank, dimsizes, data)

character* (*) filename

<valid numeric data type> data

integer rank

integer dimsizes(*)

2-332

February 2010

DFSDputdice/dspsic

HDF Reference M anual

DFSDputdlice/dspsic

intn DFSDputslice(int32 windims[], VOIDP source, int32 dimg[])

windims
source

dims

Purpose
Return value

Description

IN: Window dimensions specifying the size of the dice to be written
IN: Buffer for the dlice
IN: Dimensions of the source array

Writes part of a scientific dataset to afile.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

DFSDputdlice read a subset of an array in memory and stores it as part of the
scientific dataset array last specified by DFSDsetdims. Slices must be stored
contiguoudly.

Array windims (“window dimensions’) specifies the size of the dice to be
written. The windims array must contain as many elements as there are
dimensions in the entire scientific dataset array. The source argument is an
array in memory containing the slice and dims is an array containing the
dimensions of the array source.

Notice that windims and dims need not be the same. The windims argument
could refer to a sub-array of source, in which case only a portion of sourceis
written to the scientific data array.

All parameters assume FORTRAN-77-style one-based arrays.

DFSDputdlice is obsolete in favor of DFSDwriteslab. DFSDwriteslab is the
recommended function call to use when writing hyperslabs (previously known
as data dlices). HDF will continue to support DFSDputslice only to maintain
backward compatibility with earlier versions of the library.

February 2010

2-333

The HDF Group

DFSDreadref/dsrref

DFSDreadref/dsrr ef

intn DFSDreadref(char *filename, uint16 ref)

filename

ref

Purpose

Return value

Description

FORTRAN

IN: Name of the HDF file

IN: Reference number for next DFSDgetdata call

Specifies the reference number for the dataset to be read during the next read
operation.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

This routine is commonly used in conjunction with DFANgetlablist, which
returns a list of labels for a given tag together with their reference numbers. It
provides a sort of random access to scientific datasets.

There is no guarantee that reference numbers appear in sequence in an HDF

file, so it is not generally safe to assume that a reference number is an index
number of a scientific dataset.

integer function dsrref (filename, ref)

character* (*) filename

integer ref

2-334

February 2010

DFSDreadslab/dsr slab

HDF Reference M anual

DFSDreadslab/dsr dab

intn DFSDreadslab(char *filename, int32 start[], int32 slab_size[], int32 stride]], VOIDP buffer, int32

filename
start
slab_size
stride
buffer

buffer _size

Purpose
Return value

Description

FORTRAN

buffer_size[])

IN: Name of the HDF file

IN: Buffer of size rank containing the coordinates for the start of the slab
IN: Buffer of size rank containing the size of each dimension in the slab
IN: Subsampling (not yet implemented)

OUT: \Buffer for the returned slab

OUT: Dimensions of the buffer parameter

Reads a dab of data from any scientific dataset.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

DFSDreadslab will accessto the scientific dataset following the current one if
DFSDgetdims or DFSDgetdata are not caled earlier. The start array indices
are one-based. Therank of start must be the same as the number of dimensions
of the specified variable. The elements of slab_size must be no larger than the
dimensions of the scientific dataset in order. The stride feature is not currently
implemented. For now just pass the start array as the argument for stride where
it will beignored.

To extract a slab of lower dimension than that of the dataset, enter 1 in the
slab_size array for each omitted dimension. For example, to extract a two-
dimensional dab from a three-dimensional dataset, specify the beginning
coordinates in three dimensions and enter a 1 for the missing dimension in the
slab_size array. More specifically, to extract a 3 x 4 dab containing the
elements (s, 7, 8) through (s, 7, 11) specify the beginning coordinates as
{6, 7, s}andthedlabsizeas {3, 1, 4}.

integer function dsrslab(filename, start, slab size, stride,
buffer, buffersize)

character* (*) filename, buffer
integer start(*), slab_size(*),

integer stride(*), buffer size(*)

February 2010

2-335

The HDF Group DFSDrestart/dsfir st

DFSDrestart/dsfir st

intn DFSDrestart()
Purpose Causes the next read command to be read from the first scientific dataset in the
file, rather than the scientific dataset following the one that was most recently
read.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

FORTRAN integer function dsfirst()

2-336 February 2010

DFSDsetcal/dsscal

HDF Reference M anual

DFSDsetcal/dsscal

intn DFSDsetcal (float64 cal, float64 cal_err, float64 offset, float64 offset_err, int32 data_type)

cal
cal_err
offset
offset_err

data_type

Purpose
Return value

Description

IN: Calibration factor

IN: Calibration error

IN: Uncalibrated offset

IN: Uncalibrated offset error

IN: Data type of uncalibrated data

Sets the calibration information associated with data
Returns succeep (or o) if successful and a1 (or -1) otherwise.

This routine sets the calibration record associated with a dataset. A calibration
record contains four 64-bit floating point val ues followed by a 32-bit integer, to
be interpreted as follows:

cal calibration factor

cal_err calibration error

offset uncalibrated offset

offset erruncalibrated offset error
data_typedata type of uncalibrated data

The relationship between avalue iy stored in adataset and the actual valuey is
defined as:

y =cal * (iy - offset)

The variable of fset_err contains apotential error of offset, and cal err
contains a potential error of cal. Currently the calibration record is provided
for information only. The SD interface performs no operations on the data
based on the calibration tag.

DFSDsetcal works like other DFSDset* routines, with one exception: the
calibration information is automatically cleared after a call to DFSDputdata
or DFSDadddata. Hence, DFSDsetcal must be called again for each dataset
that is to be written.

Asan example, suppose the valuesin adataset vy [1 are asfollows:

y[6]1={1001.0, 1002.0, 1002.5, 1005.5, 1013.0,1040.5}

By definingcal = 0.50andoffset = -200.0 and applying the calibration
formula, the calibrated dataset iy [1 becomes as follows:

iy[6]={2, 4, 5, 11, 26, 81}

February 2010

2-337

The HDF Group DFSDsetcal/dsscal

Thearray iy [1 can then be stored asintegers.

FORTRAN integer function dsscal(cal, cal_err, offset, offset_err,
data_type)

real*8 cal, cal_err, offset, offset_err

integer data_type

2-338 February 2010

DFSDsetdatastr s/dssdast HDF Reference M anual

DFSDsetdatastr s/"dssdast

intn DFSDsetdatastrs(char *label, char * unit, char *format, char * coordsys)

label IN: Label describing the data

unit IN: Unit to be used with the data

format IN: Format to be used in displaying the data

coordsys IN: Coordinate system of the data

Purpose Sets the labdl, unit, format, and coordinate system for the next dataset written
tofile.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

FORTRAN integer function dssdast (label, unit, format, coordsys)

character* (*) label, unit, format, coordsys

February 2010 2-339

The HDF Group

DFSDsetdims/dssdims

DFSDsetdims/dssdims

intn DFSDsetdims (intn rank, int32 dimsizeg[])

rank

dimsizes

Purpose

Return value

Description

FORTRAN

IN: Number of dimensions

IN: Dimensions of the scientific dataset

Sets the rank and dimension sizes for all subsequent scientific datasets written
to thefile.

Returns succeep (or o) if successful and ra1r (or -1) otherwise.

This routine must be called before caling either DFSDsetdimstrs or
DFSDsetdimscale. DFSDsetdims need not be called if other set routines are
not called and the correct dimensions are supplied in DFSDputdata or
DFSDadddata.

If the rank or dimension sizes change, all previous set calls are cleared, except
for the data type, which is set by calling DFSDsetNT.

integer function dssdims (rank, dimsizes)

integer rank

integer dimsizes(*)

2-340

February 2010

DFSDsetdimscal e/dssdisc

HDF Reference M anual

DFSDsetdimscal e/dssdisc

intn DFSDsetdimscale (intn dim, int32 dimsize, VOIDP scale)

dim
dimsize

scale

Purpose
Return value

Description

FORTRAN

IN: Dimension this scale corresponds to
IN: Size of the scale buffer
IN: Buffer for the scale values

Defines the scale for a dimension.

Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

A scae is a one-dimensional array whose values describe reference points
along one dimension of the dataset. For example, a two-dimensional dataset

representing points on a map could have two scales, one representing points of
latitude, and the other points of longitude.

integer function dssdisc (dim, dimsize, scale)

integer dim

integer dimsize(*), scale(*)

February 2010

2-341

The HDF Group DFSDsetdimstr s/dssdist

DFSDsetdimstr s/dssdist

intn DFSDsetdimstrs(intn dim, char *label, char *unit, char *format)

dim IN: Dimension this label, unit and format refer to

label IN: Label that describes this dimension

unit IN: Unit to be used with this dimension

format IN: Format to be used to display scale

Purpose Sets the label, unit, and format strings corresponding to the specified
dimension.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description In both FORTRAN-77 and C programs, dim = 1 for the first dimension, and
dim = 2 for the second dimension. If the user is not interested in one or more
strings, empty strings can be used as parameters for the DFSDsetdimstrs call.
For example, DFSDsetdimstrs(1, “vertical”, “ “, “ “) will set the label for the
first dimension to “vertical” and set the unit and format to empty strings.

FORTRAN integer function dssdist(dim, label, unit, format)

integer dim

character* (*) label, unit, format

2-342 February 2010

DFSDsetfillvalue/dssfil|

HDF Reference Manual

DFSDsetfillvalue/dssfill

intn DFSDsetfillvalue(V OI DP fill_value)

fill_value

Purpose
Return value

Description

FORTRAN

IN: Fill value

Set the value used to fill in any unwritten location in a scientific dataset.
Returns succeep (or o) if successful and rarr (or -1) otherwise.

It is assumed that the fill value has the same data type as the dataset. Once the
fill valueisset for aparticular SDS, it cannot be changed.

If DFSDsetfillvalue is caled before the first call to DFSDstartslab,
DFSDstartdab will set the fill value tag attribute to the value specified in the
DFSDsetfillvalue call, but will not actually write out the fill value when
DFSDwriteslab is called. However, if DFSDsetfillvalue is caled after the
first cal the DFSDstartslab, the fill value tag attribute will be set by
DFSDsetfillvalue and the fill value will be written to the slab during the
DFSDwriteslab call.

integer function dssfill(fill value)

character* (*) fill value

February 2010

2-343

The HDF Group DFSDsetlengths/dssens

DFSDsetlengths/dsslens

intn DFSDsetlengths(intn label_len, intn unit_len, intn format_len, intn coords_len)

label_len IN: Maximum length of label strings

unit_len IN: Maximum length of unit strings

format_len IN: Maximum length of format strings

coords len IN: Maximum length of coordinate system strings

Purpose Sets the maximum lengths for the strings that will hold labels, units, formats,

and the name of the coordinate system.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description The lengths set by this routine are used by the routines DFSDgetdimstrs and
DFSDgetdatastrs to determine the maximum lengths of strings that they get
from thefile.

Normally, DFSDsetlengths is not needed. If it is not called, default maximum
lengths of 255 are used for all strings.

FORTRAN integer function dsslens(label len, unit len, format len,
coords_len)

integer label len, unit_ len, format len, coords_len

2-344 February 2010

DFSDsetNT/dssnt HDF Reference M anual

DFSDsetNT/dssnt

intn DFSDsetNT(int32 data_type)

data_type IN: Datatype

Purpose Sets the data type of the data to be written in the next write operation.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description DFSDsetNT must be called if a data type other than £10at32 isto be stored.
DFSDsetNT and DFSDsetdims can be called in any order, but they should be
called before any other DFSDset* functions and before DFSDputdata or
DFSDadddata.

The following symbolic names can be used as the value of data_type:

32-bit float DFNT_FLOAT32

64-bit float DFNT_FLOAT64

8-bit signed int DFNT_INT8 20
8-bit unsigned int DFNT_UINT8 21
16-bit signed int DFNT_INT16 22
16-bit unsigned int DFNT_UINT16 23
32-bit signed int DFNT_INT32 24
32-bit unsigned int DFNT_UINT32 25
8-bit character DFNT_CHARS 4

FORTRAN integer function dssnt (num_type)

integer num_type

February 2010 2-345

The HDF Group

DFSDsetrange/dssrang

DFSDsetrange/dssrang

intn DFSDsetrange(V OIDP max, VOIDP min)

min

Purpose
Return value

Description

FORTRAN

IN: Highest value in the range

IN: Lowest value in the range

Stores the specified maximum and minimum data values.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

It is assumed that the data type of max and min is the same as the type of the
data. One implication of this is that in the C version of DFSDsetrange the
arguments are pointers, rather than simple variables, whereas in the
FORTRAN-77 version they are simple variables of the same type as the data

array.

This routine does not compute the maximum and minimum values; it merely
stores the values it is given. As a result, the maximum and minimum values
may not always reflect the actual maximum and minimum values in the data

array.

When the maximum and minimum values are written to a file, the HDF
element that holds these values is cleared, because it is assumed that
subsequent datasets will have different values for max and min.

integer function dssrang(max, min)

character* (*) max, min

2-346

February 2010

DFSDstartsab/dssslab

HDF Reference M anual

DFSDstartdab/dssslab

intn DFSDstartd ab(char *filename)

filename

Purpose
Return value

Description

FORTRAN

IN: Name of the HDF file

Prepares the DFSD interface to write aslab of datato a scientific dataset.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.
DFSDsetdims must be called before calling DFSDstartslab. No call which
involves a file open may be made after a DFSDstartslab cal until

DFSDenddab is cdled. This routine will write out the fill values if
DFSDsetfillvalue is called before this routine.

integer function dssslab (filename)

character* (*) filename

February 2010

2-347

The HDF Group DFSDstartslice/dssslc

DFSDstartdice/dsssic

intn DFSDstartdlice(char *filename)

filename IN: Name of the HDF file

Purpose Prepares the interface to write a data slice to the specified file.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Before calling DFSDstartdice, DFSDsetdims must be called to specify the
dimensions of the dataset to be written to the file. DFSDstartdice always
appends anew dataset to an existing file.

Also, DFSDstartslice must be called before DFSDputslice or DFSDendslice.
DFSDstartdlice is obsolete in favor of DFSDstartslab. DFSDstartslab is the
recommended function call to use when beginning hyperslab operations. HDF

will continue to support DFSDstartdice only to maintain backward
compatibility earlier versions of the library.

FORTRAN integer function dssslc(filename)

character* (*) filename

2-348 February 2010

DFSDwriter ef/dswr ef HDF Reference M anual

DFSDwr iter ef/dswr ef

intn DFSDwriteref(char *filename, uint16 ref)

filename IN: Name of the HDF file
ref IN: Reference number for next add or put operation
Purpose Specifies the reference number, ref, of the dataset to be overwritten next by

DFSDputdata or DFSDadddata.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description DFSDwriteref verifies the refence number’s existence before returning. If a
non-existent reference number is specified, an error code will be returned.

As this routine alters data in a destructive manner, DFSDwriteref should be
used with caution.

FORTRAN integer function dswref (filename, ref)

character* (*) filename

integer ref

February 2010 2-349

The HDF Group

DFSDwriteslab/dswslab

DFSDwriteslab/dswslab

intn DFSDwritesab(int32 start[], int32 stride{], int32 count[], VOIDP data)

start
stride
count

data

Purpose
Return value

Description

FORTRAN

IN: Array containing the starting coordinates of the ab
IN: Array containing the dimensions for subsampling
IN: Array containing the size of the dlab

IN: Array to hold the floating point datato be written

Writes a slab of datato a scientific dataset.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

The start indices are relative to 1. The rank of start must be the same as the
number of dimensions of the specified variable. The elements of start must be
no larger than the scientific dataset's dimensions in order. The stride feature is
not currently implemented. For now just pass the start array as the argument
for the stride parameter, where it will be ignored.

The rank of count must be the same as the number of dimensions of the
specified variable. The elements of count must be no larger than the scientific
dataset's dimensions in order. The order in which the data will be written into
the specified hyperdab is with the last dimension varying fastest. The data
should be of the appropriate type for the dataset. Note that neither the compiler
nor HDF software can detect if the wrong type of datais used.

integer function dswslab (start, stride, count, data)

integer start(*), stride(*), count (*)

character* (*) data

2-350

February 2010

Happendable

HDF Reference M anual

Happendable

intn Happendabl e(int32 h_id)

h id IN: Access identifier returned by Hstartwrite
Purpose Specifies that the specified element can be appended to
Return value Returns succeep (or o) if data element can be appended and rarr (or -1)
otherwise.
Description If adata element is at the end of afile Happendable allows Hwrite to append
datatoit, converting it to linked-block element only when necessary.
February 2010 2-351

The HDF Group Hcache

Hcache

intn Hcache(int32 file_id, intn cache_switch)

file id IN: File identifier returned by Hopen
cache switch IN: Flag to enable or disable caching
Purpose Enables low-level caching for the specified file.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description If file id isset to cacue_anL_ripEes, then the value of cache switch is used to
modify the default file cache setting.

Valid values for cache_switch are: Trug (or 1) to enable caching and rarse (or
0) to disable caching.

2-352 February 2010

Hdeldd

HDF Reference M anual

Hdeldd

intn Hdeldd(int32 file_id, uint16 tag, uint16 ref)

file id
tag
ref

Purpose
Return value

Description

IN: File identifier returned by Hopen
IN: Tag of data descriptor to be deleted
IN: Reference number of data descriptor to be deleted

Deletes a tag and reference number from the data descriptor list.
Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

Once the data descriptor is removed, the data in the data object becomes
inaccessible and is marked as such. To remove inaccessible data from an HDF
file, use the utility hdafpack.

Hdeldd only deletes the specified tag and reference number from the data
descriptor list. Data objects containing the deleted tag and reference number
are not automatically updated. For example, if the tag and reference number
deleted from the descriptor list referenced an object in a vgroup, the tag and
reference number will till exist in the vgroup even though the data is
inaccessible.

February 2010

2-353

The HDF Group Hendaccess

Hendaccess

intn Hendaccess(int32 h_id)

h id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread
Purpose Terminates access to a data object by disposing of the access identifier.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description The number of active accessidentifiersis limited to max_acc as defined in the
hlimits.h header file. Because of thisrestriction, it is very important to call
Hendaccess immediately following the last operation on a data element.

When developing new interfaces, a common mistake is to omit calling
Hendaccess for all of the elements accessed. When this happens, Hclose will
return ra1z, and a dump of the error stack will report the number of active
access identifiers. Refer to the Reference Manual page on HEprint.

Thisis adifficult problem to debug because the low levels of the HDF library
cannot determine who and where an access identifier was originated. As a
result, there is no automated method of determining which access identifiers
have yet to be released.

2-354 February 2010

Hendbitaccess HDF Reference M anual

Hendbitaccess

intn Hendbitaccess(int32 h_id, intn flushbit)

h id IN: Identifier of the bit-access element to be disposed of
flushbit IN: Specifies how the leftover bits are to be flushed
Purpose Disposes of the specified bit-access file element.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description If called after a bit-write operation, Hendbitaccess flushes all buffered bits to
the dataset, then calls Hendaccess.

“Leftover bits’ are bits that have been buffered, but are fewer than the number
of bits defined by s1Tnum, which isusualy set to s.

Valid codes for flushbit are: O for flush with zeros, 1 for flush with ones and -1
for dispose of |eftover bits

February 2010 2-355

The HDF Group Hexist

Hexist

intn Hexist(int32 h_id, uint16 search_tag, uint16 search ref)

h id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread

search tag IN: Tag of the object to be searched for

search _ref IN: Reference number of the object to be searched for

Purpose Locates an object in an HDF file.

Return value Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

Description Simple interface to Hfind that determines if a given tag/reference number pair
existsin afile. Wildcards apply.

Hfind performs all validity checking; thisisjust avery smple wrapper around
it.

2-356 February 2010

Hfidinquire HDF Reference Manual

Hfidinquire

intn Hfidinquire(int32 file_id, char *filename, intn *access, intn * attach)

file id IN: File identifier returned by Hopen

filename OUT: Complete path and filename for thefile

access OUT: Access mode fileis opened with

attach OUT: Number of accessidentifiers attached to thefile
Purpose Returns file information through areference of its file identifier.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Gets the complete path name, access mode, and number of access identifiers
associated with afile. The filename parameter is a pointer to a character pointer
which will be modified when the function returns. Upon completion, filename
is set to point to the file name in internal storage. All output parameters must
be non-null pointers.

February 2010 2-357

The HDF Group Hfind

Hfind

intn Hfind(int32 file_id, uint16 search tag, uint16 search ref, uint16 *find_tag, uint16 *find_ref, int32
*find_offset, int32 *find_length, intn direction)

file_id IN: File identifier returned by Hopen

search tag IN: The tag to search for or prFTac_WILDCARD

search _ref IN: Reference number to search for or DFREF_WILDCARD

find_tag IN/OUT: If (*find_tag == Q) and (*find_ref == 0) then start the search from

either the beginning or the end of the file. If the object is found, the
tags of the object will be returned here.

find_ref IN/OUT: If (*find_tag == Q) and (*find_ref == 0) then start the search from
either the beginning or the end of the file. If the object is found, the
reference numbers of the object will be returned here.

find_offset OUT: Offset of the data element found

find_length OUT: Length of the data element found

direction IN: Direction to search in or_rorwarp searches forward from the current
location, and por_eackwarp Searches backward from the current
location

Purpose L ocates the next object to be searched for in an HDF file.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Hfind searches for the next data element that matches the specified tag and
reference number. Wildcards apply. If direction is or_rorwarp, Searching is
forward from the current position in the file, otherwise or_eackwarp specifies
backward searches from the current position in the file.

If find_tag and find_ref are both set to o, this indicates the beginning of a
search, and the search will start from the beginning of thefileif the directionis
pr_rorwaRD and from the end of thefileif the direction ispr_Backwarp.

2-358 February 2010

Hgetbit HDF Reference Manual

Hgetbit
intn Hgetbit(int32 h_id)

h id IN: Bit-access element identifier

Purpose Reads one bit from the specified bit-access element.
Return value Returnsthe hit read (or o or 1) if successful and rarw (or -1) otherwise.

Description Thisfunction is awrapper for Hbitread.

February 2010 2-359

The HDF Group ngtelement

Hgetelement

int32 Hgetelement(int32 file id, uint16 tag, uint16 ref, uint8 * data)

file id IN: File identifier returned by Hopen

tag IN: Tag of the data element to be read

ref IN: Reference number of the data element to be read

data OUT: Buffer the element will beread into

Purpose Reads the data element for the specified tag and reference number and writesit
to the data buffer.

Return value Returns the number of bytesread if successful and ra1L (or -1) otherwise.

Description It is assumed that the space alocated for the buffer is large enough to hold the
data.

2-360 February 2010

Hinquire

HDF Reference M anual

Hinquire

h_id

file_id
tag

ref
length
offset
position
access

special

Purpose

Return value

Description

*position, int16 * access, int16 * special)

intn Hinquire(int32 h_id, int32 *file_id, uint16 *tag, uint16 *ref, int32 *length, int32 * offset, int32

IN: Access identifier returned by Hstartread, Hstartwrite, or

Hnextread
OUT: Fileidentifier returned by Hopen
OUT: Tag of the element pointed to
OUT: Reference number of the element pointed to
OUT: Length of the element pointed to
OUT: Offset of the element in thefile
OUT: Current position within the data element
OUT: Theaccesstype for this data element
OUT: Specid code

Returns access information about a data element.

Returns succeep (or o) if the access identifier points to a valid data element

and rarL (or -1) otherwise.

If h_id is a valid access identifier the access type (read or write) is set
regardless of whether or not the return value is rarw (or -1). If h_idisinvalid,
the function returns ra1r (or -1) and the access type is set to zero. To avoid

excess information, pass nuLL for any unnecessary pointer.

February 2010

2-361

The HDF Group

Hlength

Hlength

int32 Hlength(int32 file id, uint16 tag, uint16 ref)

file id
tag
ref

Purpose
Return value

Description

IN: File identifier returned by Hopen
IN: Tag of the data e ement
IN: Reference number of the data element

Returns the length of a data object specified by the tag and reference number.
Returns the length of data element if found and ratz (or -1) otherwise.

Hlength calls Hstartread, HQuerylength, and Hendaccess to determine the
length of a data element. Hlength uses Hstartread to obtain an access
identifier for the specified data object.

Hlength will return the correct data length for linked-block elements, however
it isimportant to remember that the data in linked-block elementsis not stored
contiguously.

2-362

February 2010

Hnewr ef HDF Reference M anual

Hnewr ef

uint16 Hnewref(int32 file_id)

file id IN: File identifier returned by Hopen

Purpose Returns a reference number that can be used with any tag to produce a unique
tag /reference number pair.

Return value Returns the reference number if successful and o otherwise.

Description Successive calls to Hnewref will generate reference number values that
increase by one each time until the highest possible reference number has been
returned. At this point, additional calls to Hnewref will return an increasing
sequence of unused reference number values starting from 1.

February 2010 2-363

The HDF Group Hnextread

Hnextread

intn Hnextread(int32 h_id, uint16 tag, uint16 ref, int origin)

h id IN: Access identifier returned by Hstartread or previous Hnextread

tag IN: Tag to search for

ref IN: Reference number to search for

origin IN: Position to begin search: bF_START OF DF_CURRENT

Purpose Searches for the next data descriptor that matches the specified tag and
reference number.

Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Wildcards apply. If origin isor_sTarT, the search will start at the beginning of
the data descriptor list. If origin is pr_currenT, the search will begin at the
current position. Searching backwards from the end of a data descriptor list is
not yet implemented.

If the search is successful, the access identifier reflects the new data element,
otherwise it is not modified.

2-364 February 2010

Hnumber/hnumber HDF Reference M anual

Hnumber/hnumber

int32 Hnumber(int32 file_id, uint16 tag)

file id IN: File identifier returned by Hopen

tag IN: Tag to be counted

Purpose Returns the number of instances of atag in afile.

Return value Returns the number of instances of atag in afileif successful, and razw (or -1)
otherwise.

Description Hnumber determines how many objects with the specified tag arein afile. To

determine the total number of objects in a file, set the tag argument to
prFTAG_WILDCARD. Note that areturn value of zeroisnot afail condition.

FORTRAN integer function hnumber (file id, tag)

integer file id, tag

February 2010 2-365

The HDF Group

Hoffset

Hoffset

int32 Hoffset(int32 file_id, uint16 tag, uint16 ref)

file id
tag
ref

Purpose

Return value

Description

IN: File identifier returned by Hopen
IN: Tag of the data e ement
IN: Reference number of the data element

Returns the offset of adata element in thefile.

Returns the offset of the data element if the data element exists and razw (oOr -
1) otherwise.

Hoffset cals Hstartread, HQueryoffset, and Hendaccess to determine the
length of a data element. Hoffset uses Hstartread to obtain an access
identifier for the specified data object.

Hoffset will return the correct offset for a linked-block element, however it is
important to remember that the data in linked-block elements is not stored
contiguously. The offset returned by Hoffset only reflects the position of the
first data block.

Hoffset should not be used to determine the offset of an externa element. In
this case, Hoffset returns zero, an invalid offset for HDF files.

2-366

February 2010

Hputbit HDF Reference Manual

Hputbit

intn Hputbit(int32 h_id, intn bit)

h id IN: Bit-access element identifier
bit IN: Bit to be written
Purpose Writes one hit to the specified bit-access element.

Return value Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

Description Thisfunction is awrapper for Hbitwrite.

February 2010 2-367

The HDF Group

Hputelement

Hputelement

int32 Hputelement(int32 file_id, uint16 tag, uint16 ref, uint8 *data, int32 length)

file_id
tag
ref
data

length

Purpose

Return value

IN:
IN:
IN:
IN:
IN:

File identifier returned by Hopen

Tag of the data element to add or replace

Reference number of the data element to add or replace
Pointer to data buffer

Length of datato write

Writes a data element or replaces an existing data element in a HDF file.

Returns the number of bytes written if successful and ra1r (or -1) otherwise.

2-368

February 2010

Hread

HDF Reference M anual

Hread

int32 Hread(int32 h_id, int32 length, VOIDP data)

h.id

length

data

Purpose

Return value

Description

IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread
IN: Length of segment to be read

OUT: Pointer to the data array to be read

Reads the next segment in a data el ement.

Returns the length of segment actually read if successful and rarn (or -1)
otherwise.

Hread begins reading at the current file position, reads the specified number of
bytes, and increments the current file position by one. Calling Hread with the
length = o reads the entire data element. To reposition an access identifier
before writing data, use Hseek.

If length islonger than the data element, the read operation is terminated at the
end of the data element, and the number of read bytes is returned. Although
only one accessidentifier is alowed per data element, it is possible to interlace
reads from multiple data elements in the same file. It is assumed that data is
large enough to hold the specified data length.

February 2010

2-369

The HDF Group Hseek
Hseek
intn Hseek(int32 h_id, int32 offset, intn origin)
h id IN: Access identifier returned by Hstartread, Hstartwrite, or
Hnextread
offset IN: Number of bytesto seek to from the origin
origin IN: Position of the offset origin
Purpose Sets the access pointer to an offset within a data element.

Return value

Description

Returns succezp (or o) if successful and ra1r (Or -1) otherwise.

Sets the seek position for the next Hread or Hwrite operation by moving an
access identifier to the specified position in a data element. The origin and the
offset arguments determine the byte location for the access identifier. If origin
is set to or_starT, the offset is added to the beginning of the data element. If
origin is set to or_currenT, the offset is added to the current position of the
access identifier.

Valid valuesfor origin are: or_starT (the beginning of thefile) or or_currenT
(the current position in thefile).

Thisroutine failsif the accessidentifier if h_id isinvalid or if the seek position
is outside the range of the data element.

2-370

February 2010

Hsetlength

HDF Reference M anual

Hsetlength

int32 Hsetlength(int32 file id, int32 length)

file_id
length

Purpose
Return value

Description

IN: File identifier returned by Hopen

IN: Length of the new element

Specifies the length of a new HDF element.
Returns succeep (or o) if successful and ra1r (Or -1) otherwise.

This function can only be used when called after Hstartaccess on a new data
element and before any datais written to that element.

February 2010

2-371

The HDF Group Hshutdown

Hshutdown

int32 Hshutdown()

Purpose Deallocates buffers previously allocated in other H routines.
Return value Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Description Should only be called by the function HDFend.

2-372 February 2010

Htagnewr ef

HDF Reference M anual

Htagnewr ef

int32 Htagnewref(int32 file_id, uint16 tag)

file id
tag

Purpose

Return value

Description

IN: Access identifier returned by Hstartread or Hnextread

IN: Tag to be identified with the returned reference number

Returns a reference number that is unique for the specified file that will
correspond to the specified tag. Creates a new tag/reference number pair.

Returns the reference number if successful and o otherwise.

Successive calls to Hnewref will generate a increasing sequence of reference
number values until the highest possible reference number value has been
returned. It will then return unused reference number values starting from 1 in
increasing order.

February 2010

2-373

The HDF Group Htrunc

Htrunc

int32 Htrunc(int32 h_id, int32 trunc_len)

h id IN: Access identifier returned by Hstartread or Hnextread
trunc_len IN: Length to truncate element
Purpose Truncates the data object specified by the h_id to the length trunc_len.

Return value Returns the length of adata element if found and ra1r (or -1) otherwise.

Description Htrunc does not handle specia elements.

2-374 February 2010

Hwrite

HDF Reference M anual

Hwrite

int32 Hwrite(int32 h_id, int32 length, VOIDP data)

h id
len

data

Purpose

Return value

Description

IN: Access identifier returned by Hstartwrite
IN: Length of segment to be written
IN: Pointer to the data to be written

Writes the next data segment to a specified data element.

Returns the length of the segment actually written if successful and razw (or -
1) otherwise.

Hwrite beginswriting at the current position of the accessidentifier, writesthe
specified number of bytes, then moves the access identifier to the position
immediately following the last accessed byte. Calling Hwrite with length = o
results in an error condition. To reposition an access identifier before writing
data, use Hseek.

If the space alocated in the data element is smaller than the length of data, the
data is truncated to the length of the data element. Although only one access
identifier is allowed per data element, it is possible to interlace writes to more
than one data element in afile.

February 2010

2-375

The HDF Group Hwrite

2-376 February 2010

HDFclose/hdfclose

HDF Reference M anual

HDFclose/hdfclose

intn HDFclose(int32 file_id)

file id

Purpose
Return value

Description

FORTRAN

IN: File identifier returned by Hopen

Closes the access path to the file.
Returns succeep (or o) if successful and ra1r (or -1) otherwise.

Thefileidentifier file idisvalidated before the fileis closed. If the identifier is
valid, the function closes the access path to thefile.

If there are still access identifiers attached to the file, the error code
prFE_OPENAID iS returned and the file is not closed. This is a common

occurrence when developing new interfaces. See Hendaccess for further
discussion of this problem.

integer function hdfclose(file_id)

integer file id

February 2010

2-377

The HDF Group HDFopen/hdfopen

HDFopen/hdfopen

int32 HDFopen(char *filename, intn access, int16 n_dds)

filename IN: Complete path and filename for the file to be opened

access IN: File access code

n_dds IN: Number of data descriptorsin ablock if anew fileisto be created

Purpose Provides an access path to an HDF file by reading all the data descriptor blocks
into memory.

Return value Returnsthe file identifier if successful and rat1 (or -1) otherwise.

Description If given a new file name, HDFopen will create a new file using the specified
access type and number of data descriptors. If given an existing file name,
HDFopen will open the file using the specified access type and ignore the
n_dds argument.

HDF provides several file access code definitions:

DFACC_READ - Open for read only. If file does not exist, an error condition
results.

DFACC_CREATE - If file exists, delete it, then open a new file for read/write.
DFACC_WRITE - Open for read/write. If file does not exist, createit.

If a file is opened and an attempt is made to reopen the file using
pracc_creATE, HDF will issuethe error ore_arroren. If thefileis opened with
read only access and an attempt is made to reopen the file for write access
USing DFACC_RDWR, DFACC_WRITE, OF pFacc_arr, HDF will attempt to reopen
the file with read and write permissions.

Upon successful exit, the named file is opened with the relevant permissions,

the data descriptors are set up in memory, and the associated file_id isreturned.
For new files, the appropriate file headers are also set up.

FORTRAN integer function hdfopen (filename, access, n_dds)

character* (*) filename

integer access, n_dds

2-378 February 2010

HEclear HDF Reference M anual

HEclear

VOID HEclear()

Purpose Clears al information on reported errors from the error stack.

Return value None.

Description HEpush creates an error stack. HEclear isthen used to clear this stack after all
errors are processed or when desired.

February 2010 2-379

The HDF Group

HEpush

HEpush

VOID HEpush(int16 error_code, char *funct_name, char *file_name, intn line)

error_code
func_name
file_name

line

Purpose
Return value

Description

IN: HDF error code corresponding to the error
IN: Name of function in which the error occurred
IN: Name of file in which the error occurred

IN: Line number in the file that error occurred

Pushes a new error onto the error stack.
None.

HEpush pushes the file name, function name, line number, and generic
description of the error onto the error stack. HEreport can then be used to give
amore case-specific description of the error.

If the stack is full, the error will be ignored. HEpush assumes that the
character strings func_name and file_name are in semi-permanent storage, so
only pointersto the strings are saved.

2-380

February 2010

HEreport

HDF Reference M anual

HEreport

VOID HEreport(char *format, ...)

format

Purpose

Return value

Description

IN: Output string specification

Adds a text string to the description of the most-recently-reported error (only
one text string per error).

None

HEpush places on the error stack the file name, function name, line number,
and a generic description of the error type. HEreport can then be used to give
a more case-specific description of the error. Only one additional annotation
can be attached to each error report.

The format argument must conform to the string specification requirements of
printf.

February 2010

2-381

The HDF Group HEvalue

HEvalue

int16 HEvalue(int32 level)

level IN: Level of the error stack to be returned

Purpose Returns an error code from the specified level of the error stack.
Return value The error code if successful or bre_nonE otherwise.
Description HEvalue returns the error code at the top of the stack, when level is 1. Refer to

Table 1B of Section 1 in this reference manual for a complete list of HDF4
error codes.

2-382 February 2010

Section

HDF Definition List

3.1

Definition List Overview

This section of the Reference Manual contains alisting of al definitions used with HDF routines.
The definitions are categorized by their name prefix (the portion of the name before the under-

score) into tables. The tables themselves are al phebetized by name.

This section is primarily intended to be of use to Fortran programmers whose compilers do not
support include files, and need to know the values of the definitions so that they can be explicitly

defined in their programs.

TABLE 1A * INTERLACE - Interlace M ode Codes
Definition Name Definition Value
FULL_INTERLACE 0
NO_INTERLACE 1
TABLE 1B * WILDCARD - Wildcard Code
Definition Name Definition Value
DFREF_WILDCARD 0
TABLE 1C AN_* - Multifile Annotation Codes
Definition Name Definition Value
AN DATA LABEL 0
AN _DATA DESC 1
AN_FILE_LABEL 2
AN_FILE_DESC 3
TABLE 1D COMP_* - Raster Image Compression Codes

Definition Name

Definition Value

COMP_NONE

0

COMP_RLE

1

COMP_ IMCOMP

12

COMP_JPEG

2

February 2010

3-383

The HDF Group

Section 3

TABLE 1E COMP_CODE_* - General Compression Codes
Definition Name Definition Value
COMP_CODE_NONE 0
COMP_CODE_RLE 1
COMP_CODE_NBIT 2
COMP_CODE_SKPHUFF 3
COMP_CODE_DEFLATE 4
COMP_CODE_INVALID 5
TABLE 1F DF_* - Maximum Length Codes
Definition Name Definition Value
DF_MAXFNLEN 256
TABLE 1G DFACC_* - File Access Codes
Definition Name Definition Value
DFACC_READ 1
DFACC_WRITE 2
DFACC_CREATE 4
DFACC_ALL 7
DFACC_RDONLY 1
DFACC_RDWR 3
TABLE 1H DFE_* - Error Codes
Definition Name Definition Value
DFE_NOERROR 0
DFE_NONE 0
DFE_FNF 1
DFE_DENIED 2
DFE_ALROPEN 3
DFE_TOOMANY 4
DFE_BADNAME 5
DFE_BADACC 6
DFE_BADOPEN 7
DFE_NOTOPEN 8
DFE_CANTCLOSE 9
DFE_READERROR 10
DFE_WRITEERROR 11
DFE_SEEKERROR 12
DFE_RDONLY 13
DFE_BADSEEK 14
DFE_PUTELEM 15
DFE_GETELEM 16
DFE_CANTLINK 17
DFE_CANTSYNC 18
3-384 February 2010

HDF Definition List

HDF Reference Manual

DFE_BADGROUP 19
DFE_GROUPSETUP 20
DFE_PUTGROUP 21
DFE_GROUPWRITE 22
DFE_DFNULL 23
DFE_ILLTYPE 24
DFE_BADDDLIST 25
DFE_NOTDFFILE 26
DFE_SEEDTWICE 27
DFE_NOSUCHTAG 28
DFE_NOFREEDD 29
DFE_BADTAG 30
DFE_BADREF 31
DFE_NOMATCH 32
DFE_NOTINSET 33
DFE_BADOFFSET 34
DFE_CORRUPT 35
DFE_NOREF 36
DFE_DUPDD 37
DFE_CANTMOD 38
DFE_DIFFFILES 39
DFE_BADAID 40
DFE_OPENAID 41
DFE_CANTFLUSH 42
DFE_CANTUPDATE 43
DFE_CANTHASH 44
DFE_CANTDELDD 45
DFE_CANTDELHASH 46
DFE_CANTACCESS 47
DFE_CANTENDACCESS 48
DFE_TABLEFULL 49
DFE_NOTINTABLE 50
DFE_UNSUPPORTED 51
DFE_NOSPACE 52
DFE_BADCALL 53
DFE_BADPTR 54
DFE_BADLEN 55
DFE_NOTENOUGH 56
DFE_NOVALS 57
DFE_ARGS 58
DFE_INTERNAL 59
DFE_NORESET 60
DFE_GENAPP 61
DFE_UNINIT 62
DFE_CANTINIT 63
DFE_CANTSHUTDOWN 64
DFE_BADDIM 65
DFE_BADFP 66

February 2010

3-385

The HDF Group

Section 3

DFE_BADDATATYPE 67
DFE_BADMCTYPE 68
DFE_BADNUMTYPE 69
DFE_BADORDER 70
DFE_RANGE 71
DFE_BADCONV 72
DFE_BADTYPE 73
DFE_BADSCHEME 74
DFE_BADMODEL 75
DFE_BADCODER 76
DFE_MODEL 7
DFE_CODER 78
DFE_CINIT 79
DFE_CDECODE 80
DFE_CENCODE 81
DFE_CTERM 82
DFE_CSEEK 83
DFE_MINIT 84
DFE_COMPINFO 85
DFE_CANTCOMP 86
DFE_CANTDECOMP 87
DFE_NODIM 88
DFE_BADRIG 89
DFE_RINOTFOUND 90
DFE_BADATTR 91
DFE_BADTABLE 92
DFE_BADSDG 93
DFE_BADNDG 94
DFE_VGSIZE 95
DFE_VTAB 96
DFE_CANTADDELEM 97
DFE_BADVGNAME 98
DFE_BADVGCLASS 99
DFE_BADFIELDS 100
DFE_NOVS 101
DFE_SYMSIZE 102
DFE_BADATTACH 102
DFE_BADVSNAME 103
DFE_BADVSCLASS 104
DFE_VSWRITE 105
DFE_VSREAD 106
DFE_BADVH 107
DFE_VSCANTCREATE 108
DFE_VGCANTCREATE 109
DFE_CANTATTACH 110
DFE_CANTDETACH 111
DFE_BITREAD 112
DFE_BITWRITE 113

3-386

February 2010

HDF Definition List

HDF Reference Manual

DFE_BITSEEK 114
DFE_TBBTINS 115
DFE_BVNEW 116
DFE_BVSET 117
DFE_BVGET 118
DFE_BVFIND 119

TABLE 1l

DFNT_* - Machine Word Representation and Data Type Codes

Definition Name

Definition Value

DFNT_HDF 0
DFNT_NATIVE 4096
DFNT_CUSTOM 8192
DFNT_LITEND 16384
DFNT_NONE 0
DFNT_QUERY 0
DFNT_VERSION 1
DFNT_FLOAT32 5
DFNT_FLOAT 5
DFNT_FLOAT64 6
DFNT_DOUBLE 6
DFNT_FLOAT128 7
DFNT_INT8 20
DFNT_UINTS8 21
DFNT_INT16 22
DFNT_UINT16 23
DFNT_INT32 24
DFNT_UINT32 25
DFNT_INT64 26
DFNT_UINT64 27
DFNT_INT128 28
DFNT_UINT128 29
DFNT_UCHARS 3
DFNT_UCHAR

DFNT_CHARS 4
DFNT_CHAR 4
DFNT_CHAR16 42
DFNT_UCHAR16 43
DFNT_NFLOAT32 4101
DFNT_NFLOAT 4101
DFNT_NFLOAT64 4102
DFNT_NDOUBLE 4102
DFNT_NFLOAT128 4103
DFNT_NINTS 4116
DFNT_NUINTS 4117
DFNT_NINT16 4118
DFNT_NUINT16 4119
DFNT_NINT32 4120

February 2010

3-387

The HDF Group

Section 3

DFNT_NUINT32 4121
DFNT_NINT64 4122
DFNT_NUINTG64 4123
DFNT_NINT128 4124
DFNT_NUINT128 4125
DFNT_NUCHARS 4099
DFNT_NUCHAR 4099
DFNT_NCHARS 4100
DFNT_NCHAR 4100
DFNT_NCHAR16 4138
DFNT_NUCHAR16 4139
DFNT_LFLOAT32 16389
DFNT_LFLOAT 16389
DFNT_LFLOAT64 16390
DFNT_LDOUBLE 16390
DFNT_LFLOAT128 16391
DFNT_LINTS8 16404
DFNT_LUINTS 16405
DFNT_LINT16 16406
DFNT_LUINT16 16407
DFNT_LINT32 16408
DFNT_LUINT32 16409
DFNT_LINT64 16410
DFNT_LUINT64 16411
DFNT_LINT128 16412
DFNT_LUINT128 16413
DFNT_LUCHARS 16387
DFNT_LUCHAR 16387
DFNT_LCHARS 16388
DFNT_LCHAR 16388
DFNT_LCHAR16 16426
DFNT_LUCHAR16 16427
TABLE 1J DENTF_* - Floating-point Format Codes
Definition Name Definition Value

DFNTF_NONE 0

DFNTF_HDFDEFAULT 1

DFNTF_IEEE 1

DFNTF_VAX 2

DFNTF_CRAY 3

DENTF_PC 4

DFNTF_CONVEX 5

DFNTF_VP 6

TABLE 1K DFTAG_* - Object Tags

Definition Name

Definition Value

3-388 February 2010

HDF Definition List

HDF Reference Manual

DFTAG_WILDCARD 0
DFTAG_NULL 1
DFTAG_LINKED 20
DFTAG_VERSION 30
DFTAG_COMPRESSED 40
DFTAG_VLINKED 50
DFTAG_VLINKED_DATA 51
DFTAG_CHUNKED 60
DFTAG_CHUNK 61
DFTAG_FID 100
DFTAG_FD 101
DFTAG_TID 102
DFTAG_TD 103
DFTAG_DIL 104
DFTAG_DIA 105
DFTAG_NT 106
DFTAG_MT 107
DFTAG_ID8 200
DFTAG_IP8 201
DFTAG_RI8 202
DFTAG_CI8 203
DFTAG_II8 204
DFTAG_ID 300
DFTAG_LUT 301
DFTAG_RI 302
DFTAG_CI 303
DFTAG_RIG 306
DFTAG_LD 307
DFTAG_MD 308
DFTAG_MA 309
DFTAG_CCN 310
DFTAG_CFM 311
DFTAG_AR 312
DFTAG_DRAW 400
DFTAG_RUN 401
DFTAG_XYP 500
DFTAG_MTO 501
DFTAG_T14 602
DFTAG_T105 603
DFTAG_SDG 700
DFTAG_SDD 701
DFTAG_SD 702
DFTAG_SDS 703
DFTAG_SDL 704
DFTAG_SDU 705
DFTAG_SDF 706
DFTAG_SDM 707
DFTAG_SDC 708

February 2010

3-389

The HDF Group

Section 3

DFTAG_SDT 709
DFTAG_SDLNK 710
DFTAG_NDG 720
DFTAG_CAL 731
DFTAG_FV 732
DFTAG_BREQ 799
DFTAG_EREQ 780
DFTAG_SDRAG 781
DFTAG_VG 1965
DFTAG_VH 1962
DFTAG_VS 1963
DFTAG_RLE 11
DFTAG_IMC 12
DFTAG_IMCOMP 12
DFTAG_JPEG 13
DFTAG_GREYJPEG 14
DFTAG_JPEG5 15
DFTAG_GREYJPEG5 16

TABLE 1L HDF_* - Vdatalnterface, Linked-block Element, and Vset Packing M ode Codes
Definition Name Definition Value
_HDF_VDATA -1
_HDF_VSPACK 0
_HDF_VSUNPACK 1
_HDF_ENTIRE_VDATA -1
HDF_APPENDABLE_BLOCK_LEN 4096
HDF_APPENDABLE_BLOCK_NUM 16
TABLE 1M MFGR_* - Interlace M ode Codes
Definition Name Definition Value
MFGR_INTERLACE_PIXEL 0
MFGR_INTERLACE_LINE 1
MFGR_INTERLACE_COMPONENT 2
TABLE IN SD_* - Scientific Data Set Configuration Codes
Definition Name Definition Value
SD_UNLIMITED 0
SD_DIMVAL_BW_COMP 1
SD_DIMVAL_BW_INCOMP 0
SD_FILL 0
SD_NOFILL 256
SD_RAGGED -1
3-390 February 2010

HDF Definition List

HDF Reference Manual

TABLE 10 SPECIAL_* - Special Element Identifier Codes
Definition Name Definition Value

SPECIAL_LINKED 1
SPECIAL_EXT 2
SPECIAL_COMP 3
SPECIAL_ VLINKED 4
SPECIAL_CHUNKED 5

TABLE 1P SUCCEED/FAIL - Routine Return Satus Codes

Definition Name

Definition Value

SUCCEED

0

FAIL

-1

February 2010

3-391

The HDF Group Section 3

3-392 February 2010

UnidatanetCDF Version 2.3.2 istightly integrated with HDF. The netCDF copyright and license statement, as distributed
with that netCDF rel ease and in the mfhdf/ directory of the HDF the source code, appears below.

Unidata netCDF Version 2.3.2 Copyright and License Satement

Copyright 1993 University Corporation for Atmospheric Research/Unidata Portions of this software were developed by the
Unidata Program at the University Corporation for Atmospheric Research.

Accessand use of this software shall impose the following obligations and understandings on the user. The user isgranted the
right, without any fee or cost, to use, copy, modify, alter, enhance and distribute this software, and any derivative works
thereof, and its supporting documentation for any purpose whatsoever, provided that this entire notice appearsin all copies of
the software, derivative wor and supporting documentation. Further, UCAR requeststhat the user credit UCAR/Unidatain
any publications that result from the use of this software or in any product that includes this software, although thisis not an
obligation. The names UCAR and/or Unidata, however, may not be used in any advertising or publicity to endorse or promote
any products or commercial entity unless specific written permission is obtained from UCAR/Unidata. The user also under-
stands that UCAR/Unidatais not obligated to provide the user with any support, consulting, training or assistance of any kind
with regard to the use, operation and performance of this software nor to provide the user with any updates, revisions, new
versions or "bug fixes."

THIS SOFTWARE IS PROVIDED BY UCAR/UNIDATA "ASIS' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESSFOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UCAR/UNIDATA BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES ORANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TOR-
TIOUSACTION, ARISING OUT OF OR IN CONNECTION WITH THE ACCESS, USE OR PERFORMANCE OF THIS
SOFTWARE.

