HDF Specification and

Developer’s Guide
HDF4 Release 2.3 « June 2008

The HDF Group

The HDF Group

Copyright Notice and License Terms for Hierarchical Data Format (HDF)
Software Library and Utilities

Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 2006-2007 by The HDF Group (THG).

NCSA Hierarchical Data Format (HDF) Software Library and Utilities
Copyright 1988-2006 by the Board of Trustees of the University of Illinois.

All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois, Fortner Software, Unidata

Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment
Corporation (DEC).

Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including commer-
cial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of conditions, and the following dis-
claimer in the documentation and/or materials provided with the distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent notices stating that the
original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at the
University of Illinoisat Urbana-Champaign and credit the contributors.

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to endorse
or promote products derived from this software without specific prior written permission from THG, the University, or the
Contributor, respectively.

Disclaimer

THIS SOFTWARE IS PROVIDED BY THE HDF GROUP (THG) AND THE CONTRIBUTORS"ASIS" WITH NO WAR-
RANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall THG or the Contributors beliable for any dam-
ages suffered by the users arising out of the use of this software, even if advised of the possibility of such damage.

Trademarks

Sunisaregistered trademark, and Sun Workstation, Sun/OS and Solaris are trademarks of Sun Microsystems Inc.

UNIX isaregistered trademark of X/Open

VAX and VMS are trademarks of Digital Equipment Corporation

Macintosh isatrademark of Apple Computer, Inc.

CRAY and UNICOS are registered trademarks of Silicon Graphics, Inc.

IBM PC isaregistered trademark of International Business Machines Corporation

MS-DOS isaregistered trademark of Microsoft Corporation.

The SZIP Science Data L ossless Compression Program is Copyright (C) 2001 Science & Technology Corporation @ UNM. All
rightsreleased. Copyright (C) 2003 Lowell H. Milesand Jack A. Venbrux. Licensed to ICs Corp. for distribution by the University
of lllinois National Center for Supercomputing Applications asa part of the HDF data storage and retrieval file format and soft-
ware libraryproducts package. All rightsreserved. Do not modify or use for other purposes. See for further information regarding
terms of use.

THG and HDF Information and Contacts
Information regarding The HDF Group (THG) and HDF productsis available from the THG website: http://www.hdfgroup.org
HDF Help Desk assistance is available viaemail: help@hdfgroup.org
Business queries and contacts can be made through the website or by mail:
http://www.hdf group.org/about/contact.html
The HDF Group
1901 South First Street, Suite C-2
Champaign, IL 61801
USA

20f 2

June 2008

1
I ntroduction

L OV VIOV . ottt e e e e e e 1
L2 WY HD R Lo e e 1
18 What ISHD I . . .o e e e 2
14 SOMEHISIOrY. . .ot e e e 4
1.5 ADBOUL ThiS DOCUMENottt e et e e e e e e e 5
1.6 DocUMENt CONtENES.ttt e e e e e 6
1.7 Conventions Used in ThiS DOCUMIENT ottt ettt e 7
2
Basic Structure of HDF Files
2.0 ChaPter OV VIO . . . ottt ettt et e e e e e e 1
2.2 F e HEAES . .o 1
2.3 DAt O S . . . vttt 1
2.4 Physical Organization of HDF FileS. oot e e e 4
25 Sample HDF File . ..o 5
3
Softwar e Overview
3.1 Chapter OVEIVIEIW . . . ottt et e e e e e e e e 1
3.2 HDF SOftWare Layers. . . oo oottt e e e e e e e e e 1
3.3 Software Organization 2
3.3.1 Versionsand Release NUMDEISottt e e e e et et e et 2
3.3.2 ANSI Cand Portability.ot 3
3.3.3 Modules and INtErfaces.ottt e e 3
3.3 4 Header FIlES . .ot e 5
3.3.5 TheHDF TeSt SUITE . .. ottt e e e e e e e e e e e 10
3.3.6 SAMPIe HDF Programs.ottt e e e e e e e e 10
34 SOMEHDF CoNVENtIONS.ot e et e e e 10
4
Low-level Interface
N R 4 T= o 1= = Y Y 1
7 1 g1 1 oo 1 Tox 1 oo 1
4.3 New Low-level RoutineswithVersion3.2andHigher i 2
4.4 Overview of the Low-level Interface e e e e 3
5
Setsand Groups
5.1 Chapter OVEIVIOIW . . . oottt et e e e e e e e e e e 1
B 2 DaAla SISot e e 1
5.2 L TYPES Of GBS, . . oo e 1
5.2.2 Caling Interfacesfor Sats. e 2
B3 BIOUPS. .« o ittt e 2
5.3.1 General FeatureS of GrOUPSottt e e e e e e e 3
54 Raster Image SetS (RIS)ot 4
54.1 Raster Image Groups (RIG)ot e e 4

June 25, 2008 TOC-3

The HDF Group

B 2 RIS A0S, ot ittt et e e e 4
5.4.3 Raster Image ComPreSSION v vttt ettt e e e ettt et e 6
5.5 SCIENtifiC Data SElS . . oo oottt e 6
5.5.1 Backward and Forward Compatibility........... ..o 7
552 Internal SIrUCIUIESo oot e e e e e e 7
553 SDG SHUCIUIES . . . oottt ettt e e e e e e e e e e e e e e e e 8
554 NDG SIUCIUIES . . . o ottt et et e e e e e e e e e e e e e e e e e e 9
5.5.5 SDG-KENDG SITUCIUrES . . . o vttt ettt et e e e e e e e e et et 10
5.5.6 Compatibility with FUtUre NDG SITUCIUIES.o oo e e e e 11
5.6 VSats, Vdatas, and VgroUPS. oottt it ettt et e 12
5.7 TheRaster-8 Set (OBSOIEtE) oot e e e e e e 13
D7 RaASEI-8 SES . . ottt 13
5.7.2 Compatibility Between Raster-8 and Raster Image Sets. . ..o i i i 13
5.8 Deleted information from "Vsets, Vdatas, and Vgroups:” oo n i e 14
6
Annotations
B.1 Chapter OVEIVIBW . ottt ettt e e e e e e e e e 1
6.2 General DEsCriptioNo ot e 1
6.3 FIle ANNOLaLiONS.ttt e 2
6.4 ObJECE ANNOLALIONS. . . .\ ottt ettt e e et e e e 2
7
cientific Data Sets.
The SD Moddl
7.1 Chapter OVEIVIBW . oottt et e et e e e e e e e e e e e e e 1
7.2 UML Notation and Object Symbolsin HDF Data Model Descriptionst 1
7.3 Introductiontothe SD Model.o e 3
7.4 TheSD USer' SMOTEL.ot e e e e e e e e 4
7.5 TheSD Developer' SMOdEl e e e e 6
7.6 Mapping between SD Developer's Model and HDF FileStructures.t 8
7.6.1 SD CollECtioN. . . oot 8
7.6.2 ANIDULE. . . o 9
78,3 Variahle . .o 9
7.6.4 DIMENSION oottt et e et e e e e 10
7.6.5 Overdl Correspondence of SDS Elementsand the HDF File Structure 11
7.6.6 Accessing SD Objectsvianon-SD Interfaces e 12
7.7 SDSMemory Structuresand Storage Layoutoo it 13
7.8 Library Implementation Detailswith Example Fileand SDS........... i 15
7.8.1 Creatingoropeningan HDFfile. i i i et 15
7.8.2 Creating an empty SDSot 15
7.8.3 Writing datato an SDSot 18
7.8.4 Adding global and local attributes. 19
7.85 Settingadatastringottt e 25
7.8.6 Setting adimenSiON NaME oottt e e 25
7.8.7 Setting adimension SCalE.ot i it 27
7.8.8 Setting adimension StriNg oottt e 27
7.8.9 Terminating accesstothe SD callectionandfile............ 27
8

TOC-4 June 25, 2008

General Raster Images:

The GR Model
8.1 Chapter OVEIVIOIW . . . oottt e e e e e e e 1
82 Imagesinan HDF File o 2
821 GRUAEASES . . . o oottt ettt et 3
822 RIGimMages (RISBand RIS24) e e 4
8. 2.3 RIBIMAOES oot e 4
8.3 The GR DAaMOUEl e e e e e e e 5
B.3.1 A CBSUA VB . .ottt et et 5
8.3.2 TheFormal GR DataModel 7
8.4 Mapping between GR DataModel and HDF File Structures.t 8
8.5 Modifying an RIG or RI8 ImageviatheGR Interface. i 10
8.6 Backwards Compatibility when Creating New Imagesviathe GR Interface. 11
8.7 Main Data Structures and their Relationships. 12
8.7.1 FileInformation Structure (gr_info t) ... 14
8.7.2 Raster Image Information Structure(ri_info t) o 14
8.7.3 Attribute Information Structure (at_info t) 15
8.7.4 Dimension Information Structure (dim_info t) 15
8.8 Relationshipsamong Main Data StruCtUreSottt e 15
8.9 The Evolution of an HDF FileintheGR Interface. e 19
8.9.1 Creatingor Openingan HDF File. o e 19
8.9.2 Creating and WritingtoaRaster Image.ot e 20
8.9.3 AddiNg AHNDULES oo 22
8.9.4 Adding Palettes. oo 24
8.9.5 Openingan Existing File e 24
9
Tag Specifications
0.1 Chapter OVEIVIBW . . . oot ettt ettt e e et e e e e e e 1
0.2 ThEHDF Tag SPaCE ottt ettt e e et e e e et e e 1
9.3 Tag SPECITICAiONS.t 1
0.3, Ut A0S, . oot ettt e et e e e e e e 3
9.3.2 ANNOLAION TAOS . .+« « v v e et e et et e e e e e 6
9.3.3 COMPIESSION TAYS. .+« v v vttt ettt et e e et e e et e et 9
0.3.4 RaSIEr IMagE TaOS . .« o o ettt ettt et e e e e e 12
9.3.5 COmMPOSItE IMBGE TGS . -+« o vt ettt ettt et e e e e e 19
0.3.6 VECION IMAZE TagS . « .+« v vttt et e e et e e e e e e e e e e e e 20
0.3.7 SCIeNtifiC DAl SEt TagS . . .« o vttt et et 21
0.3.8 VSt TagS . . oottt ettt 29
0.3.9 OBS0IE e TaGS . -« o o vttt 33
10
Extended Tags and Special Elements
10.1 Chapter OVEIVIBW ettt e e et e e e e e e e e et e e e e e e e e 1
10.2 Extended Tagsand Alternate Physical StorageMethods. oot 1
10.2.1 Extended Tag Implementationottt e 1
10.3 Linked Block Elements. o 3
10.4 EXternal ElemMentS. oottt e e 4
10.5 Chunked Data StOrage oottt et e e e e e e e e 5
10.5.1 Chunked Element DesCription RECOrdottt e 5

June 25, 2008 TOC-5

The HDF Group

1052 Chunk Table. . ..ot e e 7

10.6 Data COMPrESSION & . vttt ettt et e et e e e e e e e e e e e 8
10.6.1 Compression Header: The Common Elements of Compressed Element Description Records. . . 8
10.6.2 Compressed Element Description Record: NBIT Run-length Encoding. 10
10.6.3 Compressed Element Description Record: Skipping-Huffman. 11
10.6.4 Compressed Element Description Record: GNU ZIP (Deflate)tt. 11
10.6.5 Compressed Element Description Record: SZIP. 12

11

Portability Issues

111 Chapter OVEIVIBW . ..ottt et e e e e e e e e e e e e e e e e e 1

11.2 The HDF ENVIrONmMENt.o e e ettt et et ettt et et e 1
11.2.1 Supported Platforms. oo 1
11.2.2 Language Standards.ot 2
11.2.3 GUIAEINES . oot e e 2

11.3 Organization of SOUrCE FIlESot e e e e e 2
1131 Header FileS. ..o e e e e e 3
11.3.2 Source Code Files. .. oo e 3
11.3.3 File Naming ConVeNtionSottt et et e et ettt e 4

11.4 Passing Stringsbetween FORTRAN and C.ottt e e i et 4
11.4.1 Passing Stringsfrom FORTRAN t0 C.ottt et et e 4
11.4.2 Passing Stringsfrom Cto FORTRANottt e et et 6

11.5 Function Return Valuesbetween FORTRAN and C.ottt e 6

11.6 Differencesin ROUINE NEMESottt e e e 7
11.6.1 Case SENSIIVITY. . oottt ittt e e 7
11.6.2 Appended UNAersCOres v vttt ettt et et ettt e et 8
11.6.3 Short Names Vs, LONG NaMESottt ettt et et et ettt et 9

11.7 DifferencesBetween ANSI Cand Old C. oo ottt e 9

11,8 TYPE DI ErONCES . . . ottt 10
11.8.1 SIzedifferenCesot e 10
11.8.2 NUmMber REPresENtationttt e e e e 11
11.8.3 Byte-order and Structure Representations.o vttt e 11

11.9 AccesstoLibrary FUNCIONS.o e e e 12

A

Tags and Extended Tag L abels

AL OV BN . . ot e e 1

A 1o 1

A3 Extended Tag Labels. oo 4

B

Library Calling Trees

Bl OV VI BV .« ..ottt et 1

B.2 Library Calling Trees: SD APl ...t e e 1

C

Function Specifications

G OV BN . ottt e e e 1

C.2 Openingand CloSING FIlESot e e 1

TOC-6 June 25, 2008

C.3 Locating Elementsfor Accessand Getting Information 3

C.4 Reading and Writing Entire DataElements. e 8

C.5 Reading and Writing Part of aDataElement.c. i e 9

C.6 Manipulating Data DesCriptOrS oot it et ettt e e e e e 11
C.7 Managing Special DataElements. 13
C.8 DataSet ChUNKINgGottt et e e e e e e 16
C.9 DevelopmMENt ROULINES.ottt ittt e e et e e e e 24
C.10 Error REPOMING. . . vttt ettt e e e et e e e e e e e e 26
Gl OthEr. . oo e 28

June 25, 2008

TOC-7

The HDF Group

TOC-8 June 25, 2008

Chapter

| ntroduction

1.1

1.2

Overview

The Hierarchical Data Format (HDF) was designed to be an easy, straight-forward, and self-
describing means of sharing scientific data among people, projects, and types of computers. An
extensible header and carefully crafted internal layers provide a system that can grow as scientific
data-handling needs evolve.

This document, the HDF Specification and Devel oper's Guide, fully describes the HDF data mod-
els, the corresponding file format specifications, and library implementation, and discusses crite-
ria employed in the library’s development. Where appropriate, this document provides limited
guidelines for devel opers working on HDF itself or building applications that employ HDF.

Thisintroduction provides a brief overview of HDF capabilities and design.

Why HDF?

A fundamental requirement of scientific data management is the ability to access as much infor-
mation in as many ways, as quickly and easily as possible. A data storage and retrieval system that
facilitates these capabilities must provide the following features:

Support for scientific data and metadata

Scientific data is characterized by a variety of data types and representations, data sets
(including images) that can be extremely large and complex, and the need to attach
accompanying attributes, parameters, notebooks, and other metadata. M etadata, supple-
mentary data that describes the basic data (sometimes referred to as the raw data),
includesinformation such asthe dimensions of an array, the number type of the elements
of arecord, or acolor lookup table (LUT).

Support for arange of hardware platforms

Data can originate on one machine only to be used later on many different machines.
Scientists must be able to access data and metadata on as many hardware platforms as
possible.

Support for arange of softwaretools

Scientists need a variety of software tools and utilities for easily searching, analyzing,
archiving, and transporting the data and metadata. These tools range from a library of
routines for reading and writing data and metadata, to small utilities that simply display
an image on a console, to full-blown database retrieval systems that provide multiple
views of thousands of sets of data and metadata.

June 25, 2008 11

The HDF Group

1.3

Rapid data transfer

Both the size and the dispersion of scientific data sets require that mechanisms exist to
get the data from place to place rapidly.

Extendibility

As new types of information are generated and new kinds of science are done, a means
must be provided to support them.

What isHDF?

The HDF Sructure

HDF is a self-describing extensible file format using tagged objects that have standard meanings.
The idea is to store both a known format description and the data in the same file. HDF tags
describe the format of the data because each tag is assigned a specific meaning; for example, the
tag DFTAG LUT indicates a color palette, the tag DFTAG RT indicates an 8-bit raster image, and so
on . A program that has been written to understand a certain set of tag types can scan the file for
those tags and process the data. This program also can ignore any data that is beyond its scope.

Consider a data set representing a raster image in an HDF file as illustrated in Figure 1a below.
The data set consists of three data objects with distinct tags representing the three types of data.
The raster image object contains the basic data (or raw data) and isidentified by the tag DFTAG RT;
the palette and dimension objects contain metadata and are identified by the tags brFTaAG LUT tags
DFTAG_ID.

FIGURE 1a

Raster Image Set in an HDF File.

palette

dimensions L | 400 x 600
DFTAG_ID

raster image
DFTAG RI >

The set of available data objects encompasses both basic data and metadata. Most HDF objects
are machine- and medium-independent, physical representations of data and metadata.

HDF Tags

The HDF design assumes that we cannot know a priori what types of data objects will be needed
in the future, nor can we know how scientists will want to view that data. As science progresses,
people will discover new types of information and new relationships among existing data. New
types of data objects and new tags will be created to meet these expanding needs. To avoid unnec-
essary proliferation of tags and to ensure that all tags are available to potential users who need to
share data, a portable public domain library is available that interprets all public tags. The library
contains user interfaces designed to provide views of the data that are most natural for users. As
we learn more about the way scientists need to view their data, we can add user interfaces that
reflect data models consistent with those views.

1-2

June 25, 2008

HDF Specification and Developer’s Guide

Types of Data and Sructures

HDF currently supports the most common types of data and metadata that scientists use, including
multidimensional gridded data, 2-dimensional raster images, polygonal mesh data, multivariate
data sets, finite-element data, non-Cartesian coordinate data, and text.

In the future there will almost certainly be a need to incorporate new types of data, such as voice
and video, some of which might actually be stored on other media than the central file itself.
Under such circumstances, it may become desirable to employ the concept of avirtual file. A vir-
tual file functions like aregular file but does not fit our normal notion of amonoalithic sequence of
bits stored entirely on a single disk or tape.

HDF also makes it possible for the user to include annotations, titles, and specific descriptions of
the data in the file. Thus, files can be archived with human-readable information about the data
and itsorigins.

One coallection of HDF tags supports a hierarchical grouping structure called a Vgroup that allows
scientists to organize data objects within HDF files to fit their views of how the objects go
together, much as a person in an office or laboratory organizes information in folders, drawers,
journal boxes, and on their desktops.

Backward and Forward Compatibility

An important goal of HDF is to maximize backward and forward compatibility among its inter-
faces, and storage and object types. This is not always achievable, because data formats must
sometimes change to enhance performance, to correct errors, or for other reasons. However,
whenever possible, HDF files should not become out of date. For example, suppose asite falls far
behind in the HDF standard so its users can only work with the portions of the specification that
are three years old. Users at this site might produce files with their old HDF software then read
them with newer software designed to work with more advanced data files. The newer software
should still be able to read the old files.

Conversely, if the site receives files that contain objects that its HDF software does not under-
stand, it should still be able to list the types of datain the file. It should also be able to access all
of the older types of data objects that it understands, despite the fact that the older types of data
objects are mixed in with new kinds of data. In addition, if the more advanced site uses the text
annotation facilities of HDF effectively, the files will arrive with complete human-readable
descriptions of how to decipher the new tag types.

Calling Interfaces

To present a convenient user interface made up of something more usable than alist of tag types
with their associated data requirements, HDF supports multiple calling interfaces, utilities, and
applications.

Thelow-level calling interface is used to manipulate tags and raw data, to perform error handling,
and to control the physical storage of data. This interface is designed to be used by developers
who are providing the higher level interfaces for applications like raster image storage or scien-
tific data archiving. See Chapter 4, Low-level Interface, and in Chapter 3, Software Overview, see
Section 3.3, " Software Organization.”

The application interfaces, at the next level, include several modules specifically designed to sim-
plify the process of storing and accessing specific types of data. For example, the palette inter-
faces are designed to handle color palettes and lookup tables, the general raster (GR) interfaceis
designed to handle generalized raster images, and the scientific data (SD) interface is designed to
handle arrays of scientific data. If you are primarily interested in reading data from or writing

June 25, 2008 1-3

The HDF Group

1.4

data to HDF files, you will spend most of your time working with the application interfaces. See
Section 3.3, " Software Organization,” for acomplete list of these APIs.

The HDF utilities and NCSA applications, at the top level, are specia purpose programs designed
to handle specific tasks or solve specific problems. The utilities provide acommand line interface
for data management. The applications provide solutions for problems in specific application
areas and often include a graphic user interface. Several third party applications are also available
at thislevel.

Machine Independence

An important issue in data file design is that of machine independence or transportability. The
HDF design defines standard representations for storing all data types that it supports. When data
is written to afile, it is typically written in the standard HDF representation. The conversion is
handled by the HDF software and need not concern the user. Users may override this convention
and install their own conversion routines, or they may write data to afile in the native format of
the machine on which it was generated.

Some History

In 1987 a group of users and software developers at NCSA searched for a file format that would
satisfy NCSA's data needs. There were some interesting candidates, but none that were in the pub-
lic domain, were targeted to scientific data, and yet were sufficiently general and extensible. In the
course of several months, borrowing concepts from several existing formats, the group designed
HDF.

The first version of HDF was implemented in the spring and summer of 1988. It included a gen-
eral purpose interface and an 8-bit raster image interface. In the fall of 1988, a scientific data set
interface was designed and implemented, enabling HDF users to store multidimensional arrays
and related data. Soon thereafter interfaces were implemented for storing color palettes, 24-bit
raster images, and annotations.

In 1989, it became clear that there was a need to support ageneral grouping structure and unstruc-
tured data such as that used to represent polyhedra in graphical applications. This led to Vsets,
whose interface routines were implemented as a separate HDF library.

Alsoin 1989 it became clear that the existing general purpose layer was not sufficiently powerful
to meet anticipated future needs and that the coding could use a substantial overhaul. From this,
the long process of redesigning the lower layers of HDF began. The first version incorporating
extended tags and the new lower layers of HDF was released in the summer of 1992 as HDF Ver-
sion 3.2.

In 1993, in response to the needs of flexibility in data ranges and sizes, HDF Version 3.3 was
released. In this version of HDF, the new SD interface was introduced with multi-file access and
an unlimited dimension feature for arrays. HDF Version 3.3 provided alternative physical storage
methods (external and linked block data elements) through extended tags, JPEG data compres-
sion, changes to some Vset interface functions, access to netCDF files through a complete
netCDF interface,! hyperslab access routines for old-style SDS objects, and various performance
improvements.

1. NetCDF is anetwork-transparent derivative of the original CDF (Common Data Format)
developed by the National Aeronautics and Space Administration (NASA). It isused widely in
atmospheric sciences and other disciplines requiring very large data structures. NetCDF isin the
public domain and was developed at the Unidata Program Center in Boulder, Colorado.

14

June 25, 2008

HDF Specification and Developer’s Guide

1.5

In 1994, as standard ANSI C became more commonly used, HDF shifted from K&R to ANSI Cto
support portability. After several beta versions, HDF Version 4.0 was released in 1996 and pro-
vided features such as support for n-bit integers and SDS compression, limited support for reading
CDF files, aparallel 1/O interface for the CM5, auto configuration, multi-file versions of the AN
and GR interfaces, and significant improvement in I/O performance and memory usage. In addi-
tion, more options were added to existing HDF utilities and two new programs were added to the
HDF utilities:

» hdp, to view the contents of HDF files
 hdfunpac, to unpack scientific datasets into external elements

HDF Version 4.1 was released in 1997. In this version, attributes were added to both the Vdata
and Vgroup APIs to provide more ways for meaningfully storing data, data chunking was intro-
duced in the SD API to improve /O performance, and a new representation was used for storing
dimensions to improve storage efficiency.

In 1998, the second release of HDF Version 4.1, called Version 4.1r2, was announced. In this
release, data chunking was added for the GR AP, the Java Products (the Java-based HDF Viewer,
JHV, and the Java HDF interface, JHI) were incorporated into the HDF release itself, and the HDF
Reference Manual and HDF User’s Guide were extensively updated. In addition, the new repre-
sentation of dimensions that was introduced in the previous rel ease became the default representa-
tion.

HDF Version 4.1r3, released in May 1999, emphasized fixing problems in the SD and GR inter-
faces. The HDF User's Guide accompanying the release was significantly improved and updated.
The term V set became obsolete, being replaced with the more specific terms Vgroup and V data.

The current release, HDF Version 4.1r4, released in October 2000, completes the enabling of all
GR chunking capahilities. In addition, new options were added to the hdp utility. This document,
the HDF Specification and Developer’s Guide, was largely rewritten for this release.

See the HDF website at http://hdfgroup.org/ for release information, lists of supported plat-
forms, and the list of bugs fixed in the current release.

The HDF library is considered mature and complete at thistime. Future work will focus on techni-
cal support, maintenance, and bug fixes; there are no plans to implement new features. All new
features and tools are being implemented in the HDF5 library, a new, next-generation product
from the same team that built and supports HDF. HDF5 is discussed in detail on the web at
http://hdfgroup.org/HDF5/.

About This Document

This document is designed for software devel opers who are designing applications or routines for
use with HDF files and for users who need detailed information about HDF. Users who are inter-
ested in using HDF to store or manipulate their data will not normally need the kind of detail pre-
sented in this manual. They should instead consult one of the user-level documents:*

Versions 4.x

HDF User's Guide
HDF Reference Manual

1. The user-level documentsfor Versions 3.2 and earlier were NCSA HDF Calling Interfaces and
Utilities and NCSA HDF Vset; for Version 3.3, they were Getting Sarted with NCSA HDF, NCSA
HDF User's Guide, and NCSA HDF Reference Manual. Library versions prior to Version 4.0 and
the corresponding doucuments are no longer supported or available.

June 25, 2008 1-5

The HDF Group

A tutorial is available onlineat the following URL :
http://hdf .ncsa.uiuc.edu/training/HDFtraining/tutorial/index.html

New material appears throughout this edition of The HDF Specification and Developer’s Guide,
but the following chapters bear special mention. Chapters 7 and 8 and Appendix B are entirely
new. Chapter 10 contains new compression and chunking information and some material that pre-
viously appeared in Chapter 9.

Users of third-party software that uses HDF may also have to consult a manual for that software.

1.6 Document Contents

The HDF Specification and Devel oper's Guide contains the following chapters and appendix:
Chapter 1: Introduction
Introduces the document and provides an overview.
Chapter 2: Basic Sructure of HDF Files
Introduces and describes the components and organization of HDF files.
Chapter 3: Software Overview

Describes the organization of the software layers that make up the basic HDF library and
provides guidelines for writing HDF software.

Chapter 4: Low-level Interface

Describes the low-level HDF routines that make up the low-level interface (see also the
H routines section of the HDF Reference Manual).

Chapter 5: Setsand Groups

Explainsthe roles of sets and groupsin an HDF file, and describes raster image sets, sci-
entific data sets, and VVgroups.

Chapter 6: Annotations
Explains the use of annotations in HDF files.
Chapter 7: Scientific Data Sets: The SD M odel
Explainsthe role, structure, and usage of SDSsin HDF files.
Chapter 8: General Raster Images: The GR Model
Explainsthe role, structure, and usage of GRsin HDF files.
Chapter 9: Tag Specifications
Describes the tag identification space and the NCSA-supported basic tags.
Chapter 10: Extended Tags and Special Elements

Describes the extended tag structure and the NCSA -supported extended tags and special
elements.

Chapter 11: Portability Issues

Describes the measures taken to maximize HDF portability across platforms and to
ensure that HDF routines are available to both C and FORTRAN programs.

1-6 June 25, 2008

HDF Specification and Developer’s Guide

1.7

Appendix A: Tags and Extended Tag L abels

Presents alist of NCSA-supported HDF tags and alist of labels used with extended tags.
Appendix B: Library Calling Trees

Illustrates the calling structure of HDF library functions.
Appendix C: Function Specifications

Provides detailed specifications for selected low-level interface functions.

Conventions Used in This Document

Most of the descriptive text in this guide is printed in 10 point Times. Other typefaces have spe-
cific meanings that will help the reader understand the functionality being described.

New concepts and newly defined terms are sometimes presented in bold italics on their first
occurrence to indicate that they are defined within the paragraph.

Cross references within the specification include the title of the referenced section in quotation
marks or the reference chapter initalics. (E.g., See Section 3.3, " Software Organization," in Chap-
ter 3, Software Overview, for acompletelist of ...)

References to documents italicize the title of the document. (E.g., See the HDF User’s Guide to
familiarize yourself with the basic principles of using HDF.)

Literal expressions and variables often appear in the discussion. Literal expressions are pre-
sented in Courier while variables are presented in italic Courier. A literal expression is any
expression that would be entered exactly as presented, e.g., commands, command options, literal
strings, and data. A variableis an expression that serves as a place holder for some other text that
would be entered. Consider the expression cp filel file2. cp iSacommand name and would
be entered exactly as it appears, so it is printed in Courier. But file1 and file2 are variables,
place holders for the names of actual files, so they are printed in italic Courier; the user would
enter the actual filenames.

This guide frequently offers sample command lines. Sometimes these are examples of what
might be done; other times they are specific instructions to the user. Command lines may appear
within running text, as in the preceding paragraph, or on a separate line, as follows:

cp filel file2

Command lines aways include one or more literal expressions and may include one or more vari-
ables, so they are printed in Courier and italic Courier asdescribed above.

Keysthat are labeled with more than one character, such asthe RETURN key, are identified with
all uppercase letters. Keys that are to be pressed simultaneously or in succession are linked with a
hyphen. For example, "press CONTROL-A" means to press the CONTROL key then, without
releasing the CONTROL key, pressthe A key. Similarly, "press CONTROL-SHIFT-A " meansto
press the CONTROL and SHIFT keys then, without releasing either of those, pressthe A key.

June 25, 2008 1-7

The HDF Group

Table 1A summarizes the use of typefaces as used in examples and illustrations of HDF code and
data, such asin literal strings and on sample command lines.

TABLE 1A M eaning of Entry Format Notations
Type Appearance Example Entry method
Literal expression (com- Courier do this Enter the expression exactly asit
mands, litera strings, data) appears.
Variables Italic Courier filename Enter the name of thefile or the specific
data that this expression represents.
Special keys Uppercase RETURN Press the key indicated.
Key combinations Uppercase, with hyphens | CONTROL-A While holding down the first one or two
between key names keys, press the last key.
Program listings and screen listings are presented in Courier typeface, asin Figure 1a. When the
listing isintended as a sample that the reader will use for an exercise or model, variables that the
reader will change are printed in italic Courier
FIGURE 1a Sample screen listing
mars 53% 1s -F
MinMaxer/ net . source
mars 54% cd MinMaxer
mars 55% 1ls -F
list .MinMaxer minmaxer.vl.04/
mars 56% cd minmaxer.vl.04
mars 57% 1s -F
COPYRIGHT minmaxer.bin/ source . minmaxer/
README sample/ source. triangulation/
mars 58%
1-8 June 25, 2008

Chapter

Basic Sructure of HDF Files

21

2.2

2.3

Chapter Overview

This chapter introduces and describes the components and organization of Hierarchical Data For-
mat (HDF) files. The components of an HDF file include a file header and a variety of data
objects.

File Header

The first component of an HDF file is the file header (FH), which takes up the first four bytesin
an HDFfile. Thefile header is asignature that indicates that the fileis an HDF file. Specifically, it
is a4-byte block with the hexadecimal value 0x0E 0x03 0x13 0x01.

To maintain HDF file portability, the characters must be read and written in the exact order shown.

Data Objects

The basic building block of an HDF fileis the data object, which contains both data and informa-
tion about the data. A data object has two parts: a 12-byte data descriptor (DD) and a data ele-
ment. Figure 2aillustrates two data objects.

FIGURE 2a

Two Data Objects

Data Descriptors Data Elements

|Rankand dimensions | _I—) 2; 90 by 100
|Data | —I—) 63.2, 54.5, 12.3,

18.2, 103.6, -7.4,

As the names imply, the data descriptor provides information about the data; the data element is
the dataitself. In other words, all datain an HDF file has information about itself attached to it. In
this sense, HDF files are self-describing files.

1. 0x0E 0x03 0x13 0x01 isthe hexadecimal representation of the characters control-N, con-
trol-C, control-S, and control-A, or “N*C*s*A.

June 25, 2008 2-1

The HDF Group

Data Descriptor (DD)

A datadescriptor (DD) hasfour fields: a 16-bit tag, a 16-bit reference number, a 32-bit data offset,
and a 32-bit data length. These are depicted in Figure 2b and are briefly described in Table 2a.
Explanations of each part appear in the paragraphs following Table 2a.

FIGURE 2b

A Data Descriptor (DD)

Reference

number
16 bits 16 bits 32 bits 32 hits

W

Tag/ref
(data identifier)

Tag Offset Length

TABLE 2a

Parts of a Data Descriptor

Part Description

Tag/ref Unique identifier for each data element

(dataidentifier) Tag Type of datain a data element

Reference num- | Number distinguishing data element from others with the
ber same tag

Offset Byte offset of data element from beginning of file

Length Length of dataelement in bytes

Tag/ref (Dataldentifier)

A tag and its associated reference number, abbreviated astag/ref, uniquely identify a data element
in an HDF file. The tag/ref combination is also known as a data identifier.

‘ Note: Only the full tag/ref uniquely identifies a data element.

Tag

A tag isthe part of adata descriptor that tells what kind of datais contained in the corresponding
data element. A tag is actually a 16-hit unsigned integer between 1 and 65535, but every tag is
also given a name that programs can refer to instead of the number. If aDD has no corresponding
dataelement, itstag is DFTAG_NULL, indicating that no datais present. A tag may never be zero.

Tags are assigned by NCSA as part of the specification of HDF. The following ranges are to be
used to guide tag assignment:

00001 — 32767 Reserved for NCSA use
32768 — 64999 User-definable
65000 — 65535 Reserved for expansion of the format

Chapter 9, “Tag Soecifications,” provides full specifications for all currently supported HDF tags.
Appendix A, “Tags and Extended Tag Labels,” lists the current tag assignments. See Section 3.4,
"Some HDF Conventions," for more information on allocating tags.

2-2

June 25, 2008

HDF Specification and Developer’s Guide

Reference Number

Tags are not necessarily unique in an HDF file; there may be more than one data element of a
given type. Therefore, the data descriptor includes a unique reference number.

Reference numbers are not necessarily assigned consecutively, so you cannot assume that the
actual value of areference number has any meaning beyond providing a means of distinguishing
among elements with the same tag. Furthermore, reference numbers are only unique for data ele-
ments with the same tag; two 8-bit raster images will never have the same reference number but
an 8-bit raster image and a 24-hit raster image might.

Reference numbers are 16-bit unsigned integers.

Data Offset and L ength

The data offset states the byte position of the corresponding data element from the beginning of
thefile. The length states the number of bytes occupied by the data element.

Offset and length are both 32-bit signed integers. This resultsin afile-size limit of 2 gigabytes.

Note: All offsets are from the beginning of the file; they are not relative.

DD Blocks

Data descriptors are stored physically in a linked list of blocks called data descriptor blocks or
DD blocks. Theindividual components of a DD block are depicted in Figure 2c. All of the DDsin
aDD block are assumed to contain significant data unless they have the tag DFTAG NULL (no data).

In addition to its DDs, each data descriptor block has a data descriptor header (DDH). The DDH
has two fields: a block size field and a next block field. The block size field is a 16-bit unsigned
integer that indicates the number of DDs in the DD block. The next block field is a 32-bit
unsigned integer giving the offset of the next DD block, if there is one. The DDH of the last DD
block in thelist containsa 0 in its next block field.

FIGURE 2c

Model of a Data Descriptor Block

Next
E’ilggk bmé(k]Tag Ref |Offset|Length| Tag| Ref |Offset LengtPI Tag| Ref |Offset Lengthll----
< DDH > |« DD > |< DD >| < DD >|—
< DD Block >

Since the default number of DDs in a DD block is defined when the HDF library is compiled,
changing the default requires recompilation. (The default value, as distributed in the source code
and pre-compiled binaries for Version 4.1r4, is 16.)

Data Element

A data element is the raw data portion of a data object. Its data type can be determined by exam-
ining its tag, but other interpretive information may be required before it can be processed prop-
erly.

Each data element is stored as a set of contiguous bytes starting at the offset and with the length
specified in the corresponding DD. (See Figure 2f, "Physical Representation of Data Objects,” on

page5.)!

June 25, 2008 2-3

The HDF Group

24

Exceptions and Special Cases

Note that there are afew exceptions and special cases to the above standards.

» Thedataobject identified by thetag prFTAG MT, for machine type, consists of the tag imme-
diately followed by four number types. Since there can be only one DFTAG MT taginan
HDF file and the data can be stored in the DD with the tag, there isno need for adata ele-
ment. Consequently, the reference number, offset, and length are unnecessary.

» Severa tags, specifically DFTAG NULL, DFTAG_JPEG, and DFTAG GREYJPEG, Serve as
binary flags and convey all the required information by the mere fact of their presencein an
HDFfile. Thesetagstherefore point to no data element and have offset and length val ues of
0.DFTAG_NULL indicates adata object containing no data. DFTAG_JPEG and
DFTAG_GREYJPEG indicate that an associated data object, indicated by a different tag but
the same reference number, contains JPEG dataimage. The descriptions of these tags
include asink pointer (—) in the diagramsin Chapter 9.

 Itispossibleto create atag/ref object then to end access to that object before writing any
data or specifying its size. In such cases, the offset and length in the DD block will be set to
theinvalid offset or invalid length value of 0xFFFFFFFF.

See the related entries in Chapter 9, Tag Specifications, for compl ete descriptions of these tags.

Physical Organization of HDF Files

The file header, DD blocks, and data elements appear in the following order in an HDF file:
 File header
 First DD block
» Dataelements
» More DD blocks, more data elements, etc., as necessary

These relationships are summarized in Table 2d.

The only rule governing the distribution of DD blocks and data elements within afile is that the
first DD block must follow immediately after the file header. After that, the pointersin the DD
headers connect the DD blocks in alinked list and the offsets in the individual DDs connect the
DDsto the data elements.

TABLE 2d Summary of the Relationships among Parts of an HDF File
Part Constituents
HDF file FH, DD block, data, DD block, data, DD block, data...
FH 0x0e031301 [32-hit HDF magic number]
DD block DDH, DD, DD, DD, ...
DDH Number of DDs[16 bits], offset to next DD block [32 bits]
DD Tag [16 bits], ref [16 bits], offset [32 bits], length [32 bits]
Data Data element, data element, data element ...
FH = file header, DD = data descriptor, DDH =DD header
1. Some HDF software provides the capability of storing objects as a series of linked blocks or
externa elements, but this occurs at a higher level. At the lowest level, each object with atag/ref
is stored contiguously.
2-4 June 25, 2008

HDF Specification and Developer’s Guide

2.5 SampleHDF File

We are now ready to examine asamplefile. Consider an HDF file that contains two 400-by-600 8-
bit raster images as described in Table 2e.

TABLE 2e Sample Data Objectsin an HDF File
Tag Ref Data
DFTAG FID | 1 Fileidentifier: user-assigned title for file
DFTAG FD 1 File descriptor: user-assigned block of text describing overall file contents
DFTAG LUT 1 Image palette (768 bytes)
DFTAG ID 1 x- and y-dimensions of the 2-dimensional arrays that contain the raster images (4 bytes)
DFTAG RI 1 First 2-dimensional array of raster image pixel data (x*y bytes)
DFTAG RI 2 Second 2-dimensional array of pixel data (also x*y bytes)

Assuming that a DD block contains 10 DDs, the physical organization of the file could be
described by Figure 2f.

In thisinstance, the file contains two raster images. The images have the same dimensions and are
to be used with the same palette, so the same data objects for the palette (pFrac_1p8) and dimen-
sion record (DFTAG_1D8) can be used with both images.

FIGURE 2f Physical Representation of Data Objects
Section Item Offset Contents

Header FH 0 0e031301 (HDF magic number, in hexadecimal)

DD block DDH 4 10 O
DD 10 DFTAG FID 1 130 4
DD 22 DFTAG FD 1 134 41
DD 34 DFTAG ILUT 1 175 768
DD 46 DFTAG ID 1 943 4
DD 58 DFTAG RI 1 947 240000
DD 70 DFTAG RI 2 240947 240000
DD 82 DFTAG NULL (Empty)
DD 94 DFTAG NULL (Empty)
DD 106 DFTAG NULL (Empty)
DD 118 DFTAG NULL (Empty)

Data Data 130 sw3
Data 134 solar wind simulation: third try. 8/8/88
Data 175 e (Data for the image palette)
Data 943 400 600 (Imagedimensions)
Data 947 e (Data for thefirst raster image)
Data 240947 e (Data for the second raster image)

June 25, 2008 2-5

The HDF Group

2-6 June 25, 2008

Chapter

Softwar e Overview

3.1

3.2

Chapter Overview

This chapter describes the HDF software organization and provides guidelines for writing HDF
software.

HDF is an amalgam of code and functionality from many sources. For example, the netCDF code
came from the Unidata Program Center, and data compression and conversion software has been
acquired from avariety of third parties. NCSA staff wrote the code for the basic HDF functional-
ity and perfomed all of the integration work.

This document contains specifications for the NCSA-developed code and functionality. It does
not include specifications for code or functionality from non-NCSA sources, though it does some-
times refer to specifications provided by other sources. Only the HDF interface to such code is
specified in this document.

HDF Software Layers

There are three basic levels of HDF software:
» HDF low-level interface
» HDF application interfaces
» HDF applications and utilities

The lowest layer, the low-level interface, includes general purpose routines that form the basis of
all higher-level HDF development. The low-level interface directly executes operations such as
file 11O, error handling, memory management, and physical storage.

The application interfaces support higher level views of data and provide the interfaces for build-
ing user-level applications. Routines that handle raster images, palettes, annotations, scientific
data sets, vdatas, vgroups, and netCDF appear at thislevel.

The applications and utilities are implemented at the highest level. NCSA utilities, NCSA appli-
cations, and third party applications are all implemented at this level.

The utilities perform general functions, such as listing the contents of an HDF file, and more spe-
cialized functions, such as converting data from one HDF data type to another (e.g., raster images
to scientific data sets). In general, the utilities have simple command line interfaces and perform
data management tasks.

The applications usually perform data analysis tasks and have polished interactive user interfaces.
They include the NCSA Visuaization Tool Suite, commercial software packages that use HDF,
and other packages created at NCSA and by various third party projects.

June 25, 2008 31

The HDF Group

Figure 3aillustrates this layered implementation.

FIGURE 3a

HDF Software Layers*

HDF Utilities |j | NCSA Applications Ij | 3rd Party Applications
]]]
HDF Application Interfaces
g g g g A

Ny

U U U U

—

HDF Low Level Interfaces

g A

]

M

U U
HDF File ﬁ

3.3

The low-level interface is described in detail in this document. The application interfaces and
command line utilities are described in the document NCSA HDF Calling Interfaces and Utilities
for Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual for Ver-
sions 3.3 and 4.x. Other HDF-based software tools should have their own manuals.

Since the NCSA user community writes programs primarily in C and FORTRAN, all of the HDF
application interfaces developed at NCSA are callable from both C and FORTRAN programs.
The functions of the low-level interface, however, are provided only as C-callable routines.

Softwar e Or ganization

3.3.1 Versonsand Release Numbers

Since HDF is under continual development, new releases are periodically made available.
Releases are identified with a version number consisting of three elements:

< majorv > Magjor version number, integer

< minorv > Minor version number, integer

< rn > Rel ease number, integer
The version number is presented in the following format:

< majorv >.< minorv >r< rn > (€g., Verson3.2rl)
These elements are interpreted as follows:

Major version number

A new major version number is assigned when there is some fundamental difference
between a new version of the library and the previous version. When a new major ver-
sion is released, HDF users and developers are strongly encouraged to obtain the new
source code and documentation. There will probably be added functionality in succes-

1. Thisisasimplified illustration of the HDF software layers. Though the basic principlesillus-
trated here continue to apply, the introduction of netCDF and multiple-file HDF data structures
renders the implementation considerably more complex.

3-2

June 25, 2008

HDF Specification and Developer’s Guide

sive major versions of the library and some obsolete code may be deleted. Some user
code may have to be modified to use the new library.

Minor version number

A new minor version number indicates an intermediate rel ease between one major ver-
sion and the next. Changes will probably be significant. When a new minor version is
released, users and developers are strongly encouraged to obtain the new source code
and documentation. There may be minor interface changes.

Release number

A new release number is assigned when bug fixes or other small modifications have
been made. Using a new release of the same version of the library will not usually
require modifying existing user code.

3.3.2 ANSI C and Portability

To ensure that HDF can be easily ported to new platforms, all versions of the HDF source code
from Version 3.2 on are written in ANSI standard C, with specia provisions for non-ANSI com-
pilers. For more information about porting HDF and writing portable HDF-based code, refer to
Chapter 11, Portability Issues.

3.3.3 Modulesand Interfaces

The HDF distribution contains many source files or modules that can be grouped into families.
For example, dfp.c, dfpf.c, and dfpff.f all sharetheroot name dfp and, therefore, all
belong tothe afp family. In general, each family of source modules represents one HDF applica-
tionsinterface; the afp family represents the HDF Palette Interface (DFP).

For each interface, there is necessarily one file that contains the C code that provides the basic
functionality of that interface. Some interfaces may have one or two additional code modules that
provide FORTRAN callability for the interface, so afamily may have one, two, or three files:

1file Modules of this sort are generally not calling interfaces themselves; they provide
useful support functions for actual calling interfaces. Since they are not meant to
be called by any routine outside the HDF library, they do not need to be FOR-
TRAN-callable. Example: hblocks.c is called only by internal HDF routines
and has only the C-callable interface.

2 files Some interfaces need only one extra source module to provide FORTRAN com-
patibility. In such cases, there are only two source modules for the interface.
Example: mfan.c and mfanf.c make up the Multifile Annotation Interface.

3files Most current implementations of FORTRAN-callable HDF interfaces require
that character string arguments be passed to some of their functions. Due to dif-
ferences in the way C and FORTRAN represent strings, passing strings requires
that there be a small amount of specia purpose FORTRAN code written for each
function that takes a string argument.

Therefore, most FORTRAN-calable HDF interfaces consist of three source
modules:

*The primary C module

*A FORTRAN-callable C module

*A FORTRAN module

June 25, 2008 3-3

The HDF Group

Example: dfsd.c, dfsdf.c,and dfsdff.f make up the Single-file Scien-
tific Data Interface. dfsd.c contains the basic functionality of the interface.
dfsdf.c provides the magjor part of FORTRAN callability. And dfsdff.f
contains the specia purpose FORTRAN code that enables passing character
string arguments.

Table 3a, "HDF Version 4.x Source Code Modules," on page 6 lists the families of source code
modules and header files of HDF Version 4.x. The first column of the table lists the name of the
interface or the category of the modules, depending on their functionality. The modules are cate-
gorized asfollows:

Low-level interface, or H-level interface, includes modules that facilitate portability and
provide physical storage management, error handling mechanisms, support for simultaneous
access to multiple objects within asingle file, support for simultaneous access to multiple
files, and an interface for key lower-level modules. Low-level routines begin with an 1
(e.9., Hopen/Hclose Of Hread/Hwrite).

Multifile Scientific Data interface (SD API) includes modulesthat provide the mechanisms
for managing scientific data sets in a multifile environment. These modules reside in the
directory mfhdf/, which is separate from that of the other interfaces. Library routinesin this
interface begin with sp. This interface replaces the Single-file Scientific Data interface
(DFSD API). (A subtantial number of local or internal routine namesin this code are influ-
enced by netCDF.)

Vdata interface (VS API) includes modules that provide mechanisms for managing Vdatas.
Library routinesin this interface begin with vs.

Vgroup interface (V API) includes modules that provide mechanisms for managing
Vgroups. Library routines in this interface begin with av. Note that in the Content Descrip-
tion column, the V and V'S routines share some modules and header files.

Multifile Annotation interface (AN API) includes modules that provide mechanisms for
managing annotations in a multifile environment. Library routinesin this interface begin
with an. Thisinterface replaces the Single-file Annotation interface (DFAN API).

General Raster Image interface (GR API) includes modules that provide mechanisms for
managing general raster imagesin amultifile environment. Library routinesin thisinterface
begin with Gr. Thisinterface replaces the 8-bit Raster Image interface (DFR8 API) and the
24-hit Raster Image interface (DFR24 API), which operate in the single-file environment.

Palette interface (DFP API) includes modules that provide mechanisms for managing the
palettes that are used by the raster image interfaces. Library routinesin this interface begin
with DFP.

Compression/Decompression includes modules that provide mechanisms for managing file
and image compresion and decompression.

Conversion includes modules that provide mechanisms to support conversion to and from
the HDF format.

Single-file Scientific Data interface (DFSD API) includes modules that provide mecha-
nisms for managing scientific data setsin a single-file environment. Library routinesin this
interface begin with prsp. Thisinterface isreplaced by the Multifile SD interface (SD API).

Single-file General Raster | mageinterface (DF GR API) includes modules that provide
mechanisms for managing general raster images in the single-file environment. This inter-
faceisan older version of the GR interface.

8-bit Raster Image interface (DFR8 API) includes modules that provide mechanisms for
managing 8-bit raster images. Thisinterface is replaced by the Multifile GR interface.

34

June 25, 2008

HDF Specification and Developer’s Guide

» 24-bit Raster Image interface (DFR24 API) includes modules that provide mechanismsfor
managing 24-bit raster images. This interface is replaced by the Multifile GR interface.

» Single-file Annotation interface (DFAN API) includes modules that provide mechanisms
for managing annotations in the single-file environment. Thisinterfaceis replaced by the
Multifile AN interface.

» Developer-level interface includes modules that are at alower level than the H-level mod-
ules, which heavily use the devel oper-level routines. These modules simplify the task of
writing HDF applications by providing low-level routines for internal 1/0 handling,
dynamic storage handling, memory management, and data descriptor handling.

» Mac Only interface includes modules that implement UNIX-like directory reading for the
Macintosh.

The second column of Table 3a divides the modules in the interface into three groups. header
files, C modules, and FORTRAN interface and support. The header files are discussed in the next
section. The C modules group contains the primary C modules. The FORTRAN interface and sup-
port group contains either or both the FORTRAN-callable C module and the FORTRAN module
of the interface.

3.3.4 Header Files

In addition to the source code modules discussed above, some interfaces also have C header files
associated with them that are meant to be included by C applications programmers with the
#include preprocessor directive. They contain useful constants and data structures for interac-
tion with the interface from C programs. The header files can be identified by the same name as
theroot namefor the rest of the family with the .h extension. For example, dfsd.h isthe header
file for the Single-file Scientific Data Interface.

Of particular importance among the C header files are mfhdf.h, hdf.h and hdfi.h:

mfhdf.h Contains symbolic constants and public data structures for HDF's SD interface.
mfhdf.h must be included by any program that uses the SD APl of the HDF

library.
hdf.h Contains all the symbolic constants and public data structures required by HDF.
hdf . h must beincluded by any program that uses the HDF library. (Note that this

file is automatically included by the inclusion of mfhdf.h and need not be
included separately.)

hdfi.h Contains specific portability information about each platform on which HDF is
supported. hdfi.h is automatically included in a program when hdf.h is
included, so programmers need not explicitly include it.

Refer to Chapter 11, Portability Issues, for more information on hdfi.h and other portability
issues. Refer to Table 3a for the listing of the header files provided in the current version of the
HDF library.

June 25, 2008 35

The HDF Group

TABLE 3a HDF Version 4.x Source Code M odules
Category Module type Module name Content Description
hchunks.h Definitions for chunked elements
Header files hdf.h HDF user-level definitions, for applications using HDF routines
hdfi.h Definitions for portability
herr.h Definitions for HDF error handling/reporting routines
hfileh Definitions for HDF low-level file 1/0 routines
hkit.h Definitions for string mapping routines
hlimits.h Defined limitsfor the library, reserved Vdata/V group names and
classes, and pre-attribute names. Definitions for most of the con-
stantsin the library.
hntdefs.h Number-type definitions for HDF
hproto.h Useful macros, potential for future functions
H-level htags.h HDF tag definitions
patchlevel.h Definition of PATCHLEVEL
C modules hblocks.c Routines to implement linked-block elements
hchunks.c Routines to implement chunked elements
herr.c Routines for error handling/reporting
hextelt.c Routines for external elements
hfile.c Low-level file1/O routines
hkit.c Various string mapping routines
FORTRAN inter- herrf.c C stubs for FORTRAN error handling/reporting routines
face and support
Header files aloc.h Definitions for memory management
error.h Prototypes for error handling routines
hdf2netcdf.h HDF names of netCDF API functions
local_nc.h Definitions of structures for CDF and its components
mfhdf.h Definitions for applications using SD routines
mfhdfi.h Definitions that are used in both local_nc.h and mfhdf.h
win32cdf.h Definitions used for the Windows version of the library
C modules array.c Routines that operate the structure NC_array
attr.c Routines that operate the structure NC_attr
cdf.c Routines that operate the CDF structure NC its components
dim.c Routines that operate NC_dim and locally related routines
error.c Utility routines to implement consistent error logging mecha-
nisms for netCDF
filec Low-level "nc" routines and other routines that operate the struc-
Multifile tures NC and XDR
Scientific Data globdef.c Initialization of global variables that allow the creation of
(SD API) SunOS sharable libraries
hdfsds.c Routines that read old SDS objects out of HDF files
iarray.c Routines that operate NC_iarray
mfsd.c SD and SDI library routines that are local to this module
nssdc.c Routines that read CDF V2.x files created with the CDF library
putget.c Routines that read/write SD objects at the Vgroup and Vdata
level
putgetg.c Routines that perform 1/0O on a generalized hyperslab
sharray.c Internal routines for short integers
string.c Routines that operate NC_string
var.c Routines that operate NC_var and locally related routines
xdrposix.c Routines that implement XDR on a POSIX file descriptor
xdrstdio.c Routines that implement XDR on a stdio stream
FORTRAN inter- mfsdf.c C stubs for SD library routines
face and support mf sdff.f FORTRAN stubs for SD library routines

3-6 June 25, 2008

HDF Specification and Developer’s Guide

Category Module type Module name Content Description
Header files vattr.h definitions for vgroup/vdata attribute interface
C modules vattr.c V and VS library routines that handle V group/V data attributes
vg.c Mostly Vdatalibrary routines, but also some Vgroups routines
vhi.c VH library routines for vdata high-level access
vio.c VSlibrary routines that handle vdatas and locally used routines
Vdata (VS API) Vrw.c VSlibrary routines that read and write vdatas
vsfld.c VF and VS library routines that handle vdata fields
FORTRAN inter- vattrf.c C stubs for handling vgroup/vdata attributes
face and support vattrff.f FORTRAN stubs for handling vgroup/vdata attributes
vgf.c C stubs for vgroups and vdatas library routines
vgff.f FORTRAN stubs for vgroups and vdatas library routines
Header files dfgroup.h Definitions for dfgroup.c
vg.h Defined symbols and structuresused in al v*.c files
vgint.h Private defined symbols and structures used in all v*.c files
C modules veonv.c Routines that handle V group/V data compatibility and conver-
Vgroup (V API) sion
vgp.c V library routines that handle VVgroups and locally used routines
vparse.c Routines for parsing
FORTRAN inter- listed in Vdata API
face and support
Header files mfan.h Definitions for multifile annotations
M uIt|f|_Ie C modules mfan.c AN library routines that read and write multifile annotations
Annotation
AN API FORTRAN inter-
() mfanf.c C stubs for handling multifile annotations
face and support
Header files mfgr.h Definitions for multifile genera raster images
Multifile - : . :
General Raster C modules mfgr.c GR library routines that access mulltifile general raster images
Image (GR API) FORTRAN inter- mfgrf.c C stubs for accessing multifile general raster images
face and support mfgrff.f FORTRAN stubs for accessing multifile general raster images
Header files Thisinterface uses only the header file hdf.h
Palette C modules dfp.c DFP routines that read and write palettes
DFP API X
() FORTRAN inter- | dfpf.c C stubs for palette routines
face and support dfpff.f FORTRAN stubs for pal ette routines
Header files cnbit.h Definitions for N-bit encoding
crleh Definitions for run-length encoding
hcomp.h Definitions for compression information and structures
hcompi.h Internal library header file for compression information
C modules crlec Internal 1/0 routines for HDF run-length encoding
dfcomp.c Routines that perform file compression
Compression/ dfjpeg.c Routines that perform JPEG image compression
Decompression dfrle.c Routines that perform RLE image compression
dfunjpeg.c Routines that perform JPEG image decompression
hcomp.c 1/0 routines for compressed data
hcompri.c Routines for reading and writing old-style compressed raster
images, such as JPEG (raster specific) RLE, and IMCOMP
FORTRAN inter-
none
face and support
June 25, 2008 37

The HDF Group

Category Module type Module name Content Description
Header files dfconvrt.h The macro DFconvert to speed up the conversion process
dfufp2i.h Definitions for dfufp2i.c
hconv.h Definitions for data conversion
C modules dfconv.c Routines that support conversion to and from HDF format
dfkconv.c Routines to support Convex-native conversion to/from HDF for-
mat
dfkcray.c Routines to support Cray conversion to/from HDF format
dfkfuji.c Routines to support Fujitsu-native (V P) conversion to/from HDF
Conversion format
dfknat.c Routines to support native-mode conversion to/from HDF for-
mat
dfkswap.c Routines to support little-endian conversion to/from HDF format
dfkvms.c Routines to support Vax-native conversion to/from HDF format
dfufp2i.c Utility functions to convert floating point data to 8-bit raster
image set (RIS8) format
FORTRAN inter-
none
face and support
Header files dfsd.h Definitions for single-file scientific data
Sngl ?me C modules dfsd.c DFSD routines that read and write Scientific Data Sets
Scientific Data
(DFSD API) FORTRAN inter- dfsdf.c C stubs for single-file scientific data routines
face and support dfsdff.f FORTRAN stubs for single-file Scientific Data routines
Header files dfgr.h Definitions for single-file general and 24-bit raster images
Single-file C modules dfgr.c DFGR routines that read and write general raster images (old)
General Rasters dfimcomp.c Routines that perform color image compression
(BFGRAPI) [EORTRAN inter-
none
face and support
Header files dfrig.h Definitions for 8-bit raster image groups
8—?;2;:;6 C modules dfr8.c DFRS routines that read and write 8-bit raster image groups
(DFR8 API) FORTRAN inter- dfrsf.c C stubs for 8-hit raster image group routines
face and support dfr8ff.f FORTRAN stubs for 8-bit raster image group routines
Header files Thisinterface uses dfgr.h in the single-file General Raster inter-
. face
24-bit Raster
Images C modules df24.c Routines that read and write 24-bit raster images
(DFR24 AP1) FORTRAN inter- df24f.c C stubs for 24-bit raster image routines
face and support df24ff.f FORTRAN stubs for 24-bit raster image routines
Header files dfan.h Definitions for single-file annotations
Singl eflle C modules dfan.c Routines that read and write single-file annotations
Annotations
(DFAN API) FORTRAN inter- dfanf.c C stubs for annotation routines
face and support dfanff.f FORTRAN stubs for annotation routines
3-8 June 25, 2008

HDF Specification and Developer’s Guide

Category Module type Module name Content Description
Header files atom.h Definitions for atom code
bitvect.h Definitions for bit vector code
cdeflate.h Definitions for deflate encoding
cnbit.h Definitions for N-bit encoding
cnone.h Definitions for none-encoding
cskphuff.h Definitions for Skipping Huffman encoding
cszip.h Definitions for szip encoding
df.h Definitions for data descriptors
dfi.h HDF internal header file
dfivmsh HDF internal header filefor VMS
dfstubs.h Definitions for dfstubs.c HDF 3.1 emulation using new routines
from hfile.c
dfutil.h Definitions for low-level utility routines
dgroup.h Definitions for low-level implementation of groups
dynarray.h Definitions for dynamic storage handling
glist.h Definitions for general list
hbitio.h Data structures and macros for bitfile access to HDF data
objects; mainly used for compression 1/0 and N-bit data objects
hqueue.h Modified version of Berkley code for manipulating memory
pool
linklist.h Definition for generic linked lists
maldebug.h Definitions for dynamic memory handling
mcache.h Modified version of Berkley code for manipulating memory
pool
mstdio.h Definitions for stdio-like routines
thbt.h Definitions for using threaded, balanced, binary trees
C modules atom.c Internal storage routines for handling atoms
Developer-level bitvect.c Routines that operate ordered sets of bits, or bit vectors
cdeflate.c Internal /O routines for HDF gzip deflate encoding
cnbit.c Internal /0 routines for HDF N-bit encoding
cnone.c Internal /O routines for HDF noencoding
cskphuff.c Internal 1/0 routines for HDF Skipping Huffman encoding
cszip.c Internal /O routines for HDF szip encoding
dfstubs.c V3.x stubs for V4.0 H-level 1/O routines
dfgroup.c Low-level routines (DF*) for implementing groups
dfutil.c General-purpose utility routines
dynarray.c Internal routines that handle dynamic storage
glist.c Implementation of general list
hbitio.c HDF bit level 1/0 routines
hbuffer.c Routines that manage buffered elements
hdfalloc.c HDF routines for memory management
hfiledd.c Routines that manage DDs and DD blocks
linklist.c Internal storage routines for handling generic linked lists
maldebug.c Utility routines for memory management
mcache.c Modified version of Berkley code for manipulating memory
pool
mstdio.c HDF stdio-like routines
thbt.c Routines for using threaded, balanced, binary trees
FORTRAN inter- dff.c C stubs for low-level 1/0 routines
face and support dfff.f FORTRAN stubs for low-level 1/0 routines
dfutilf.c C stubs for general-purpose utility routines
dfutilff.f FORTRAN stubs for general-purpose utility routines
hfilef.c C stubs for low-level routines
hfileff.f FORTRAN stubs for low-level routines
Header files dir_mac.h Definitions for dir_mac.c
sys dir_mac.h Additional definitions to be included in dir_mac.h
Mac only
C modules dir mac.c Implementation of UNIX-like directory reading for the Macin-

tosh

June 25, 2008

39

The HDF Group

34

3.3.5 The HDF Test Suite

In addition to the source code for the HDF library, Versions 3.2 and higher include a test suite.
There are two test modules: one for C and one for FORTRAN. Each module tests all of the rou-
tinesin all of the application interfaces and in the low-level interface. The exact form of these test
modules may vary from one release to the next; consult the release code and online test documen-
tation for details.

Every effort has been made to ensure that the test programs provide a thorough and accurate
assessment of the health of the HDF library. Although the test suite will greatly improve the reli-
ability of HDF code, it is almost inevitable that some parts of the code will remain untested.
Therefore, no guarantees can be made on the basis of test suite performance.

3.3.6 Sample HDF Programs

Sample programs, illustrating some of the common techniques employed by HDF programmers,
are available on the HDF web site at http://www.hdfgroup.org/training/HDFtraining/
examples/.

To help users become familiar with HDF, each release includes several sample programs illustrat-
ing common techniques employed by HDF programmers.

Some HDF Conventions

The HDF specification described in the previous chapter is not sufficient to guarantee its success.
It is also important that HDF programmers and users adhere to certain conventions. Some guide-
lines are implicit in the discussions in other sections of this document. Others are presented in the
document NCSA HDF Calling Interfaces and Utilities for Versions 3.2 and earlier, or in the HDF
User’s Guide and the HDF Reference Manual for Versions 3.3 and 4.x.

Guidelines not covered €l sewhere are introduced in this section.

Naming and Assigning Tags

Tags that are to be made available to a general population of HDF users should be assigned and
controlled by NCSA. Tags of this type are given numbersin the range 1 to 32,767. If you have an
application that fits this criterion, contact NCSA at the address listed in the front matter at the
beginning of this manual and specify the tags you would like. For each tag, your specifications
should include a suggested name, information about the type and structure of the data that the tag
will refer to, and information about how the tag will be used. Your specifications should be similar
to those contained in Chapter 9, Tag Specifications. NCSA will assign a set of tags for your appli-
cation and will include your tag descriptions in the HDF documentation.

Tagsin the range 32,768 to 64,999 are user-definable. That is, you can assign them for any private
application. If you use tags in this range, be aware that they may conflict with other people's pri-
vate tags.

Using Reference Number sto Organize Data Objects

The HDF library itself uses reference numbers solely to distinguish among objects with the same
tag. While application programmers may find it convenient to impart some meaning to reference
numbers, they should be forewarned that the HDF library will be ignorant of any such meaning.

3-10

June 25, 2008

HDF Specification and Developer’s Guide

Note: Users are discouraged from assigning any meaning to reference numbers beyond that
imparted by the HDF library.

Multiple References

Multiple references to a single data element are quite common in HDF. The low-level routine
Hdupdd generatesanew referenceto datathat isalready pointed to by another DD. If Hdupdd is
used several times, there may be several DDs that point to the same data el ement.

It isimportant to note that when a multiply-referenced data element is deleted or moved, the vari-
ous DDs that previously pointed to the data element are not automatically deleted or adjusted to
point to the data element in its new location. Consequently, each DD to be deleted or moved
should be checked for multiple references and handled appropriately.

June 25, 2008 31

The HDF Group

3-12 June 25, 2008

Chapter

L ow-level Interface

4.1 Chapter Overview

This chapter provides a detailed description of the routines that make up the HDF low-level inter-
face, sometimes referred to as the H-level interface.

4.2 Introduction

HDF supports several interfaces which can be categorized as high-level and low-level interfaces:
» High-level interfaces support utilities and applications.
» Low-level interface functions perform basic operations on HDF files.

Theselevels areillustrated in Figure 4a.

FIGURE 4a HDF Software Layers

| HDF Utilities Ij | NCSA Applications Ij |3rd Party Applications Ij

A \—d h—d

HDF Application Interfaces
[[[A A

— U U U U

HDF Low Level Interfaces

g g

2

7

| HDF File Ij

This chapter is concerned only with the low-level interface.

]

]
-

Using these routines of the low-level interface, you will be able to build and manipulate HDF
objects of any type, including those of your own design. All HDF applications developed at
NCSA use them as basic building blocks.

The low-level routines are all written in C.

June 25, 2008 4-1

The HDF Group

4.3 New Low-level Routineswith Version 3.2 and Higher

The low-level routines described in this chapter are new with HDF Version 3.2 and higher; they
replace the routines provided with earlier versions. The new routines provide better performance
and increased functionality and users are strongly advised to use them in new applications. The
old routines are supported through emulation, but may be eliminated from the HDF library in a
future release.
The new lower layer incorporates the following improvements:

» More consistent data and function types

» More meaningful and extensive error reporting

» Simplification of key lower-level functions

» Simplified techniques to facilitate portability

 Support for aternate forms of physical storage, such aslinked blocks storage and storage of

the data portion of an object in an external file

» A version tag to indicate which version of the HDF library last changed afile

 Support for simultaneous access to multiple files

 Support for simultaneous access to multiple objects within asinglefile
The previous lower layer was called the DF layer because all routines began with the letters br
(e.g., DFopen and DFclose). The new lower layer is called the H layer because al routines

begin with the letter H (e.9., Hopen, Hclose, and Hwrite). The source modules containing
these routines begin with the letter h (see Table 3a, "HDF Version 4.x Source Code Modules"):

hfile.c Basic /0 routines
herr.c Error-handling routines
hkit.c General purpose routines

hblocks.c Routinesto support linked block storage
hextelt.c Routinesto support externa storage of HDF data elements

hchunks.c Routinesto support chunked elements

4-2

June 25, 2008

HDF Specification and Developer’s Guide

4.4

Overview of the Low-levd I nterface

This section provides the name and purpose of each public function and selected private routines
of the low-level interface. The private routines are intended only for internal use by the library.
Detailed specifications for many of these routines are provided in Appendix C, Function Specifi-
cations; detailed specifications for all of these routines are provided as comments in the distrib-
uted source code.

Summary of Prefixes

The low-level functions are named with the following prefixes.

TABLE 4b

L ow-level routine prefixes

H General and file-handling oper ations

HC Compression special element oper ations

HD DD block operations

HL Linked block special element operations

HMC Chunking special element operations

HR Raster image special element operations

HT Tag/ref operations

HX External file special element operations

*P Routine privateto thelibrary. No guarantee of stable external interface; may change without notice.

*| Satic routine privateto thelibrary. No guarantee of stable external interface; may change without notice.

Opening and Closing HDF Files

These functions are used to open and close HDF files:

Hopen Provides an access path to an HDF file and reads all of the DD blocks in the
file into memory

Hclose Closes the access path to afile

HDerr Closes afile and returns FAIL

HsetaccesstypeSetsthe I/O access type (serial, paraldl, ...)

L ocating Elementsfor Access and Getting I nformation

These routines |ocate elements or acquire other information about an HDF file or its data objects.
Except for Hendaccess, they initialize the element that they locate and return an access ID that
isused in later references to the data element. Calls can include wildcards so that one can search
for unknown tags and reference numbers (tag/refs).

June 25, 2008 4-3

The HDF Group

Hstartread Locatesan existing data element with matching tag/ref and returns an access
ID for reading it

Hnextread Continuesthe search with the same access ID
Hendaccess Disposes of access D for atag/ref pair

Hinquire Returns access information about a data element

Hishdf Determines whether afileisan HDF file

Hnumber Returns the number of occurrences of a specified tag/ref pair in afile

Hexist Determines whether an object existsin an HDF file

Hmpset Sets pagesize and maximum number of pages to cache on the next open/cre-
ate operation

Hmpget Gets last pagesize and max number of pages cached for open/create

HgetlibversionReturns version information for the current HDF library
HgetfileversionReturnsversion information for an HDF file
HPgetdiskblockGets the offset of afree block inthefile

HPfreediskblockReleases ablock in afile to be re-used

Reading and Writing Entire Data Elements

There are two sets of routines for reading and writing data elements. The routines described here
are used to store and retrieve entire data elements.

Hputelement Adds or replaces elementsin afile
Hgetelement Reads data elementsin afile

A second set of routines, described in the next section, may be used if you wish to access only part
of adata element.

Reading and Writing Part of a Data Element

The second set of routines for reading and writing data elements makes it possible to read or write
all or part of adata element. One of the accessroutines Hstartread OF Hstartwrite mustbe
called beforethese Hwrite, Hread, OF Hseek!

Hstartwrite Setsup writing to the object with the supplied tag/ref. If the object exists, it
will be modified; otherwise it will be created.

Hwrite Writes data to a data element where the last Hwrite oOr Hseek stopped. If the
space reserved is less than the length to write, then only as data as can fit in
the allocated space is written.

Hread Reads a portion of a data element. It starts at the last position left by an
Hread Or Hseek call and reads any datathat remainsin the element up to
a specified number of bytes.

Hseek Sets the access pointer to an offset within a data element. The next time
Hread Or Hwrite iscalled, the access occurs from this new position. The

4-4

June 25, 2008

HDF Specification and Developer’s Guide

location to seek can be specified as an offset from the current location, from
the start of the element, or from the end of the element.

Htrunc Truncates a data set to a specified length.

Manipulating Data Descriptors (DDs)

The routines listed here perform operations on DDs without modifying the data to which the DDs
refer. Thefirst list indicates public routines that are available to users and applications; the second
list indicates private routines that are used internally by the library.

Public user routines

Hdupdd Generates new references to a data element that is already referenced from
somewhere else
Hdeldd Deletes atag/ref pair from thelist of DDs

HDcheck tagrefChecksto see whether atag/ref pair isin the DD list

HDreuse tagrefReuses adata descriptor of atag/ref pair in aDD list of an HDF file
Hnewref Returns areference number that is unique in the file

Htagnewref Returnsareference number that isuniquein thefile for a given tag

Hfind L ocates the next object of a search in an HDF file

Privatelibrary routines (internal)

HTPcreate Creates (and attaches to) atag/ref pair and insertsit into the DD list
HTPselect Attachesto an existing DD inthe DD list

HTPendaccess Ends accessto an attached DD in the DD list

HTPdelete Marks atag/ref pair as free and ends access to it

HTPupdate Changes the offset and/or length of a data object

HTPinquire Getsthe DD information for aDD (i.e. tag/ref/offset/length)

HTPis specialCheckswhether a DD identifier isassociated with a specia tag

HTPstart Initializes the DD list from disk, i.e., createsthe DD list in memory
HTPinit Creates anew DD list in memory

HTPsync Flushes the DD list to disk

HTPend Closesthe DD list to disk

Creating Special Data Elements

Prior to release 3.2, any data element had to be stored contiguously and all of the objects in an
HDF file had to be in the same physical file. The contiguous requirement caused many problems,
especially with regard to appending to existing objects. If you wanted to append data to an object,
the entire data element had to be deleted and rewritten to the end of the file. Later HDF versions
introduced alternate methods of storing HDF objects: linked blocks and external elements at the

June 25, 2008 4-5

The HDF Group

release of HDF Version 3.2 and chunking at HDF Version 4.1. These special elements, plus com-
pression, are discussed in detail in Chapter 10, Extended Tags and Special Elements.

Linked blocks improve storage management by allowing elementsin asingle HDF file to be non-
contiguous. The routines listed here operate on linked blocks Thefirst list indicates the public rou-
tines that are available to users and applications; the second list indicates the private routines that
are used internally by the library.

Public user routines

HLcreate Creates anew linked-block special data element

HLconvert Convertsan AID into alinked-block element

HDingblockinfoReturns information about linked blocks

Privatelibrary routines (internal)

HLPread Reads some data out of alinked-block element
HLPwrite Writes out some data to a linked-block element
HLPinquire Returnsinformation about alinked-block element
HLpPendacess Closesalinked-block AID

HLPinfo Returnsinformation about alinked-block element
HLpstread Opensan accessrecord for reading

HLPstwrite Opensan accessrecord for writing

HLPseek Sets position for the next access

External elements alow a single HDF object to be stored in an externa file. The following rou-
tines operate on external elements:

HXcreate Creates anew external file special data element
HxsetcreatedirSetsthe directory variable for creating externa file
HXsetdir Sets the directory variable for locating external file

It is not currently possible to store a single object (such as a very large data set) in multiple files.
Nor can multiple objects be stored in one external file.

Once they are created with theroutinesHLcreate and Hxcreate, these special dataelements can
be accessed with the routines used for normal data elements. These routines have two modes of
operation. Calling HLcreate with atag/ref that does not exist in afile will create anew element
with the given tag/ref pair which will be stored as linked blocks. On the other hand, if the tag/ref
pair already exists in the file, the referenced object will be promoted to linked block status. All
data which had been stored in the object before the promotion will be retained. HXcreate
behaves similarly.

Chunking allows elements in large arrays to be stored as chunks in such a way that 1/0 perfor-
mance can be significantly improved. The routines listed here perform operations on chunking
elements. Thefirst list indicates the public routines that are avail able to users and applications; the
second list indicates the private routines that are used internally by the library.

4-6

June 25, 2008

HDF Specification and Developer’s Guide

Public user routines

HMCcreate Creates a chunked element.

HMCwriteChunkWrites out the specified chunk to a chunked element.
HMCreadChunk Reads the specified chunk from a chunked element.
HMCsetMaxcacheSets the maximum number of chunks to cache.

HMCPcloseAID Closesthefile but keeps AID active (for Hnextread()).

Privatelibrary routines (internal)

HMCPstread Opensan access record for reading.

HMCPstwrite Opensan access record for writing.

HMCPseek Sets the seek position.

HMCPchunkreadReads a single chunk from a chunked element.

HMCPread Reads a more arbitrarily sized piece of datafrom a chunked element.
HMCPchunkwriteWrites out a single chunk of data to a chunked element.

HMCPwrite Writesout amore arbitrarily sized piece of datato a chunked element.
HMCPinquire ImplementsHinguire for a chunked element.

HMCPendacess Closes a chunked element AID

HMCPinfo Returns information about a chunked element.

Compression provides for the compression of data sets. The routines listed here perform those
compression operations. The first list indicates the public routines that are available to users and
applications; the second list indicates the private routines that are used internally by the Iibrary.1

1. These are the general compression functions. Additional compression functions, specific to
each compression style, can be found in the compression style-specific modules in the source
code distribution. As of HDF Version 1.4r4, those modules included thefiles c* . c (e.g., cde-
flate.c., crle.c)inthedirectory . /hdf/src/.

June 25, 2008 4-7

The HDF Group

Public user routines

HCcreate Create a compressed data element

Privatelibrary routines (internal)

HCIinit coderSet the coder function pointers

HCIinit modelSet the model function pointers

HCIread headerRead the compression header info from afile

HCIstaccess Start accessing acompressed data element.

HCIwrite headerWrite the compression header infoto afile

HCPcloseAID Get rid of the compressed data element data structures
HCPdecode headerDecode the compression header info from a memory buffer
HCPencode headerEncode the compression header info to a memory buffer
HCPendaccess Close the compressed data element and free the AID
HCPinfo return info about a compressed element

HCPinquire Inquireinformation about the access record and data element.

HCPmstdio endaccess
Close the compressed data element

HCPmstdio inquire Inquireinformation about the access record and data element

HCPmstdio readRead in aportion of datafrom a compressed data element
HCPmstdio seekSeek to offset within the data element

HCPmstdio streadstart read access for compressed file

HCPmstdio stwritestart write accessfor compressed file

HCPmstdio writeWrite out a portion of data from a compressed data element

HCPquery encode_header

Query the length of compression header for a memory buffer

HCPread Read in a portion of data from a compressed data element.
HCPseek Seek to offset within the data element

HCPstread Startread access on acompressed data element.

HCPstwrite Start write access on a compressed data element.

HCPwrite Write out a portion of data from a compressed data element.
HRPcloseAID Free memory but keep AID active

HRPconvert Wrap an existing raster image with the special element routines.
HRPendacess Free AID

HRPinfo Return info about a compressed raster element

HRPinquire Retreive information about a compressed raster element

HRPread Read some data out of compressed raster element

4-8

June 25, 2008

HDF Specification and Developer’s Guide

HRPseek Set the seek posn

HRPstread Open an access record for reading
HRPstwrite Open an access record for reading
HRPwrite Write data out to a compressed raster image

General special element routines. In addition to the routines specific to a particular type of spe-
cial element, the library provides general routines for use on any special element:

HDget special infoGetsinformation about a special element

HDset special infoResetsinformation about a specia element

Development Routines

The HDF library provides the following developer-level routines that simplify the task of writing
HDF applications. Many of these routines mirror basic C library functions which are, unfortu-
nately, not always completely portable in their library form:

June 25, 2008 4-9

The HDF Group

HDget tagnameReturns a pointer to a text string describing a given tag
HDgetspace Allocates space

HDfreespace Freesspace

HDclearspace Creates storage on the heap for anumber of items of the given size
HDregetspace Resizestothe new given size

HDstrcat Appends a string to the end of another string

HDstrcmp Compares two strings

HDstrncmp Compares two strings up to a given number of characters

HDstrcpy Copies a string from one location to another

HDstrncpy Copiesastring from one location to another up to a given number of charac-
ters

HDstrlen Returns the length of a string

HDstrchr Returns the position of a character within a string

HDstrrchr Returns the position of the last occurence of a character within a string
HDstrtol Convertstheinitial portion of astring to atype long int representation
HDc2fstr Converts a C string into a Fortran string using the in place approach
HDf2cstring ConvertsaFortran string to a C string

HDpackFstringConverts a C string to a Fortran string

HDflush Flushes the HDF file to disk

HDhgettagnum Returns the tag number for atext description of atag

HDgetNTdesc Returnsatext description of a number type

HDfidtoname Returns the filename that the given file identifier correspondsto

Hexist Locates an object in an HDF file
HDgetc Reads a byte from a data element
HDputc Writes a byte to a data element

Hlength Returns the length of a data element
Hoffset Getsthe offset of adataelement in afile
Htrunc Truncates a dataset to the given length
Hcache Setslow-level caching for afile

HDvalidfid Checkswhether afileidentifier isvalid

4-10

June 25, 2008

HDF Specification and Developer’s Guide

Error Reporting

The HDF library incorporates the notion of an error stack. This alows much of the context to be
known when trying to decipher an error message.

Error reporting is handled by the following routines:

HEprint Prints out all of the errors on the error stack to a specified file

HEclear Clearsthe error stack

HERROR Reports an error and pushes the following information onto the error stack.
*Error type

*Source file name
eLine number and the name of the function reporting the error

HEreport Adds atext string to the description of the most recently reported error
(Note: only one text string per error)

HEstring Returns error description
HEpush Pushes an error onto the stack
HEvalue Returns an error off the error stack

Standard C does not enable the code inside a function to know the name of the function. There-
fore, to use the macro HERROR to report errors, there must exist a variable Func which pointsto a
string containing the name of the reporting function.

Other

The Hsync routine has been defined and implemented to synchronize a file with its image in
memory. Currently it is not very useful because the HDF software includes no buffering mecha-
nism and the two images are aways identical. Hsync will become useful when buffering is
implemented:

Hsync Synchronizes the stored version of an HDF file with the image in memory

June 25, 2008 4-11

The HDF Group

4-12 June 25, 2008

Chapter

Setsand Groups

5.1

5.2

Chapter Overview

This chapter discusses the roles of the following sets and groups in organizing data stored in an
HDF file:
Raster image sets (RI S)Raster image groups (RIG)

Scientific data sets (SDS)Scientific data groups (SDG)
Numeric data groups (NDG)
SDG-like NDGs

Vsets Vgroups and Vdatas
Raster-8 sets (obsolete)

This chapter introduces several tags used in support of setsand groups. All of these tags are fully
described in Chapter 9, Tag Specifications, and are listed in the table in Appendix A, Tags and
Extended Tag Labels.

Data Sets

HDF files frequently contain several closely related data objects. Taken together, these objects
form a data set which serves a particular user requirement. For example, five or six data objects
might be used to describe araster image; eight or more data objects might be used to describe the
results of a scientific experiment.

The HDF mechanism for specifying and controlling data sets is the group. The data element of a
group consists of a single record listing the tag/refs for all the objects contained in the data set.
For example, the raster image groups described in the following sections each contain three tag/
refsthat point to three data objects that, taken as a set, fully describe an 8-bit raster image.

5.2.1 Typesof Sets
The current HDF implementation supports three kinds of sets:

Raster image setA set containing a raster image and descriptive information such as the
image dimensions and an optional color lookup table

Scientific data setA set containing a multidimensional array and information describing the
datain the array

V set A general grouping structure containing any kinds of HDF objectsthat a user
wishes to include

June 25, 2008 51

The HDF Group

5.3

Each HDF set is defined with a minimum collection of data objects that will make sense when the
set isused. For example, every raster image set must contain at least the following data objects:

Raster image groupThelist of the members of the set
Image dimension recordThe width, height, and pixel size of the raster image
Raster image dataThe pixel values that make up the image

In addition to the required objects, a set may include optional data objects. An 8-bit raster image
set, for instance, often contains a palette, or color lookup table, which defines the red, green, and
blue values associated with each pixel in the raster image.

5.2.2 Calling Interfacesfor Sets

NCSA provides calling interfaces for al the HDF sets that it supports. These interfaces provide
routines for reading and writing the data associated with each set. The libraries currently sup-
ported by NCSA are callable from either C or FORTRAN programs.

In addition to the libraries, a growing number of command-line utilities are available to manipu-
late sets. For example, a utility called retohdf converts one or more raw raster imagesto HDF 8-
bit raster image set format.

The calling interfaces are described in the document NCSA HDF Calling Interfaces and Utilities
for Versions 3.2 and earlier and in the HDF User's Guide and HDF Reference Manual for Ver-
sions 3.3 and 4.x.

Groups

As discussed above, HDF data objects are frequently associated as sets. But without some
explicit identifying mechanism, there is often no way to tie them together. To address this prob-
lem, HDF provides agrouping mechanism called agroup. A group isadata object that explicitly
identifies all of the data objectsin a set.

Since agroup isjust another type of dataobject, its structureislike that of any other data object; it
includes a DD and a data element. But instead of containing the pixel values for araster image or
the dimensions of an array, a group data element contains alist of tag/refs for the data objects that
make up the corresponding set.

A group tag can be defined for any set. For instance, the raster image group tag (DFTAG RIG) iS
used to identify members of raster image sets; the RIG data element lists the tag/refs for a particu-
lar raster image set.

An Example

Suppose that the two images shown in Figure 2f, "Physical Representation of Data Objects,” are
organized into two sets with group tags. Since they are raster images, they may be stored as RIGs.
Figure 5a, "Physical Organization of Sample RIG Groupings,” illustrates the use of RIGs with
these images.

5-2

June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 5a

Physical Organization of Sample RIG Groupings

Offset Item Contents
0 FH 0e031301 (HDF magic number)
4 DDH 10 OL
10 DD DFTAG FID 1 130 4
22 DD DFTAG FD 1 134 41
34 DD DFTAG LUT 1 175 768
46 DD DFTAG ID 1 943 4
58 DD DFTAG RI 1 947 240000
70 DD DFTAG ID 2 240947 4
82 DD DFTAG RI 2 240951 240000
94 DD DFTAG RIG 1 480951 12
106 DD DFTAG RIG 2 480963 12
118 DD DFTAG_NULL (Empty)
130 Data sw3
134 Data solar wind simulation: third try. 8/8/88
175 Data (Data for image palette)
943 Data 400, 600 ... (Data for 1st image dimension record)
947 Data (Data for 1st raster image)
240047 Data 400, 600 ... (Data for 2nd image dimension record)
240951 Data (Data for 2nd raster image)
480951 Data DFTAG IP8/1, DFTAG ID/1, DFTAG RI/1

(Tag/refs for 1st RIG)

480963 Data DFTAG IP8/1, DFTAG ID/2, DFTAG RI/2

(Tag/refs for 2nd RIG)

Thefile depicted in this figure contains the same raster image information as the file in Figure 2f,
"Physical Representation of Data Objects,” but the information is organized into two sets. Note
that there is only one palette (pFTac_1ps/1) and that it isincluded in both groups.

5.3.1 General Features of Groups

Figure 5a, "Physical Organization of Sample RIG Groupings,” also illustrates a number of impor-
tant general features of groups:

» The contents of agroup must be consistent with one another. Since the palette (DFTAG 1P8)

is designed for use with 8-bit images, the image must be an 8-bit image.
» An application program can easily process all of the images in the file by accessing the

groups in the file. The non-RIG information in the example can be used or ignored, depend-
ing on the needs and capahilities of the application program.

» Thereisusually more than one way to group sets. For example, an extra copy of the image
palette (DFTAG_1P8) could have been stored in the file so that each grouping would have its
own image palette. That is not necessary in this instance because the same palette is to be

used with both images. On the other hand, there are two image dimension records in this

example, even though one would suffice.

June 25, 2008

5-3

The HDF Group

5.4

» Group status does not alter the fundamental role of an HDF object; itisstill accessible asan
individual data object despite the fact that it also belongsto alarger set.

» A group provides an index of the members of a set. There is nothing to prevent the imposi-
tion of other groupings (indexes) that provide a different view of the same collection of data
objects. In fact, HDF is designed to encourage the addition of alternate views.

The following sections formally describe raster image sets (RIS), scientific data sets (SDS), Vsets,
and severa related groups. The last section of this chapter discusses an obsolete structure known
astheraster-8 set.

Raster Image Sets (RI1YS)

The raster image set (RIS) provides a framework for storing images and any number of optional
image descriptors. An RIS always contains a description of the image data layout and the image
data. It may also contain color look-up tables, aspect ratio information, color correction informa-
tion, associated matte or other overlay information, and any other data related to the display of the
image.

5.4.1 Raster Image Groups (RIG)

Tying everything together is the raster image group (RIG, see Figure 5a, "Physical Organization of
Sample RIG Groupings," and the related discussion for an example). An RIG contains a list of
tag/refs that point in turn to the data objects that make up and describe the image.

The number of entries in an RIG is variable and most of the descriptive information is optional.
Complex applications may include references to image-modifying data, such as the color table
and aspect ratio, along with the reference to the image data itself. Simple applications may use
simple application-level calls and ignore specialized video production or film color correction
parameters.

NCSA currently supports two RIG calling interfaces. RIS8 and RIS24. These interfaces are
described in the document NCSA HDF Calling Interfaces and Utilitiesfor Versions 3.2 and earlier
and in the HDF User's Guide and HDF Reference Manual for Versions 3.3 and 4.x.

542 RISTags
RIS implementations must fully support al of the tags presented in Table 5a.

TABLE 5a RIS Tags
Tag Contents of Data Element
DFTAG RIG Raster image group
DFTAG ID Image dimension record
DFTAG RI Raster image data
With these tags, images can be stored and read from HDF files at any bit depth, with several dif-
ferent component ordering schemes. Asiillustrated in Figure 5b, the RIG tag points to the collec-
tion of tag/refs that fully describe the RIS. The data element attached to the tag DFTaG 1D
specifies the dimensions of the image, the number type of the elements that make up its pixels, the
number of elements per pixel, the interlace scheme used, and the compression scheme used, if
any. The data element attached to the tag DFTAG RI containsthe actual raster image data.
54 June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 5b RIS Tags

DD List (tag/ref): |RI,G/1 | ID/1 | RI/1 |

"Data:"

[200 x 300, etc.

ID/1| rRI/1| 1P/1

The tags listed in Table 5c identify optional RIS information such as color properties and aspect
ratio. Note that the RI interface supports only DFTAG LUT at this time; the other tags in Table 5¢
are defined but the interfaces have not been implemented.

TABLE 5¢ Optional RIS Tags
Tag Contents of Data Element

DFTAG XYP XY position of image
DFTAG LD L ook-up table dimension record
DFTAG LUT Color look-up table for non true-color images
DFTAG MD Matte channel dimension record
DFTAG MA Matte channel data
DFTAG CCN Color correction factors
DFTAG CFM Color format designation
DFTAG AR Aspect ratio
DFTAG MTO Machine-type override

Figure 5d illustrates the structure of an RIS that contains an image palette (DFTAG _1P8).

June 25, 2008 55

The HDF Group

FIGURE 5d

5.5

RIS Tagsfor Sets Containing a Palette

DD List (tag/ref): [rRig/1 | 1p/2 | RI/1 [1P8/1 |

"Data:"

[200 x 300, etc.

ID/1| RI/1| 1P8/1 = = —

5.4.3 Raster Image Compression

HDF currently supports the following raster image compression tags:
DFTAG RLE Run-length encoding
DFTAG IMCOMP Aerial averaging
DFTAG JPEG JPEG compression

RIG support does not require support for all compression tags. Be sure to provide a suitable error
message to the user when an unknown compression tag is encountered.

Since new forms of data compression can be added to HDF raster images, incompatibilities can
arise between old libraries and files created by newer libraries. For example, HDF Versions 3.3
and later include JPEG compression for images. A JPEG-compressed raster image in afile cre-
ated by an HDF Version 4.1 library cannot be read by an HDF Version 3.2 library.

Scientific Data Sets

The scientific data set (SDS) provides a framework for storing multidimensional arrays of data
with descriptive information that enhances the data. Current specifications support the following
types of numbersin SDS arrays.

 8-hit, 16-bit, and 32-bit signed and unsigned integers
 32-bit and 64-bit floating point numbers
Data in an SDS can be stored either as two's complement big endian integers, as IEEE Standard

floating point numbers, or in native mode, the format used by the machine from which they were
written.

The user interface for storing and retrieving SDSsis fully described in the document NCSA HDF
Calling Interfaces and Utilities for Versions 3.2 and earlier and in the HDF User's Guide and
HDF Reference Manual for Versions 3.3 and 4.x.

5-6

June 25, 2008

HDF Specification and Developer’s Guide

5.5.1 Backward and Forward Compatibility

One of NCSA's concerns in HDF development is always to maximize backward and forward
compatibility; as much as possible, any application written to use HDF should be able to read data
files written with an older or a newer version of the libraries. To maximize this compatibility,
NCSA had to consider the following factors in upgrading the SDS capabilities:

 Support for future variations (e.g., new number types, data compression, and new physical
arrangements for SDS storage)

» Older versions of the library should be able to read new datafiles if the dataitself can be
interpreted by the older version. To do so, the older version must be able to determine
whether the datain a given data object will be comprehensibletoit. For example, if anewly
created file contains 32-bit | EEE floating point or Cray floating point data objects, older
versions of the library should be able determine that fact then read and interpret the data.

» New libraries must be able to read and interpret files created by older versions.

Unfortunately, such compatibility concerns yield an SDS structure somewhat more complex than
would otherwise be the case. Two examplesillustrate the problem:

» HDF 3.2 development had to accommodate the fact that HDF Version 3.1 and previous ver-
sionsonly supported 32-bit | EEE floating-point numbers and Cray floating point numbersin
SDSs. SDSsin HDF versions since Version 3.2 support 8-bit, 16-bit, and 32-bit signed and
unsigned integers, 32-bit and 64-bit floating-point numbers, and the local machine format
(native mode) for al supported architectures.

» HDF 3.3 includes support for the netCDF data model, which involved the creation of an
entire new structure for supporting netCDF objects, based on Vgroups and Vdatas. At the
sametime, agoal of HDF 3.3 was to harmonize the SDS and the netCDF data model, which
was best accomplished by storing SDS objects in the same way that netCDF objects are
stored. In order to maintain backward compatibility, two structures had to be created for
every SDS or netCDF object: one that could be recognized by older HDF libraries, and the
new structure.

In the following sections we describe how the first problem was solved. A later issue of this man-
ual will describe how the second problem was addressed.

5.5.2 Internal Sructures

The SDS capability was substantially enhanced for HDF Version 3.2. Previous versions
employed a structure known as a scientific data group (SDG); Version 3.2 and subsequent ver-
sions use the numeric data group (NDG). To accommodate the enhanced structure and to remain
compatible with previous releases, the current HDF library supports the following scientific and
numerical data groups:

SDGs Created by old libraries and containing 32-bit IEEE and Cray floating-point data.

NDGs Created by the newer libraries (Version 3.2 and later) and containing any acceptable
floating-point or non-floating-point data. This data group will not be recognized by
old libraries.

The NDG structure supports 8-bit, 16-bit, and 32-hit signed and unsigned integers,
and 32-hit and 64-bit floating-point numbers. It also supports native mode, data sets
written to HDF files in the local machine format.

SDG-like NDGs

Created by the new library and containing | EEE 32-bit floating-point data only. The
old libraries will recognize and interpret these numerical data groups correctly.

June 25, 2008 5-7

The HDF Group

The following sections describe the SDG, NDG, and SDG-like NDG structures.

5.5.3 SDG Structures
SDGs must contain at least the data objects listed in Table 5Se.

TABLE 5e Required SDG Tags
Tag Contents of Data Element
DFTAG SDG Scientific data group.
DFTAG SDD Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
each dimension, and the tag/refs representing the number type of the array data and of each
dimension.
All SDG number types are 32-hit | EEE floating-point.
DFTAG SD Scientific data.
In addition to the required data objects listed above, SDGs may contain any of the objectslisted in
Table 5f. Note that the optional data objects are the same for SDGs, NDGs, and SDG-like NDGs,
the only differences are the number types that may be used.
TABLE 5f Optional SDG, NDG, and SDG-like NDG Tags

Tag Contents of Data Element

DFTAG SDS Scales of the different dimensions. To be used when interpreting or displaying the data (32-bit
floating point numbers only for SDGs and SDG-like NDGSs).

DFTAG SDL Labelsfor al dimensions and for the data. Each of the dimension labels can be interpreted as
an independent variable; the data label is the dependent variable.

DFTAG SDU Unitsfor all dimensions and for the data.

DFTAG SDF Format specifications to be used when displaying values of the data.

DFTAG SDM Maximum and minimum values of the data. (32-bit floating point numbers only for SDGs and
SDG-like NDGs.)

DFTAG SDC Coordinate system to be used when interpreting or displaying the data.

Asillustrated in Figure 5g, the SDG tag points to the collection of tag/refs that define the SDG

June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 5¢g SDG Sructure
DD list (tag/ref)
|SDG/1 | SDD/1 | SD/1 SDM/1
Data
. / // /
/ / ///// // // . //%%
/// W // %//// //7//?/
///% //
%////// e
5.54 NDG Structures
NDGs must contain at least the data objects listed in Table 5h
TABLE 5h Required NDG Tags

Tag Contents of Data Element
DFTAG NDG Numerical data group.
DFTAG SDD Dimension record for array-stored data. Includes the rank (number of dimensions), the size of

each dimension, and the tag/refs representing the number types of the data and of each dimension.
In HDF 3.2, the number types of dimension scales must be the same as that of the array-stored
data. Later implementations allow dimension scales to be typed separately.

DFTAG SD Scientific data.

DFTAG NT Number type of the data set. Default is the most recent DFSDsetNT () setting. If DFSD-
setNT () hasnot been called, the default will be 32-bit IEEE floating-point.

In addition to these required data objects, an NDG may contain any of the data objects listed in
Table 5f, "Optional SDG NDG, and SDG-like NDG Tags," on page 8.

Asillustrated in Figure 5i, the basic NDG and SDG structures are identical. The first clue to the
difference is that the NDG tag replaces the SDG tag. Thisisaflag to prevent older libraries from
stumbling over the more important difference; the NDG data element can accommodate data that
pre-Version 3.2 libraries cannot interpret. The new tag ensures that older libraries will not recog-
nize the data object and thus will not try to interpret the new data types. For example, NDG data
can include number types or a data compression scheme that a pre-Version 3.2 library will not rec-
ognize.

June 25, 2008 5-9

The HDF Group

FIGURE 5i NDG Sructure
DD list (tag/ref)
| NDG/1 | SDD/1 | Sb/1 SDM/1
Data
5.5.5 SDG-likeNDG Structures
Aswe have said earlier,
» SDGs, the SDS grouping structure available prior to HDF Version 3.2, could include only
32-hit floating point and Cray floating point numbers.
» NDGs, available since Version 3.2, can include 8-bit, 16-bit, and 32-bit signed and unsigned
integers, and 32-hit and 64-hit floating point numbers.
» SDG-like NDGs, also available since Version 3.2, distinguish SDSs that can still be read by
the older versions of the library.
This backward compatibility is achieved by examining every SDSthat iswritten to an HDF file. If
the SDS is compatible with older libraries, it is written to the file with both SDG and NDG struc-
tures. If it is not compatible with older libraries, only the NDG structureis used.
Table 5j lists the abjects that SDG-like NDGs must contain.
TABLE 5 Required SDG-like NDG Tags

Tag Contents of Data Element

DFTAG NDG Numerical data group.

DFTAG SDG Scientific data group.

DFTAG SDLNK The NDG and SDG linked to the scientific data set in this group.

DFTAG SDD Dimension record for array-stored data. Includes the rank (number of dimensions), the size of
e_ach dimension, and the tag/refs representing the number types of the data and of each dimen-
|5|n02r-] SDG-like NDG, the number types are all 32-bit |EEE floating-point.

DFTAG SD Scientific data.

SDG-like NDGs can include the same optional data objects as described for SDGs and NDGs in
Table 5f, "Optional SDG NDG, and SDG-like NDG Tags," on page 8.
Figure 5k illustrates the SDG-like NDG structure.

5-10 June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 5k

SDG-like NDG Structure

DD List (tag/ref)

|SDG/1 | NDG/1 SDLNK/1 SDD/ll SD/|l SDM/ 1

Data

—

2

1 iy // 9 7
%/7////////7/’% /&/é : - — A //}}%% /%/2/& _ . / ////////%

.

%

5.5.6 Compatibility with Future NDG Structures

Future HDF releases will probably support additional optional SDS features. These features will
fall into the following categories:

Optional and compatible features

Optional features that are compatible with older HDF versions even though they may
not be supported in the older libraries.

For example, a new time stamp attribute might be added. The time stamp would not be
understood by older libraries, but it would not render them unable to read the SDS data
either

Optional and incompatible features
Optional new features that may render the data unreadable by older HDF libraries.

For example, a compression attribute could be added. Older HDF libraries that contain
no compression routines would not be able to read the compressed data.

A tag numbering convention has been developed to address this problem:
Required tags

These tags are listed in Table 5e, "Required SDG Tags," on page 8; Table 5h, "Required
NDG Tags," on page 9; and Table 5j, "Required SDG-like NDG Tags," on page 10. All
SDSs must contain all of thetagsin at least one of these sets. (See Chapter 9, "Tag Spec-
ifications,” for the assigned tag numbers.)

Optional-incompatible tags

Tags for new SDS features that might render the data set unreadable by older libraries
are each assigned a number t that fallsin a specia range determined by the constants
DFTAG_EREQ and DFTAG BREQ. That is, £ must have a value such that DFTAG EREQ < t

June 25, 2008 51

The HDF Group

5.6

< DFTAG BREQ. When old software encounters atag in this range that it is not able to
interpret, it should not process the group.

Optional-compatibletags

These tags can have any valid tag number not allocated to one of the other two catego-
ries.

Vsets, Vdatas, and Vgroups

Vsets, Vdatas, and Vgroups enable users to create their own grouping structures. Unlike RIGs,
SDGs, and NDGs, HDF imposes no required structure; they are implemented almost entirely at
the user level and are not specified in detail in HDF or in this document.® The only specifications
define DFTAG vG DFTAG VH, and DFTAG vs and the formats of their respective data elements. A
detailed discussion similar to that for the other grouping structures is, therefore, inappropriate
here. Detailed information regarding the DFTAG vG DFTAG VH, and DFTAG VS tags can be found in
Chapter 9, "Tag Specifications." Conceptual and usage information can be found in the document
NCSA HDF Vset Version 2.0 for HDF Versions 3.2 and earlier and in the HDF User's Guide and
the HDF Reference Manual for HDF Versions 3.3 and 4.x.

FIGURE 5l

text

[llustration of a Vset

vgroup

March 15,

with k=10.0, beta=1.22e3.
Calculate the magnitude ...

1990. Simulation

palette

raster images 3D mesh

An HDF Vset can contain any logical grouping of HDF data objects within an HDF file. Vsets
resemble the UNIX file system in that they impose abasically hierarchical structure but also allow
cross-linked data objects. Unlike SDSs and RISs, V sets have no prespecified content or structure;

1. Specidistsin various fields are developing application program interfaces (APIs) that are
becoming accepted standard interfaces within their fields. Since these APIsareimplemented with
high level HDF functionality and using the standard HDF user interface, they are user-level appli-
cations from the HDF development team's point of view. From the final enduser's point of view,
however, these APIs create a new level of user interface. When necessary, technical specifica-
tions for these APIs and the associated interfaces will be presented by the specialized devel opers.

5-12

June 25, 2008

HDF Specification and Developer’s Guide

users can use them to create structural relationships among HDF objects according to their needs.
Figure 5l illustrates a V set.

A Vsetisidentified by aVgroup, an HDF object that contains information about the members of
the Vset. The tag prrac_va identifies the V group which contains the tag/refs of its members, an
optional user-specified name, an optional user-specified class, and fields that enable the Vgroup to
be extended to contain more information.

The only required Vgroup tag is the tag that defines the Vgroup itself.

TABLE 5m

5.7

TheVgroup Tag

Tag Contents of Data Element

DFTAG VG Vgroup

Vgroups are fully described in the document NCSA HDF Vset, Version 2.0 for Versions 3.2 and
earlier and in the HDF User's Guide and HDF Reference Manual for Versions 3.3 and 4.x.

The Raster-8 Set (Obsolete)

Current HDF versions use the raster image set (RIS) to manage raster images. But before the RIS
was implemented, a simpler, less flexible set called the raster-8 set was used for storing 8-bit ras-
ter images. This set is no longer supported in the HDF software, although it may turn up in some
older HDF files.!

5.7.1 Raster-8 Sets

Theraster-8 set is defined by a set of tags that provide the basic information necessary to store 8-
bit raster images and display them accurately without requiring the user to supply dimensions or
color information. The raster-8 set tags are listed in Table 5n.

TABLE 5n

Raster-8 Set Tags

Tag Contents of Data Element

DFTAG RIS8 8-bit raster image data

DFTAG CIS8 8-hit raster image data compressed with run-length encoding
DFTAG II8 IMCOMP compressed image data

DFTAG ID8 Image dimension record

DFTAG IP8 Image palette data

Software that does not support DFTAG CI8 Or DFTAG II8 must provide appropriate error indica
tors to higher layers that might expect to find these tags.

5.7.2 Compatibility Between Raster-8 and Raster mage Sets

To maintain backward compatibility with raster-8 sets, the RIS interface stores tag/refs for both
types of sets. For example, if an image is stored as part of a raster image set, there is one copy
each of the image dimension data, the image data, and the palette data. But there were two sets of

1. Infact, during the first three years that RIS was used, the HDF software stored raster imagesin
both RIS and raster-8 sets.

June 25, 2008 5-13

The HDF Group

5.8

tag/refs pointing to each data element: one for the RIS and one for the raster-8 set. The image data,

for example, is associated with the tags DFTAG RI8 and DFTAG RI.

‘ Note: Raster-8 set support will not be maintained in future HDF releases.

Note that future HDF releases will phase out support for the raster-8 set. Therefore, new software
should not expect to find both raster-8 and RIS structures supporting 8-bit raster images. Eventu-

ally, only RIS structures will be supported.

Deleted information from " Vsets, Vdatas, and Vgroups.”

A table structure known as a Vdata is often used as a data object in connection with Vsets. The
datain aVdatais organized into fields. Each field isidentified by a unique fieldname. The type of
each field may be any of the data types supported by the SDS interface: 8-, 16-, and 32-bit inte-
gers (signed or unsigned), and 32- and 64-hit floating point numbers. Several fields of different

types may exist within aVdata.

The use of Vdatas requires two tags, DFTAG_vs and DFTAG VH, listed in Table 50. The flexibility

of the Vgroup structure allows the use of any HDF tag.

TABLE 50 Optional Vgroup Tags

Tag Contents of Data Element

DFTAG VS Vdata.

DFTAG VH Vdata description.

Any HDF tag The flexibility of the VVgroup structure alows the optional use of any HDF tag.
514 June 25, 2008

Chapter

Annotations

6.1

6.2

Chapter Overview

This chapter introduces annotations, HDF data objects used to annotate HDF files and objects.

The tags introduced in this chapter are fully described in Chapter 9, "Tag Specifications," and are
listed in the tablein Appendix A, "Tags and Extended Tag Labels."

General Description

It is often useful to attach atext annotation to an HDF file or its contents and to store that annota-
tion in the same HDF file. HDF provides this capability in two ways: through the annotation data
object and by the assignment of attributes. This chapter discusses annotations.

The data element of an annotation is a sequence of ASCII characters that can be associated with
any of three types of objects:

» Thefileitsdf

* Anindividual HDF data object in thefile

A tagthat identifies a data element
The current annotation interface supports only the first two.
Annotations come in two forms:

L abel A short, NULL-terminated string. Labels may include no embedded
NULLs.

Description A longer and more complex body of text of a pre-defined length. Descrip-
tions may contain embedded NULLs.

Annotations are never required; they are used strictly at the discretion of the creator or user of an
HDF file.

Table 6a shows the currently defined annotation types and their assigned tags.

TABLE 6a

Annotation Tags

Label Types Description Types
File annotations DFTAG FID DFTAG FD
Object annotations DFTAG DIL DFTAG DIA
Tag annotations DFTAG TID DFTAG TD

June 25, 2008 6-1

The HDF Group

6.3

6.4

The annotation interface is fully described in the document NCSA HDF Calling Interfaces and
Utilities for Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual
for Versions 3.3 and 4.x.

File Annotations

Any HDF file can include label annotations (prTac FID) and/or description annotations
(orTac_FD). The file annotation interface routines provided in the HDF software read and write
file labels and file descriptions.

Object Annotations

HDF data object annotation is complicated by the fact that you must uniquely identify the object
being annotated. Since a tag/ref uniquely identifies a data object, the data object that a particular
annotation refers to can be identified by storing the object's tag and reference number with the
annotation.

Note that an HDF annotation isitself adata object, so it hasitsown DD. This DD has atag/ref that
points to the data el ement containing the annotation. The annotation data element contains the fol-
lowing information:

» Thetag of the annotated object
» Thereference number of the annotated object
» The annotation itself
For example, suppose you have an HDF file that contains three scientific data sets (SDSs). Each

SDS has its own DD consisting of the SDStag prTAG NDG and a unique reference number, as
illustrated in Figure 6a.

FIGURE 6a Three SDS Tag/refs
Tag : Ref
DFTAG_NDG 2 e B
o
o
DFTAG_NDG 4 e B
o
o
DFTAG_NDG 9 -
o
Suppose you wish to attach the following annotation to the second SDS:
Data from black hole experiment 8/18/87.
This text will be stored in a description annotation data object. The data element will include the
tag/ref, DFTAG NDG/4, and the annotation itself. Figure 6b illustrates the annotation data object.
6-2 June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 6b Sample Annotation Data Object
Annotation DD
DFTAG DIA 2
DFTAG_NDG 4 Data from black hole experiment 8/18/87
Tag Ref Description

Getting Reference Numbersfor Object Annotations

To use annotation routines, you need to know the tags and reference numbers of the objects you
wish to annotate.

The following routines return the most recent reference number used in either reading or writing
the specified type of data object:

DFSDlastref SDS dataobjects
DFR8lastref RIS dataobjects
DFPlastref Palettes
DFANlastref Annotations

Reference numbers for other objects can be obtained with the routine Hf indnextref, a low
level HDF routine that searches an HDF file sequentially for reference numbers associated with a
given tag.

These routines are described in the document NCSA HDF Calling Interfaces and Utilities for
Versions 3.2 and earlier and in the HDF User’s Guide and HDF Reference Manual for Versions
3.3and 4.x.

June 25, 2008 6-3

The HDF Group

6-4 June 25, 2008

Chapter

Scientific Data Sets:

The SD Model

7.1 Chapter Overview

1.2

This chapter provides functional descriptions of the SD User’s Model, the SD Developer’s Model,
and the HDF file structures used to represent these models.

Standard UML notation is used extensively in the formal data model descriptions.

Section 7.2, "UML Notation and Object Symbolsin HDF Data Model Descriptions,”
describes the relevant UML elements.

Section 7.3, "Introduction to the SD Model," introduces the HDF SD model.

Section 7.4, "The SD User’s Model," and Section 7.5, "The SD Developer’s Model," pro-
vide more details, introducing the SD User’s Model as an intermediate step, and presenting
the formal data model required to implement the SD Developer’s Model.

Section 7.6, "Mapping between SD Developer's Model and HDF File Structures,” and
Section 7.7, "SDS Memory Structures and Storage Layout," map the elements of the SD
Developer’s Model to HDF file structures and provide a detailed description of those mem-
ory structures and the storage layout in thefile.

Section 7.8, "Library Implementation Details with Example File and SDS," illustrates the
HDF library implementation of the SD model.

UML Notation! and Object Symbolsin HDF Data M odel
Descriptions

Many of the figures in this chapter and in Chapter 8, General Raster Images: The GR Model,
employ UML notation (Unified Modeling Language notation) to show object relationships. The
symbols and the relationships they describe areillustrated in Figure 7a. Note that UML can repre-
sent other objects and relationships as well; this discussion, Figure 7a, and Figure 7b present only
what isrequired for this chapter.

FIGURE 7a

UML symbolsand interpretationsasused in formal HDF data model descriptions

An HDF object is represented as arectangle.

A

Associations or relationships among object instances are indicated by arrows. N

A diamond indicates the aggregation association, i.e., the a part of relationship. 'S

1. For acondensed description of UML, see UML Distilled: Applying the Sandard Object
Modeling Language, Martin Fowler with Kendall Scott, Addison-Wesley, 1997.

June 25, 2008 7-1

The HDF Group

An HDF object is represented as arectangle.

Object D is part of object B.
Object B is composed of object D. B

A 4
O

The numbers at either end of the arrow indicate the multiplicity of associations.
N exactly N —>

0..N zerouptoN
B
Ak
C
For example, the following statements describe the dia-

0..* Zero or more
gram at theright: A
» Object A is composed of exactly one object B.
» Object B isassociated with exactly N objects of type A.

Object A includes exactly one of objects B or C.

The figures that make up the formal definition of the data model, such as Figure 7f, "SD User’s
Model -- The SD Model from the User’s Point of View," or Figure 7h, "SD Developer’s Model --
The SD Model from the Developer’s Point of View," use the above UML notation rigorously.

Figures that are intended to informally illustrate points of discussion, such as Figure 7e, "A sam-
ple user’'s view of the SD model," or that illustrate the file layout, such as Figure 70, "SDS View
of the HDF File Structure," often use only a subset of the UML notation and treat the relationships
lessrigorously.

The formal data model discussions also include formal object descriptions clearly delineating the
types of HDF objects and their attributes. The layout of these object descriptions isillustrated in
Figure 7b.

FIGURE 7b Formal object descriptions
attribute Object name
name
type Object attributes. characteristics specified
data at creation time by the user or the library
In object description figures, e.g.Figure 7i, "SD Developer’s Model Objects," the top line speci-
fies the name of the aobject. The entries immediately below the first horizontal bar list object
attributes that are specified by either the user or the library when the object is created.
7-2 June 25, 2008

HDF Specification and Developer’s Guide

7.3

Introduction to the SD M od€l

An HDF file may contain many elements, including scientific data sets (SDSs, the subject of this
chapter), general raster images (GRs), groups of HDF objects, images, pal ettes, annotations, etc.
Figure 7c provides a high-level illustration of one potential HDF file.

FIGURE 7c

An HDF file may contain several objects and object collections

HDF4 file

0..* 0..* 0..*

SDS image other object

A scientific data set, or SDS, is an HDF data structure used to store a multidimensional array of
scientific data and the supporting metadata. An SDS is stored in a group of HDF objects collec-
tively known as an SD collection. A file may contain only one SD collection; an SD collection
may contain several SDSs. Chapter 3, “ Scientific Data Sets (SD API),” in the HDF User's Guide
describes the SD model, in terms of required and optional components that comprise a scientific
data set, and the SD interface routines provided by the HDF library to create and access SDSsin
thefile.

When a file is opened with the SD interface, also called the SD API, only the SD collection is
available A file opened with the SD interface should therefore be thought of in terms of Figure 7d.
Other objects in the file are unavailable through the SD interface; they can, however, be accessed
through other interfaces, e.g., the H, V, and SD interfaces.

FIGURE 7d

An HDF file opened with the SD interface

HDF4file

a

o...a/ 0.*

SD collection other objects
(invisible to the application)

|

» When afileis opened with the SD interface, only the SD collection is available (cir-
cled abovein blue; grey if medium is black-and-white). Other objectsin thefile are
unavailable to the application.

* An SD collection may contain zero or more SDSs.

This chapter introduces two formal data models. The first version of the model, caled the SD
User's Model and illustrated in Figure 7f, formally describes the concepts introduced in Chapter 3
of the HDF User's Guide. The second model, called the SD Developer's Model or the Internal SD
Model and illustrated in Figure 7h, is a generalization of the SD User's Model that reflects the
technical implementation and the integration of the NetCDF data model into HDF. These models

June 25, 2008 7-3

The HDF Group

7.4

are described in Section 7.4, "The SD User’'s Model," and Section 7.5, "The SD Developer's
Model."

Following the discussion of the data models, the mapping of the SD Developer's Model to HDF
file structures is presented in Section 7.6, "Mapping between SD Developer's Model and HDF
File Structures." Memory structures and storage layout are discussed in Section 7.7, "SDS Mem-
ory Structures and Storage Layout."

The last section, Section 7.8, "Library Implementation Details with Example File and SDS/"
offers an example of an HDF file containing an SD collection and describes the evolution of the
file as different components of the SD collection and the SDS it contains are written to thefile.

The SD User’s M odel

This section provides alogica description of an HDF file containing an SD collection. An exam-
ple of auser’'s view of the data model is presented in Figure 7e; aformal graphical representation
ispresented in Figure 7f, "SD User's Model -- The SD Model from the User’s Point of View."

From a user’s point of view, an HDF file containing SDSs is structured as follows and as illus-
trated in Figure 7e:

e Thefile contains SDSs and possibly global attributes, which apply to all SDSsin thefile.
» Each SDS may have associated attribute(s), dimension scale(s), and data.

An SDSisamultidimensional array of elements designed to store scientific data. Elements of the
array may have one of the HDF predefined datatypes (see Section 5.5, "Scientific Data Sets," in
this HDF Specification and Developer’s Guide). Spatial information (rank=n~ and dimension
sizes) describes the shape and the size of the array and is specified by the user. Each SDSisiden-
tified by a user-defined name. (If the user does not define a name, the HDF library will assign a
default name at creation time.) An SDS always has a storage layout associated with it which is
defined at creation time and describes how the SDS raw data is stored. Raw data storage options
are contiguous (the default), external, chunked, compressed, chunked and compressed, and
extendible. Name, spatial information, datatype, and storage layout are required components of an
SDS. An SDS may optionally include raw data, denoted as data in the UML diagram (Figure 7f).

7-4

June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 7e

A sample user’sview of the SD model

HDF4file global attribute(s)

value=" ConSI"

attributes|
l—{ SDS1 SO SDS3 SDSh
value= time'
name =" sdsT’ name ="' ss2' name ="' sts3' name =" sds1”
spatia information spatia information spatia information spatial information
rank =2 rank= 2 rank =2 = = rank =2
dim sizes =100 x dimsizes=10x dimsizes=4x3 dimsizes=10k 5
type = floating point type = integer type = floating poi type = integer
(Note: No data)
data data
chunked & not chunked &
A not compressed data
dimensior
scale

l

data

external file

The Formal SD User’s Model

The formal SD User’s Model includes one type of object the user does not actually see, the SD
collection. An HDF file may contain zero or one SD collection which may, in turn, contain zero or
more SDSs. The global attributes, of which there may be zero or more, are actually associated
with the SD collection. Global attributes are optional, are defined by the user, and usually describe
the intended usage of the SDSsin the file. The SDSs and the associated objects (see Figure 7f) are
generaly intended to be accessed only through the SD interface. When possible, however, the
data sets are created to be readable via the older DFSD APIs.

An SDS may have zero or more associated attributes. These attributes are distinct from global
attributes, which apply to all SDSsin thefile.

The HDF library creates v dimensions associated with an SDS where w is the rank of the SDS.
The library will assign a name to each dimension; if desired, these may be overwritten with user-
defined names. Each dimension can be associated with more than one SDS. The size of the
dimension is set up by the library, based on the SDS's spatial information. When a dimension is
associated with more than with one SDS, it is called a shared dimension. Shared dimensions are
created by the user.

Each dimension may have zero or more dimension attributes. Each dimension may also have data
associated with it, in which case the datais called a dimension scale or dimension variable, asin
netCDF.

June 25, 2008 7-5

The HDF Group

FIGURE 7f SD User’'sModé -- The SD Modé from the User’s Point of View
0.* 1
global attribute <«——@ SD collection Shading indicates objects
(file opened with SD interface) or associations created by
1 library
dimension attribute
attribute ‘ data ‘ ‘ data ‘
The formal model is based on relationships among user-specified objects of the SD User’s Model
and the associated object attributes, as described in Figure 7g.
FIGURE 7g SD User’s Model Objects

7.5

file atribute DS
name nane nare
type rank
data dmagondzs
type
storagetype
data

The SD interface provides routines to access the objects depicted in Figure 7e, "A sample user’'s
view of the SD model." If an object is part of another object, it cannot be accessed by the SD inter-
face without first accessing the enclosing object. E.g., dimension information can be accessed
only after accessing the associated SDS.

The SD Developer’s M odel

SD User’'s Model focuses on aspects of data and relationships among objects that facilitate the
user’s scientific work. Since the library must translate that data into something that can be stored
to and retrieved from the file in an efficient, universally-accessible manner, the SD Developer’s
Model presents aslightly modified set of objects and relationships.

While the SD collection isavirtual object in the user’s model and the user never seesit or has any
practical means of perceiving it, the SD collection is a very real object in the developer’s model.
Different kinds of objects from the user’s model are generalized as a simple type of object in the
developer’s model and some object relationships become more generalized.

As one can see in the UML diagram in Figure 7f, the dimension-data-attribute association is
very similar to the sps-data-attribute association. This leads to the generalized UML diagram
in Figure 7h, called the SD Developer's Model or the Internal SD Model. In this diagram, SDS and
dimension scales are replaced by a variable. The dimension object associated with the variable

7-6

June 25, 2008

HDF Specification and Developer’s Guide

describes the spatia information of the corresponding variable (i.e., the corresponding SDS or
dimension scale) and is independently a part of the SD collection.

Lessformally expressed, when an attribute is assigned to the dimension, or datais associated with
the dimension, the HDF library creates internal structures in which to store this information.
These structures are the same as for an SDS. See Section 7.6, "Mapping between SD Developer's
Model and HDF File Structures,” for further discussion. The HDF library uses the terminology “ a
dimension is promoted to an SDS’ and that promotion is transparent to the user. The user still
accesses a dimension's data and dimension attributes via the SD interface routines and the SDS to
which that dimension belongs.

Since adimension scale is stored in the same type of HDF object as an SDS, there is no difference
between them from the HDF library’s (and hence the developer’s) point of view. A dimension is
simply a specia case of the more general SDS and both objects are viewed by the library and the
developer as variables. In the user’s view, an SDS can have associated attribute(s), data, and
dimension(s) and a dimension can have associated attribute(s) and data. Therefore, in the devel-
oper’s view, avariable can have associated attribute(s), data, and dimension(s)

FIGURE 7h

SD Developer’'s Model -- The SD Model from the Developer’s Point of View

0. 1
attribute SD collection Shading indicates objects
or associations created by

1 1 library

M
yO..*

. . N 1L . 1 0.* i
dimension <—+ variable » attribute

1

0.1 y
data
* variable canbe either an SDS or adimension scale.
e N isarank of thevariable.

e L islif variable isadimension scale.

* Neither thelink from sp_collection t0 dimension nor thelink from
variable to dimension is available through the SD interface, though they are
available via other HDF interfaces.

Each object in Figure 7h is represented by a set of HDF objects in the file as defined in
Section 7.6, "Mapping between SD Developer's Model and HDF File Structures.”

The SD collection is created automatically by the HDF library. The attributes, variables, and data
are created by the user viathe SD interface.

Figure 7i summarizes the data and metadata associated with each SD model object.

June 25, 2008 7-7

The HDF Group

FIGURE 7i

SD Developer’'s Model Objects

file attribute dimension variable data

name name name name raw data
type size rank

data dimension sizes
type
storagetype

A variable iSan array structure that has a name, spatial information (rank and dimension sizes),
datatype, and storage layout type and represents either an SDS or a dimension variable. The dif-
ference between two objects isin their rank and storage layout. The rank of a dimensional vari-
ableisalways 1 and its storage layout type can be contiguous or extendible (unlimited). See Table
7afor alist of storage layout options.

A variable awayshasn associated dimensions withit. If variable isadimension variable,
then the multiplicity factor N is 1. A variable may have zero or more attribute o0bjects
associated with it.

TABLE 7a

7.6

SDS Sorage layouts

variable

SDS dimension variable

special storage

chunked and
contiguous chunked compr essed compr essed external default extendible

«Contiguous storage is the default layout and requires no specia storage tag.

M apping between SD Developer's Mode and HDF File
Sructures

This section describes the mapping between the objects represented in the UML diagram in Figure
7h, "SD Developer’'s Model -- The SD Model from the Developer’s Point of View," and the HDF
objectsin thefile.

Theillustrations in this section employ the symbolsin Figure 7j to identify the indicated file struc-
tures.

FIGURE 7j

File structure symbols

Vgroup HDF element identified with
tag/ref pair C|

Vdata ’ﬁ Abstract SD model object |:|

7.6.1 SD Callection

SD _collection, Which is the view of the file as revealed by the SD interface, is mapped to an
HDF Vgroup with name=file name and class=CDFO0.0. For purposes of this discussion only and

7-8

June 25, 2008

HDF Specification and Developer’s Guide

to distinguish this Vgroup from other Vgroups in the discussion, this is referred to as the top
Vgroup in the file. All objects shown in Figure 7h, "SD Developer’s Model -- The SD Model
from the Developer’s Point of View," are mapped to the HDF objects which are members of this
top Vgroup, asillustrated in Figure 7k through Figure 7p.

FIGURE 7k

M odel-to-File Mapping -- sD_collection

SD collection
name = file_name g

\group
name = file_name
class= CDF0.0

(file opened with SD interface)

Note that at the user level, the SD collectionisavirtual entity; it has no real existence for the user.
At the developer level and in the file, however, the SD collection isareal object corresponding to
the top Vgroup. All of the HDF file structures that make up the SD collection are gathered
together into this Vgroup.

7.6.2 Attribute

An attribute ismapped to the Vdata as follows:
* TheVdatahasthe name=attribute name andtheclass=Attr0.0.
e The Vdata has only one field with the name [values].
» For numerical attributes:
e Theorder of thefield is 1 for anumerical attribute
» Thedatatype of thefield is the same asthat of attribute.
e TheVdatahas n records, where N isthe number of attribute values.
» For character attributes:
e Theorder of thefield is v, where v isthe number of characters.
» Thedatatype of thefield is the same asthat of attribute.
» The Vdata has exactly one record.

» If attribute isattached to thefile, then the corresponding Vdata will be a member of the
top Vgroup. If attribute isattached to the variable (an SDS or adimensional scale), then
the Vdatais a member of the variable Vgroup. (See Section 7.6.3, "Variable.")

FIGURE 7

M odel-to-File Mapping -- attribute

. Vdata
attribute 1 1 b
. < name = attribute_name
name = attribute_name dass = Atir0.0

7.6.3 Variable

A variable ismapped to avariable Vgroup with name=variable name and class=var0.0. All
variable Vgroups are members of the top Vgroup. A Vgroup that represents a variable has as
members N Vgroups which represent dimensions, and where N istherank of variable.

June 25, 2008 7-9

The HDF Group

FIGURE 7m M odel-to-File Mapping -- variable, data, and attribute

variable

Vgroup

name = variable_name

name = variable_name

class=Var0.0

rank
type
storagetype
1 A 1
0...
data
0...*
attribute

name = attribute_nams

Vdata

name = attribute_name
class = Attr0.0

In Figure 7m, note that NT, SD, SDD, and NDG are discrete and identifiable objectsin an HDF file
and are accessible via the H interface. In this figure, the variable's rank is stored in sop, the stor-
age type in nT, the data in sp, and the attribute in the Vdata. NDG exists to enable backward com-

patibility with the DFSD interface.

For amore complete discussion of the SDD, NT, SD and NDG structures, see Chapter 9, Tag Spec-
ifications. DFTAG_SDD, DFTAG_SD, and DFTAG NDG are discussed in Section 9.3.7, "Scientific Data
Set Tags." DFTAG NT is discussed in Section 9.3.1, "Utility Tags."

7.6.4 Dimension

A dimension ismapped to the following group of HDF objects:

» The Vgroup with the name of dimension name and classof (U)pimo.o. The U indicates
that this is an unlimited dimension; otherwise the order of the dimension would be fixed.

* A Vdatawithin this Vgroup with the name dimension name and classDimvalo.o or

Dimvalo.1. (See Figure 7n).

» Notethetwo possible classes. Thisisaversioning mechanism sometimes used within
the HDF library to identify internal technical changes. In thiscase, pimvalo.0 identi-
fies adimension created under the original approach while pimvalo.1 identifiesa
dimension created under a subsequent revision.

» Iftheclassispimvalo.1, the default behavior is that the VVdata has one integer field
(int32) of order 1 and contains only one record with the size of the dimension. If the
user has explicitly created/stored dimension information, then the VVdata will be of
size k, as described in the following bimvalo. o bullet.

e |Iftheclassispimvalo.o, the Vdatawill have k records, where k isthe size of the
dimension and the default value of each record equals the record’s position in the

Vdata

» Thedimension Vgroup representing dimension isamember of the variable VVgroup repre-

senting variable (See Figure 70).

 If dimension is shared, then the dimension V group can be a member of more than one vari-

able Vgroup.

7-10 June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 7n M odel-to-File mapping - dimension
dimension 1 1 Vgroup
name= dimension_name) name = dimension_name
size class = (U)Dim0.0
Vdata
name = dimension_name|
class = DimVal0.0(1)
As illustrated in Figure 7n, the dimension value is stored in the Vdata with
name=dimension name, Which isitself amember of the Vgroup with name=dimension name.
7.6.5 Overall Correspondence of SDS Elements and the HDF File Sructure
The aggregation of the preceding elements and relationships, at the HDF file structure level, is
summarized in Figure 70.
FIGURE 70 SDS View of the HDF File Structure

Vogroup
nre=dmasan nare
das=(UDinD0

\ceta
rnene=dnedon nare
dass=Dinva0oQ(1)

nare=atribue nare
dass=Attr00

Note the correspondence between the elements of the SDS view of the HDF file structure, asillus-
trated in Figure 70, and the SD Developer’s Model, as illustrated in Figure 7h. This correspon-
denceisillustrated in Figure 7p.

» The SD collection is represented by a VVgroup, the top V group.

» Each variable, which can be either an SDS or adimension scale, is represented by avariable
Vgroup which is amember of the top Vgroup.

» Dimensions and attributes are represented by Vgroups and V datas, respectively, which are
members of the SDS's variable Vgroup.

» Theraw data, datatypes, storage layout, and specialized information used by the library are
represented by low-level tag/ref elements which are members of the variable Vgroup.

June 25, 2008 -1

The HDF Group

» A dimension attribute is represented by a Vdata which is amember of adimension scale's
variable Vgroup.

The HDF SDSfile structures areillustrated by the background elements (black) of Figure 7p. The
foreground elements (blue or gray, depending on whether this is viewed in color or black-and-
white) show the relationship between the SD Developer’s Model and the HDF SDSfile structures.
Note that Vgroups and Vdatas play several different rolesin this scheme; the roles of individual
Vgroups and Vdatas are indicated by their class.

FIGURE 7p

Developer’sview of the SD model (Figure 7h) and
the corresponding elements of the HDF file structure (Figure 70)

rare=dmagon rare
das=(UDinDO

\ceta
nare=dnmaEon nene
dass=Dinva0o0(1)

7.6.6 Accessing SD Objectsvia non-SD Interfaces

The SD interface isthe only HDF interface that carefully maintains objects, file structures, and the
relationships among them to ensure the integrity of scientific data sets. While all elements of an
SD collection are individually accessible and manipulatable via the more general HDF interfaces,
such as the H interface, to do so introduces a significant risk of corrupting relationships and/or
data within the SD collection and is not recommended.

7-12

June 25, 2008

HDF Specification and Developer’s Guide

7.7 SDSMemory Sructures and Storage L ayout

The preceding sections of this chapter have focused on SD model objects and HDF file structures.
With this section and the next, the focus shifts to the HDF library implementation of the SD mod-
els, including an extensive discussion of the memory structures employed.

Thefile data structures in which the objects of the SD models are stored are mapped by the library
to data structures in memory either when an HDF file is opened with the SD interface or as the
objects are created during execution. The UML diagram in Figure 7q illustrates this mapping.

FIGURE 7q File Structuresto Memory Sructures Mapping
File objects Memory objects
1, NC
ceta O..* 1‘
o stribute rare » NC_ARRAY of NC ATTR
dass=AttrO0

1
» NC ARRAY of NC dim

1
» NC ARRAY of NC var

These memory structures, NC, NC_ATTR, NC_ARRAY, NC_var and NC_dim, are described in detail in
Section 7.8, "Library Implementation Details with Example File and SDS." The HDF file struc-
tures are mapped to the memory structures as follows:
» Thetop Vgroup, the Vgroup containing all elements of the SD collection, is mapped to the
NC memory structure,
» Vdatas, containing data array attributes or dimension attributes, are mapped to the
NC_ARRAY Of NC ATTR memory structure.
» Dimension Vgroups, each containing the elements of a dimension, are mapped to the
NC_ARRAY Of NC_dim memory structure.
 Variable Vgroups, each containing the elements of an SDS, are mapped to the Nc_ArraY of
NC_var memory structure.

June 25, 2008 7-13

The HDF Group

FIGURE 7r

NC

Data structuresfor HDF file contents

NC var

char path[FILENAME_MAX + 1]
unsigned flags

XDR *xdrs

long begin_rec - postion of thefirst ‘record'
unsigned long recsize - length of 'record'
int redefid ;

/* below gets xdr'd */

unsigned long numrecs - # of 'records allocated
NC_array *dims

NC_array *attrs

NC_array *vars

int32 hdf_file;

int file_type;

int32 vgid;

int hdf_mode - mode attached for
hdf_file_t cdf_fp - file ptr for CDF files

NC_array

nc_typetype

size t len - total length originally allocated
size t szof - size of each value

unsigned count - length of the array

Void *values - the actual data

NC dim

NC_string *name

long size

int32 dim00_compat - compatible w/ Dim0.0
int32 vgid - vg of thisdim

int32 count - # of pointersto thisdim

NC_string *name

NC_iarray *assoc - user definition

unsigned long * shape - compiled info?

unsigned long *dsizes - compiled info?

NC_array *attrs

nc_type type - the discriminant?

unsigned long len - total length originally alloc?

size t szof - sizeof each value

long begin - seek index, often an off_t

NC *cdf - the file which this var belongs to

int32 vgid - id of the variable's vgroup

uint16 data ref - ref of var's data storage (if
exists, 0 otherwise)

uint16 data tag - tag of var's data storage (if
exists)

uint16 ndg_ref - ref of ndg for this dataset

intn data_offset - non-traditional data may not
beginat 0

int32 block_size - size of the blocks for
unlimited dim. datasets

int numrecs - # of records this has been filled

int32 aid - aid for DFTAG_SD data

int32 HDFtype - type of this var as HDF thinks

int32 HDFsize - size of this var as HDF thinks

int32 is ragged - thisisaragged array

int32 * rag_list - size of ragged array lines

int32 rag fill - last linein rag_list to be set

vix_t* vixHead - list of VXR records for
CDF data storage

NC iarray

(counted array of intsfor assoc list)
unsigned count

int *values
NC_attr NC_string
NC_string *name Uns!gned count
NC_array *data unsigned len
int32 HDFtype uint32 hash
char *values
7-14 June 25, 2008

HDF Specification and Developer’s Guide

7.8 Library Implementation Detailswith Example Fileand SDS

This section describes the interface routines that are used to create, open, and modify an SDS and
its componentsin thefile. In particular, the following evolutionary stages of accessing and manip-
ulating the SDS are discussed:

» Thefileiscreated or open.

» AnSDSiscreated.

» Dataiswritten to the SDS.

» Global attributes are set for thefile.

» Local attributes are set for the SDS (data string and attribute name) and the dimension
(dimension scale and dimension string).

» Accessto thefileisterminated.

At each stage, the correspondence between storing the contents in memory and representing the
datain thefileis discussed.

[llustrations in this section adhere to the conventions used previously in this chapter, with the fol-
lowing additional elements:

* New itemsintroduced for the next step are lightly shaded.

* Items being removed are heavily shaded and/or labeled in white text.

7.8.1 Creating or opening an HDF file

Theroutine SDstart creates anew HDF file or opens an existing one.

* When SDstart creates afile, astructure nc is created with the pointers dims, attrs, and
vars Setto NULL.

» When SDstart opens afile, astructure nc is created and the structures NC_array; NC _var,
NC dim, and NC_attr arecreated and attached to the pointers vars, dims, and attrs cor-
responding to the contents of the file.

The objects are stored in these internal data structures (except for writing values) until the com-
pletion of SDend, which writes the contents in these data structures to the file in the form of
Vgroups, Vdatas, and other objects, as described below in each stage of the file evolution.

7.8.2 Creating an empty SDS

The routine SDcreate creates an SDS by the following steps:

» Createsannc dim for each dimension then insertsit into NC_array pointed to by dims. If
dims iSNULL, astructure of NC_array iscreated for it.

» For each NC_dim, creates a structure of NC_string to hold the name of the dimension.

» Createsan NC_var theninsertsit into NC_array pointed to by vars. If vars iSNULL, a
structure of NC_array is created for it.

» Createsastructure of NC_string to hold the name of the SDS.
» Createsastructure of NC_iarray to hold the indices of the SDS dimensions.

Figure 7s illustrates the contents of the SD collection in the HDF file in memory at this paint,
when the collection contains an empty two-dimensional SDS.

June 25, 2008 7-15

The HDF Group

FIGURE 7s

SD collection contentsin memory after a 2-dimensional SDSis created

NC

—dims» NC_array

LvaI uesH|

o

—vars®» NC_array

LvaI ues |

——values——

NC_dim —name—» NC_string
NC_dim —name—» NC_string
—assoc» NC_iarray

NC var | .
DS name¥» NC_string

4

[
list of dim indices
L

7-16

June 25, 2008

HDF Specification and Developer’s Guide

Figure 7t illustrates the corresponding representation in the file of the contents of the SD collec-
tion after the access to thefile is terminated, i.e., SDend is called. Refer to Section 7.8.9, "Termi-
nating access to the SD collection and file," for the description of the termination process carried
out by this routine. In Figure 7t, a Vgroup at the top level represents the SD collection and con-
tain three other VVgroups. The first two second-level Vgroups represent the two dimensions of the
SDS. Each of these dimension Vgroups includes a one-field Vdata that has one record storing the
size of the dimension. The third second-level Vgroup represents the SDS. This Vgroup includes
several low-level objects, which have been described earlier in the chapter (see Section 7.6.3,
"Variable"):
* NT, SDD, NDG, and SD (introduced in Figure 7u) are tag/ref objects.

» NT, the number type of the SDS, isidentified by the tag DFTAG NT.

» SDD, the scientific data dimension, is identified by the tag DFTAG SDD.

* NDG, the numeric data group, isidentified by the tag pFTac_NDG

» SD, thescientific data, isidentified by thetag pFrac_sp. SD ispresent only after data
has been written to the SDS.

» NT contains a number type definition which can be used by different data objects.

» NDG containstwo pointers, oneto the NT and oneto the SDD. The NDG isincluded solely
to enable backward compatibility with earlier versions of HDF.

FIGURE 7t SD collection contentsin the file with a 2-dimensional empty SDS

Vgroup - Top level

name: <filename>
class: "CDFO0.0"

Vgroup - SDSinfo

name: name of SDS
class: "Var0.0"

4
Vgroup - Dimension Info

Vgroup - Dimension Info

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

Scientific data dimension

Number type

Vdata - Dimension

Vdata - Dimension

name: name of dimension
class: "DimVal0.0"
or "DimVal0.1"

name: name of dimension
class: "DimVal0.0"
or "DimVal0.1"

(NT)

record (SDD)

Numeric Data Group
(NDG)

June 25, 2008

The HDF Group

7.8.3 Writing datato an SDS

The routine SDwritedata writes datato an SDS. Since the writes are directly to the file, no new
interna data structures are introduced. The writing process includes searching the Vgroup that
holds the SDS information for the SD object (tag pFTaG sp.). If this object is not found among
the elements of the SDS information Vgroup, i.e., data has never been written to this SDS, a new
reference number is assigned for the SD object. This new object is then added to the SDS. The
reference number of this new object isstored in (NC_var) ->data_ref.

Figure 7u shows the change in the contents of the SD collection in the file after the SDSis written
with data. A new object is added to the SDS V group.

FIGURE 7u SD collection contentsin thefile after a 2-dimensional SDSiswritten
Vgroup - Top level
name: <filename>
class: "CDF0.0"
. Multidimensional
Vgroup - SDSinfo array - SDS data
name: name of SDS Scientific data
< class: "Var0.0" (SD)
Vgroup - Dimension Info Vgroup - Dimension Info

class: "Dim0.0"
or "UDim0.0"

Vdata - Dimension

name: name of dimension

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

class: "DimVal0.0"
or "Dimval0.1"

Number type Scientific datadimension
(NT) (SDD)
Vdata - Dimension
name: name of dimension name: name of dimension
class: "DimVal0.0" Numeric Data Group
or "Dimva0.1" (NDG)

When more than one SDS is created, the process of writing to the file is the same as when only
one SDSis created. The dimensions, variable record, and attributes of the succeeding SDSs are
added to the pointer (NC) ->dims, (NC) ->vars, and (NC) ->attrs and are written to the filein the
same manner as for the first SDS.

If astorage layout is specified for the SDS (e.g., compression, chunking, or external storage), then
the SD tag is promoted to a special tag, as described in Chapter 10, Extended Tags and Special
Elements.

7-18

June 25, 2008

HDF Specification and Developer’s Guide

7.8.4 Adding global and local attributes

Theroutine SDsetattr adds an attribute to
A: the SD collection by the following steps:
Createsan NC_attr for the attribute.
Attaches the new attribute record to the pointer values of NC array pointed to by
attrs. If attrs ISNULL, astructure of NC_array iscreated for it first.
B: an SDS by the following steps:

Createsan NC attr for the attribute.

If this object has not yet had any attribute created, i.e., attrs is NULL, Starts the
attribute list by creating a structure of NC_array, then attaches the new attribute record
to the pointer values of NC_array:

If this object already has an attribute list, searches the attribute list for an attribute with
the same name as the one to be added.

» If oneisfound, replaces the found attribute structure with the new one.

» If noneisfound, adds the new attribute structure to the attribute list. Note: the
number of attributes must not exceed the maximum number of attributes allowed
(MAX NC ATTRS.)

C: adimension by the following steps:
» Createsan NC attr for the attribute
» If the SD coallection contains no variable record (from the list (NC) ->vars) that repre-
sents this dimension, promotes the dimension to a variable record, i.e. creates an
Nc var for thisdimension and attaches it to the variable list of the SD collection,

(NC) ->vars. At this point, the dimension has a variable record and, therefore, the
rest of the attribute-setting processis identical to the process for an SDS.

June 25, 2008 7-19

The HDF Group

Figure 7v, below, Figure 7w on page 21, and Figure 7x on page 22 illustrate the changes in the
data structures as a global SDS attribute, an SDS attribute, and a dimension attribute are added,
respectively.

FIGURE 7v SD collection contentsin memory after adding a global attribute

—attrs» NC_array

- 2
data—] NC array —values» 7

L -
values—» » NC_attr

name
A NC string

—dims» NC_array

Lvalu%» P NC_dim —name— NC_string

NC

T T» NC_dim —name— NC_string

—assoc—¥ NC_iarray ——values

——vars» NC_array

NCvar | ame | NC_string list of dim indices
L SDS | Y N N N
values— >

‘IIIIIIX‘

7-20 June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 7w SD collection contentsin memory after adding an SDS attribute

NC

—attrs» NC_array
_wi NC array —vauesd» ?
L | data
values— NC_attr
name
A NC string

—dims» NC_array

Lvalues+ = NC_dim —name—» NC_string

7% NC_dim ——name— NC_string
/\Cdf
—assoc—¥ NC_iarray ——values—
—vars» NC_array T [‘[T
NCvar | ame»| NC string list of dim indices 2
L SDS - I T T N | f
values—p| >
Tatrs | o values
_aray
NC_arr
L data/v o
values—p » NC attr
name_, NC_string

June 25, 2008 7-21

The HDF Group

FIGURE 7x SD collection contentsin memory after adding a dimension attribute
—eéttrs—» NC_array
_w| NC array —vaues» ?
L __data
values» —rp»{ NC_attr
name
M NC string
r—dims» NC_array
NC dim —name¥ NC_string
LvaIues* — " -
T NC_dim |—name» NC_string
NC
| —assoc® NC_iarray ——values
/”_\cdf FTTTT T
NC var list of dim indices
— 7 = NC strini I I N Y N B
DS name-», = g f
— values
attrs_y| NC_array
——vars—» NC_arr: NC_arr
= L datta/v i
t values— NC_attr
valuesh ~
name., NC_string
\ | _assoc® NC iarray values
PR
NC list of dim indices
cdf N VA | hame® NC_string Earapiniaiy
\, dimension f
- values
altrs—, NC array
NC arr
L data/v -
values—» » NC attr
NaME-al NC_string

7-22

June 25, 2008

HDF Specification and Developer’s Guide

It is worthwhile to pause at this point and review Figure 7y which highlights the relationship of
the memory structures that have been built up by the library to the elements of the SD model dis-

cussed earlier in this chapter.

FIGURE 7y Example of HDF memory structures describing an SD collection
Titrs NC_array NC_array (—values» ?
das”| Y
LvaIues) —+» NC_ attr [~
- NaME-al NC_string
—dims» NC_array
NC dim |—name®» NC_string
LvaJues+ — —am
T NC_dim —name-®» NC_string
NC
| —assoc® NC_iarray ——values
‘/\cdf FTTT T T
list of dim indices
NC_var ;
- = NC_strin I R R |
\ DS name-»| , g f
— vaues
A5 NG array
—r—vars—» NC_arr; NC_arr
_array T data””] _array
t values—, » NC_attr
valuesp| —
name._p| NC_string
\ | _assoc® NC iarray values: ‘
B
NC list of dim indices
cdf : _Vf’:\l’ L name-» NC_SIring R IR SR M i K
\ dimension f
] - values
attrs\, NC_array
NC _arri
L data/v o
values—» » NC_ attr
name_y, NC string

June 25, 2008

7-23

The HDF Group

If SDend is called after adding the preceding elements, Figure 7z illustrates the representation of
the SD collection in the closed and written file. The top level Vgroup, the SDS Vgroup, and one of
the dimension Vgroups now each has another element, a Vdata, that holds its newly added
attribute. Each attribute is stored in a one-field Vdata that has one record containing the attribute
values. The Vdatas order isthe number of valuesin the attribute.

FIGURE 7z SD collection contentsin thefile after adding a global attribute, an SDS attribute, and a

dimension attribute

Vdata- "global" attribute ¢——

name: name of attribute
class: "Attr0.0"

4
Vgroup - Dimension Info

name: name of dimension
class: "Dim0.0"
or "UDim0.0"

Vdata - Dimension Attribute
also "local" attribute

name: name of attribute
class: "Attr0.0"

Vdata - Dimension

Vgroup - Top level

name: <filename>
class: "CDF0.0"

Vgroup - Dimension Info

name: hame of dimension
class: "Dim0.0"
or "UDim0.0"

Vdata - Dimension

name: hame of dimension
class: "DimVal0.0"
or "Dimval0.1"

name: name of dimension
class: "DimVa0.0"
or "Dimval0.1"

Vgroup - SDSinfo

name: name of SDS
class: "Var0.0"

Vdata- "Local" attribute

name: hame of attribute
class: "Attr0.0"

Multidimensional
array - SDS data

Scientific data
(SD)

Number type
(NT)

Scientific data
dimension (SDD)

Numeric Data Group
(NDG)

7-24 June 25, 2008

HDF Specification and Developer’s Guide

7.8.5 Setting adatastring

The routine SDsetdatastr s sets values for the pre-defined attributes 1abel, unit, format, and coor-
dinate system. The process of setting each of these attributes is similar to that of setting a user-
defined attribute, as described in Section 7.8.4, "Adding global and local attributes,” except that
the names of these attributes are pre-defined rather than being set by the user.

7.8.6 Setting a dimension name

Figure 7aa shows the dimension list attached to the SD collection structure in a simplified dia-
gram so that the following illustrations will be easy to describe and understand. In this figure,
there are four dimensions named as fakeDimn by default, where n is the index of the dimensions
asthey are created.

FIGURE 7aa

Structures of thedimension list (example)

NC —dims» NC_array
Lvaluas+ -
) NC_string
NC_dim ——name— fakeDImO
NC_dim ——name—» ?‘a%g.”rﬂ%
. NC_string
NC_dim ——name— fakeDim?2
. NC_string
NC_dim ——name—» fakeDIm3

The routine SDsetdimname sets the name for a given dimension according to the following crite-
ria
 If adimension already exists having the same name as the name being set but having a size
different from that of the given dimension, SDsetdimname fails.

« If no dimension with the given name exists, a new name structure is created and the dimen-
sionisset to the new name. The structure holding the dimension's old name, which can bea
default name or one that was previously set, will be removed. Figure 7ab on page 26 shows
the dimension fakepim2 renamed to dimname.

» If adimension already exists having the same name as the name being set and having the
same size as the dimension being set, the found dimension structure (vc_dim) will be used
for the dimension being set aswell. Figure 7ac on page 26 illustrates this event. Let's say
that we are setting name for the dimension fakeDim3 t0 aname, dim name, that isthe same
asthat of the third dimension. When the matched dimension isfound, all pointersto the
dimension being named are reset to point to the dimension dim name. The old structure and
its elements are then removed.

June 25, 2008 7-25

The HDF Group

At this point, the SD collection illustrated in Figure 7s on page 16 and Figure 7t is considered
completely evolved. The dimension settings are described in detail in Figure 7aa, Figure 7ab, and

Figure 7ac.
FIGURE 7ab Setting a dimension nameto a new name
NC dims» NC_array
L NC_string
values name— | fakedim0
% NC.dim
NC_string ne{v
NC_dim ——name— facedim1
NC_string
[dim name
\dim name T
L string
NC_dim name e
“old.
. NC_string h
NC_dim name— fakedim3
FIGURE 7ac Setting a dimension nameto an existing name
NC —dims» NC_array
LvaIu&s+ -
) NC_string
NC_dim ——name—» fakedim0
I NC_string
NC_dim ——name—» fakediml
NC_dim ——name—» N.C_strlng
- dim name
dp
e
: BN (\C stiing
B B oo SRR
/6\0 dim

7-26 June 25, 2008

HDF Specification and Developer’s Guide

7.8.7 Setting a dimension scale

The routine SDsetdimscale sets values to a given dimension as follows.

« |If the SD collection contains no variable record (from the list (NC) ->vars) that represents
this dimension, promote the dimension to a variable record as described in the case of set-
ting dimension attribute in Section 7.6.4, "Dimension." and illustrated in Figure 7x, "SD
collection contents in memory after adding a dimension attribute." At this point, the dimen-
sion has avariable record and the scale values are written to the variable record.

« If thisdimension already has a variable record, the record is updated with the scale values.

In both cases, the number type of the dimension is set viaa call to SDsetdimscale.

7.8.8 Setting a dimension string

The routine SDsetdimstr s sets values to the pre-defined attributes 1abel, unit, and format for a
dimension. The process of setting each of these attributes is similar to that of setting a user-
defined attribute described in Section 7.6.4, "Dimension,” except that the names of these
attributes are pre-defined rather than being set by the user. Before setting values for any of these
attributes, a variable record is created for this dimension if the record does not aready exist. The
creation of the variable record for adimension isillustrated in Figure 7.6.4, "Dimension."

If SDsetdimstrsis called before SDsetdimscale, then the number type of this dimension will be
Set to DFNT FLOAT32 (5).

7.8.9 Terminating accessto the SD collection and file

The routine SDend terminates access to the SD collection and the HDF file and, if the contents of
the structures have changed, writes all the structures to the file. The following steps will be car-
ried out:

» For each dimension
e aVdataiscreated containing the size of the corresponding dimension.

» aVgroup for thisdimension is created. Its reference number is stored in
(NC_dim) ->vgid, aVgroup containing the above Vdata.

e For each SDS
» therecord SD that storesthe SDS datais written if data has been written to this SDS.
» therecord NT that stores the number type is written.
» therecord SDD that stores the dimension values is written.
» the NDG record that is formed by the records SD, NT, and SDD is written.

» aVgroup for thisvariable is created. Its reference number is stored in
(NC_var) ->vgid, aVgroup containing al of the dimensions Vgroups, the attributes
Vgroupsif there are any, and the SD, NT, SDD and NDG records.
* For the SD collection and the HDF file

» global attributes are written.

» aVgroup for thetop level iscreated. Its reference number is stored in (NC) ->vgid, a
Vgroup containing al of the global attributes V groups, the dimensions' V groups, and
the SDS Vgroups.

June 25, 2008 7-27

The HDF Group

7-28 June 25, 2008

Chapter

General Raster Images:

The GR Model

8.1 Chapter Overview

This chapter provides functional descriptions of the GR Data Model, the GR implementation in
the HDF library, and the HDF fil e structures employed.

Section 8.2, "Imagesin an HDF File," describes the types of images that may be found in an
HDF file.

Section 8.3, "The GR DataModel," and Section 8.4, "Mapping between GR Data Model
and HDF File Structures,” describe the GR data model, including arigorous UML represen-
tation, and the mapping of the model’s elements to HDF data structures.

Section 8.5, "Modifying an RIG or RI8 Image viathe GR Interface," discusses the interac-
tion of the GR interface with older-style RIG and RI8 images.

Section 8.6, "Backwards Compatibility when Creating New Images viathe GR Interface,”
through Section 8.8, "Relationships among Main Data Structures,” describe the GR imple-
mentation in the HDF library and the data structures employed.

Section 8.9, "The Evolution of an HDF Filein the GR Interface," then illustrates several
steps in the evolution of the contentsin an HDF file under the GR interface. At each step,
the correspondence between the information as stored in memory and as represented in the
fileis described.

Many of the figures in this chapter employ UML notation (Unified Modeling L anguage notation)
to show object relationships. See Section 7.2, "UML Notation and Object Symbols in HDF Data
Model Descriptions.”

June 25, 2008 81

The HDF Group

8.2

Imagesin an HDF File

An HDF file may contain many elements, including general raster images (GR data sets, the sub-
ject of this chapter) and older-style images, palettes, scientific data sets (SDSs), groups of HDF
objects, annotations, etc. Figure 8a provides a high-level illustration of the elements of an HDF
file.

FIGURE 8a

An HDF file may contain several objects and object collections

HDF4 file

/TS
—a e\

other object
\ -
GR data % Vdata

**dda dyleimege R RSB or R4

When afileis opened with the GR interface, al of the raster imagesin thefile, including the older
RI8, RIS8, and RIS24 images, become visible to the application, asillustrated in Figure 8b below.
Other objects in the file are unavailable through the GR interface; they can, however, be accessed
through other interfaces, e.g., the H, V, and SD interfaces.

FIGURE 8b

An HDF file opened with the GR interface

HDF4file
(opened with GRinterface)
1 1
0..% / o.A.*I 0..*
‘ GR data set older image* * - other objects
(invisible to the applicatior))
**dda dyleimege R RSB o R4

As indicated in these figures, an HDF file may contain any of several styles of raster images; this
is due to the history of HDF development and the need to maintain backwards compatibility. The
older-style raster images, RIG and RI8, will occur in HDF files created with older versions of the
HDF library. (See also Section 8.6, "Backwards Compatibility when Creating New Images viathe
GR Interface" regarding the current library’s ability to create these older-style images.) Figure 8c
lists the properties of the three types of images, GR, RIG and RI8, providing a tabulated compari-
son. The three following subsections describe these imagesin more detail .

82

June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 8c

Threetypes of raster image

raser imege

i
GRdatast KRIG RI8

n-component RIS3 (1-component) RI8 (1-componant)
compresson types corpression types compression types
RLE RLE RLE
) KPHUFF IMOOMP IMCOMP
b= DEFLATE FEG
E_ JH; RIS?4 (3-componan)
speqd darege compressontype
d: compressd FEG
churked
chunked & conmpressed
exdterd gorage
dtributes

8.2.1 GR data sets

The newest form of raster image in HDF isthe general raster image. These images are represented
by GR data sets and are referred to as such throughout this and other HDF documents. GR data
setswere introduced at HDF Release 4.0.

GR data sets provide an extended color capability, global and local attributes, and special storage
capabilities. The elements of a GR data set include the following HDF objects:
» Raster image data

» compressed image data (RLE or run length encoding, SKPHUFF or Skipping-Huff-
man, DEFLATE, and JPEG)

» gpecia storage layout (compressed, chunked, compressed and chunked, or external)
» Image dimension
» Image attribute
o Pdlette
 Palette dimension

In the file, a GR data set consists of a VVgroup and several elements, as discussed in Section 8.4,
"Mapping between GR Data Model and HDF File Structures," and illustrated in Figure 8 on

page 9.

The GR data sets in a file constitute a GR collection, described in Section 8.3, "The GR Data
Model."

GR data sets are created and manipulated via the GR interface (the GR API); see Section 8.9,
"The Evolution of an HDF Filein the GR Interface.". The GR interface also reads, and can manip-
ulate, older-style raster images; see Section 8.5, "Modifying an RIG or RI8 Image via the GR
Interface."

June 25, 2008 8-3

The HDF Group

8.2.2 RIG images (RIS8 and RIS24)

Raster image groups (RIGs), including RIS8 and RIS24 images, were the first HDF images to
employ a grouping structure and provided the first 24-bit color image capability in HDF, while
also providing extended compression capabilities. RIGs were the immediate predecessors to the
GR approach and were introduced at HDF Release 2.0.

RIG images are represented by a raster image group (RIG) that contains pointers to other HDF
objects. This type of raster image does not have attributes but does have all the other elementsin
the GR list above. Characteristics particular to RIGs are as follows:

» All RIG images are made up of 8-bit components.

* AnRIS8imageisal-component, or 8-bit, RIG; an RIS24 image is a 3-component, or 24-
bit, RIG

» RIG compression modes are RLE (run-length encoding), IMCOMP, and JPEG.
Figure 8d presents the file elements that make up an RIG image with a palette, which is optional.

FIGURE &d RIG with raster image and palette

empdia | (impdrosian | (e petedrerian
o s teg tag DFTAG ID : tag DFTAG LUT| tag DFTAG LD

AnRIG isatag/ref object and isfully described in Section 9.3.4, "Raster Image Tags," in Chapter
9, Tag Yecifications. The DFTAG_RI, DFTAG_ID, DFTAG_LUT, and DFTAG_L D objects are
fully described in the same chapter.

8.2.3 RI8images
The RI8 image isthe original HDF 8-bit raster image and provides basic compression capabilities.
RI8 images are characterized as follows:
» RI8 images employ no grouping structure.
» There are three compression modes for RI8 images:
e uncompressed images identified by thetag DFTAG_RI8
* RLE-compressed images identified by the tag DFTAG_CI8
* IMCOMP-compressed images identified by the tag DFTAG |18
» Image dimensions areidentified by the tag DFTAG_ID8.
 Palette dimensions are identified by the tag DFTAG_IP8.

AnRI8 imageisatag/ref object and isfully described in Section 9.3.9, "Obsolete Tags," in Chap-
ter 9, Tag Specifications.

8-4 June 25, 2008

HDF Specification and Developer’s Guide

8.3

The ahility of the current library to process RIG and RI8 images is intended only to support back-
ward compatibility. The RIG and RI8 interfaces are both obsolete APIs and it is highly recom-
mended that only the GR interface be used in new applications.

The GR Data M odel

This section provides alogical description of an HDF file containing GR images. A user’sview of
the data model is presented in Section 8.3.1, "A Casual View," and Figure 8e, "A sample user’'s
view of the GR model."” The formal data model and a graphical representation are presented in
Section 8.3.2, "The Formal GR DataModel," and Figure 8f, "GR data model."

8.3.1 A Casual View
From a user’s point of view, an HDF file containing GR data sets is structured as follows and as
illustrated in Figure 8e on page 6:
» Thefile contains GR data sets and optional global attributes.
» Every GR data set includes the following information:
* Name
* Number of components
» Dimension sizes (2 dimensions only)
» Pixel datatype
» Imageinterlace mode (by pixel, line, or plane)
» Each GR data set may have the following associated elements and properties

o Attribute(s) » Data
« A palette e Storage layout

A palette is described by the following characteristics:

« Datatype

* Number of entries

* Number of components

* Interlace mode
Global attributes, when present, are defined by the user, apply to all raster images in the file, and
usually describe the intended usage of the GR data sets in the file. GR data set attributes, some-

times known as local attributes, are also optional, defined by the user, and describe only that data
Set.

GR data sets can have one of severa storage layouts, aslisted in Table 8a.

TABLE 8a

GR storage layouts

GR data set
special storage
chunked and
contiguous chunked compr essed compr essed external

«Contiguous storage is the default layout and requires no specia storage tag.

June 25, 2008 8-5

The HDF Group

A sample user’sview of the GR model

FIGURE 8e

3|l} JBULaIXa
eiep afe wl

gly o 91y be
(s)afe wl
31h1s-p1 0

13b31u = ad)
G X 0T =s3azIs wip
T =siuauod wod

Uole Wiojul [eneds
LU, = we
Uabeuw y9

passald woayou
:t_im:z
erepabew

EXTREELIEL

saInglie

A

(e1ep o aj0N)

A, zanen

saIngine

passald woajou
:t:;miz
Blep abe wl

A

ENEIRL

|
.

:mmiﬁ
ejep abe ul

13bajur = adh)
e X G AQT =5azIS WIp
¢ =sjuauodwoy
Uolje wiojuy [epeds
P, =8 ey

pafew ¥9

yurod Bupeoly = adfy
£ p = S87IS WP
T =siusuodwod
uore wiojul [eneds
LB, =8y

gabew ¥9

13b31u = 3ad)
G X 0T =s3zIs wip
T =sjuauodwo
UOIle WI0jul iR ds
L7, = awey

zabew ¥9

yurod Buneopy = adhy
007 X 00T =s3zis wip
T =sjuauodwoo

Uolle Wiojul feleds

LTI, = 8wy

Tabew ¥9

(sabewr y9 0 kuosardde)
JASU0D, =aneA

(s)arnguime jeqolb

9 140 H

June 25, 2008

8-6

HDF Specification and Developer’s Guide

For descriptions and definitions of the required and optional components that make up a general
raster image, and of the GR interface routines provided by the HDF library to create and access
GR data sets in the file, see Chapter 8, “Genera Raster Images (GR API),” in the HDF User’s
Guide. For acompl ete description of palettes, see Chapter 9, “Palettes,” in the HDF User’s Guide.

8.3.2 TheFormal GR Data M odel

Theformal GR Data Model includes one type of object the user does not actually see, the GR col-
lection. An HDF file may contain zero or one GR collection which may, in turn, contain zero or
more GR data sets. The optional global attributes are actually associated with the GR collection.

A GR data set isan HDF data structure used to store a generalized raster image and the supporting
metadata. Each GR data set may have zero or more associated attributes, sometimes referred to as
local attributes.

The GR data sets and the associated objects (see Figure 8f) can be accessed only through the GR
interface.

FIGURE 6f GR data model
HDF4 file
1
0.1
. 0..* 1 i Shad dicat
anrl bUte (ﬁ\g)eﬁeg\gv)\lﬂlwggt\!g?a e) Obfleclgg():(nas‘;?c'e;' ons
1 created by library.
e
0..*
GR data set
1 1
1
0..1 0.1 0..*
palette image data attribute
The formal model is based on relationships among user-specified objects of the GR Data Model
and the associated object attributes, as described in Figure 8g.
FIGURE 8g GR Data model objects

file attribute GR data set palette
name name name data type
type dimension sizes (uints only)
data # of components # of entries
data type # of components
interlace mode interlace mode
data

June 25, 2008 8-7

The HDF Group

8.4

The GR interface provides routines to access the objects depicted in Section FIGURE 8¢, "A sam-
ple user’s view of the GR model," and Section FIGURE 8g, "GR Datamodel objects." If an object
is part of another object, it cannot be accessed by the GR interface without first accessing that
other object; e.g., palette or attribute information can be accessed only after accessing the associ-
ated raster image.

Mapping between GR Data M odel and HDF File Structures

This section describes the mapping between the objects represented in the UML diagram in Figure
8f, "GR datamodel," and the HDF objectsin the file.

Theillustrations in this section employ the symbolsin Figure 8h to identify file structures.

FIGURE 8h

Filestructure symbols

Vgroup Other low-level HDF objects,
usually identified by atag/ref pair C|

Vdata ’ﬁ Abstract GR model object I:l

Elements of the GR data model map to HDF file objects asillustrated in Figure 8i

FIGURE 8i

M odel-to-file mapping -- GR _collection

Vgroup
name = RIG0.0
class= RIG0.0

GR collection |1 1

(file opened with GR interface)

. d
Attribute ! L Zaff =RIATTRO.ON

class= RIATTR0.0C

A

Vgroup
name = image_name
class=RI0.0

GR data set

1 1 palette palette dimension
Palette <—>{ teg: DFTAG_LUT| | tag: DFTAG_LD

1 1 image data image dimension
3 tag: DFTAG_RI i
Image data S g - teg: DFTAG.ID }

Two tag/ref elements added to GR data set Vgrouj

Two tag/ref eements added to GR data set Vgrouj

A GR attribute is represented by a Vdatawith one
field. Thefield name isthe name of the attribute. rene—RATTROCN

The field contains the value of the attribute; the B fiiuiluro S
number of recordsin the field corresponds to the
number of attribute values. For example, the fig-
ure to the right represents an attribute named
attribute name With the value abcd.

DA WN P

8-8

June 25, 2008

HDF Specification and Developer’s Guide

Figure 8j presents the file elements that make up an image, or GR data set, and the relationships
among them as created by the GR interface.

FIGURE §j

Filestructuresrepresenting a GR data set

 For any given image, the Vgroup may contain either

* raster image data, DFTAG_RI or

» raster image datain a special storage format, indicated by an extended tag. Extended
tags are described in Chapter 10, Extended Tags and Special Elements.

» Theimage dimension object, DFTAG_ID, includes image dimension, interlace mode and
compression information. Image compression may be RLE (run length encoding),
SKPHUFF (Skipping-Huffman), DEFLATE, or JPEG.

» The GR data set Vgroup must have a class name of r10. 0. Should changesin the GR data
structures ever become necessary, the class mechanism will enable the HDF library to man-
age evolving versions.

Figure 8k graphically presents the relationships among the elements of the formal GR data model.
The GR callection is represented by a VVgroup whose members are the global attribute Vdata and
the GR data set Vgroups. Each GR data set is represented by a Vgroup whose members are the
image data and dimension objects, the pal ette objects, and the local attribute Vdata.

FIGURE 8k

Filestructuresrepresenting a GR collection

dd atibue

rere=RATTROON
das=RATTROOC

June 25, 2008 8-9

The HDF Group

8.5

Modifying an RIG or RI8 Image viathe GR Interface

This section discusses the consequences of using the GR API to access and modify older-style
RIG and RI8 images. This situation is likely to arise only when using the current version of the
HDF library to edit afile that was created with an on older version.

Consider thefileillustrated in Figure 8l. This file contains one GR data set, one local attribute on
that GR data set, one global attribute, one RIG image, and one palette on that RIG image.

FIGURE 8l

Filewith one GR data set and one RIG image

Fle

rere=RATTROON
dass=RATTROOC

RIG

name: name of image
tag: DFTAG_RIG
class: RI0.0

imegedmadan
tag DFTAG ID

locd atribute

Veka
rere=RATTROON
dass=RATTROOC]|

raster image data
tag: DFTAG_RI
or extended tag

regte inegedeta
tag DFTAG R

palette dimension
tag: DFTAG_LD
palette

tag: DFTAG_LUT

image dimension
tag: DFTAG_ID

Now consider the use of the GR API to modify the RIG image.

First note that if the GR API modifies just the data of the RIG, e.g., the image or palette values or
dimensions, but does not add an attribute, GR makes no changes to the file structure.

If an attribute is added, however, GR createsa Vgroup for anew GR data set, links the elements of
theimage (DFTAG_RI or extended tag in the case of specia storage, DFTAG_ID, DFTAG_LUT,
and DFTAG_LD) into that Vgroup, and adds the attribute V data.

The RIG group element (DFTAG_RIG) isnot linked into the GR data set Vgroup. The RIG image
remains available via the older interfaces, though those interfaces will not show the attribute. Fig-
ure 8m illustrates the structure of the file after an attribute has been added to the RIG image by
means of the GR interface.

An RI8 image is incorporated into the GR collection under the same circumstances and in the
same manner as the elements of an RIG image. The only difference is that there is not RIG object
(DFTAG_RIG) to consider.

When the GR interface is initiated, the information about the HDF file and its contents are
mapped into memory and stored in the GR interface's main data structures, as discussed in
Section 8.7, "Main Data Structures and their Relationships." These structures then maintain and
update the information during processing of the application, and they are described in more details

8-10

June 25, 2008

HDF Specification and Developer’s Guide

in the next section. When all processing is done, if the file contents have changed, the physical
file will be updated with the information stored in the data structures.

FIGURE 8m

GRglobd attribute

Vdata
name = RIATTRO.ON
class= RIATTR0.0C

Vgroup
name=RIG0.0
class=RIGD.0

locd atribute

Vdata
name=RIATTRO.ON

dass=RIATTR0.0C

image dimension raster image data
tag: DFTAG_ID tag: DFTAG_RI

Vgroup

class=RI0.0

local attribute

Vdata
name=RIATTRO.ON
class= RIATTR0.0C

name = name_of_image

File of Figure 8l after GR API hasbeen used to add an attributeto the RIG image

RIG

name: name of image
tag: DFTAG_RIG
class: RI0.0

W

: DFTAG_RI
extended tag

image dimension
tag: DFTAG_ID

palette
tag: DFTAG_LUT

palette dimension
tag: DFTAG_LD

8.6 Backwards Compatibility when Creating New Imagesviathe GR
Interface

The HDF library makes extensive efforts to maintain backwards compatibility. When anew image
is created viathe GR interface, the library creates as many as possible of the following versions of
the image:

» A GR data set is aways created.

* AnRIG iscreated for every image that meets the RIG criteria. For example, an RIG can be
created for 1-component or 3-component images if the components are 8-bit integers and
the compression mode is available for an RIG image. The images would be RIS8 or RIS24,
respectively. If the image includes an attribute, that attribute will appear in the GR version
of the image but will not be accessible in the RIG version.

» AnRI8imageis created if the image meets the RI8 criteria. For example, an RI8 can be cre-

ated for a 1-component, 8-bit image that uses a compression mode available for an RI8

image.

June 25, 2008

81

The HDF Group

8.7 Main Data Structures and their Relationships

This section provides the description of the main data structures used in the GR interface to store
a GR data set's contents in memory. Figure 8n lists these data structures and all their elements.

gr_info t File information structure storing information about the HDF file.
ri info t Raster image information structure storing information about a raster image.
at_info t Attributeinformation structure storing local and global attribute information.

dim_info t Dimension information structure storing both image and palette dimension
information.

These structures are somewhat self-described in Figure 8n, except for some details too complex to
present in the figure. The following subsections provide additional details about these structures.
The last subsection in this section describes the relationships among the data structures.

812 June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 8n Main data structuresin GR interface
gr_info_t: this structure holds the file information

int32 hdf_file_id - the corresponding HDF file ID

uint16 gr_ref - ref # of the Vgroup of the GRin thefile

int32 gr_count - # of image entriesin grtree so far

TBBT_TREE *grtree - root of image B-Tree

uintn gr_modified - whether any images have been modified

int32 gattr_count - # of global attr entriesin gattree so far

TBBT_TREE *gattree - root of global attribute B-Tree

uintn gattr_modified - whether any global attributes have been modified
intn access - the number of active pointersto thisfile

uint32 attr_cache - the threshhold for the attribute sizes to cache

ri_info_t: this structure holds the raster image information

int32 index - index of thisimage

uint16 ri_ref - ref # of the Rl Vgroup

uintl6 rig_ref - ref # of the RIG group

gr_info_t *gr_ptr - ptr to the GR info that thisri_info appliesto

dim_info_t img_dim - image dimension information

dim_info_t lut_dim - palette dimension information

uintl6 img_tag, img_ref - tag & ref of the image data

int32img_aid - AID for the image data

intn acc_perm - Access permission (read/write) for image AID

uintl6 lut_tag,lut_ref - tag & ref of the palette data

gr_interlace_tim_il - interlace of image when next read (default PIXEL)
gr_interlace_t lut_il - interlace of LUT when next read

uintn data_modified - whether the image or palette data has been modified

uintn meta_modified - whether the image or palette meta-info has been modified
uintn attr_modified - whether the attributes have been modified

char *name - name of the image

int32 lattr_count - # of local attr entriesinri_info so far

TBBT_TREE *lattree - Root of the local attribute B-Tree

intn access - the number of times thisimage has been selected

uintn use_buf_drvr - access to image needs to be through the buffered special element driver
uintn use_cr_drvr - access to image needs to be through the compressed raster special element driver
uintn comp_img - whether to compress image data

int32 comp_type - compression type

comp_info cinfo - compression information

uintn ext_img - whether to make image data external

char *ext_name - name of the external file

int32 ext_offset - offset in the external file

uintn acc_img - whether to make image data a different access type

uintn acc_type - type of access-mode to get image data with

uintn fill_img - whether to fill image, or just store fill value

void * fill_value - pointer to the fill value (NULL means use default fill value of 0)
uintn store_fill - whether to add fill value attribute or not

dim_info_t: this structure holds the image and palette

at_info t: this structure holds the atribute information) L=)
- = dimension information

int32 index - index of the attribute uint16 dim_ref - reference # of the Dim record

int32 nt - number type of the attribute int32 xdim, ydim - dimensions of the image or palette

int32 len - length/order of the attribute int32 ncomps - number of comps of each pixel inimage
uint16 ref - ref of the attribute (stored in VData) int32 nt - number type of the components

uintn data_modified - whether the attribute data has been modified int32 file_nt_subclass - number type subclass of data on disk
uintn new_at - whether the attribute was added to the Vgroup gr_interlace_til - interlace of the comps (stored on disk)

char * name - name of the attribute uint16 nt_tag, nt_ref - tag & ref of the number-type info

void * data- data for the attribute uint16 comp_tag, comp_ref - tag & ref of the compression info

June 25, 2008 8-13

The HDF Group

8.7.1 FileInformation Structure (gr_info t)

The gr_info_t structure contains the information describing the HDF file whose identifier is
stored inhdf file id (refer to Figure 8n).

Additional details are as follows:

gr_ref isthe reference number of the top level Vgroup in Figure 8k.

grtree pointsto the tree whose nodes link to the raster image information structure describ-
ing an image in the file (see Figure 8q). Note that the images stored in this tree may include
images read in from an existing file and images created in the application.

gr_count indicates the number of nodesin thetree grtree, i.e., the number of images cur-
rently stored in the file information structure.

gr modified and gattr modified ensure that the file will be updated during GRend pro-
cessing.

gattree pointsto the tree whose nodes link to the attribute information structure which
describes aglobal attribute in the file (see Figure 8q). Note that the attributes stored in this
tree may include attributes read in from an existing file and attributes created in the applica-
tion.

gattr count indicates the number of nodes in the global attribute tree gattree, i.e., the
number of global attributes currently stored in the file information structure.

8.7.2 Raster Image Information Structure(ri_info t)

Theri info t structure containsinformation describing araster image.

When an existing file is opened, its contents are retrieved and stored in the data structures. The
contents may include raster images, which may be of any type described in Section 8.2, "Images
in an HDF File." The following table illustrates how different reference numbers in this structure
are used to store the in-file representation of the three types of raster images. Noticethat dim ref
in the table belongs to the dimension information structure; however, because the dimension
information structure is used by this image for both the image dimension and the image's palette
dimension, it makes more sense to describe the dimensions' reference number here.

TABLE 8b Reference numbersand the in-file representation of raster images
GR data set RIG raster image Non-group raster image
ri_ref Ref# of GR data set Vgroup DFREF_WILDCARD DFREF_WILDCARD
rig_ref aux_ref? or DFREF_WILDCARD Ref# of RIG group DFREF_WILDCARD
img_ref Ref# of either the raster image data Ref# of either therasterimage | Ref# of one of the following:
or the compressed image data data or the compressed image ¢ 8-bit raster image
data * RLE compressed 8-bit raster image
* IMCOMP compressed 8-bit raster image
lut_ref Ref# of the palette Ref# of the palette Ref# of one of the following:
» 8-bit palette

¢ RLE compressed 8-bit palette
* IMCOMP compressed 8-hit palette

img_dim.dim ref Ref# of the image dimension Ref# of the image dimension DFREF_WILDCARD
lut_dim.dim ref Ref# of the palette dimension Ref# of the palette dimension DFREF_WILDCARD
8-14 June 25, 2008

HDF Specification and Developer’s Guide

8.8

Additional details are asfollows:
* img dimisastructure describing the image dimension, asin Figure 8j and Figure 8k.
* lut_dimisastructure describing the palette dimension in Figure 8j and Figure 8k.

* data modified, meta modified, and attr modified ensurethat the file will be updated
as necessary during the GRend processing.

* lattree pointsto the tree whose nodes link to the attribute information structure which
describes an attribute of the image (see Figure 8r). Note that the attributes stored in thistree
may include attributes read in from an existing file and attributes created in the application.

* lattr count indicatesthe number of nodesin theloca attribute tree 1attree, i.e, the
number of image attributes currently stored in the file information structure.

8.7.3 Attribute Information Sructure (at_info t)
Theat_info t structureis used to store the information describing alocal or global attribute.

Additional details are as follows:

» ref isthe reference number of the Vdata representing a global or local attributein Figure
8k.

* new at ensuresthat an attribute that is newly created in an application is permanently
recorded in the file before thefile isclosed. If thisflagis set, GRend will add the tag/refer-
ence number pair of the Vdata that represents alocal or global attributeto its RI Vgroup or
the GR Vgroup, accordingly.

8.7.4 Dimension Information Structure (dim_info t)

The dim_info t structure is used to store the information describing an image or palette dimen-
sion.

Relationships among Main Data Structures

Figure 8o provides a high-level illustration of the relationships among these data structures while
Figure 8p, Figure 8q, and Figure 8r depict the relationships in more detail. Asillustrated, the data
structures TBBT TREE and TBBT NODE are widely used in the GR interface. TBBT TREE iS a
threaded, balanced, binary tree that is used to store different lists of objects and their information.
Part of the definition of the tree can be found in Figure 8p. Basically, the tree is a structure that
has a pointer, called root, pointing to another structure, TBRT NODE, which is a node of the tree.
The main elements of TBBT NODE include two void pointers, data and key, and an array of three
pointers that point to the parent, the left child, and the right child of the current node. The pointer
data pointsto the data structure that is stored in thistree. The pointer key pointsto the value that
is used to search for the datain the tree.

June 25, 2008 8-15

ri info t

dim _ |nfo _t

im g _|dim

; +—ro
dim _infoJdt B B T[_ W

lut_ dli— -V
= lattr

TB B T|_TRL—=

N
data
TB B T oMY O [.|
gr_info _t =t
B
rtree .
.ﬁmm.ﬁw_mmm at_info _t
TBBT|]_TREE
P
. gattree data
4mw4|4mmn\ _ T B B Tro#VDOE
H data I
TB B T| "O"MpOg . .|.

High-level description of therelationships among the main data structures

The HDF Group
FIGURE 80

June 25, 2008

8-16

HDF Specification and Developer’s Guide

Figure 8p shows aglobal tree gr_tree that holds the GR file structure gr_info_t, which is used
to store the file contents that are read into memory for processing or that are newly created and
will be written to the file. The global tree gr_tree is alocated when GRstart isfirst invoked in
an application. A new structure of gr_info t isaso created and inserted into the tree at thistime
(routine New_grfile). If GRstart isinvoked more than once for afile in an application, then the
global tree gr tree aready exists and the current structure gr_info t will be used (routine
Get_grfile). The key value used for searching in this tree isthe HDF file identifier.

FIGURE 8p

Theglobal GR tree

or_info t hdf _file id
TBBT_TREE* gr_tree data key
- global, static \
TBBT_NODE
oo VOIPP| VOIDP o] 1 link[a) [link[2] | ==+
TBBT_NODE +

Parent Lchild Rchild

count / / \
i NULL NULL NULL

Figure 8q describes the elements of the GR file structure gr_info t. This structure contains two
TBBT TREE trees, grtree and gattree. The tree grtree contains the information for al the
imagesin thefile; thus, the pointer data in its nodes pointsto araster image information structure,
ri_info t. Similarly, thetree gattree containsthe information for all the global attributesin the
file and its nodes point to the attribute information structure, at _info t. If the file, which
gr_info_t represents, has not been accessed in the current application, GRstart fillsin theinitial
information of the GR file structure, which includes the creation of the two trees, grtree and
gattree. GRstart then invokes GRIget_image list to read in the file contents and store in the
global tree gr_tree asfollows:

 For each of the global attributes, an attribute structure, at_info_t, iscreated and inserted
into the attribute tree gattree, branching out from gr_tree.

» For each of the raster images, araster image structure, ri_info t, iscreated and inserted
into the grtree. Figure 8r illustrates the raster image structure and its main elements.
These elements include two dimension information structures, dim_info _t, describing the
image dimension and the image's pal ette dimension; a compression information structure,
comp_info, describing the image's compression; and atree, TBBT TREE, holding all the
attributes of the image.

* For each attribute of araster image, an attribute structure, at_info t, iscreated and
inserted into the attribute tree 1attree branching out from the raster image's structure.

June 25, 2008 817

The HDF Group

FIGURE 8q [llustration of data structuregr_info t
ri_info_t index
data key
gr_info_t* gr_ptr TBBT NODE
root—"1 VO'PP | VOIDP | jiio] | ink[1] [link[2] | ==
TBBT_NODE +—
Parent Lchild Rchild
/V count / / \
gr_info_t : NULL NULL NULL
grtree
TBBT_TREE/
at_info_t index
TBBT_TREE\ ® A
data key
géttree TBBT_NODE
root—"1 VO'PP | VOIDP | jiion | link[1] [link{2] | ==
TBBT_NODE +
Parent Lchild Rchild
count / / \
: NULL NULL NULL
FIGURE 8r [llustration of data structureri _info t
ri_info_t
at_info_t index
dim_info_timg_dim X A
data key
o ' TBBT_NODE
dim_info_tlut_dim root/V VOIDP | VOIDP link[O] [link[1] | link[2] .
TBBT_NODE +
| Jattree Parent Lchild Rchild
TBBT_TREE count e ' ¢
: NULL NULL NULL
comp_info cinfo
8-18 June 25, 2008

HDF Specification and Developer’s Guide

8.9 TheEvolution of an HDF Filein the GR Interface

This section illustrates several steps in the evolution of the contents in an HDF file under the GR
interface. At each step, the correspondence between the information as stored in memory and as
represented in the file is described.

» Thefileis created for access from the GR interface.

» Two raster images are created and written with data.

* Attributes are added to the file and to one of the raster images.
» A paletteis added for one of the raster images.

The section also illustrates how the main GR structures represent the file elements in memory.
The routinesinvolved in constructing the file are described as necessary.

8.9.1 Creating or Opening an HDF File

A typical HDF5 application calls the routine Hopen to create a new HDF file or to open an exist-
ing file.

Next, theroutine GRstart is called to initiate the GR interface. GRstart does the following:

» Allocatesthefileinformation tree, gr tree. (Notethat if GRstart is called more than once
for the same HDF file, this tree will not be allocated again.)

« Initializes the atom groups for GR data sets (and ol der-style raster images).

» Retrievesthe information of all contentsin the file into the tree by invoking
GRIget_image list, whichfillsin gr_tree with structuressuch asgr_info t, ri_info t,
at_info t,anddim info t.

At the end of GRstart, anewly created HDF file is represented in memory as shown in Figure 8s.
Since there are neither images nor global attributes in the file, the roots of the image tree grtree
and global attribute tree gattree point to NULL.

June 25, 2008 8-19

The HDF Group

FIGURE 8s Data structures of a newly created HDF filein memory
gr_info_t
TBBT_NODE

gr_ref = oot

DFREF_WILDCARD count . NULL
grtree .
TBBT_TREE

TBBT_TREE NULL

gattree root

TBBT_NODE
count
\ hdf_file_id
data)1
TBBT_TREE* gr_tree key
- global, static \

TBBT_NODE

oot VOIPP | VOIDP | i o] [link[a] |link(2] | =+
TBBT_NODE-T
Parent Lchild Rchild
count / / \4
. 7 NULL NULL

Note that the reference number gr_ref ingr_info t iSDFREF WILDCARD at thistime. That indi-
cates that there is not yet a corresponding GR Vgroup in the file. This Vgroup is created during
the GRend processing and gr_ref will then have a valid reference number, which is that of the
GR Vgroup and which will then be written into the file.

8.9.2 Creating and Writing to a Raster Image

The routine GRcr eate creates a raster image in the following steps:

» Createsanri_info_t structureand fillsit with initial information.

» CreatesaVgroup for thisraster image, i.e., for this GR data set.

* Insertsthe structure into theimagetree (gr_info t)grtree.
Figure 8t illustrates the data structures after two raster images are created. The dashed boxes indi-
cate the new data structures for the two new GR data sets. Notice that the local attribute trees
lattree point to NULL indicating that the raster images have no attributes at this time. For the

similar reason, the global tree gattree pointsto NuLL. When GRend is invoked, the contents of
the file are updated, causing these new images to be written to thefile.

The file being assembled in these sectionsisillustrated in Figure 8v, "File with two GR data sets,
global attribute, local attribute, and image palette.”

8-20 June 25, 2008

HDF Specification and Developer’s Guide

Data structures storing two raster images

FIGURE 8t

gr_info_t

TBBT_—T]

ri_inro_t,

stores secona

gr_info_t* dim _info_timg_dim vy NULL
root
dim _info [tlut_dTmB BT _NODE
ri_info_t, stores first raster im ir
TBBT_JIRFE count
_mﬂ:/me R
dim _info_timg_dim ¥ comp_info cinflo .
root .
dim _info_ftlut_dinB BT N OD .
TBBT_ TN EL count X
/V(. index
inf f : data
comp_in n ¥ \1
. key L child
i — .
: link[0] | link
X v oilv o flinklol tin
4wm4|_4
index
r tr K Rchild
gr_p data P Lechild chi
key (
Parent
N ULL
link[0] | link »PW\TB\
Vv Vv |
\4 ._.mm._.|_/_ -
root
AWWAIE_umS:H
il
m:_ﬁv count
SC E .
R EE
g attree
._.m_w._|v/ZOU_m
count root
: /> NULL

821

raster rmage's into

June 25, 2008

The HDF Group

8.9.3 Adding Attributes

Theroutine GRsetattr creates an attribute for afile or for araster image in the following steps:

* If the attribute already existsin thefile, then ssimply updates it, although, the number type
cannot be changed

» If the attribute's datais small enough to be cached, keeps the datain memory where
specified by (at_info t)data.

» Otherwise, writes the datato the attribute Vdata on disk.
« If the attribute is new, the following actions are performed:
» Createsthe attribute structure at_info_t and stores the attribute information.
» If the attribute's datais small enough to be cached, keeps the datain memory where
specified by (at_info t)data.
» Otherwise, writes the datato the attribute Vdata on disk.

» Addsthe attribute structure to the attribute tree, which can be either the global
atribute tree (gr_info t)gattree or thelocal attributetree (ri info t)lattree.

Figure 8u shows the memory data structures with two raster images, one file attribute, and one
local attribute. An at_info t structure is also added to the global attribute tree for the new file
attribute. When GRend is invoked, the contents of the file are updated, causing these attributes
be written to thefile.

8-22 June 25, 2008

HDF Specification and Developer’s Guide

Data structures after adding two attributes

FIGURE 8u

gr_info_t* gr_ptr

gr_info_t

TBBT_TREE—]

qmmﬂqmmm/

grtree

gattree

TBBT_NOD

count root

at_info_t index
«
data key
/> TBBT_NODE
VOIDP | VOIDP | iyro] | link[4] [link[2] | ==+
Parent Lchild Rehild
NULL NULL NULL

at_info_t index
. : . L key
ri_info_t, storesfirst rasterimage'sinfo
dim_info_timg_dim TBBT_NODE
o e Y VOIDP | VOIDP link[O] | link[1] | link[2] | ===
dim_info_tlut_dim root
TBBT_NODE" Parent Lchild Rehild
TBBT_TREE gmm/? count b\ V\ /A
comp_info cinfo . NULL NULL NULL
-
1 3
ri_info_t, stores second raster image'sinfo
.-‘./ W\? info tin g din A\R\\\\NW
H * V| dim _info thit din P :
data index gr_info_t* gr_ptr | a7 e T et e @ [BETHO D) ‘
eonp nfe cafe LT
key) .
Lchild data
link[0] | link[1] | link[2])
\4 VOIDP | VOIDP TBBT NODE s index NULL
s v
root key Lchild
TBBT_NODE Parent link[O] | link[1] | link[2]
< VOIDP | VOIDP TBBT NODE s
count
. Rchild
. Parent k
NULL

8-23

June 25, 2008

The HDF Group

8.9.4 Adding Palettes

The routine GRwritelut writes the palette of araster image in the following steps:
» Makes certain that only standard palettes are written.
« If the palette object already exists for the image, simply writes the palette data to thefile.
» Otherwise, creates the palette dimension, initializes it, then creates the pal ette object and
writes the palette data to the file.

There are no structural changes in the data structures. The palette dimension is filled with initial
information and the pal ette object's tag and reference number are stored in the raster image infor-
mation structure. Figure 8v shows the representation of the file with the new pal ette object.

FIGURE 8v

Filewith two GR data sets, global attribute, local attribute, and image palette

dd atribLte

locd atribute

rere=RATTROON
dass=RATTRO0C]

imecedmasm regte imegedda imegedmason rede imegecHa ’ imegepeete

8.9.5 Opening an Existing File

When the HDF file already exists and is opened for processing, the data structure gr_info t,
which includes the part enclosed in the dotted box in Figure 8s, isfilled with the file contents. For
example, Figure 8t shows the in-memory storage of the file that is represented in Figure 8v. The
routine GRIget_image list is responsible for retrieving the file contents and storing them in
memory. Theretrieval processis carried out as follows:

» Collect al theraster imagesin thefile, including al three types.

» Collect al the global attributes and, for each attribute, create an at_info_t structure and
store it on the global attribute tree gattree, branched out fromthe gr _info t structure.

 Eliminate any duplications among the raster images found.
 For each raster image, the following actions are performed:
» Createanri_info_t structure and fill it with information about the raster image.

» If any raster image has attributes, for each attribute, create an at_info_t structure
and storeit on the local attribute tree 1attree, branched out fromthe ri_info t
structure.

» Store image dimension information in the structure img_dim of the ri_info t struc-
ture.

8-24

June 25, 2008

HDF Specification and Developer’s Guide

» Store paette dimension information in the structure 1ut_dim of the ri_info t struc-
ture.

* Finaly, storetheri info t structure for this raster image on the image tree grtree,
branched out from the gr_info t structure.

June 25, 2008 8-25

The HDF Group

8-26 June 25, 2008

Chapter

Tag Specifications

9.1

9.2

9.3

Chapter Overview

This chapter and the next address issues related to HDF tags and the data they represent. The first
section of this chapter provides general information about tags and their interpretation. The
remainder of the chapter contains a complete list of the HDF basic tags supported by NCSA HDF
Version 4.1r3 and detailed tag specifications. The next chapter, Extended Tags and Special Ele-
ments, provides detailed information regarding NCSA-supported HDF extended tags and the spe-
cial elementsthey define.

The HDF Tag Space

As discussed in Chapter Chapter, "Basic Sructure of HDF Files," 16 bits are allotted for an HDF
tag number. This provides for 65535 possible tags, ranging from 1 to 65535; zero (0) is not used.
Thistag space is divided into three ranges:

1-32767 Reserved for NCSA-supported tags
32768 — 64999 Set aside as user-definable tags
65000 — 65535 Reserved for expansion of the format

No restrictions are placed on the user-definable tags. Note that tags from this range are not
expected to be unique across user-developed HDF applications.

The rest of this chapter is devoted to the NCSA-supported basic tags in the range 1 (0x0001) to
16383 (0x3FFF). The next chapter, Extended Tags and Special Elements, is devoted to NCSA-
supported extended tags in the range 16384 (0x4000) to 32767 (Ox7FFF).

Tag Specifications

The following pages contain the specifications of the NCSA-supported basic tagsin HDF Version
4.1r3. Each entry contains the following information:

» Thetag (in capital lettersin the left margin)
» Thefull name of the tag (on the first line to the right)

» Thetype and, where possible, the amount of datain the corresponding data element (on the
second line to the right)

When the data element is a variabl e-sized data structure—such as text, a string, or avari-
able-sized array—the amount of data cannot be specified exactly. Where possible, aformula
is provided to estimate the amount of data. The string » bytes appears when neither the
size nor the structure of the data element can be specified.

June 25, 2008 9-1

The HDF Group

» The tag number in decimal/(hexadecimal) (on the third line to the right)
» A diagram illustrating the structure of the tag and its associated data

Since all DDs that point to a data element contain data length and data offset fields, these
fields are not included in the illustrations.

A full specification of the tag, including a description of the data element and a discussion

of itsintended use.
Tags are roughly grouped according to the roles they play:

 Utility tags

» Annotation tags

» Compression tags

* Raster Image tags

» Composite image tags

» Vector image tags

» Scientific data set tags

* Vsettags

» Obsolete tags

» Extended tags (see Chapter 10, "Extended Tags and Special Elements)

These groupingsimply ageneral context for the use of each tag; they are not meant to restrict their
use.

Please note Section 9.3.9, "Obsolete Tags." These tags have fallen out of use with the continuing
development of HDF. They are still recognized by the HDF library, but users should not write new
objects using them; they may eventually be dropped from the HDF specification.

In the following discussion, the ground symbol indicates that the DD for this tag includes no
pointer to adata element. |.e., thereis never adata element associated with the tag.

< This symbol indicates that thereis
z'_J: no da%element associated with the tag.

9-2 June 25, 2008

HDF Specification and Developer’s Guide

9.3.1 Utility Tags

DFTAG_NULL No data
0 bytes
1 (0x0001)

DFTAG NULL ref no —1

ref no Reference number (16-bit integer; always 0)

This tag is used for place holding and to fill empty portions of the data description block. The
length and offset fields (nhot shown) of a pFTAG NULL DD must be zero (0).

DFTAG_VERSION Library version number
12 bytes plus the length of a string
30 (Ox001E)
DFTAG VERSION ref no
majorv minorv release string
ref no Reference number (16-bit integer)
majorv Major version number (32-bit integer)
minorv Minor version number (32-bit integer)
release Release number (32-bit integer)
string Non-null terminated ASCI| string (any length)

The data portion of this tag contains the complete version number and a descriptive string for the
latest version of the HDF library to write to thefile.

June 25, 2008 9-3

The HDF Group

DFTAG_NT Number type
4 bytes
106 (Ox006A)
DFTAG NT ref no
version type width class
ref no Reference number (16-bit integer)
version Version number of NT information (8-bit integer)
type Unsigned integer, signed integer, unsigned character, character, floating
point, double precision floating point (8-bit code)
width Number of bits, all of which are assumed to be significant (8-bit code)
class A generic value, with different interpretations depending on type: floating

point, integer, or character (8-hit code)
Several values that may be used for each of the three typesin the field CLASS are listed in Table

9a. Thisis not an exhaustive list.

TABLE 9a

Number Type Values

Type

Mnemonic

Value

Floating point

DFNTF NONE
DEFNTF_TEEE
DENTF_VAX
DENTF_CRAY
DENTF_PC
DFNTF_CONVEX

Integer

DENTT_MBO
DEFNTI_IRO
DENTI_VBO

Character

DFNTC ASCII1
DFNTC_EBCDOC
DFNTC BYTE

o N | N RPR[o W N

The number type flag is used by any other element in the file to indicate specifically what a
numeric value looks like. Other tag types should contain a reference number pointer to an
DFTAG_NT instead of containing their own number type definitions.

The version field allows expansion of the number type information, in case some future number
types cannot be described using the fields currently defined. Successive versions of the DFTAG NT

94

June 25, 2008

HDF Specification and Developer’s Guide

may be substantially different from the current definition, but backward compatibility will be
maintained. The current DFTAG_NT version number is 1.

DFTAG MT Machine type
0 bytes
107 (0x006B)

DFTAG MT double | float int char ——AL
double Specifies method of encoding double precision floating point (4-bit code)
float Specifies method of encoding single precision floating point (4-bit code)
int Specifies method of encoding integers (4-bit code)
char Specifies method of encoding characters (4-bit code)

DFTAG MT specifies that all unconstrained or partially constrained values in this HDF file are of
the default type for that hardware. When DFTAG MT is set to vax, for example, al integers will be
assumed to be in VAX byte order unless specifically defined otherwise with a pFTAG NT tag.
Note that all of the headers and many tags, the whole raster image set for example, are defined
with bit-wise precision and will not be overridden by the bFTaG MT Setting.

For brTac_MT, the reference field itself is the encoding of the bFTaG MT information. The refer-
ence field is 16 bits, taken as four groups of four bits, specifying the types for double-precision
floating point, floating point, integer, and character respectively. This allows 16 generic specifica
tions for each type.

To the user, these will be defined constants in the header file hdf.h, specifying the proper descrip-
tive numbers for Sun, VAX, Cray, Convex, and other computer systems. If there is no DFTAG MT
in afile, the application may assume that the datain the file has been written on the local machine;
any portability problems must be addressed by the user. For this reason, we recommend that all
HDF files contain aDFTAG MT for maximum portability.

Currently available data encodings are listed in Table 9a.

TABLE 9a

Available Machine Types

Type Available Encodings

Double precision floating point |EEE64
VAX64
CRAY 128

Floating point |IEEE32
VAX32
CRAY64

Integers VAX32
Intel 16

Intel 32
Motorola32
CRAY 64

Characters ASCII
EBCDIC

June 25, 2008 9-5

The HDF Group

New encodings can be added for each data type as the need arises.

9.3.2 Annotation Tags

DFTAG_FID File identifier
String
100 (0x0064)

DFTAG FID ref no

character string

ref no Reference number (16-bit integer)

character string

Non-null terminated ASCI| text (any length)

Thistag points to a string which the user wants to associate with thisfile. The string is not null ter-
minated. The string is intended to be a user-supplied title for thefile.

DFTAG_FD File description
Text
101 (0x0065)

DFTAG FD ref no ~

T

text block

ref no Reference number (16-bit integer)
text _block Non-null terminated ASCII text (any length)

This tag points to a block of text describing the overal file contents. The text can be any length.
Theblock is not null terminated. The text is intended to be user-supplied comments about thefile.

9-6 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG TID Tag identifier
String
102 (0x0066)

DFTAG_TID tag

character string

tag Tag number to which this tag refers (16-bit integer)

character string

Non-null terminated ASCI| text (any length)

The data for this tag is a string that identifies the functionality of the tag indicated in the space
normally used for the reference number. For example, the tag identifier for bFTAG_TID might
point to data that reads "tag identifier."

Many tags are identified in the HDF specification, so it is usually unnecessary to include their
identifiersin the HDF file. But with user-defined tags or special-purpose tags, the only way for a
human reader to diagnose what kind of datais stored in afile is to read tag identifiers. Use tag
descriptions to define even more detail about your user-defined tags.

Note that with this tag you may make use of the user-defined tags to check for consistency.
Although two persons may use the same user-defined tag, they probably will not use the same tag
identifier.

DFTAG_TD Tag description
Text
103 (0x0067)

DFTAG TD tag

text block

tag Tag number to which this tag refers (16-bit integer)
text _block Non-null terminated ASCII text (any length)

The data for thistag is a text block which describes in relative detail the functionality and format
of the tag which isindicated in the space normally occupied by the reference number. Thistagis
intended to be used with user-defined tags and provides a medium for users to exchange files that
include human-readable descriptions of the data.

It isimportant to provide everything that a programmer might need to know to read the data from
your user-defined tag. At the minimum, you should specify everything you would need to know in
order to retrieve your data at alater date if the original program were lost.

June 25, 2008 9-7

The HDF Group

DFTAG_DIL Dataidentifier label
String
104 (0x0068)

DFTAG DIL ref no

obj tag obj ref no character string

ref no Reference number (16-bit integer)
obj tag Tag number of the data to which thislabel applies (16-bit integer)

obj ref no Reference number of the data object to which this label applies (16-bit inte-
ger)

character string

Non-null terminated ASCI| text (any length)

TheprTac DIL dataobject consists of atag/ref followed by a string. The string serves as alabel
for the dataidentified by the tag/ref.

By including DFTAG DIL tags, you can give a data object a label for future reference. For exam-
ple, DFTAG DIL can be used to assign titles to images.

DFTAG DIA Dataidentifier annotation
Text
105 (0x0069)

DFTAG DIA ref no
obj_tag obj ref no text block
ref no Reference number (16-bit integer)

obj tag Tag number of the data to which this annotation applies (16-bit integer)

obj ref no Reference number of the data abject to which this annotation applies (16-bit
integer)
text_block Non-null terminated ASCII text (any length)

TheprTaG DIA data object consists of atag/ref followed by atext block. The text block serves
as an annotation of the data identified by the tag/ref.

With aDpFTAG DIA tag, any data object can have alengthy, user-written description. This can be
used to include comments about images, data sets, source code, and so forth.

9-8

June 25, 2008

HDF Specification and Developer’s Guide

9.3.3 Compression Tags

DFTAG RLE Run length encoded data
0 bytes
11 (0x000B)

DFTAG RLE ref no —1

ref no Reference number (16-bit integer)

Thistag is used in the bFTAG_1D compression field and in other places to indicate that an image
or section of datais encoded with a run-length encoding scheme. The RLE method used is byte-
wise. Each run is preceded by a count byte. The low seven bits of the count byte indicate the num-
ber of bytes (n). The high bit of the count byte indicates whether the next byte should be replicated
n times (high bit = 1), or whether the next n bytes should be included asiis (high bit = 0).

See also: DFTAG_ID in“Raster Image Tags’
DFTAG_NDG in “Scientific Data Set Tegs’
DFTAG_IMC IMCOMP compressed data

0 bytes
12 (0x000C)

DFTAG_IMC ref no —1

ref no Reference number (16-bit integer)

Thistag is used in the bFTAG_1D compression field and in other places to indicate that an image
or section of data is encoded with an IMCOMP encoding scheme. This scheme is a 4:1 aerial
averaging method which is easy to decompress. It counts color frequencies in 4x4 squares to opti-
mize color sampling.

See also: DFTAG_ID in“Raster Image Tags’
DFTAG_NDG in “Scientific Data Set Tegs’

June 25, 2008 9-9

The HDF Group

DFTAG_JPEG 24-bit JPEG compression information
? bytes
13 (0x000D)

DFTAG JPEG ref no —1

ref no Reference number (16-bit integer)

Thistag isaflag indicating that the corresponding compressed object is a 24-bit JPEG image. The
DFTAG JPEG flag and the corresponding DETaG ¢ object will share the same reference number.

DFTAG_GREY JPEG 8-hit JPEG compression information
? bytes
14 (OxOO0OQE)
DFTAG _GREYJPEG ref no —1
ref no Reference number (16-bit integer)

Thistag is aflag indicating that the corresponding compressed object is an 8-bit JPEG image. The
DFTAG GREYJPEG flag and the corresponding DFTac c1 object will share the same reference num-
ber.

9-10 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_CI Compressed raster image
? bytes
303 (0x012F

DFTAG CI ref no ~

ref no Reference number (16-bit integer)

This tag points to a stream of bytes that make up a compressed image. The type of compression,
together with any necessary parameters, are stored as a separate data object. For example, if
DFTAG_JPEG is contained in the same raster image group, the stream of bytes contains the JFIF
header and all further datafor the JPEG image. Other parameters are stored in the DFTAG JPEG
object.

The JFIF header isthe header data stored in a JFIF (JPEG File Interchange Format) file up to the
start-of-frame parameter. See the document JPEG File Interchange Format® for a detailed
description of the file format.

1. The document JPEG File Interchange Format has not been published in aregular periodical.
An electronic copy is available as a Postscript file from NCSA's FTP server
ftp.ncsa.uiuc.eduinthe same directory as this document, NCSA HDF Specification and
Developer’s Guide. Printed copies are available from C-Cube Microsystems, 1778 McCarthy
Boulevard, Milpitas, CA 95035 (phone: 408-944-6300. Fax: 408-944-6314. Current email con-
tact: eric@c3.pla.ca.us).

June 25, 2008 o1

The HDF Group

9.3.4 Raster Image Tags

n* 4 bytes (where n is the number of data objects in the group)

tag 2

ref 2

DFTAG _RIG Raster image group
306 (0x0132)
DFTAG RIG ref no
tag 1 ref 1
ref no Reference number (16-bit integer)
tag n Tag number for n" member of the group (16-bit integer)
ref n

The RIG data element contains the tag/refs of all the data objects required to display a raster
image correctly. Application programs that deal with RIGs should read all the elements of aRIG
and process those identifiers which it can display correctly. Even if the application cannot process

Reference number for nth member of the group (16-bit integer)

all of the objects, the objects that it can process will be usable.

Table 9b lists the tags that may appear inan RIG

TABLE 9

Available RIG Tags

Tag Description
DFTAG_ID Image dimension record
DFTAG_RI Raster image
DFTAG_XYP X-Y position
DFTAG_LD LUT dimension
DFTAG_LUT Color lookup table
DFTAG_MD Matte channel dimension
DFTAG_MA Matte channel
DFTAG_CCN Color correction
DFTAG_CFM Color format
DFTAG_AR Aspect ratio

Example

DFTAG_ID,DFTAG RI,DFTAG_ LD, DFTAG_ LUT

Assume that an image dimension record, a raster image, an LUT dimension record, and an LUT
are al required to display a particular raster image correctly. These data objects can be associated
in an RIG so that an application can read the image dimensions then the image. It will then read

the lookup table and display the image.

9-12

June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_ID Image dimension
20 bytes
300 (0x012C)

DFTAG LD LUT dimension
20 bytes
307 (0x0133)

DFTAG_MD Matte dimension
20 bytes
308 (0x0134)

DFTAG ID ref no
x dim y dim DFTAG_NT NT ref §
§ elements interlace comp_tag comp ref
ref no Reference number (16-bit integer)
x dim Length of x (horizontal) dimension (32-bit integer)
y_dim Length of y (vertical) dimension (32-bit integer)
NT ref Reference number for number type information

elements Number of elements that make up one entry (16-bit integer)

interlace Type of interlacing used (16-bit integer)

0 The components of each pixel are together.
1 Color elements are grouped by scan lines.
2 Color elements are grouped by planes.

comp tag Tag which tells the type of compression used and any associated parameters
(16-bit integer)

comp ref Reference number of compression tag (16-bit integer)
These three dimension records have exactly the same format; they specify the dimensions of the

2-dimensional arrays after which they are named and provide information regarding other
attributes of the datain the array:

* DFTAG_ID specifiesthe dimensions of abrFTAG RI.

* DFTAG_LD specifiesthe dimensions of abFTAG LUT.

* DFTAG_MD specifiesthe dimensions of aDFTAG MA.
Other attributes described in the image dimension record include the number type of the elements,
the number of elements per pixel, the interlace scheme used, and the compression scheme used (if
any).

June 25, 2008 9-13

The HDF Group

For example, a512x256 row-wise 24-bit raster image with each pixel stored as RGB bytes would
have the following values:

x dim 512
y_dim 256
NT ref UINTS8

elements 3 (3 elements per pixel: e.g., R, G and B)
interlace 0 (RGB values not separated)
comp_tag 0 (no compression is used)

The diagram above illustrates the tag DrFTaG ID. The DFTAG LD and DFTAG MD diagrams
would be identical except for the tag name in the fist cell, whch would be prFTaG 1D and
DFTAG_MD, respectively.

DFTAG RI Raster image
xdim* ydim* elements* N'Tsi ze bytes (xdim, ydim, elements,
and NTsize are specified in the corresponding DFTAG _ID)
302 (0x012E)

DFTAG_R I re f_ no

-

ref_no Reference number (16-bit integer)

This tag points to raster image data. It is stored in row-mgjor order and must be interpreted as
specified by interlace intherelated DFTAG ID.

9-14 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_LUT Lookup table
xdim* ydim* elements* N'Tsi ze bytes (xdim, ydim, elements,
and NTsize are specified in the corresponding DFTAG _ID)
301 (0x012D)

DFTAG_LUT ref no
P0_0 PO 1 PO m
P10 p1 1 PI m
OR

Pn 0 Pn 1 Pn m
PO 0 P10 Pn 0
PO 1 P1_1 Pn 1
PO m P1_m Pn m

ref no Reference number (16-bit integer)

Pn m mt" value of parameter n (size is specified by the bFTaG NT in the corre-

sponding DFTAG_LD)

TheprTAG_LUT, sometimes called a palette, is used to assign colors to data values. When a raster
image consists of data values which are going to be interpreted through an LUT capability, the
DFTAG_LUT should be loaded along with the image.

The most common lookup table is the RGB lookup table which will have X dimension = 256 and
Y dimension = 1 with three elements per entry, one each for red, green, and blue. The interlace
will be either 0, where the LUT values are given RGB, RGB, RGB, ..., or 1, wherethe LUT values
are given as 256 reds, 256 greens, 256 blues.

June 25, 2008 9-15

The HDF Group

DFTAG_MA Matte channel
xdim* ydim* elements* N'Tsi ze bytes (xdim, ydim, elements,
and NTsize are specified in the corresponding DFTAG _ID)
309 (0x0135)

DFTAG_MA ref no

S

ref no Reference number (16-bit integer)

ThebrTaG Ma data object contains transparency data which can be used to facilitate the overlay-
ing of images. The data consists of a 2-dimensional array of unsigned 8-bit integers ranging from
0to 255. Each point in aDFTAG Ma indicates the transparency of the corresponding point in aras-
ter image of the same dimensions. A value of O indicatesthat the data at that point isto be consid-
ered totally transparent, while a value of 255 indicates that the data at that point is totally opaque.
It is assumed that a linear scale applies to the transparency values, but users may opt to interpret
the datain any way they wish.

9-16 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_CCN Color correction
52 bytes (usualy)
310 (0x0136)
DFTAG CCN ref no
gamma red x red y red z §
§ green x green y green z
§ blue x blue y blue z
§ white x white y white z
ref no Reference number (16-bit integer)
gamma Gamma parameter (32-bit |EEE floating point)

red x, red y,and red z
Red x, y, and z correction factors (32-bit | EEE floating point)

green X, green_y, and green z
Green X, y, and z correction factors (32-bit | EEE floating point)

blue x, blue y, and blue z
Blue x, y, and z correction factors (32-bit |EEE floating point)

white x, white y, and white z
White x, y, and z correction factors (32-bit | EEE floating point)

Color correction specifies the Gamma correction for the image and color primaries for the genera-

tion of theimage.

June 25, 2008

9-17

The HDF Group

DFTAG_CFM Color format
String
311 (0x0137)

DFTAG CFM ref no

character string

ref no Reference number (16-bit integer)
character stringNon-null terminated ASCII string (any length)

The color format data element contains a string of uppercase characters that indicates how each
element of each pixel in araster image isto be interpreted. Table 9c lists the avail able col or format
strings.

TABLE 9c Color Format Sring Values
String Description

VALUE Pseudo-color, or just avalue associated with the pixel

RGB Red, green, blue model

XYZ Color-space model

HSV Hue, saturation, value model

HSI Hue, saturation, intensity

SPECTRAL Spectral sampling method
DFTAG_AR Aspect ratio

4 bytes
312 (0x0138)
DFTAG AR ref no
ratio
ref no Reference number (16-bit integer)
ratio Ratio of width to height (32-bit | EEE float)
The datafor thistag is the visual aspect ratio for thisimage. The image should be visually correct
if displayed on a screen with this aspect ratio. The data consists of one floating-point number
which represents width divided by height. An aspect ratio of 1.0 indicates a display with perfectly
square pixels; 1.33 is astandard aspect ratio used by many monitors.
9-18 June 25, 2008

HDF Specification and Developer’s Guide

9.3.5 Composite Image Tags

DFTAG_DRAW Draw
n* 4 bytes (where n is the number of data objects that make up
the composite image)
400 (0x0190)

DFTAG DRAW ref _no
tag 1 ref 1 tag 2 ref 2 C §
ref no Reference number (16-bit integer)
tag n Tag number of the n" member of the draw list (16-bit integer)
ref n Reference number of the nt member of the draw list (16-bit integer)

The prTAG DRAW data element consists of alist of tag/refs that define a composite image. The
data objects indicated should be displayed in order. This can include several RIGs which areto be
displayed simultaneously. It can also include vector overlays, like DFTAG_T14, which are to be
placed on top of an RIG.

Some of the elementsin a DFTAG DRaw list may be instructions about how images are to be
composited (XOR, source put, anti-aliasing, etc.). These are defined as individual tags.

DFTAG_XYP XY position
8 bytes
500 (0Ox01F4)

DFTAG _XYP ref no ~]
x Yy
ref no Reference number (16-bit integer)
x X-coordinate (32-bit integer)
y Y-coordinate (32-bit integer)

DFTAG_XYP isused in composites and other groups to indicate an XY position on the screen. For
this, (0,0) isthe lower left corner of the print area. X isthe number of pixelsto the right along the
horizontal axisand Y isthe number of pixelsup on the vertical axis. The X and Y coordinates are
two 32-bit integers.

For example, if DFTAG XYP is present in aDFTAG_RIG, the DFTAG XxYP specifies the position of
the lower left corner of the raster image on the screen.

June 25, 2008 9-19

The HDF Group

See also: DFTAG_DRAW in this section

9.3.6 Vector Image Tags

DFTAG_T14 Tektronix 4014
? bytes
602 (0x25A)

DFTAG T14 ref no \

AN

ref no Reference number (16-bit integer)

Thistag points to a Tektronix 4014 data stream. The bytes in the data field, when read and sent to
a Tektronix 4014 terminal, will display avector image. Only the lower seven bits of each byte are
significant. There are no record markings or non-Tektronix codes in the data.

DFTAG_T105 Tektronix 4105
? bytes
603 (0x25B)

DFTAG _T105 ref no \

AN

ref no Reference number (16-bit integer)

Thistag points to a Tektronix 4105 data stream. The bytes in the data field, when read and sent to
a Tektronix 4105 terminal, will be displayed as a vector image. Only the lower seven bits of each
byte are significant. Some terminal emulators will not correctly interpret every feature of the Tek-
tronix 4105 terminal, so you may wish to use only a subset of the available Tektronix 4105 vector
commands.

9-20

June 25, 2008

HDF Specification and Developer’s Guide

9.3.7 Scientific Data Set Tags

DFTAG_NDG Numeric data group
n* 4 bytes (where n is the number of data objectsin the group.)
720 (0x02D0)

DFTAG NDG ref no
tag 1 ref 1 tag 2 ref 2 T §
ref no Reference number (16-bit integer)
tag n Tag number of nt" member of the group (16-bit integer)
ref n Reference number of n™ member of the group

(16-bit integer)

The NDG data contains alist of tag/refs that define a scientific data set. DFTAG NDG supersedes
the old DFTAG _sDG, which became obsolete upon the release on HDF Version 3.2. A more com-
plete explanation of the relationship between DFTAG NDG and DFTAG_SDG can be found in Chap-
ter 5, “ Sets and Groups.”

All of the members of an NDG provide information for correctly interpreting and displaying the
data. Application programs that deal with NDGs should read all of the elements of a NDG and
process those data objects which it can use. Even if an application cannot process all of the
objects, the objects that it can understand will be usable.

Table 9d lists the tags that may appear in an NDG,

TABLE od Available NDG Tags
Tag Description
DFTAG_SDD Scientific data dimension record (rank and dimensions)
DFTAG SD Scientific data
DFTAG_SDS Scales
DFTAG SDL Labels
DFTAG_SDU Units
DFTAG_SDF Formats
DFTAG SDM Maximum and minimum values
DFTAG SDC Coordinate system
DFTAG_CAL Calibration information
DFTAG _FV Fill value
DFTAG LUT Color lookup table
DFTAG LD L ookup table dimension record
DFTAG SDLNK Link to old-style DFTAG_SDG

June 25, 2008 9-21

The HDF Group

Example

DFTAG_SDD, DFTAG_SD, DFTAG_SDM

Suppose that an NDG contains a dimension record, scientific data, and the maximum and mini-
mum values of the data. These data objects can be associated in an NDG so that an application can
read the rank and dimensions from the dimension record and then read the data array. If the appli-

cation needs maximum and minimum values, it will read them as well.
See also: Chapter 5, "Sets and Groups’

DFTAG_SDD

Scientific data dimension record
6 + 8*rank bytes
701 (0x02BD)

DFTAG _SDD

ref no

rank

dim 1

dim 2

dim n

<

DFTAG NT

data NT ref

<

DFTAG NT

scale NT ref 1

=

DFTAG_NT

scale NT ref 2

DFTAG_NT

scale NT ref n

ref no Reference number (16-bit integer)

rank Number of dimensions (16-bit integer)

dim n Number of values along the nt" dimension (32-bit integer)

data NT ref Reference number of DFTAG NT for data
(16-bit integer)

scale NT ref n

Reference number for prTac NT for the scale for the nt™ dimension (16-bit

integer)

This record defines the rank and dimensions of the array in the scientific data set. For example, a
DFTAG_sDD for a 500x600x3 array of floating-point numbers would have the following values

and components.
* Rank: 3

* Dimensions: 500, 600, and 3.

e OnedataNT
* Threescale NTs

9-22

June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_SD Scientific data
NTsize* x*y* z*... bytes (where NTsize isthe size of the
dataNT specified in the corresponding prFTaG_spp and
X, Y, Z, €tc. are the dimension sizes)
702 (0x02BE)

DFTAG_SD ref no \
|
I

1.2 3 8. 1

2.4 2 6.

1.7 2.0 5. 2

4.3 3.6 7.1 6.2

ref no Reference number (16-bit integer)

This tag points to an array of scientific data. The type of the data may be specified by an
DFTAG_NT included with the SDG. If there is no bFTAG NT, the type of the data is floating-point
in standard | EEE 32-bit format. The rank and dimensions must be stored as specified in the corre-
sponding DFTAG_spD. The diagram above shows a 3-dimensional data array.

June 25, 2008 9-23

The HDF Group

DFTAG_SDS Scientific data scales
rank + NTsizeO*x + NTsizel*y +NTsize2*z +... bytes (where rank
isthe number of dimensions, X, v, z, etc. are the dimension
sizes, and NTsize# are the sizes of each scale NT from the
corresponding DFTAG_SDD)
703 (0x02BF)

DFTAG SDS ref no
is 1 is 2 is 3 - is n §
§ scale 1 scale 2 scale 3 ... scale n
ref no Reference number (16-bit integer)
is n A flag indicating whether a scale exists for the n" dimension (8-bit integer;
0 or 1)
scale n List of scale values for the n dimension (type specified in corresponding
DFTAG_SDD)

This tag points to the scales for the data set. The first n bytes indicate whether there is a scale for
the corresponding dimension (1 =yes, o =no). Thisis followed by the scale values for each
dimension. The scale consists of a ssimple series of values where the number of values and their
types are specified in the corresponding DFTAG_SDD.

DFTAG_SDL Scientific data labels
? bytes
704 (0x02C0)

DFTAG SDL ref no
label 1 label 2 label 3 Lo label n
ref no Reference number (16-bit integer)

label n Null terminated ASCII string (any length)

This tag points to a list of labels for the data in each dimension of the data set. Each label is a
string terminated by a null byte (0).

9-24 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_SDU Scientific data units
? bytes
705 (0x02C1)

DFTAG_SDU ref no
unit 1 unit 2 unit 3 . unit n
ref no Reference number (16-bit integer)
unit n Null terminated ASCII string (any length)

Thistag pointsto alist of strings specifying the units for the data and each dimension of the data
set. Each unit's string is terminated by a null byte (0).

DFTAG_SDF Scientific data format
? bytes
706 (0x02C2)

DFTAG SDF ref no
format 1 format_2 | format 3 R format n
ref no Reference number (16-bit integer)

format n Null terminated ASCII string (any length)

This tag points to a list of strings specifying an output format for the data and each dimension of
the data set. Each format string is terminated by anull byte (0).

June 25, 2008 9-25

The HDF Group

DFTAG_SDM Scientific data max/min
8 bytes
707 (0x02C3)

DFTAG SDM ref no
max min
ref no Reference number (16-bit integer)
max Maximum value (type is specified by the data NT in the corresponding
DFTAG_SDD)
min Minimum value (type is specified by the data NT in the corresponding
DFTAG_SDD)

Thisrecord contains the maximum and minimum data values in the data set. The type of max and
min are specified by the dataNT of the corresponding DFTAG _SDD.

DFTAG_SDC Scientific data coordinates
? bytes
708 (0x02C4)

DFTAG_SDC ref no
string
ref no Reference number (16-bit integer)
string Null terminated ASCII string (any length)

This tag points to a string specifying the coordinate system for the data set. The string is termi-
nated by a null byte.

9-26 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_SDLNK Scientific data set link
8 bytes
710 (0x02C6)

DFTAG_SDLINK ref no
DFTAG NDG NDG ref DFTAG_SDG SDG ref
ref no Reference number (16-bit integer)

DFTAG NDG NDG tag (16-bit integer)
NDG_ref NDG reference number (16-bit integer)
DFTAG _SDG SDG tag (16-bit integer)
SDG_ref SDG reference number (16-bit integer)

The purpose of this tag is to link together an old-style DFTAG sDG and a DFTAG NDG in cases
where the NDG contains 32-bit floating point data and is, therefore, equivalent to an old SDG

See also: Chapter 5, "Sets and Groups’
DFTAG_CAL Calibration information
36 bytes

731 (0x02DB)

DFTAG CAL ref no
cal cal err off off err data type
ref no Reference number (16-bit integer)
cal Calibration factor (64-bit | EEE float)
cal err Error in calibration factor (64-bit |EEE float)
off Calibration offset (64-bit IEEE float)

off err Error in calibration offset (64-bit |EEE float)

data type Congtant representing the effective data type of the calibrated data (32-bit
integer)

Thistag points to a calibration record for the associated bFTAG sD. The data can be calibrated by
first multiplying by the ca1 factor, then adding the off value. Also included in the record are
errors for the calibration factor and offset and a constant indicating the effective data type of the
calibrated data. Table Qe liststhe available data type values.

June 25, 2008 9-27

The HDF Group

TABLE 9% Available Calibrated Data Types

Data Type Description
DFTNT INT8 Signed 8-hit integer
DFTNT UINTS8 Unsigned 8-bit integer
DFTNT INT16 Signed 16-hit integer
DFTNT UINT16 Unsigned 16-bit integer
DFTNT INT32 Signed 32-hit integer
DFTNT UINT32 Unsigned 32-bit integer
DFTNT FLOAT32 32-bit floating point
DFTNT FLOAT64 64-bit floating point

DFTAG_FV Fill value
? bytes (size determined by size of data NT in corresponding
DFTAG_SDD)

732 (0x02DC)

DFTAG_FV ref no ~

T

fill value

ref no Reference number (16-bit integer)

fill value Value representing unset data in the corresponding DFTAG SD (Size deter-
mined by size of dataNT in corresponding DFTAG _SDD)

This tag points to a value which has been used to indicate unset values in the associated
DFTAG_SD. The number type of the value (and, therefore, its size) is given in the corresponding
DFTAG_SDD.

9-28 June 25, 2008

HDF Specification and Developer’s Guide

9.3.8 Vset Tags
DFTAG_ VG Vgroup
14 + 4*nelt + namelen + classen bytes
1965 (0x07AD)
DFTAG VG ref no
nelt tag 1 tag 2 Coe tag n i?
5; ref 1 ref 2 s ref n i?
i; namelen name classlen class i?
i; extag exref version more
ref no Reference number (16-bit integer)

nelt
tag n
ref n
namelen
name
classlen
class
extag
exref
version

more

Number of elementsin the Vgroup (16-bit integer)

Tag of the n" member of the V group (16-bit integer)

Reference number of the n member of the V group (16-bit integer)
Length of the namefield (16-bit integer)

Non-null terminated ASCI| string (Iength given by namelen)
Length of the classfield (16-bit integer)

Non-null terminated ASCI| string (length given by classlen)
Extension tag (16-bit integer)

Extension reference number (16-bit integer)

Version number of DFTAG_vG information (16-bit integer)

Unused (2 zero bytes)

DFTAG_VG provides a general-purpose grouping structure which can be used to impose a hierar-
chical structure on the tagsin the group. Any HDF tag may be incorporated into a V group, includ-
ing other DFTAG VG tags.

See dso:

“Vsets, Vdatas, and Vgroups' in Chapter 5, "Sets and Groups’
NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier
HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x

June 25, 2008

9-29

The HDF Group

DFTAG_VH V data description
22 + 10*nfields + Sfldnmlen n + namelen + classlen bytes
1962 (OxQ7AA)
DFTAG_VH re f_ no
interlace nvert ivsize nfields §
§ type 1 type 2 SRR type n §
§ isize 1 isize 2 e isize n §
§ offset 1 offset 2 ER offset n §
§ order 1 order 2 . order n §
fldnmlen 1 fldnm 1 fldnmlen 2 fldnm 2 §
§ o fldnmlen n fldmm n
namelen name classlen class

§ extag exref version more

ref no Reference number (16-bit integer)

interlace Constant indicating interlace scheme used (16-bit integer)

nvert Number of entriesin Vdata (32-bit integer)

ivsize Size of one Vdata entry (16-hit integer)

nfields Number of fields per entry in the Vdata (16-bit integer)

type n Constant indicating the data type of the nt field of the Vdata (16-bit integer)

9-30 June 25, 2008

HDF Specification and Developer’s Guide

isize n Size in bytes of the n field of the Vdata (16-bit integer)
offset n Offset of the n* field within the VVdata (16-bit integer)
order n Order of the nt" field of the VVdata (16-bit integer)
fldnmlen n Length of the n field name string (16-bit integer)

fldnm n Non-null terminated ASCII string (length given by corresponding
fldnmlen n)

namelen Length of the namefield (16-bit integer)
name Non-null terminated ASCI| string (Iength given by namelen)
classlen Length of the classfield (16-bit integer)

class Non-null terminated ASCII string (length given by classlen)
extag Extension tag (16-bit integer)

exref Extension reference number (16-bit integer)

version Version number of DFTAG_VH information (16-bit integer)
more Unused (2 zero bytes)

DFTAG_VH provides all the information necessary to process a DFTAG _VS.
See also: DFTAG_VS (this section)
“Vsets, Vdatas, and Vgroups’ in Chapter 5, " Sets and Groups”
NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier
HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x

June 25, 2008 9-31

The HDF Group

DFTAG_ VS Vdata
nfields

nvert * E (isize n * order n) byteswhere

n=1

nvert, isize n,and order n arespecifiedinthe
corresponding DFTAG VH
1963 (0x07AB)

DFTAG VS ref no
vdata
ref no Reference number (16-bit integer)
vdata Data block interpreted according to the corresponding DFTAG VH

(value of the summation above, where nvert, isize n, and order n are
specified in the correspondingDFTAG VH)

DFTAG_VS contains ablock of datawhich isto be interpreted according to the information in the
corresponding DFTAG _VH.

See also: DFTAG_VH (this section)
“Vsets, Vdatas, and Vgroups’ in Chapter 5, " Sets and Groups”
NCSA HDF Vsets, Version 2.0 for HDF Versions 3.2 and earlier
HDF User’s Guide and HDF Reference Manual for Versions 3.3 and 4.x

9-32

June 25, 2008

HDF Specification and Developer’s Guide

9.3.9 Obsolete Tags

DFTAG_ID8 Image dimension-8
4 bytes
200 (0x00C8)

DFTAG ID8 ref no
x dim y_dim
ref no Reference number (16-bit integer)
x dim Length of x dimension (16-bit integer)
y_dim Length of y dimension (16-bit integer)

The data for this tag consists of two 16-bit integers representing the width and height of an 8-bit
raster image in bytes.

This tag has been superseded by DFTAG 1ID.
DFTAG_IP8 Image palette-8

768 bytes
201 (0x00C9)

DFTAG_IPS8 ref no \
Red Green Blue
RO GO BO
R1 G1 B1
R255 G255 B255
ref no Reference number (16-bit integer)

Tableentries 256 triples of 8-bit integers

The data for thistag can be thought of as atable of 256 entries, each containing one value for red,
green, and blue. Thefirst triple is palette entry 0 and the last is palette entry 255.

Thistag has been superseded by DFTAG LUT.

June 25, 2008 9-33

The HDF Group

DFTAG_RI8 Raster image-8
xdim*ydim bytes (where xdim and ydim are the dimensions
specified in the corresponding DFTAG _1D8)
202 (0x00CA)

DFTAG_R I8 re f_ no ~

ref no Reference number (16-bit integer)
Imagedata 2-dimensional array of 8-hit integers

The data for this tag is a row-wise representation of the elementary 8-bit image data. The datais
stored width-first (i.e., row-wise) and is 8 bits per pixel. The first byte of data represents the pixel
in the upper-left hand corner of the image.

Thistag has been superseded by DFTAG RI.
DFTAG_CI8 Compressed image-8

? bytes
203 (0x00CB)

DFTAG CI8 ref no

compressed _image

ref no Reference number (16-bit integer)
compressed_imageSeries of run-length encoded bytes

The datafor thistag is a row-wise representation of the elementary 8-bit image data. Each row is
compressed using the following run-length encoding where n is the lower seven bits of the byte.
The high bit indicates whether the following n bytes will be reproduced exactly (high bit = 0) or
whether the following byte will be reproduced n times (high bit = 1). Since prTaG c18 and
DFTAG_RI8 are basically interchangeable, it is suggested that you not have a brTAG c18 and a
DFTAG_RI8 with the same reference number.

Thistag has been superseded by DFTAG RLE.

9-34 June 25, 2008

HDF Specification and Developer’s Guide

DFTAG_1I8 IMCOMP image-8
? bytes
204 (0x00CC)

DFTAG_I I8 re f_ no

compressed _image

ref no Reference number (16-bit integer)

compressed_image

Compressed image data
The datafor thistag is a4:1 compressed 8-bit image, using the IMCOM P compression scheme.
This tag has been superseded by DFTAG IMC.
DFTAG_SDG Scientific data group

n*4 bytes (where n is the number of data objectsin the group)
700 (0x02BC)

DFTAG SDG ref no
tag 1 ref 1 tag 2 ref 2 C e §
§ tag n ref n
ref no Reference number (16-bit integer)
tag n Tag number of nt™ member of the group (16-bit integer)
ref n Reference number of n™ member of the group (16-bit integer)

The SDG data element contains a list of tag/refs that define a scientific data set. All of the mem-
bers of the group provide information required to correctly interpret and display the data. Applica-
tion programs that deal with SDGs should read all of the elements of an SDG and process those
which it can use. Even if an application cannot process all of the objects, the objects that it can
understand will be usable.

Table 9f lists the tags that may appear in an SDG.

June 25, 2008 9-35

The HDF Group

TABLE of

Available SDG Tags

Tag Description
DFTAG_SDD Scientific data dimension record (rank and dimensions)
DFTAG SD Scientific data
DFTAG _SDS Scales
DFTAG SDL Labels
DFTAG_SDU Units
DFTAG SDF Formats
DFTAG SDM Maximum and minimum values
DFTAG SDC Coordinate system
DFTAG SDT Transposition (obsolete)
DFTAG_SDLNK Link to new DFTAG_NDG

Example

DFTAG_SDD, DFTAG_SD, DFTAG_SDM

Assume that a dimension record, scientific data, and the maximum and minimum values of the
data are required to read and interpret a particular data set. These data objects can be associated in
an SDG so that an application can read the rank and dimensions from the dimension record and
then read the data array. If the application needs the maximum and minimum values, it will read
them as well.

This tag has been superseded by DFTAG NDG.

See also: Chapter 5, "Sets and Groups’
DFTAG_SDT Scientific data transpose
0 bytes

709 (0x02C5)

DFTAG_SDT ref no ___l_

ref no Reference number (16-bit integer)

The presence of this tag in a group indicates that the data pointed to by the corresponding
DFTAG_SD isin column-major order, instead of the default row-major order. No datais associated
with this tag.

Thistag is no longer written by the HDF library. When it is encountered in an old file, it isinter-
preted as originally intended.

9-36

June 25, 2008

Chapter

10

Extended Tags and Special Elements

10.1

10.2

Chapter Overview

This chapter provides detailed information regarding NCSA-supported HDF extended tags and
the special elements they define. General information about tags and detailed specifications of
basic tags are presented in Chapter 9, “Tag Specifications.”

Extended Tags and Alter nate Physical Storage M ethods

Prior to HDF Version 3.2, each data element had to be stored in one contiguous block in the basic
HDF file. Version 3.2 introduced extended tags, a mechanism supporting alternate physical data
element storage structures. All NCSA-supported tags with variable-sized data elements can take
advantage of the extended tag features.

10.2.1Extended Tag | mplementation

Extended tags are automatically recognized by current versions of the HDF library and interpreted
according to a description record. The description record, a complete data element, identifies the
type of extended element and provides the relevant parameters for data retrieval.

Extended tags currently support four styles of aternate physical storage:

» Linked block elements are stored in several non-contiguous blocks within the basic HDF
file.

» External elements are stored in a separate file, external to the basic HDF file.
» Chunked elements are stored in blocks within the basic HDF file to facilitate selective |/O.

» Compressed elements are stored in a configurable compressed mode within the basic HDF
file to save storage space and to speed 1/0 and data transfer.

Every NCSA-supported tag is represented in HDF libraries and files by atag number. NCSA-sup-
ported tags that take advantage of alternative physical storage features have an alternative tag
number, called an extended tag number, that appears instead of the original tag number when an
alternative physical storage method isin use.

When NCSA determines that an extended tag should be defined for a given tag, the extended tag
number is determined by performing an arithmetic OR with the original tag number and the hexa-
decimal number 0x4000. Since all basic tags are numbered 0x0001 through Ox3FFF, this arith-
metic OR effectively adds 0x4000, or a decimal value of 16384, to derive the extended tag value.

For example, thetag DFTAG RI pointsto a data element containing a raster image. If the data
element is stored contiguoudly in the same HDF file, the DD contains the tag number 302; if the

June 25, 2008 10-1

The HDF Group

data element is stored either in linked blocks or in an externa file, the DD contains the extended
tag number 16686.

If adata object uses a regular tag number, its storage structure will be exactly as described in the
"Section 9.3, "Tag Specifications." Figure 10aillustrates this general structure with the DD point-
ing directly to a single, contiguous data block.

FIGURE 10a

Regular Data Object

regular tag ref no

data element

regular tag Tag number
ref no Reference number
data_ elementThe dataelement

If a data object uses an extended tag, the storage structure will appear generally as illustrated in
Figure 10b. The DD will point to an extended tag description record which in turn will point to
the data.

FIGURE 10b

Data Object with Extended Tag

extended tag ref no
ext tag desc data location information §
data (inlinked blocks or external file)

extended_tagExtended tag number
ref no Reference number

ext tag descA 32-bit constant defined in BAfi.h that identifies the type of alternative
storage involved. Current definitions include ExT LinNkeD for linked
block elementsor ExT EXTERN for external elements.

data location information
Information identifying and describing the linked blocks or external file

data The data, stored either in linked blocks or in an external file

Since the HDF tools were modified for HDF Version 3.2 to handle extended tags automatically,
the only thing the user ever has to do is specify the use of either the linked blocks mechanism or
an external file. Once that has been specified, the user can forget about extended tags entirely; the
HDF library will manage everything correctly.

10-2

June 25, 2008

HDF Specification and Developer’s Guide

10.3

There is only one circumstance under which an HDF user will need to be concerned with the dif-
ference between regular tag numbers and extended tag numbers. |If a user bypasses the regular
HDF interface to examine araw HDF file, that user will have to know the extended tag numbers,
their significance, and the aternative storage structures.

Linked Block Elements

As mentioned above, data elements had to be stored as single contiguous blocks within the basic
HDF file prior to HDF Version 3.2. This meant that if a data element grew larger than the allotted
space, the file had to be erased from its current location and rewritten at the end of the file.

Linked blocks provide a convenient means of addressing this problem by linking new data blocks
to a pre-existing data element. Linked block elements consist of a series of data blocks chained
together in alinked list (similar to the DD list). The data blocks must be of uniform size, except
for the first block, which is considered a special case.

The linked block data element is a description record beginning with the constant EXT LINKED,
which identifies the linked block storage method. The rest of the record describes the organization
of the data element stored as linked blocks. Figure 10c illustrates a linked block description
record.

FIGURE 10c

Linked Block Description Record

extended tag ref no
EXT LINKED length first len
blk len num blk link ref

extended_tagThe extended tag counterpart of any NCSA standard tag (16-bit integer)
ref no Reference number (16-bit integer)

EXT LINKED Constantidentifying thisasalinked block description record (32-bit integer)
length Length of entire element (32-bit integer)

first _len Length of thefirst datablock (32-bit integer)

blk len Length of successive data blocks (32-bit integer)

num blk Number of blocks per block table (32-bit integer)

link ref Reference number of first block table (16-bit integer)

The 1ink ref field of the description record gives the reference number of the first linked
block table for the element. Thistableisidentified by the tag/ref DFTAG LINKED/1ink ref and
contains num_blk entries. There may be any number of linked block tables chained together to
describe alinked block element. Figure 10d illustrates a linked block table.

June 25, 2008 10-3

The HDF Group

FIGURE 10d A Linked Block Table
DFTAG LINKED link ref
next ref blk refl blk ref2 s §
link ref Reference number for thistable (16-bit integer)
next_ref Reference number for next table (16-bit integer)
blk ref n Reference number for datablock (16-bit integer)
The next_ref field contains the reference number of the next linked block table. A value of zero
(0) in this field indicates that there are no additional linked block tables associated with this ele-
ment.
The b1k _ref n fields of each linked block table contain reference numbers for the individual
data blocks that make up the data portion of the linked block element. These data blocks are iden-
tified by the tag/ref DFTAG LINKED/b1k ref n asillustrated in Figure 10e. Although it may
seem ambiguous to use the same tag to refer to two different objects, this ambiguity is resolved by
the context in which the tags appear.
FIGURE 10e A Data Block
DFTAG LINKED blk ref n \

data block

blk ref n Reference number for this data block (16-bit integer)

data_block Block of actua data (size specified by first len or blk len inthe
description record)

Linked block elements can be created using the function HLcreate (), which is discussed in
Chapter 4, “Low-level Interface.”

10.4 External Elements

External elements allow the data portion of an HDF element to reside in a separate file. The poten-
tid of external dataelementsislargely unexplored in the HDF context, although other file formats
(most notably the Common Data Format, CDF, from NASA) have used external data elements to
great advantage.

Because there has been little discussion of external elements within the HDF user community, the
structure of these elementsis still not completely defined. Figure 10f shows a diagram of the sug-
gested structure for an external element.

10-4

June 25, 2008

HDF Specification and Developer’s Guide

FIGURE 10f

External Element Description Record

extended tag

ref no

extended tag The extended tag counterpart of any NCSA standard tag (16-bit integer)

—

SPECIAL EXT

length

offset

filename

ref no Reference number (16-bit integer)

SPECIAL EXT Constant identifying this as an external element description record (16-bit
integer)

length Length in bytes of the data in the external file (32-bit integer)

offset Location of the data within the external file (32-bit integer)

filename Non-null terminated ASCI| string naming the external file (any length)

An external element description record begins with the constant spECIAL, EXT, which identifies
the data object as having an externally stored data element. The rest of the description record con-
sists of the specific information required to retrieve the data.

External elements can be created using the function HXcreate (), which is discussed in
Chapter 4, “Low-level Interface.”

10.5 Chunked Data Storage

10.5.1Chunked Element Description Record

The file format, or layout, of a chunked data element is specified in a chunked element descrip-
tion record. Figure 10g, "DD for a chunked element (12 bytes) pointing to a chunked elememt
description record (>52 bytes)," provides a complete description, viaillustration, of this record.

Thefieldsthat define a chunked element, asillustrated in Figure 10g, are as follows:

sp_tag desc SPECIAL CHUNKED (a 16-bit constant) identifies this as a chunked element

description record.

sp_tag head lenlength of this special element header only (4 bytes). Does not include

length of header with additional specialness headers. Note: Thisis
done to make this header layout similar to the multiple specialness

layout.
version Version information (8-bit field).
flag Bit field to set additional specialness (32-bit field). Only the bottom 8 bits

are currently used.

elem tot len Valid logical length of the entire element (4 bytes). The logical physical

chunk size Logical sizeof datachunks (4 bytes).

length is this value multiplied by nt size. The actual physical
length used for storage can be greater than the dataset size due to
the presence of ghost areas in chunks. Partial chunks are not distin-
guished from regular chunks.

June 25, 2008

10-5

The HDF Group

nt_size Number type size, i.e the size of the data type (4 bytes).
chk tbl tag Tagforthechunk table, i.e. the Vdata (2 bytes).
chk tbl ref Reference number for the chunk table, i.e. the Vdata (2 bytes).

sp_tag For future use. Special table for 'ghost' chunks (2 bytes).
sp_ref For future use (2 bytes).
ndims Number of dimensions of the chunked element.(4 bytes).

file val num bytesNumber of bytesin fill value (4 bytes).

fill value Fill value (variable bytes).

FIGURE 10g DD for a chunked element (12 bytes) pointing to a chunked elememt description record
(>52 bytes)
<t— 2bytes —> <—— 2 bytes —»> < 4 bytes > <t 4 bytes > (12 bytes)
Extended tag | Reference# Offset Length

l

<— 2bytes —> < 4 bytes > (6 bytes)
sp_tag_desc sp_tag_head_len 0cooo
<1 byter < 4 bytes > <t 4dbytes — 5 (9bytes)
%lgglggg Flag elm_tot_length ocooo
<—— 4bytes > <t 4 bytes > <t— 2bytes —»> <— 2bytes — (12 bytes)
chunk_size nt_size chk tbl tag | chk_tbl ref [ooo0o
<+— 2bytes—»> <«— 2bytes—> <« 4 bytes > (8 bytes)
sp_tag sp_ref ndims cooo
<———— 4 bytes > <t 4 bytes > <t 4 bytes > (12 x ndims bytes)
flag dim length chunk length coo0o0
— — times the number of
dimensions
< 4bytes > <t variablebytes ;. (4 + variable bytes)
fill val num_types fill value...... ocooo
<— 2bytes —> < 4 bytes <t varidblebytes — 5 (6 + variable bytes)
sp_tag desc sp_tag header len sp _tag header 0000
b-reg- Pa9- — P_rad variable number of these, depending

on specialnessset in £1lag field

pJoos . uondiiseg

10-6 June 25, 2008

HDF Specification and Developer’s Guide

In addition to the above fields, each chunked element dimension requires a set of the following
fields:
flag (32-bit field) Thisfield isdivided asfollows:
| High, 8 bits | Medium High, 8 bits | Medium Low, 8 bits | Low, 8 bits |
*distrib type (Low 8 bits, bits 0-7)
Type of data distribution along this dimension
0x00 -> None
0x01 -> Block
Currently only block distribution is supported but thisis not currently
checked or verified.

*Other (Medium Low 8 hits, bits 7-15)
0x00 -> Regular dimension
0x01 -> UNLIMITED dimension

dim length Current length of this dimension (4 bytes).
chunk length Length of the chunk aong this dimension (4 bytes).

Further, additional specialnesses may be used. Each additional specialness requires a set of the
following fields:

sp_tag desc SPECIAL xxx (16-bit constant) identifies this as an xxx element description
record (16-bit field).

sp_tag header lenlength of specia element header (4 bytes).

sp_tag header Special header (variable bytes).

10.5.2Chunk Table

Information regarding a chunked data set is stored in the chunk table, described in Figure 10h on
page 8.

The chunk table fields are defined as follows:

origin Specifies the coordinates of the chunk in the overall chunk array. Thisisa
variable-size field, depending on the number of dimensions of the chunked
element.

chunk tag Currently bFTac_cHUNK. Could be another chunked element to allow recur-
sive chunked elements (DFTAG CHUNKED). (16-bit field)

chunk ref Reference number of the chunk itself. (16-hit field)

June 25, 2008 10-7

The HDF Group

FIGURE 10h Chunk table

<——— variablebytes——— > <— 2bytes —> <— 2 bytes —> N = number of chunk records

origin chunk tag |chunk ref 1 in Vdata
Number of bytes per record will

o (e} o . .
o o o vary withthesizeof origin
o o o
o o o
origin chunk_tag chunk_ref N
<— 2bytes —> <«— 2bytes —> <« 4 bytes > <t 4bytes ——— 5>
DFTAG_CHUNK | chunk ref N Offset Length
Length here is specified as
l chk size X nt_size.
Data chunk

10.6 Data Compression

The HDF library supprts the following compression formats for scientific data sets.
 Skipping-Huffman
* GNU ZIP deflation (Lempel/Ziv-77 dictionary coder)
 N-bit run-length encoding
« SZIP
The compression format of a data set is specified in an extended tag description known as a com-
pressed element description record. Figure 10i, "Compression header extended tag description,”

describes the common elements of this record. Subsequent figures describe the remainder of the
record, which varies for each type of compression.

10.6.1Compression Header: The Common Elements of Compressed Element
Description Records
The compression header comprises the common elements of all compressed element description

records and is contained in the first ten fields of the record. Asillustrated in Figure 10i, the com-
presion header is made up of the following fileds.

10-8 June 25, 2008

HDF Specification and Developer’s Guide

Thefirst four fields of the compression header are common among all special element headers: |

Extended tag
Reference # Thesetwo fields contain the tag/ref pair that identifies any HDF object.

Offset This is the offset, in bytes, to the location of the fifth field, or the
sp_tag desc field, of the compression header. This field always contains
the value spECIAL,_comp in acompressed element description record.

Length This field specifies the space requirement, in bytes, of the fifth through last
fields of the compressed element description record.

The fifth through tenth fields are particular to the compression header:

sp tag desc SPECIAL COMP (a 16-bit constant) identifies this as a compressed element
description record.

Version Version information (16-bit field).

Length of uncompressed data

Length, in bytes of the uncompressed data.

Ref # of compressed data
As illustrated in Figure 10j, "Compressed element reference number,” this
field contains apointer to aDFTAG COMPRESSED structure which, in turn, pro-
vides the offset location and size, both in bytes, of the actual compressed
data

Model type Currently only streaming /0.

Compression type
A string identifying the type of compression in use.

The remainder of the compressed element description record is different for each type of compres-
sion. The following sections discuss each of those types of recordsin turn.

FIGURE 10i

Compression header extended tag description

<t— 2bytes —><— 2 bytes &> « 4 bytes > <t 4 bytes—>

Extended tag Reference # Offset Length

<— 2bytes —5><— 2bytes 5> <«—— 4bytes— > <«—— 2bytes— >

Compression Length of Ref # of —
SPECIAL_COMP| ™ergion uncompressed data compressed data eeee

<— 2 bytes —><— 2 bytes —>

- (Remainder variesin
— Model type Comtpon 0000 —p length and content by
Y compression format.)

June 25, 2008 10-9

The HDF Group

FIGURE 10j Compressed element reference number
Ref # of compressad data
DFTAG COMPRESSED
Ref # Offset | Length
— Data
10.6.2Compressed Element Description Record: NBIT Run-length Encoding
FIGURE 10k Extended tag description for NBIT run-length encoding compression
2 bytes 2bytes Abytes 4bytes
BExtededtag | Refaaxce# Offst Lagth (0 bytes)
2bytes 2bytes 4bytes 2bytes
Leghof
¥ SPEOAL COMP| Vasion er*r?r%ma:lcha oormma eee—>
2bytes 2bytes 4bytes
-+ Modd type | coMP_CODE_NBIT Nurroer type (NT) coo—»
2bytes 2bytes 4bytes
> Dognedatflag) Fll vdue Sat bit cco—>
4bytes
{ Bit legth
10-10 June 25, 2008

HDF Specification and Developer’s Guide

10.6.3Compressed Element Description Record: Skipping-Huffman

FIGURE 10l Extended tag description for Skipping-Huffman compression
2bstes 2bstes 4bytes 4btes
Bdadedtag | Rfaaoe# Ofst Laghbjtey
t 2bstes 2bytes Absptes 2bytes
FEOA. | Vesa | romresed ond e cn‘r?g(—gctta 000—»

2bytes 2bytes
— MocH tye O QTE SPH A coo—>

4Abtes 4bptes
—> Spprguitsz Nunboer o bjt@(:drp&ﬂ:i(rmm:p‘

10.6.4Compressed Element Description Record: GNU ZIP (Deflate)

FIGURE 10m Extended tag description for GNU ZIP (deflate) compression
2bes 2bpes Abjes Abjes
Btadsitag | Rfeaeo# Obfsx Leagh(6btes
t 2btes 2btes Abftes 2btes
A v \asan ummghdcﬂa @“'?é-#gma 000—»

2bjes 2bjtes 2btes
»> Mook type P COEHAE|, Dflacled (09

June 25, 2008 10-11

The HDF Group

10.6.5Compressed Element Description Record: SZIP

FIGURE 10n

Compression header extended tag description

<— 2bytes —><t— 2bytes > <«—— 4bytes——> <«——— 4bytes—>
Extended tag Reference # Offset Length (16 bytes)

<t— 2bytes —><— 2bytes > <« 4bytess— > «—— 2bytes— >

Compression Length of Ref # of —
SPECIAL_COMP version uncompressed data compressed data ceee

<— 2 bytes —><— 2 bytes —> <—— 4bytes——> <—— 4bytes—>
— Model type COMP_CODE_SZIP Pixels

Pixels per scanline 0000 —

<—— 4bytess—><—— 4bytes— < 4bytes—

— Options mask Bits per pixel Pixels per block

The following parameters are used in SZIP compression.

Pixels: The number of pixels, or data elements, in the object to be compressed and
must be greater than o.

Pixels per scanline: The number of pixels per scan line. Thisvalue must be greater than
or equa to pixels, and smaler than or equa to
SZ MAX PIXELS PER SCANLINE. SZ MAX PIXELS PER SCANLINE iS defined as:

SZ MAX PIXELS PER SCANLINE =
SZ MAX BLOCKS PER SCANLINE * SZ MAX PIXELS PER BLOCK, where
SZ MAX BLOCKS PER SCANLINE = 128 and SZ MAX PIXELS PER BLOCK = 32
Option mask Thisparameter combines abitwise or of any of the following values:
SZ ALIOW K13 OPTION MASK (Of 1)
SZ_CHIP OPTICN MASK (Or 2)
SZ_EC OPTION MASK (Or 4)
SZ_LSB OPTION MASK (Or 8)
SZ _MSB OPTION MASK (Or 16)
SZ NN _OPTION MASK (Of 32)
SZ RAW OPTION MASK (Or 128)
Bits per pixel: Thisparameter must beinrange1. .24, 32, and e4. Itsdefault value is s.

pixels per block: Must be even and smaller than or equal to pixels per scanline and
smaller than and equal to Sz MAX PIXELS PER BLOCK (32.) Itsdefault valueis
16.

The two parameters option mask and Pixels per block are required when setting compression
for SZIP. If any of the other parameters are not provided, they will be computed by
HCPsetup_szip_parms as followed:

10-12

June 25, 2008

Chapter

Portability Issues

11.1

11.2

Chapter Overview

The NCSA implementation of HDF is accessible to both C and FORTRAN programs and is
implemented on many different machines and several operating systems. There are important dif-
ferences between C and FORTRAN, and among implementations of each language, especially
FORTRAN. There are aso important differences among the machines and operating systems that
HDF supports.

If HDF is to be a portable tool, these differences must be constructively addressed. This chapter
describes many of these differences, discusses the problems and issues associated with them, and
presents the methods employed in the HDF implementation to reduce their impact.

The HDF Environment

The list of machines and operating systems on which HDF is implemented is steadily growing.
For reasons that this chapter will make clear, the number of NCSA-supported HDF platforms is
growing slowly. Every time a platform is added, additional code must be written to address con-
cerns of memory management, operating system and file system differences, number representa-
tions, and differences in FORTRAN and C implementations on that system.

11.2.1Supported Platforms
As of thiswriting, NCSA supports the platforms listed in Table 11a.

TABLE 11a

NCSA-supported HDF Platforms

Hardware Platform Operating System
Convex Concentrix
Cray X-MP, Y-MP, Cray 2 UNICOS
DEC Alpha Ultrix
DECStation Ultrix
HP 9000 HPUX
IBM PC MS DOS, Windows 3.1
IBM RS/6000 AlIX
IBM RT UNIX
Macintosh MPW Shell
NeXT NeXTStep
Silicon Graphics UNIX

June 25, 2008 111

The HDF Group

11.3

Hardware Platform Operating System
Sun Sparc UNIX
Vax VMS

HDF has also been ported to severa platforms that NCSA does not currently support. These
include Alliant, Apollo (Domain), HP 3000, Stellar, Amiga, Symbolics, Fujitsu, and IBM 3090
(MVS).

11.2.2L anguage Standar ds

Unfortunately, not all compilers are the same. FORTRAN compilers often differ in the ways they
pass parameters, in the identifier naming conventions they employ, and in the number types that
they support. Similarly, though generally not as drastically, C compilers differ in the number
types that they support and in their adherence to the ANSI C standard.

To minimize the difficulties caused by these differences, the HDF source code iswritten primarily
in the following dialects:

+ FORTRAN 77

« ANSIC

« Theoriginal C defined by Kernighan and Ritchie!, hereafter referred to asold C

Almost all platforms have C and FORTRAN compilers that adhere to at least one of these stan-
dards.

When time and resources permit, NCSA attempts to support features or variationsin other dialects
of C and FORTRAN, particularly on platforms that are important to NCSA users. Much of the
remainder of this chapter addresses these efforts.

11.2.3Guidelines

One cannot over stress the importance of following the guidelines outlined in this chapter. It may
take longer to write code and it may be difficult to adapt your coding style, but the long-term ben-
efits, in terms of portability and maintenance costs, will be well worth the effort.

Organization of Source Files

Three types of files appear in the HDF source code directory:
» Header files
» Source code files
* A makefile

Header files and source code files are organized by application area. All of the functions that
apply to a particular application area are stored in three source files, and al the definitions and
declarations that apply to that application are stored in a corresponding header file. The makefile
describes the dependencies among the source and header files and provides the commands
required to compile the corresponding libraries and utilities.

1. Theversion of C described in the first edition of The C Programming Language, by Brian
Kernighan and Dennis Ritchie, published by Prentice-Hall.

June 25, 2008

HDF Specification and Developer’s Guide

11.3.1Header Files

Certain application modules require header files. The header file dfan.h, for example, contains
definitions and declarations that are unique to the annotation interface.

There are also several general header files that are used in compiling the libraries for all applica
tion areas:

hdf.h and hdfi.h!
hdf.h contains declarations and definitions for the common data structures
used throughout HDF, definitions of the HDF tags, definitions of error num-
bers, and definitions and declarations specific to the low level interface.
Since hdf.h dependson hdfi.h, itincludes hdfi.h via #include.

hdfi.h containsinformation specific to the various NCSA-supported HDF
computing environments, environmental parameters that need to be set to
particular values when compiling the HDF libraries, and machine dependent
definitions of such things as number types and macros for reading and writ-
ing numbers.

When porting HDF to a new system, only hdfi.h and the makefile should
need to be modified, though there may be exceptions.

It is normally a good idea to include hdf.h (and therefore indirectly
hdfi.h) in user programs, though users usually need not be aware of its con-
tents.

hproto.h This file contains ANSI C prototypes for al HDF C routines. It must be
included in ANSI C programs that call HDF routines.

constants.i Thisfileisfor usein FORTRAN programs. It contains important constants,
such astag values, that are defined in hdf .h. Systemswith FORTRAN pre-
processors might be able to include this file via #include statements or
their equivalent.

dffunc.i This file is for use in FORTRAN programs. It contains declarations of all
HDF FORTRAN-callable functions. Systems with FORTRAN preproces-
sors might be able to include this file via #include statements or their
equivalent.

11.3.2Source CodeFiles

All HDF operations are performed by routines written in C. Hence, even FORTRAN calls to
HDF result in callsto the corresponding C routines. Because of the problems described below the
rel ationships between the C routines and the corresponding FORTRAN routines can be confusing.
This section discusses the C and FORTRAN source file organization. 1t is followed by discus-
sions of problems users will face in the FORTRAN—C interface.

HDF interfaces typically have three or four associated files. For example, the scientific data set
(SDS) interface is associated with the following files: dfsd.h, dfsd.c, dfsdf.c, and dfsdff . £.

Thesefilesfill the following roles:

1. Prior to Version 3.2 of HDF, thesefileswerecalled df.h and dfi.h. Atthetimeof HDF
Version 3.2, the low level interfaces, the general purpose layer of HDF, was completely rewritten
and all routine names were changed from df* to hdf*.

June 25, 2008 11-3

The HDF Group

11.4

Header files
The *.h files are header files.

Normal C routines
These routines do the actual HDF work. The others are used to transfer control and
datafrom a FORTRAN environment to a C environment.

Theseroutines areinthe *.c files, asin dfsd.c. Every cal to HDF, whether from
C or FORTRAN, ultimately resultsin acall to one of these routines.

C routines that are directly callable from FORTRAN
These routines provide recognizabl e function names to the linker. They may also per-
form operations on data they receive from the FORTRAN routines that call them,
such astransferring a FORTRAN string to alocal C dataarea. Examplesare provided
bel ow.

Theseroutines areinthe *f.c files, such as dfsdf.c. The £ means that the rou-
tines can be called from FORTRAN; the .c means that they are C source code.

FORTRAN routines that perform some operation on the parameters that C would be unable
to perform, before and/or after calling the corresponding C routine
These routines are required, for example, when one of the parametersis a string. The
corresponding C routine has no way of knowing the length of the string unless it is
explicitly given the length by the FORTRAN routine.

These routines are in the «££ . £ files, such as dfsdff.£. The ££ means that the rou-
tines perform some FORTRAN operation that C cannot perform and that they are to
be called from FORTRAN; the . £ means that they are FORTRAN source code.

The roles of these different types of source file types will become clearer as we look at some of
the problems that arisein interfacing C and many different implementations of FORTRAN.

11.3.3File Naming Conventions

The naming conventions for HDF library source code files are complicated by several factors.
Because HDF must accommodate a wide variety of platforms, al files that will compile to object
modules must have names that are unique in the first 8 characters, ignoring case. The difficulties
involved in maintaining a FORTRAN-callable interface to a library that is primarily written in C
further complicate the naming of source code files.

Passing Srings between FORTRAN and C

One of the most important differences between FORTRAN and C compilersisin the way strings
are represented. Different compilers use different data structures for strings, and supply string
length information in different ways.

11.4.1Passing Sringsfrom FORTRAN to C

When strings are passed between FORTRAN and C routines, they may need to be converted from
one representation to the other. C compilers store strings in an array of type char, terminated by
anull byte (\0). The name of astring variable is equivalent to a pointer the first character in the
string. FORTRAN compilers are not consistent in the ways that they store strings.
Two pieces of information must be acquired before FORTRAN can pass a string to C:

» Thestring'slength

» Thestring's address

11-4

June 25, 2008

HDF Specification and Developer’s Guide

The string’s length is determined by invoking the standard FORTRAN function 1len(), which
returns the length of astring. Since C expects anull byte at the end of a string, care must be taken
that this null byte does not overwrite useful information in the FORTRAN string.

Determining the string’s address is more difficult because of the different ways that different
FORTRAN implementations store strings. The macro _fcdtocp (FORTRAN character descrip-
tor to C pointer) is used to acquirethisinformation. _fcdtocp isone of the elements that must
be customized for each platform. The following paragraphs discuss several existing customized
implementations:

* UNICOS FORTRAN stores stringsin astructure called fcd (FORTRAN character
descriptor). _fcdtocp isabuilt-in UNICOS function that returns the string’s address.
(Since UNICOS provides this function, HDF omits the corresponding macro definition on
UNICOS systems.

» VMSFORTRAN uses a string descriptor structure that provides the string’s address and
length. When compiled under VMS, fcdtocp extracts the string's address from that
structure.

» Most other FORTRAN compilers supported by HDF store strings just as C does, in charac-

ter arrays with the array name identifying the array's address. In such situations, nothing
special needs to be done to pass a string from FORTRAN to C, except to add a NULL byte.

An HDF FORTRAN call that involves passing a string results in the following sequence of
actions:

1 A FORTRAN filter routine determines the length and address in memory of the string.
Sincethisfilter isa FORTRAN routine, it can be found in the appropriate *££.f file.

2 The FORTRAN filter then callsaC routine, to which it passes all parameters from the initial
call the string's length.

3 The Croutine convertsthe FORTRAN string to a C string by copying it to a C array of type
char and appending anull byte. Sincethis C routine servesasalink between aFORTRAN
filter and the corresponding C interface call, it can be found in the appropriate *£.c file.

4 This C routine then callsthe HDF C routine that performs the actual work.

This processisillustrated in Figure 11a, " Sequence of Events when a FORTRAN Call Includes a
String as a Parameter.”

June 25, 2008 11-5

The HDF Group

FIGURE 11a Sequence of Eventswhen a FORTRAN Call Includes a String as a Parameter

User's program

cee . . User's FORTRAN program calls
ret = dsgdim('myfile', rank, ...) dsgdims. The parameter myfile

g is a string.
/ libdf.a (the HDF library)
dfsdFf.f
, The FORTRAN function dsgdim
dsgdim .
gdim() calls the C function dsigdim,
dsigdim(filename ,rank, ..., len(filename)) adding an extra parameter--the
/ length of the filename parameter
/
dfsdF.c

dsigdim converts the
dsigdim() FORTRAN string stored in
filename toaC string, then
calls DFSDgetdims.

DFSDgetdims (fn, prank,...)

/
dfsd.c
i DFSDgetdims performs the
DFSDgetdims () actual HDF function, getting the
rank and dimension of the next
scientific data set in the file.

11.4.2Passing Sringsfrom C to FORTRAN

When strings are passed from C to FORTRAN, the reverse procedure is followed. First, a string
pointer is allocated within the FORTRAN routine'sdataarea. (It isassumed that the space pointed
to has already been allocated, and is sufficiently large to hold the string.) The string is then cop-
ied from the C data area to the FORTRAN data area. Finaly, the FORTRAN string's data areais
padded with blanks, if necessary.

11.5 Function Return Values between FORTRAN and C

When a FORTRAN routine calls a C function, it aways expects areturn value from that function.
Unfortunately, C functions do not always return arguments in a FORTRAN-compatible format.

To solve this problem, some FORTRAN compilers offer the option of controlling the form of the
return value from a function. For example, Language Systems FORTRAN for the Macintosh

11-6 June 25, 2008

HDF Specification and Developer’s Guide

11.6

requires that all C function declarations be prepended by the word pascal so that the return
value can be recognized by a FORTRAN routine that calsit, asin:

pascal int dsgrang(void *pmax, void *pmin)
Since C aways expects return values to be passed by value rather than, say, by reference, it is
important to coerce FORTRAN functions to do the same. This is accomplished by defining a

macro FRETVAL that is prepended to the declaration of every FORTRAN-callable C function. For
example:

FRETVAL (int)
dsgrang (void *pmax, void *pmin)

If Language Systems FORTRAN isto be used, FRETVAL isdefinedin hdfi.h asfollows:

#if defined (MAC) /* with LS FORTRAN */
define FREIVAL(x) pascal x
#endif

Differencesin Routine Names

HDF generally employs standard C conventions in naming routines. But many FORTRAN com-
pilers impose varying restrictions on the length, character set, and form of identifiers, some of
which are considerable more restrictive than the C conventions. Therefore, an extraeffort must be
made to accommodate those FORTRAN compilers.

To address this issue, HDF defines a set of preprocessor flagsin hdfi.h. Then conditional com-
pilation, with #ifdef statementsin the source code, produces routine names that the target sys-
tem’s FORTRAN will understand.

11.6.1Case Sensitivity

C compilers are case sensitive; uppercase and lowercase | etters are recognized as different charac-
ters. Many FORTRAN compilers are not case sensitive; they allow users to use uppercase and
lowercase letters while naming routines in the source code, but the names are converted to all
uppercase or al lowercase in the object module symbol tables. Routine name recognition prob-
lems are common when routines compiled by a case sensitive compiler are to be linked with rou-
tines compiled by a non-case sensitive compiler.

For example, the UNICOS FORTRAN compiler alows you to name routines without regard to
case, but produces object module symbol tables with the routine names in all uppercase. UNI-
COS C, on the other hand, performs no such conversion.

Consider the HDF routine Hopen. Hopen iswritten in C, so the HDF library symbol table con-
tains the name Hopen. Suppose you make the following call in your UNICOS FORTRAN pro-
gram:

file id = Hopen('myfile', ...)

The FORTRAN compiler will create an object module symbol table with the routine name HOPEN.
When you link it to the HDF library, it will find Hopen but not HOPEN, and will generate an unsat-
isfied external reference error.
HDF supports the following non-case sensitive compilers:

* VMSFORTRAN

* UNICOS FORTRAN

» Language Systems FORTRAN.

June 25, 2008 1n-7

The HDF Group

All of these compilers convert identifiers to al uppercase when building an object module symbol
table. In the following discussion, they are referred to as all-uppercase compilers.

The HDF Solution

HDF addresses the all-uppercase compiler problem in the platform-specific section of hdfi.h
where the pr_caprNaMES flag is defined. With conditional compilation, HDF generates al-
uppercase routine names and symbol table entries.

Once again, consider UNICOS. The UNICOS section of hdfi.h containsthe following line:
#define DF CAPFNAMES

The =*f.c files contain corresponding conditional sections that produce all-uppercase routine
names. For example, the function name Fun can beredefined as FuN:

#ifdef DF CAPFNAMES
define Fun FUN
#endif /* DF _CAPFNAMES */

11.6.2 Appended Under scores

Differing compiler conventions create a similar problem in their use of the underscore () char-
acter. Many compilers, including most C compilers, prepend an underscore to all external sym-
bols in the object module symbol table. The linker then looks for external symbols in other
symbol tables with the prefixed underscore.

Many FORTRAN compilers also append an underscore to identify external symbols. Since C
compilers do not generally do this, external references in FORTRAN-generated object modules
will not recognize externals with the same namesin C-generated modules.

For example, the FORTRAN compiler on the CONVEX system places an underscore both at the
beginning and at the end of routine names, while the C compiler places an underscore only at the
beginning.

Since rFuN isaC function, it appears under the name _Fun in the object module containing it.
Now suppose you make the following call in a FORTRAN program:

x = FUN(y)

The FORTRAN compiler will create an object module symbol table with the routine name Fun .
When you link it to the C module, the linker will beunabletolink rFun and Fun_ and will gen-
erate an unsatisfied external reference error.

The HDF Solution

Like the all-uppercase compiler problem, thisissueis resolved in the platform-specific sections of
hdfi.h and with conditional sections of code that append an underscore to C routine names on
platforms where the FORTRAN compiler expectsit.

This isimplemented as follows: The FNaME POST UNDERSCORE flag is defined in the platform-
specific section of hdfi.h for every platform whose FORTRAN compiler requires appended
underscores. Similarly, the FNaME PRE UNDERSCORE flag is defined on platforms where the
FORTRAN compiler expects prepended underscores. The macro rNaME is then defined to
append and/or prepend underscores as required.

The FNaME macro is then applied to each routine in the module in which it is actually defined
(including in hptroto.h), adding the appropriate underscores.

June 25, 2008

HDF Specification and Developer’s Guide

11.7

Consider the above example in which Fun was renamed FuN. The actual definition appears as
follows:

#ifdef DF CAPFNAMES
define Fun FNAME (FUN)
#endif /* DF _CAPFNAMES */

11.6.3Short Namesvs. Long Names

In the C implementations supported by HDF, identifiers may be any length with at least the first
31 characters being significant. FORTRAN compilers differ in the maximum lengths of identifi-
ersthat they allow, but all of those supported by HDF allow identifiersto be at least seven charac-
terslong.

To deal with the discrepancies between identifier lengths allowed by C and those allowed by the
various FORTRAN compilers, a set of equivalent short names has been created for use when pro-
gramming in FORTRAN. For every HDF routine with a name more than seven characters long,
thereisanidentical routine whose name is seven or fewer characters long.

For example, the routines DFsDgetdims (in dfsd.c) and dsgdims (in dfsdff.f) are function-
aly identical.

Differences Between ANSI C and Old C

The current HDF release supports both ANSI C and old C compilers. ANSI C is preferred
because it has many features that help ensure portability; unfortunately, many important platforms
do not support full ANSI C. The HDF code determines whether ANSI C isavailable from the flag
__stoc_. If ANSI Cisavailableonaplatform,then stoc isdefined by the compiler.

The most noticeable difference between ANSI C and old C isin the way functions are declared.
For example, in ANSI C the function DFsDsetdims () isdeclared with asingleline:

int DFSDsetdims (intn rank, int32 dimsizes|[])

In old C the same function is declared as follows:

int DFSDsetdims (rank, dimsizes)
intn rank;
int32 dimsizes|];

HDF accommodates these differences by defining the flag PROTOTYPE in hdfi.h. PROTOTYPE
is used for every function declaration in a manner similar to the following example:

#ifdef PROTOTYPE

int DFSDsetdims (intn rank, int32 dimsizes|[])
#else

int DFSDsetdims (rank, dimsizes)

intn rank;

int32 dimsizes|];

#endif /* PROTOTYPE */

Note that prototypes are supported by some C compilersthat are not otherwise ANSI-conformant.
In such situations, PROTOTYPE is defined eventhough _ sTpc isnot.

1. _sTD isgeneraly defined by ANSI-conforming C compilers. Some C compilers are not
entirely ANSI-conforming, yet they conform well enough that the HDF implementation can treat
them asif they were. Insuch cases, itispermissibleto define _ STDC by adding the option -
D_STDC _ tothe cc lineinthe makefile.

June 25, 2008 11-9

The HDF Group

11.8

Another difference between old C and ANSI C isthat ANSI C supports function prototypes with
arguments. (Old C also supports function prototypes, but without the argument list.) This feature
helps in detecting errors in the number and types of arguments. This difference is handled by
means of amacro proTO, Which is defined as follows:

#ifdef PROTOTYPE
#define PROTO (x) x
#else

#define PROTO (x) ()
#endif

Thismacro is applied as in the following exampl e;

extern int32 Hopen
PROTO((char *path, intn access, intlé ndds));

When prOTOTYPE isdefined, PROTO causesthe argument list to stay asitis. When PROTOTYPE
isnot defined, PrOTO causes the argument list to disappear.

Type Differences

Platforms and compilers also differ in the sizes of numbers that they assign to different data types,
in their representations of different number types, and in the way they organize aggregates of
numbers (especially structures).

11.8.1Size differences

The same number type can be different sizes on different platforms. Thetype int, for example,
is 16 bits to many IBM PC compilers, 48 hits to some supercomputer compilers, and 32 bits on
most others. This can cause problems that are difficult to diagnose in code like the HDF code,
which depends in many places on humbers being the right size.

HDF handles this problem by fully defining all variable types and function data types via type-
def, including the number of bits occupied. All parameters, members of structures, and static,
automatic, and external variables are so defined .

The HDF data types include the following (types with the prefix u are unsigned).

int8
uint8
intlée
uintl6
int32
uint32
float32
floate4
intn
uintn

For each machine, typedefs are declared that map all of the data types used into the best available
types. For example, int32 isdefined as followsfor Sun's C compiler:

typedef long int int32;

11-10

June 25, 2008

HDF Specification and Developer’s Guide

Unfortunately, the HDF data types do not always map exactly to one of the native data types. For
example, the Cray UNICOS C compiler does not support a 16-bit data type. In such instances,
HDF uses the best available match and care is taken to minimize potential problems.

The datatypes intn and uintn are for situations where it can be determined that number type
size is unimportant and that a 16-bit integer is large enough to hold any value the number can
have. In such cases, the native integer type (or unsigned integer type) of the host machine is used.
Experience indicates that substantial performance gains can be achieved by using intn oOr uintn
in certain circumstances.

11.8.2Number Representation

One of the keysto producing a portable file format is to ensure that numbers that are represented
differently on different machines are converted correctly when moved from machine to machine.
HDF provides conversion routines to convert between native representations and a standard repre-
sentation that is actually used in the HDF file. This ensures that HDF data will always be inter-
preted correctly, regardless of the platform on which it isread or written. Details of this process
will beincluded in alater edition of this manual.

11.8.3Byte-order and Structure Representations

Even when the basic bit-representation of constants or aggregates like structures is the same
across platforms, the ways that the bits are packed into a word and the order in which the bits are
laid out can differ. For example, DEC and Intel-based machines generally order bytes differently
from most others. And the C compiler on a Cray, with a 64-bit word, packs structures differently
from those on 32-bit word machines.

Differencesin byte order among machines are handled in either of two ways. When the datato be
written (or read) includes non-integer data and/or a large array of any type of data, conversion
routines mentioned in the previous section, “Number Representation,” are invoked. When an
individual integer isto be written (or read), an ENCODE Or DECODE Macro is used.

Thefollowing ENCODE and DECODE macros are available for 16-bit and 32-bit integers:

INT16ENCODE
UINT16ENCODE
INT32ENCODE
UINT32ENCODE
INT16DECODE
UINT16DECODE
INT32DECODE
UINT32DECODE

The ENCODE macroswrite integers to an HDF filein astandard format regardless of the word-size
and byte order of the host machine.

Likewise, the DECODE macros read integers from a standard format in an HDF file and provide
the integersin the required byte order and word size to the host machine.

Since the ENcODE and DEcCoDE macros deal with both byte order and word size, they are also
used in reading and writing record-like structures. For example, an HDF data descriptor consists
of two 16-bit fields followed by two 32-bit fields, asimplied by the following C declaration:

struct {
uintlé tag;
uintlé ref;
uint32 offset;

June 25, 2008 11-11

The HDF Group

uint32 length;

}

Even though this structure might occupy 12 bytes on one platform or 32 bytes on another (e.g., a
Cray), it must occupy exactly 12 bytesin an HDF file. Furthermore, some machines represent the
numbers internally in different byte orders than others, but the byte order must always be big-
endianin an HDF file. The ENCODE and DECODE macros ensure that these values are always rep-
resented correctly in HDF files and as presented to any host machine.

11.9 Accessto Library Functions

Despite standardization efforts, function libraries often differ in significant ways. At least three
types of functions require special treatment in the HDF implementation:

Filel/O
Some platforms use 16-bit values for the element size and the number of elements to
write or read, while others use 32-bit values. This must be considered when working
with either stream or system level 1/0 functions (i.e., the functions associated with the
fopen () and open() cals).

Memory allocation and release
First, 16-bit machines use a 16-bit value to indicate the number of bytes to allocate or
release at one time. Second, certain operating systems (notably MS Windows and
MAC/OS) don't have malloc() and free() cals. These operating systems use
handles for allocating memory and require different function calls.

Memory and string manipulation
These functions (e.g., memcpy (), memcmp (), strcpy(), anhd strlen()) require
dightly different function names under different memory models in MS DOS and
under M S Windows than on most other systems.

HDF accommodates these special situations by defining appropriate macros in the machine-spe-
cific sectionsof hdfi.h.

11-12 June 25, 2008

Appendix

Tags and Extended Tag L abels

A.1 Overview

Thetablesin this appendix lists all of the NCSA-supported HDF tags and the labels used to iden-
tify extended tags.z

A.2 Tags

Table Ab lists all the NCSA-supported HDF tags with the following information:
Thetag itself

Tag

Tag number
Extended tag number

Full name

Section

The regular tag number in decimal (top) and hexadecimal (bottom)

The extended tag number used with linked blocks and external data elements
in decimal and (hexadecimal)

The tag name, a descriptive English phrase

The section of Chapter 9, “ Tag Specifications,” in which the tag is discussed

The tags are listed in aphabetical order. Not all tags have extended tag numbers.

TABLE Ab NCSA-supported HDF Tags
Tag Number Extended Full Name Section
Number

DFTAG AR 312 Aspect ratio Raster Image Tags
0x0138

DFTAG CAL 731 Calibration information Scientific Data Set Tags
0x02DB

DFTAG CCN 310 Color correction Raster Image Tags
0x0136

DFTAG CFM 311 Color format Raster Image Tags
0x0137

DFTAG CI8 203 Compressed image-8 Obsolete Tags
0x00CB

DFTAG DIA 105 Dataidentifier annotation Annotation Tags
0x0069

June 25, 2008 A-1

The HDF Group

Extended .
Tag Number Number Full Name Section
DFTAG DIL 104 Dataidentifier label Annotation Tags
0x0068
DFTAG DRAW 400 Draw Composite Image Tags
0x0190
DFTAG FD 101 File description Annotation Tags
0x0065
DFTAG FID 100 Fileidentifier Annotation Tags
0x0064
DFTAG FV 732 Fill value Scientific Data Set Tags
0x02DC
DFTAG GREYJPE 14 8-bit JPEG compression infor- | Compression Tags
G 0x000E mation
DFTAG ID 300 Image dimension Raster Image Tags
0x012C
DFTAG ID8 200 Image dimension-8 Obsolete Tags
0x00C8
DFTAG II8 204 IMCOMP image-8 Obsolete Tags
0x00CC
DFTAG IMC 12 IMCOMP compressed data Compression Tags
0x000C
DFTAG IP8 201 Image palette-8 Obsolete Tags
0x00C9
DFTAG JPEG 13 24-bit JPEG compression Compression Tags
0x000D information
DFTAG LD 307 LUT dimension Raster Image Tags
0x0133
DFTAG LUT 301 Lookup table Raster Image Tags
0x012D
DFTAG MA 309 Matte channel Raster Image Tags
0x0135
DFTAG MD 308 Matte channel dimension Raster Image Tags
0x0134
DFTAG_MT 107 Machine type Utility Tags
0x006B
DFTAG NDG 720 Numeric data group Scientific Data Set Tags
0x02D0
DFTAG NT 106 Number type Utility Tags
0x006A
DFTAG_NULL 1 No data Utility Tags
0x0001
DFTAG RI 302 16686 Raster image Raster Image Tags
0x012E 0x412E
DFTAG RIS 202 Raster image-8 Obsolete Tags
0x00CA
A-2 June 25, 2008

HDF Specification and Developer’s Guide

Extended)
Tag Number Number Full Name Section
DFTAG RIG 306 Raster image group Raster Image Tags
0x0132
DFTAG RLE 11 Run length encoded data Compression Tags
0x000B
DFTAG SD 702 17086 Scientific data Scientific Data Set Tags
0x02BE 0x42BE
DFTAG SDC 708 Scientific data coordinates Scientific Data Set Tags
0x02C4
DFTAG_SDD 701 Scientific data dimension Scientific Data Set Tags
0x02BD record
DFTAG SDF 706 Scientific data format Scientific Data Set Tags
0x02C2
DFTAG SDG 700 Scientific data group Obsolete Tags
0x02BC
DFTAG SDL 704 Scientific data labels Scientific Data Set Tags
0x02C0
DFTAG SDLNK 710 Scientific data set link Scientific Data Set Tags
0x02C6
DFTAG_SDM 707 Scientific data max/min Scientific Data Set Tags
0x02C3
DFTAG SDS 703 Scientific data scales Scientific Data Set Tags
0x02BF
DFTAG SDT 709 Scientific data transpose Obsolete Tags
0x02C5
DFTAG SDU 705 Scientific data units Scientific Data Set Tags
0x02C1
DFTAG T105 603 Tektronix 4105 Vector Image Tags
0x25B
DFTAG T14 602 Tektronix 4014 Vector Image Tags
0x25A
DFTAG TD 103 Tag description Annotation Tags
0x0067
DFTAG TID 102 Tag identifier Annotation Tags
0x0066
DFTAG VERSION 30 Library version number Utility Tags
0x001E
DFTAG VG 1965 Vgroup Vset Tags
0x07AD
DFTAG VH 1962 Vdata description Vset Tags
0x07AA
DFTAG VS 1963 18347 Vdata Vset Tags
0x07AB 0x47AB
DFTAG XYP 500 X-Y position Composite Image Tags
0x01F4

June 25, 2008

The HDF Group

A.3 Extended Tag L abels

Table Ac lists labels used to identify HDF extended tags. The table includes the following infor-
mation:

Extended tag label The label, which appears as the first element of the extended tag descrip-
tion record

Physical storage methodThe alternative storage method indicated by the label

TABLE Ac Extended Tag L abels
Extended Tag L abel Physical Sorage Method
EXT EXTERN External file element
EXT LINKED Linked block element
SPECIAL COMP Compressed element
SPECTAL CHUNKED Chunked element

A-4 June 25, 2008

Appendix

Library Calling Trees

B.1 Overview

This appendix includes the calling trees employed in the HDF library. Note that these calling trees
are not presenting the entire library, as of May, 2008. They were produced as the need to study
certain areas of the library arose. In addition, afew trees might already be outdated. Thus, the call-
ing trees should only be used to get familiar with the library before studying the source code for

details. Updating this appendix is not a high priority task.

B.2 Library Calling Trees: SD API

hdf_create compat_dim_vdata int reff of thevdata creates a vdata for the compatible dimension; its classis DIM_VALS
or FAIL

allocates dimension size— HDmalloc int32 *

prepares value for the compatible dimension

creates ydata and . V Hstoredata int32 vdata's ref#
stores dimension's size

June 25, 2008 B-1

The HDF Group

T1v4/@3300NS ‘zew! [yoeepA |—Baay) woiysaydesp—

11v4/a3300NS ‘zew! [YdeBpSA |——emrpAsy) woly ssyoeep—

poywWIuUN S|
uoIsuBLUIP J1 081

it <« [GOEGH o

elepAdY] WO
wu! L PRSA e enspeal]
eRpABy: Ul
uul A|IIv_8mm —
il A wep 1s11) Syess pa1IWIUN S| UOSUBWIP
Wi [dwonsaH | 10TOSTVA NI —
es|ssep 4i
elepABY] WOo1yazZIs
uul JUNO2ABNOS A A‘co_m:wE_Uw%mwm‘
STIVA Wiae
Wt +—{ dwoIsaH | ey]
T1v4/@3300NS ‘ul ssepRBSA ssejoslispb —
14 Jo 1 BA ‘gewu [yoemesA | ©RpABY) 0 SR — az15 UOSUBWIP 1B

01STVA~ WIQ lo/pue

WP ON «— SSIA|— pppresy jissutep | T0STYA WIQSsep jo
o eEepAe Joj ybnoiyy doo|
#WIPON «——] PeUBBA |— Juswe e 1%0U JO #4591 6

ul alinbuip BAasIyl Joouiseh —

wu | dwonsaH | UOSLRWIPES} JISHOBYD ——|

T1v4/a3300NS ‘ul | sseppbA | sseosyspd —|
TIv4 Jop1BA ‘zel «— ygeleA —— Baayiorsayoere —
WP ON «— BASINF——— BAes) jisouuerp — SUORUSLLID

Bunuesaidaisbn |
Jojybnouyy doo|

+xWIPON <+ POUBBA |——— 1UBUBP 1XoU JO #2110 —

+xWIp ON 20| fPWdH 51| WIpSaeI0|e——

ININJS JPO. WOAJSUOSUBLUID U} UISPeal - T1V4/AIIOONS Ul Swip_pes 1 Jpy

June 25, 2008

B-2

HDF Specification and Developer’s Guide

hdf read_vars |—» intn SUCCEED/FAIL

——for each dement——

loop through for all
vgs representing a
variable - class
_HDF VARIABLE

———allocates var list HDmalloc NC_var**

———allocates dim list HDmalloc NC_dim**
gets number of .

e L Vitagies > 22

otherwise, go to the next element

- reads in the variables and variable records from a cdf structure

Note: Vntagrefs should be called before the allocations so
they can use itsresult too; variable used wrong type: int

getsitstag and ref# Vgettagref intn, SUCCEED/FAIL

if this element is a vgroup, do the following process,

———— attachesto thevg int32, vgid or FAIL
- gesitsclass intn, SUCCEED/FAIL
- checksif itsavariable int

—————— getsinfo of thisvg intn

—— for each sub-element

sub diagramis on

looks for dimensions, data storage, and

or -1if error

deallocate .
~ temp. storage int

compute number of records written

next page number type definition of thisvariable
————— creates new var record NC_var *
—————— gets#of attr records ———{ hdf_num_attrs F— intn
————— readsin attr records hdf_read attrs NC_array *
if thisvar has been written w/data and is a record
variable (i.e, adimension), process the following
returns var->assoc->count NC var_shape int

deallocate shape info int <«— twicefor shape and dsizes

detaches from the vg int32, SUCCEED/FAIL
creates var list NC_array *

<«—— twicefor temporary variable list and dimension list

June 25, 2008

B-3

The HDF Group

—for each sub-element—— getsitstag and ref# Vgettagref intn, SUCCEED/FAIL
— case DFTAG_VG
attaches to the l ; ;
— Vattach t32, vg id or FAIL

iy int32, vgid or
loop through to —— getsitsclass
obtain dimensions, if class isa
data storage, and _HDF_DIMENSION or int twice for _HDF_DIMENSION

number type
definition

“HDF_UDIMENSION and _HDF_UDIMENSION

I~ get sub vgroup info
get dimension id l
from its name NC_dimid

L— detach from sub vgroup int32, SUCCEED/FAIL

| — case DFTAG_VH

vdata, do nothing

NDG tag for HDF3.2,

[CaeDFTAGNDG — o ndg_ref to sub vgroup id

| Data storage,
case DFTAG_SD set data_ref to sub vgroup id
gets length of the)
T datadement ———{ Hlength | int32

Ragged array index,

[CeseDFTAG_SDRAG — o rag_ref to sub vgroup id

— case DFTAG_NT —— Number type

—— get sub vgroup info
get dimension id _
from its name
—— DFNT_TYPE -> NC_TYPE hdf_unmap_type nc_type

checks for native mode using several
comparisons, one of which is the routine below

) declared as int8, but casted to
DFKgetPNSC int8 uint8 when used here

B-4 June 25, 2008

HDF Specification and Developer’s Guide

[hdf_read_xdr_cdf —— intn SUCCEED/FAIL - readsin acdf structure from thefile

find top level vg, - .
7class_HDF_CDF4{ Vfindclass F— int32, vg ref
—attachestotop level vg— Vattach ~ |— int32, vgid or FAIL
——readsin dim records hdf_read dims intn, SUCCEED/FAIL

reads in var records hdf_read vars intn, SUCCEED/FAIL

——gets# of attr records— hdf_num_attrs F— intn

reads in attr records hdf_read_attrs NC_array *
——detaches from the vg int32, SUCCEED/FAIL

[hdf_write attr }—— l)r:t;zfﬁ_of thevaata writes a vdata representing an attribute

data for this vdata:
name = (NC_attr *)->name->values, values = (NC_attr *)->data->values
size = (NC_attr *)->data->count, type = (NC_attr *)->HDFtype

creates a vdata and .
— - [VHstoredatam | :
tores the attribute VHstoredatam int32 vdata's ref#

[hdf_write dm }—» Lr:taZU\/LgLroup ref#of thisvar - _ writes out the vgroup representing a dimension and its €l ements

this vdata has onefield, "Values', and onerecord, the

creates vdata to store - .
hdf_create_dim_vdata Int32 ref# dimension's size; its name is the dimension's name

dimension'ssize

| creates compal ble—{ hdf_create_compat_dim_vdata —» int32ref¥ «—— storestheref#in therefslist

dimension

if data has been written for this dataset, stores the data storage's ref# in refslist also

creates aref for the

| o returns aref that is unique wint16
nu_mber_ type ObJ.eCt in thefilefor a given tag &
using either routine
retuns a ref that is unique int16
inthefile

—— setsdimension's classto _HDF_DIMENSION or _HDF_DIMENSION using the dimension's size

——— sets dimension's name to the defined one or to thefakeone «——— Note: any skipped index of the fake name is adjusted here

| writesthe vgroup for int32, vg ref

this dimension

June 25, 2008 B-5

The HDF Group

[hdf_write var }|—» Lr:taZU\/LgLroup ref of thisvar - _ writes out the vgroup representing a variable and its elements

getsref# of each dim hdf ot ref int32 ref uses the association list of this var: var->assoc->valued[i]; the ref# is then
of the passed in var e stored in therefslist (which will contain al ref#s in thefile) for later writing

writes each attribute int32ref# «—— storestheref#in therefslist

of thisvariable

if data has been written for this dataset, stores the data storage's ref# in refslist also

creates aref for the

| L returns aref that is unique uint16
nu_mber_ type Obj.eCt inthefilefor agiven tag A
using either routine
_returns_a ref that isunique uint16
inthefile
writes number type—{ Hputelement - int32 # of bytes written or FAIL
——— stores the number type's ref# in refslist
—sets up to write the NDG int32 group id or FAIL <«—— actually, sets up space for alist of DIs
writes metadata | DFdiplt | » intn SUCCEED/FAIL <« 2caly, addstag/ref to Dl list;
twice for SD's and number type's
writes SDD record int32 # of bytes written or FAIL
writes metadata intn SUCCEED/FAIL <« 2ctually, addstagiref to DI list;.
twice for SD's and number type's

—— storesthe SDD'sref# inrefslist

writes out theNDG—— DFdiwrite |—— intn SUCCEED/FAIL «+—— actually, writes DI list tofile

—— storesthe NDG'sref# in refslist

writes the vgroup for .
T thisvariable VHmakegroup int32, vg ref

B-6 June 25, 2008

HDF Specification and Developer’s Guide

[hdf_write xdr_cdf }—» intn SUCCEED/FAIL - writes out acdf structureto thefile

| covertsscalevalues g oo oes intn SUCCEED/FAIL
into coord var values

———allocates tag list HDmalloc int32 **

alocatesref list HDmalloc int32 **

- if there are any dimension, loop through the dim
list (NC*)->dims->values

—for each dimension—

check for duplication —{ NC_compare string ——— int32, vgid or FAIL
use tsizeptr and thashptr to suplement the comparison of dim records

if thisdimension is not duplicated

Lwrit&s dimension out hdf_write dim int32

- if there are any variable, loop through the var list
(NC*)->vars->values

writes variable out int32

——for each variable—

- if there are any file attributes, loop through the

for each attribute— 4+ iy te list (NC*)->attrs->values

writes attribute out hdf_write attr int32
| writesout thetop ']
level vgroup CDF | VHmakegroup | int32, vg ref

June 25, 2008 B-7

The HDF Group

SDcr eate }—» int32 SDSid or FAIL - creates anew dataset

732.‘% :j‘i’r:"’}';d'e% SDihandie from id|» NC*
creates new dim record—— NC_new_dim - NC_dim*
——createsvar lis——— NC_new_array —» NC_array *
—adds the new var to varsliss—{ NC_incr_array |——» Void *
——DFNT_TYPE -> NC_TYPE—{ hdf_unmap_type —» nc_type
creates new var record— NC_new_ var — NC_var*

determines size from - int sizeor
given number type DFKNTsize FAIL

_createsnew NDG ref retumns a ref that 'is unigue Hitagnewret Lint16
using either routine inthefilefor agiven tag
_re-turns_a ref that is unique uint16
inthefile
return_s var->assoc->count int
or -1if error
SDend intn SUCCEED/FAIL - closes an HDFfile

getsfile handle - .
 usingdimid —— SDlhandle from_id - NC
L if meta-data needs Updme,

updates data xdr_cdf bool_t
7d%, if numrecsinfo nws boal t
update, updates data = -

L clossthefile———{ ncdose ~ |— int

- . getsinfo about an opened file, info includes number
Sbfileinfo intn SUCCEED/FAIL of datasets and number attributesin thefile

782.‘%'][?'2?3"'9% SDihandle from id |—» NC*

retrieves (NC *)->vars->count and
(NC *)->attrs->count

B-8 June 25, 2008

HDF Specification and Developer’s Guide

[SDgetinfo | intn SUCCEED/FAIL getsinformation about a dataset
—getsfile handle using sdsid—{ SDIhandle from_id |— NC*
———getsvar recoord—— SDIget var |——» NC var*
copies dataset's name HDmemcpy from (NC_var*)->name-
>values
ets number type Ot (NC_vart)-
g P -M&p_yp >HDFtype
if there are any attributes, gets number of attributes from (NC_var*)->attrs-
>count
gets size of ith dimension from (NC_var*)-
>shapei]
if thefirst dimension is unlimited, getsits size from (NC_var*)->numrecs or (NC*)-
>numrecs
[SDgetrange | intn SUCCEED/FAIL gers max and min values of data
—getsfile handle using sdsid—{ SDIhandle from_id —» NC*
———gets var record NC_var *
finds an attr named NC_findattr NC_attr ** —» for attribute named _HDF_ValidRange
if found
L computes and gets twice for min and
) HDmemcpy _—
min/max values max
otherwise,
fl.nds an attr NC findattr NC attr ** thF:efor attri bute§ named
given its name = - valid_min and valid_max

checksif attributes’ typeis
different from that of var, if

not
NC_copy_arayvals twice for min and

max

June 25, 2008 B-9

The HDF Group

SDnametoindex |—» int32 dataset index or FAIL - maps a dataset name to its index

getsfile handle using
thefileid

—{ SDIhandle_from_id > NC*

——for each variabl e—t if there are any variable, loop through the var list (NC*)->vars->values

searches for a var that has the int
name as the passed in name P
the loop counter will be the found dataset
index
SDreaddata | intn SUCCEED/FAIL - reads a hyperdab of data

7?&; sifjlt:;gaggtlaes?izgg{ SDlhandle from_id — NC*

if theid isnot that of a dataset, try

dimension
getsfile handle using - .
theid asadimensionid L oinendle from id |— NC
————getsdim record SDlget_dim NC_dim*
if dimension isfound, gets intn otherwise, calculates index
index of the coord var 9 of thevar using sdsid
if type size conversion is needed due to platform
differences,
\—gets varrecood—— SDIget vt ——» NC var* <—
regds the hypers!ab regds without int, 0 or -1
using either routine strides
reads with strides int, 0or-1
SDsetattr
| getsattr list of afile, SDS, : .
or dimension, return S/F —{ SDlapfromid [+ intn
adds attr to object, .
returns S/F SDlputattr intn

just to get (NC_var*)->assoc-
>count

B-10 June 25, 2008

HDF Specification and Developer’s Guide

SDsetdatastrs

ﬂgﬁg's‘;g?gd'e—q SDihandle from id —» NC*

gets var record

[SDige v | NC_va

sets attribute,

intn repeated 4 times for label, unit, format, and
returns S'IF

coordinate system

SDsetdimname

733;;':]'?;&}2(1'84% SDIhandle from_id |—» NC*

gets dim record SDlget_dim NC_dim*
frees old dimension NC free dim

creates a new name

: -
for this dimension NC_new_siring NC_string

frees old name

—
returns S/F NC free string

SDsetdimscale
getsfile handle - .
 usingdimid ——»{ SDIhandle_from_id |- NC
————gets dim record SDIget_dim NC_dim*
I getsvar index intn
stores data to this ; .
{NC vaio |
Vo e aE | NCvario > int32
frees handle->var->aid .
— | SDifreevarAID_|
returns SE SDIfreevarAID int32
SDsetdimstrs
gets file handle - .
 usngdimid ——»{ SDIhandle from_id —» NC
—————gets dim record SDIget_dim NC_dim*
———getsvar index intn
7ge_ts var re_cord NC_hlookupvar NC_var *
using var index
733322?8’ intn <«—| repeated 3 times for label, unit, and format |

June 25, 2008 B-11

The HDF Group

SDsetfillvalue

7Egﬁ;'$2f‘gd'e—q SDihandle from id > NC*

gets var record

ey e ———{ SDiget var > NC_var
sets fill value attribute, .
Y inn
[SDselect | int32sdsidor FAIL getsadataset id, i.e, initiates access to a dataset
getsfile handle

—using fileid ——{ SDIhandle_from_id |-—» NC*

creates sdsid using thefileid and sds index

[SDstart |—— int32fileID of FAIL - opensan HDF file

——initializes the interface—»{ SDIstart -+ NC*

uses either routine
depending on the ——»,

opens an existent

validates and returns - .
T cdf handle —»{ NC_check_id F— NC

access mode —— creates an HDF file intn
S it

SDlapfromid |— intn SUCCEED/FAIL - getsthe attribute list of an object given itsid

78‘;?[51;';2?3‘1"&% SDihandie from id |» NC* p—

repeated 3 times for the SDS, thefile, and the
dimension depending on the previous result

————gets var record NC_var *

gets dim record SDlget_dim NC_dim*

gg;é?g;(\fa?he SDlgetcoordvar intn

gets var record

L . NC_hlookupvar NC_var *
using var index

B-12 June 25, 2008

HDF Specification and Developer’s Guide

SDI getcoor dvar)—» int32 var index - getsthe index of a coordinate variable

compares given name with

looks for var of intn?
agiven name names from handle->vars
DFNT_TYPE -> NC_TYPE hdf_unmap_type nc_type
determines size of a data type NC_typelen size t
retumns var->assoc->count NC var_shape int
or -1if error

DFNT_TYPE -> NC_TYPE hdf_unmap_type nc_type

creates new var record NC_new_var)—» NC_var *
| createsnew NDGref returns aref that is unique Htagnewref uint16
using either routine in thefilefor agiven tag
returns aref that is unique uint16
inthefile
- returns var->assoc->count or -1 if error int
adds the new var to vars list Void *
\ SDiget_dim F——» NC_dim* - gets the dimension record

ap = (NC_array **) handle->dims->values,
where handleisNC *

getsdim liss——»

| getsdim record using

calculated dimindex > (NC-AIm*) *ap

\ SDIget_var F——» NC_var* - gets the variable record

ap = (NC_array **) handle->vars->values,
where handleisNC *

getsvar liss———»

| getsvar record using
calculated var index

—» (NC_var *) *ap

[SDIhandle from_id |—— NC* handle - gets the file handle of an object given itsid and type

validates and returns

odf handle —{ NC_check_id F—» NC*

June 25, 2008 B-13

The HDF Group

B-14 June 25, 2008

Appendix

Function Specifications

Cl

C.2

Overview

This appendix presents the detailed specifications of selected individual routines of the HDF low
level interface. Several low level routines are documented in the HDF Reference Manual and all
are documented in the distributed source code.

The terms IN: and OUT: indicate whether parameters are input or output parameters; in some
cases, a parameter may be both. In the following specifications, these terms should be interpreted
asfollows:

IN: Value as input parameter

OUT: Value as output parameter

Opening and Closing Files

Hopen
int32 Hopen(char #*path, int access, intlé ndds)
path IN: Complete path and name of the file to be opened
access IN: DFACC READ, DFACC CREATE, or DFACC WRITE
ndds IN: Number of DDsin ablock if this file needs to be created
Purpose Provides an access path to an HDF file and reads all of the DD blocks in the

file into primary memory.

Returnvalue Returnsfile ID if successful and FAIL (-1) otherwise.

Description Opens an HDF file.

The following events occur on successful exit:

*File rec membersarefilledin. (File rec isaninterna HDF structure
containing information about the opened file.)

*The reguested file is opened with the relevant permission.
eInformation about DDs is set up in memory.
*The file headers and initial information are set up for new files.

June 25, 2008 C-1

The HDF Group

Access privilege codes
HDF provides severa constants for use as access privilege codes as listed
below. Note that these constants are not bit-flags and should not be ORed
together to combine access modes. Doing so may cause odd behavior and, in
some cases, |0ss of data:

Recommended tags:
prFacc_READOpen for read only. If file does not exist, error.
prFacc_WRITEOpen for read/write. If file does not exist, createit.

DFACC_CREATEForce creation. If file exists, delete it, then open a new file
for read/write (in the spirit of the UNIX system command
clobber).

Obsolete tags:
DFACC_ALLSame asDFACC_WRITE (obsolete but still supported).

DFACC_RDWRSame as DFACC_WRITE (obsolete but still supported).

Hclose
intn Hclose (int32 id)

id IN: Theidentifier of the file to be closed

Purpose Closes the access path to thefile.

Returnvalue Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Description idisfirst validated. If valid, the function closes the access path to the file.

If there are still access elements attached to the file, the error DFE_OPENAID
is pushed onto the error stack and the fileis not closed. Thisisafairly com-
mon error when developing new interfaces. See the discussion of Hendac-
cess below for debugging hints.

C-2 June 25, 2008

HDF Specification and Developer’s Guide

C.3 Locating Elementsfor Accessand Getting Information

Hstartread

int32 Hstartread(int32 file id, uintlé tag, uintlé ref)

file id
tag

ref

Purpose

Return value

Description

Hnextread

IN: ID of fileto attach access el ement to
IN: Tag to search for

IN: Reference number to search for

L ocates an existing data element with matching tag/ref and returns an access
ID for reading it.

Returns access element 1D if successful and FAIL (-1) otherwise.

Searches the DDs for a particular tag/ref combination. If the search is suc-
cessful, an access element is created, attached to the file, and positioned at
the start of that data element; otherwise an error is returned. Searching on
wildcards begins from the beginning of the DD list. Wildcards can be used
for the tag or reference number (DFTAG WILDCARD and DFREF WILDCARD)
and they match any values.

intn Hnextread(int32 access id, uintlé tag, uintlé ref, int origin)

access_id
tag

ref
origin
Purpose

Return value

Description

IN: ID of aREAD access element
IN: Tag to search for
IN: Reference number to search for

IN: Position at which to start searching

L ocates and positions a read access ID on next occurrence of tag/ref.

Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Searches for the next DD that fits the tag/ref. Wildcards apply. If origin is
DF_START, searches from start of DD list; if origin IS DF_CURRENT,
searches from current position. Searching from the end of the file via
DF_END iS not yet implemented.

If the search is successful, then the access element is positioned at the start of
that tag/ref; otherwise, the access ID is not modified.

June 25, 2008

C-3

The HDF Group

Hstartwrite

int32 Hstartwrite(int32 file id, uintlé tag, uintlé ref, int32 length)

file id IN: 1D of fileto writeto

tag IN: Tag towriteto

ref IN: Reference number to write to

length IN: Length of the data element

Purpose Creates or replaces data element with matching tag/ref.

Returnvalue Returns access element ID if successful and FAIL (-1) otherwise.

Description Sets up an access element to write a data element. The DD list of the fileis
searched first; if the tag/ref is found, the data element can be modified. If an
object with the corresponding tag/ref is not found, a new oneis created.

Hstartaccess

int32 Hstartaccess (int32 file id, intlé tag, intlé ref, int32 flags)

file id IN:ID of fileto read/write to

tag IN:Tag to read/write to

ref IN:Reference number to read/write to

flags IN:Access flags for the data element

Purpose Sets up an access element for either reading or writing.

Returnvalue Returns an access element identifier if successful and FAIL (-1) otherwise.

Description Starts up an access element for either read or write access. The data descrip-
tor list for the file is searched first. If the tag/ref is found, it is not replaced;
the seek position is presumed to be at zero (0). If the tag/ref is not found, itis
created.

Only afinite number of access elements can be active at agiventime, soitis
important to call Hendaccess whenever you are done using an element.

C-4 June 25, 2008

HDF Specification and Developer’s Guide

Hendaccess

int32 Hendaccess (int access id)

access_id

Purpose

Return value

Description

Hinquire

IN: ID of access element to dispose of

Disposes of access element for tag/ref.

Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Disposes of an access element. Only afinite number of access elements can
be active at agiven time, so it isimportant to call Hendaccess whenever
you are done using an element.

When developing new interfaces, a common mistake isto fail to call Hen-
daccess for al of the elements accessed. When this happens, Hclose
will return FAIL and the dump of the error stack (see HEprint below) will
tell how many access elements are still active.

This can be difficult problem to debug, as the low levels of the HDF library
have no idea who or what opened an access element and forgot to release it.
A tedious but effective means of debugging this problem is to annotate with
comments the locations where the attached count of afile record is changed.
Thisoccursin thefiles hfile.c, hblocks.c, and hextelt.c.

intn Hinquire (int32 access id, int32 *pfile id, uintlé *ptag, uintlé *pref,
int32 *plength, int32 *poffset, int32 *pposn, int *paccess,
intl6 *pspecial)

access_1id
pfile id
ptag
pref
plength
poffset
pposn
paccess

pspecial

Purpose

Return value

IN:Access element ID

OUT:FileID

OUT:Tag of the element pointed to
OUT:Reference number of the element pointed to
OUT:Length of the element pointed to
OUT:Offset of element in thefile

OUT:Position pointed to within the data element
OUT:Access type of this access element
OUT:Special code

Returns access information for a data element.

Returns SUCCEED (0) if the access element points to some data element
and FAIL (-1) otherwise.

June 25, 2008

C-5

The HDF Group

Description

Hishdf

Inquires for the statistics of the data element pointed to by the access ele-
ment. If a piece of information is not needed, a NULL can be sent in for that
value. Convenience macros for calls to Hinquire (HQuerypositon,
HQuerylength, etc.) are defined in hdf . h.

int32 Hishdf (char *path)

path

Purpose

Return value

Description

IN: Complete path and name of file

Determines whether afileis an HDF file.

Returns TRUE (non-zero) if fileis an HDF file and FALSE (o) otherwise.

The decision as to whether afileisan HDF file is based solely on the magic
number stored in the first four bytes of an HDF file. Hishdf may some-
timesidentify afile as an HDF file that Hopen is unable to open (e.g., an
HDF file with a corrupted DD list).

readable.

Note: Hishdf only determineswhether afileisan HDFfile. It does not verify that thefileis

Hnumber

int Hnumber (int32 file id, uintlé tag)

file id

tag

Purpose

IN: FilelD
IN: Tag to be counted

Counts the number of occurrences of atag in afile.

Returnvalue The number of occurrences of atagin afile.

C-6 June 25, 2008

HDF Specification and Developer’s Guide

Hgetlibversion

majorv
minorv
release

string

Purpose
Return value

Description

Hgetfileversion

Hgetlibversion (uint32 *majorv, uint32 *minorv, uint32 *release, char stringl[])

OUT:Major version number
OUT:Minor version number
OUT:Release number
OUT:Informational text string

Gets version information for current HDF library.
Returns SUCCEED (0).

Returnsthe version of the HDF library. The version information is compiled
into the HDF library, so it is not necessary to have any open files for this
function to execute.

Hgetfileversion(uint32 file id, uint32 *majorv, uint32 *minorv,

uint32 *release, char *string)

file id IN: FilelD
majorv OUT:Major version number
minorv OUT:Minor version number
release OUT:Release number
string OUT:Informational text string
Purpose Gets version information for an HDF file.
Returnvalue Returns SUCCEED (o) if successful and FAIL (-1) otherwise.
Description Returnsthe HDF version information stored in the given file.
June 25, 2008 C-7

The HDF Group

C.4 Reading and Writing Entire Data Elements

Hputelement

int Hputelement (int32 file id, uintlé tag, uintlé ref, uint8 *data,
int32 Iength)

file id IN: FilelD

tag IN: Tag of data element to put

ref IN: Reference number of data element to put
data IN: Pointer to buffer

length IN: Length of data

Purpose Adds or replaces an element in afile.

Returnvalue Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Description Writes anew data element or replaces an existing dataelement inaHDFfile.
Uses Bwrite anditsassociated routines.

Hgetelement

int Hgetelement (int32 file id, uintlé tag, uintlé ref, uint8 *data)

file id IN: 1D of thefile to read from

tag IN: Tag of data element to read

ref IN: Reference number of data element to read
data OUT:Buffer to read into

Purpose Obtains the data referred to by the passed tag/ref.

Returnvalue Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Description Reads a data element from an HDF file and puts it into the buffer pointed to
by data. The space allocated for the buffer is assumed to be large enough.

Note: Hgetelement assumesthat the buffer islarge enough to hold the databeing read. Itis
the user’s responsibility to prevent dataloss by ensuring that thisis the case.

C-8 June 25, 2008

HDF Specification and Developer’s Guide

C.5 Reading and Writing Part of a Data Element

Hread

int32 Hread(int32 access id, int32 length, uint8 *data)

access_id
length
data

Purpose

Return value

Description

Hwrite

IN: Read access element ID
IN: Length of segment toread in
OUT:Pointer to data array to read to

Reads a portion of adata element.

Returns length of segment actually read if successful and FAIL (-1) other-
wise.

Reads in the next segment in the data element pointed to by the access ele-
ment. Hread starts at the last position left by an Hread or Hseek call
and reads any data that remains in the element upto length bytes. If the
data element istoo short (lessthan 1ength byteslong), Hread readstothe
end of the data element.

int32 Hwrite(int32 access id, int32 length, uint8 *data)

access_1id

IN: Write access element ID

length IN: Length of segment to write

data IN: Pointer to data to write

Purpose Writes next data segment to data element.

Returnvalue Returnslength of segment successfully written and FAIL (-1) otherwise.

Description Writes the data to the data element where the last Hwrite oOr Hseek
stopped.
Hwrite startsatthelast positionleft by an Hwrite or Hseek call, writes
up to a specified number of bytes, and leaves the write pointer at the end of
the data written. If the space reserved is less than the length to write, then
only as much as can fit is written.
It is the user’s responsibility to ensure that no two access elements are writ-
ing to the same data element. Note that a user can interlace writes to multiple
dataelementsin the samefile.

June 25, 2008 C-9

The HDF Group

Hseek

intn Hseek (int32 access id, int32 offset, int origin)

access_id

IN: Access element ID

offset IN: Offset to seek to

origin IN: Position to seek from:

DF_START (0)offset from beginning of data element
DF_CURRENT (1)offset from current position
DF_END (2)offset fromend of dataelement

Purpose Sets the access pointer to an offset within a data element. The next time
Hread Or Hwrite iscalled, theread or write occursfrom the new position.

Returnvalue Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Description Sets the position of an access element in a data element so that the next
Hread or Hwrite Wwill start from that position. origin determines the
position from which offset should be counted.

Thisroutine fails if the access element is not associated with a data element
or if the position sought is outside of the data element.
Seeking from the end of adata element is not currently supported.

C-10 June 25, 2008

HDF Specification and Developer’s Guide

C.6 Manipulating Data Descriptors

Hdupdd

int Hdupdd (int32

file id, uintlé tag, uintlé ref, uintlé old tag,

uintlé old ref)

file id

tag

ref

old tag

old ref

Purpose

Return value

Description
Hdeldd

int Hdeldd (int32
file id
tag
ref
Purpose

Return value

Description

IN: FilelD

IN: Tag of new data descriptor

IN: Reference number of new data descriptor
IN: Tag of data descriptor to duplicate

IN: Reference number of data descriptor to duplicate

Generates new references to data that is already referenced from somewhere
else.

Returns SUCCEED (o) if successful and FAIL (-1) otherwise.
Duplicates a data descriptor so that the new tag/ref points to the same data

element pointed to by the old tag/ref.

file id, uintlé tag, uintlée ref)
IN: FilelD
IN: Tag of data descriptor to delete

IN: Reference number of data descriptor to delete

Deletes atag/ref from the list of DDs.

Returns SUCCEED (o) if successful and FAIL (-1) otherwise.

Deletes the data descriptor of tag/ref from the DD list of the file. Thisroutine
is unsafe and may leave afile in a condition that is not usable by some rou-
tines. Use with care.

June 25, 2008

c-1

The HDF Group

Hnewr ef

uintlé Hnewref (int32 file id)

file id IN: FilelD

Purpose Returns the next available reference number.

Return value Returns the reference number if successful and o otherwise.

Description Returns a reference number that can be used with any tag to produce a
unique tag/ref. Successive callsto Hnewref will generate astrictly increas-
ing sequence until the highest possible reference number has been returned;
then Hnewref will return unused reference numbers starting from 1.

C-12 June 25, 2008

HDF Specification and Developer’s Guide

C.7 Managing Special Data Elements

HL create

int32 HLcreate(int32 file id, uintlé tag, uintlé ref, int32 block length,
int32 number blocks)

file id
tag

ref

IN: FilelD
IN: Tag of new data element (or object)

IN: Reference number of new data element (or object)

block length

IN: Length of blocksto be used

number blocks

Purpose:

IN: Number of blocksto use per linked block record

Creates anew linked block special data element.

Returnvalue Returnsaccess|D for special data element if successful and FAIL (-1) other-

Description

wise.

Appending to existing HDF elements was a problem prior to HDF Version
3.2 because HDF abjects had to be stored contiguously. When appending,
the HDF library forced the user to delete the existing element and rewrite it
at the end of the file. HDF Version 3.2 introduced the concept of linked
blocks, which allow unlimited appending to existing elements without copy-
ing over existing data.

This routine can be used to create an object with the given tag/ref asalinked
block element or to promote an existing element to be stored in linked
blocks.

Initialy, atable is set up to accommodate number blocks linked blocks
for the specified data object. Each block has block Ilength bytes. If an
existing object is being promoted, block Iength doesnot have to be the
same size asthe original element.

HLcreate returns an active access ID with write permission to the linked
block element.

June 25, 2008

C-13

The HDF Group

HL setblockinfo

intn HLsetblockinfo (int32 access id, uint32 block size, uint32 num blocks)
access_1id IN: Accessrecord identifier
block_size IN: Block sizein bytes

num_blocks IN: Number of linked blocks

Purpose Sets block size and number of blocks for alinked block element.

Returnvalue Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Sets the block size and the number of linked blocks for a linked block data
element. Unless reset by this function, block size and num blocks will
have the default values defined in HDF APPENDABLE BLOCK LEN and
HDF_APPENDABLE BLOCK NUM, respectively.

Passing in the value -1 for either parameter indicates that the respective
field is not to be changed.

An error will occur if the value of either parameter isset to o or any negative
value other than -1.

Thisroutineis used by V Ssetblocksize and V Ssethumblocks.

HL getblockinfo

intn HLgetblockinfo (int32 access id, uint32 *block size, uint32 *num blocks)
access_id IN: Accessrecord identifier
block size OUT:Block sizein bytes
num_blocks OUT:Number of linked blocks

Purpose Retrieves block size and number of blocks for alinked block element.

Returnvalue Returns SUCCEED (0) if successful and FAIL (-1) otherwise.

Description Retrieves the block size and the number of linked blocks for a linked block
data element.

If no response is desired for either value, block size Of num blocks may
be set to NULL.

Thisroutineis used by V Sgetblockinfo.

C-14 June 25, 2008

HDF Specification and Developer’s Guide

HXcreate

int32 HXcreate(int32 file id, uintlé tag, uintlé ref, char *extern file name)

file id
tag

ref

IN: filerecord ID
IN: Tag of the special data element to create or promote

IN: Reference number of the special data element to create/promote

extern file name

Purpose

IN:name of the external file to use for the data el ement

Creates anew external file special data element.

Returnvalue Returns access ID for specia data element if successful and FAIL (-1) oth-

Description

erwise.

Creates anew element in an external file or promotes an existing element to
be stored in an external file. If an existing element is to be promoted, it is
deleted (using Hdeldd) from the original file and copied into the new exter-
nal file.

Distributing a single object over multiple external files is not currently sup-
ported. In addition, one cannot place multiple objects in the same external
file.

This routine returns an active access | D with write permission to the external
element.

June 25, 2008

C-15

The HDF Group

C.8 Data Set Chunking

HM Ccreate

int32 HMCcreate (int32 file id, uintlé tag, uintlé ref,

uint8 nlevels, int32 fill val len, void *fill val,
HCHUNK DEF *chk array)

Purpose

Creates a chunked element.

Description

HM Ccreate promotes an HDF element to a chunked element.

The HDF element specified by HM Ccreate becomes a chunked element allowing data to be
easily appended to the element. Chunk records are stored in a Vdata.

All of the pieces of the chunked element are the same size from the stand point of the ele-
ment. If compression is used then each chunk is compressed and the compression layer takes
care of it asthe chunk layer sees each chunks as a seperate HDF object (DFTAG_CHUNK).
The proper compression special header needs to be passed to the compression layer.

The Vdata (chunk table) is made appendable with a linked-block table size of 128.

This routine aso creates the chunk cache for the chunked element. The cache is initialized
with the physical size of each chunk, the number of chunks in the object, i.e. the object size
divided by the chunk size, and the maximum number of chunksto cachein memory. Chunks
in the cache are dealt with by their number, i.e. by translating the origin of the chunk to a
unique number. The default maximum number of chunksin the cacheis set to the number of
chunks along the last dimension.

NOTE: The cache itself could be used to cache any object into a number of fixed size chunks
so long as the read/write(page-in/page-out) routines know how to deal with getting the cor-
rect chunk based on a number.These routines can be found in mcache . c.

Parameters

file id IN: Fileto put chunked element in
tag IN: Tag of element

ref IN: Reference numberof element
nlevels IN: Number of levels of chunks

£i11 val len IN: Fill value length in bytes
£ill val IN: Fill value

chk array IN: Structure describing chunk distribution

Return Values

If the chunked element already exists, HM Ccreate returns Fa1r. Otherwise a new element
is created and HM Ccr eate returns the AID of the newly-created chunked element.

C-16

June 25, 2008

HDF Specification and Developer’s Guide

HM CwriteChunk
int32 HMCwriteChunk (int32 access id, int32 *origin, const void *datap)
Purpose
Writes out exactly one chunk.
Description
HM CwriteChunk writes out exactly one chunk of datato a chunked element.

This function is used to complete whole chunks to the file based on the chunk origin, the
position of the chunk in the overall chunk array.

Parameters

access_id IN: Access AID of the specified chunk.

origin IN: Origin of the chunk to be written.
datap IN: Buffer for the datato be written.
Return Values

Returns the number of byteswritten if successful; otherwise returns FATL.

HM CreadChunk
int32 HMCreadChunk (int32 access id, int32 *origin, void *datap)
Purpose
Reads exactly one chunk.
Description
HM CreadChunk reads exactly one chunk from a chunked element.

This function is used to read complete chunks from the file based on the chunk origin, the
postion of the chunk in the overall chunk array.

Parameters

access id IN: Access AID for the specified chunk.

origin IN: Origin of chunk to be read.
datap IN: Buffer for the datato be read.
Return Values

Returns the number of bytesread if successful; otherwise FATL.

June 25, 2008 C-17

The HDF Group

HM CsetM axcache

int32 HMCsetMaxcache (int32 access id, int32 maxcache, int32 flags)
Purpose

Sets themaximum number of chunks to cache.
Description

HM CsetM axcache sets the maximum number of chunksto cache.

The values set here affects the current object's caching behaviour.

If the chunk cache is full and maxcache is greater then the current maxcache value, then the
chunk cache is reset to the new maxcache value, €lse the chunk cache remains at the current
maxcache vaue.

If the chunk cache is not full, then the chunk cache is set to the new maxcache value only if
the new maxcache value is greater than the current number of chunksin the cache.

Use flags arguement of amMc paGeALL if the whole object is to be cached in memory; other-
wise passin zero.

NOTES: This function calls the routine mcache _set_maxcache(). The value of maxcache
must be greater than 1.

Parameters

access_id IN: Access AID for the specified chunked element.

maxcache IN: Maximum number of chunks to cache.
flags IN: Valid flags are 0 (zero) and HMC PAGEALL.
Returns

Returns the new value of maxcache if successful; otherwise returns FAIL.

HMCPstwrite

int32 HMCPstwrite (accrec_t *access_rec)
Purpose
Opens an access record of a chunked elemnent for writing.
Description
HM CPstwrite calls HM Cl staccess() to fill in the access record for writing.
Parameter
access rec IN: Accessrecord to fill in.
Return Values

Returnsthe AID of the access record if successful; otherwise returns FAIL.

C-18

June 25, 2008

HDF Specification and Developer’s Guide

HM CPseek
int32 HMCPseek (accrec_t *access rec, int32 offset, int origin)
Purpose

Sets the seek position in the chunked element.
Description

HM CPseek sets the seek position in the specified chunked element.
Parameters

access_rec IN: Accessrecord for the specified chunk.

offset IN: Seek offset.
origin IN: Location from which the offset should be calcul ated.
Return Values

Returns a positive valueif successful; otherwise returns FaTL.

HM CPchunkread
int32 HMCPchunkread(void *cookie, int32 chunk num, void *datap)
Purpose
Reads a chunk.
Description

Given the chunk number, HM CPchunkread reads in a complete chunk from a chunked ele-
ment.

Thisis used as the page-in-chunk routine for the cache.
Only the cache should call thisroutine.

Parameters
cookie IN: Access record for the desired chunk.
chunk num IN: Chunk to be read.
datap OUT: Buffer for datato be read.

Return Values

Returns the number of bytesread if successful; otherwise returns FATL.

June 25, 2008 C-19

The HDF Group

HMCPread
int32 HMCPread (accrec_t *access rec, int32 length, void *datap)
Purpose
Reads data from a chunked element.
Description
HM CPread readsin data from a chunked element.

Data is obtained from the cache, which takes care of reading in the proper chunks to satisfy
the request.

Parameters

access _rec IN: Accessrecord for the desired chunk.

length IN: Number of bytesto read.
datap OUT: Buffer for datato be read.
Return Values

Returns the number of bytesread if successful; otherwise returns FaTL.

HM CPchunkwrite
int32 HMCPchunkwrite (void *cookie, int32 chunk num, const void *datap)
Purpose
Writes out exactly one chunk.
Description

Given the chunk number, HM CPchunkwrite writes a complete chunk to a chunked ele-
ment.

Thisis used as the page-out-chunk routine for the cache.
Only the cache should call thisroutine.

Parameters
cookie IN: Access record for the chunk to be written.
chunk num IN: Chunk number.
datap IN: Buffer for the datato be written.

Return Values

Returns the number of bytes written if successful; otherwise returns FATL.

C-20

June 25, 2008

HDF Specification and Developer’s Guide

HMCPwrite

int32 HMCPwrite (accrec_t *access rec, int32 length, const void *datap)
Purpose

Writes data to a chunked element.
Description

HM CPwr ite writes data to a chunked element.

Data is obtained from the cache, which takes care of obtaining the proper chunks to write to
satisfy the request.

The chunks are marked as dirty before being returned to the cache.
Parameters

access_rec IN: Accessrecord for the chunked element.

length IN: Number of bytes to be written.
datap IN: Buffer for the datato be written.
Return Values

Returns the number of byteswritten if successful; otherwise returns FATL.

HM CPcloseAl D

int32 HMCPcloseAID (accrec t *access rec)

Purpose
Closesfile but keeps AID active.

Description
HM CPcloseAl D closesthe file currently pointed to by this AID but does not free the AID.
Thiswill flush the chunk cache and free up the special information struct.

This function is called by Hnextread(), which reuses an AID to point to the next object, as
requested. If the current object was a chunked object, the chunked information needs to be
closed before all referencetoitislost.

NOTE: Direct use of Hnextread() is not recommened since it relies on previous state infor-
mation.

Parameter
access rec IN: Accessrecord of fileto close.
Return Values

Returns a positive valueif successful; otherwise returns FaTL.

June 25, 2008 C-21

The HDF Group

HM CPendaccess
intn HMCPendaccess (accrec_t *access rec)
Purpose
Closes a chunk element AID.
Description

HM CPendaccess closes the specied AID, freeing up all of the space used to store informa-
tion about a chunked element and updating the proper records, access rec, file rec, €tC.
All relevant information is flushed.

Parameter
access_rec IN: Accessrecord to close.
Return Values

Returns a positive value if successful; otherwise returns FaTL.

HM CPinfo
int32 HMCPinfo(accrec_t *access rec, sp_info block_t *info chunk)
Purpose
Returns information about a chunked element.
Description
HM CPinfo returns information about the given chunked element.
info chunk isassumed to be non-NULL.
Parameters
access rec IN: accessrecord of access elemement
info chunk OUT: Information about the special element.
Return Values

Returns a positive value if successful; otherwise returns FaTL.

C-22 June 25, 2008

HDF Specification and Developer’s Guide

HMCPinquire

int32 HMCPinquire (accrec_t *access rec, int32 *pfile id, uintlé *ptag,
uintlé *pref, int32 *plength, int32 *poffset,
int32 *pposn, intlé *paccess, intlé *pspecial)

Purpose
Inquires for chunked elements.
Description
HM CPinquire returns interesting information about a chunked element.
NULL can be passed for any OUT parameter if the value is not needed.
Parameters
access rec IN: Accessrecord of the chunked element for which information is sought.

pfile id OUT: File identifier.

ptag OUT: Tag of information record.
pref OUT: Reference number of information record.
plength OUT: Length of element.
poffset OUT: Offset of element -- meaningless.
pposn OUT: Current position in element.
paccess OUT: Access mode.
pspecial OUT: Specia code.
Return Values

Returns a positive valueif successful; otherwise returns FaTL.

June 25, 2008 C-23

The HDF Group

C.9 Development Routines

HDgettagname
char *HDgettagname (uintlé tag)
tag IN: Tagtolook up
Purpose Gets a meaningful description of atag.

Returnvalue Returns a pointer to a string describing this tag or NULL if the tag is
unknown.

Description To reduce the amount of duplicated code, this routine can be used to map a
tag to a character string containing the name of the tag.

The string returned by this routine is guaranteed to be 30 characters or less.

HDgetspace

void *HDgetspace (uint32 qgty)
gty IN: Number of bytesto allocate
Purpose Allocates space.

Returnvalue If successful, returns a pointer to space that was allocated; otherwise returns
NULL .

Description Uses an appropriate allocation routine on the local machine to get space.

HDfreespace

void *HDfreespace (void *ptr)
ptr IN: Pointer to previously-allocated space that is to be freed
Purpose Frees space.

Returnvalue Returns NULL.

Description Uses an appropriate routine on the local machine to free space. This routine
is platform dependent.

C-24 June 25, 2008

HDF Specification and Developer’s Guide

HDstrncpy

char *HDstrncpy (register char *dest, register char *source, int32 length)

dest OUT:Poainter to areato copy string to

source IN: Pointer to areato copy string from

length IN: Maximum number of bytesto copy

Purpose Copies a string with maximum length Iength.

Returnvalue Returns addressof dest.

Description Createsastringin dest thatisat most Iength characterslong. The num-
ber of characters must include the NULL terminator for historical reasons.
Hence, if you are working with the string Foo, you must call this copy
function with the value 4 (three characters plus the NULL terminator) in
length.

June 25, 2008 C-25

The HDF Group

C.10 Error Reporting

HEprint

void HEprint (FILE *stream, int32 level)

stream

level

Purpose

Return value

Description

HEclear

IN: Stream to print error messages on

IN: Level of the error stack to print

Prints information on the error stack.

Has no return value.

Printsinformation on reported errors. If 1evel iszero, al of the errors cur-
rently on the error stack are printed. Output from this function is sent to the
file pointedto by stream.

The following information is printed:

*An ASCII description of the error

*The reporting routine

*The reporting routine’s source file name

*Theline at which the error was reported

If the programmer has supplied extra information by means of HEreport,
thisinformation is printed as well.

void HEclear (void)

Purpose

Clears all information on reported errors off of the error stack.

Return value Has no return value.

Description

Clears all of the information off of the error stack.

C-26 June 25, 2008

HDF Specification and Developer’s Guide

HERROR

void HERROR (intl6 number)
number IN: Error number
Purpose Reports an error.

Returnvalue Hasno return value.

Description Reports an error. Any function calling HERROR must have avariable Func
which points to a string containing the name of the function.

HERROR is implemented as a macro.

HEreport
void HEreport (char *format,)
format IN: print£-styleformat and arguments
Purpose Provides extrainformation to the error reporting routines.

Return value Has no return value.

Description Provides further annotation to an error report. Only one such annotation is
remembered for each error report. The arguments to this routine follow the
styleof printf.

Consider the following example from hfile.c:

char *FUNC = "Hclose";

if (file rec-»attach > 0) {
file rec->refcount++;
HERROR (DFE_OPENAID) ;
HEreport ("There are still %d active aids attached", file rec->attach);
return FAIL;

June 25, 2008 C-27

The HDF Group

C.11 Other

Hsync
int Hsync (int32 file id)

file id IN: 1D of thefileto synchronize

Purpose Synchronizes on-disk HDF file with image in memory.

Returnvalue Returns SUCCEED.

Description Hsync is not included in the current HDF library release because the on-
disk representation of an HDF file is always the same as its in-memory rep-
resentation. Hsync will be provided when future releases implement buffer-
ing schemes.

C-28 June 25, 2008

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /KOR <FEFFd5a5c0c1b41c0020c778c1c40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee563d09ad8625353708d2891cf30028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f003002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c4fbf65bc63d066075217537054c18cea3002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f3002>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

