POSIX Order Write Test Report

Albert Cheng

2013-11-27

The HDF Group

http://www.HDFGroup.org




DRAFT

1. Purpose

The report shows the result of the POSIX Write Order test in different operating systems using
different file systems. Section 2 shows the requirements of the test. Section 3 shows the
implementation design of the test. Section 4 shows the results of running the test in different
operating system with different file systems. The last section is a summary of the results.

l-T Page 2 of 6

The HDF Group



DRAFT

2. Requirements

The write order test should verify that the write order is strictly consistent. The SWMR feature
requires that the order of write is strictly consistent. The SWMR updates to the data structures in
the file are essentially implementing a "lock-free" or "wait-free" algorithm in updating the data
structure on disk. See: https://en.wikipedia.org/wiki/Non-blocking_synchronization, for
example. In those algorithms, the order of updates to the data structure is critical and if it
doesn't occur correctly, the reader can get inconsistent results.

"Strict consistency in computer science is the most stringent consistency model. It says that a read
operation has to return the result of the latest write operation which occurred on that data item."--
(http://en.wikipedia.org/wiki/Linearizability#Definition_of linearizability).

This is also an alternative form of what POSIX write require that after a write operation has
returned success, all reads issued afterward should get the same data the write has written.

l-T Page 3 of 6

The HDF Group



DRAFT

3. Design of Implementation

The test named as twriteorder, simulates what SWMR does by writing chained blocks and see if
they can be read back correctly.
There is a writer process and multiple reader processes.
The file is divided into 2KB partitions. Then the writer writes 1 chained block, each of 1KB big, in
each partition after the first partition.
Each chained block has this structure:

* Byte 0-3: offset address of its child block. The last child uses 0 as NULL.
Byte 4-1023: some artificial data.
The child block address of Block 1 is NULL (0).
The child block address of Block 2 is the offset address of Block 1.
The child block address of Block n is the offset address of Block n-1.
After all n blocks are written, the offset address of Block n is written to the offset 0 of the first
partition (Block 1). Therefore, by the time the offset address of Block n is written to this position, all
n chain-linked blocks have been written.

The other reader processes will try to read the address value at the offset 0. The value is initially
NULL(0). When it changes to non-zero, it signifies the writer process has written all the chain-link
blocks and they are ready for the reader processes to access.

If the system, in which the writer and reader processes run, adhere to the order of write, the
readers will always get all chain-linked blocks correctly. If the order of write is not maintained,
some reader processes may found unexpected block data.

l-T Page 4 of 6

The HDF Group



DRAFT

4. Results

4.1. Linux hosts with local filesystem

The machines have ext3 and ext4 local filesystems. The test with both write and reader ran in the
same host, passed all runs up to 1,000,000 linked blocks, resulting in datafiles ~2GB big.

4.2. Linux hosts with NFS filesystem

The machines run Linux operating system with one using CentOS 5 and the other using CentOS 6.
Both hosts access a common NFS filesystem served by a NFS file server, therefore all file accesses
are via the network. The test is run with the writer and the reader running in separated hosts. All
tests passed with up to 1,000,000 linked blocks, resulting in datafiles ~2GB big. There is a twist—
the first run when 500,000 and 1,000,000 linked blocks are used, the reader would encounter
failure. But all subsequent runs with the same number of linked blocks would pass without failure.
No explanation of this behavior is available yet.

4.3. AIX hosts with GPFS

The machines run AIX 5.3 OS and are as a box of “blades”. All blades share the access to the GPFS
filesystem.

The test, including both writer and reader, running in the same or separated “blades”, passed all
runs up to 1,000,000 linked blocks, resulting in datafiles ~2GB big.

A side note: when in separated blades, the write time is 7.6 seconds but the reader time is 69
seconds. Itis speculated that the GPFS system may be doing some “kernel” buffering to make write
time to appear smaller.

4.4, Linux hosts with GPFS

The above mentioned AIX system site also has Linux hosts that share the same GPFS system. The
Linux hosts are 64bits system.

The POSIX write order test is run in separated Linux machines using the same GPFS file system. The
test, including both write and reader, in the same or separated hosts, passed all tests up to
1,000,000 linked blocks which resulted in approximately 2GB size file.

A side note: the writer took 8.5 sec to write the 2GB file but the reader took 83 seconds to read
them. Write speed is 10 times faster than read speed--Kernel memory is in play here. Nevertheless,
IBM GPFS adheres to the write order correctly.

4.5. Linux Cluster with Lustre file system

The POSIX write order test is run in a remote Linux Cluster with a Lustre file system. The test
passed with small size files such as 200MB in size. But when larger number of linked blocks (e.g. -n
500000 => 500,000 linked blocks resulting in file size about 900MB) and the writer and reader
were in separated machines, the reader detected errors in data it read back. The exact cause of the
failure is not known yet but it fails for bigger file sizes over separated machines.

l-T Page 5 of 6

The HDF Group



DRAFT

5. Summary

This is a summary of the test results in different system using different the GPFS or Lustre file
system.

System Same host/machine Separated hosts/machines

Linux with local file system

Passed in all file sizes up to
2GB.

N/A

Linux with NFS file system

N/A

Passed in all file sizes up to
2GB.

AIX with GPFS

Passed in all file sizes up to
2GB.

Passed in all file sizes up to
2GB.

Linux with GPFS

Passed in all file sizes up to
2GB.

Passed in all file sizes up to
2GB.

Linux with Lustre

N/A

Passed in small file sizes but
failed with large files (e.g.,
900MB)

The HDF Group

Page 6 of 6




