March 13, 2013 RFC THG 2013-02-06.v8

RFC: SWMR Requirements and Use Cases

Quincey Koziol
Elena Pourmal
Dana Robinson

This document summarizes current requirements and implementation constraints for
the HDF5 Single Writer/Multiple Readers (SWMR) feature and discusses the use cases
that The HDF Group proposes to address in the HDF5 Library 1.10.0 release.

Table of Contents

018 oY [F o ' o S 2
SWMR Requirements and Implementation Constraints.........cccceveeiereeiirenirrecerecreeereeerenerenerenerennes 3
1.1 Major Requirements and CONSTIAINTSuuiiiiiiiiiiiiiiiiiiieeee e e e s e e e e e e e s s st reeeeeeeeesssssnnsnreeneeeeasens 3
A 01 o 1= gl S To [0 =T 41T o | PP 3
1.3 “Light Source Community”-Specific REQUIrEMENTSc..vviiiiiiiiie e e e e e rrre e e e e e e e e e 3
1.4 Implementation constraints for the HDF5 1.10.0 r€laSccceiiieiiiiiiiiiiieiiee e eeisiiirreeeee e e e e s ssvaveeneeeea e 4
USE CASES ruuirunrnerrenireniaeireieesreesrassresressrassressssssassrsssessssssssssssssassssssssssassssssssssasssassssssasssasssassesssnsssnssnns 5
1.5 Modifying raw data in @ fixed-Size dataset...cccccceiiiiiiiiiiii e 5
1.6 Modifying a value of existing attribUtecceiiiiiiiiii e 6
1.7 Appending @ SINGIE CRUNK....cciiiiiii e e e e e s s e s st e e e e e e e e e e e s asnsenbareeeeaeaeeees 7
1.8 ApPeNnding @ NYPEISIADuuiiieiiiiiee e e e e e e e e e s e e e raeaeaaaes 8
1.9 Appending N-1 dimenSioNal PIANES c....uuuiiiiiiiiii e e e s e s e s e e e e e s e s st eeeaaaes 9
FY oY o 1T g Ve [of TRt 10
Appendix A - SWIMR File AcCess MOdElcuireeiiieniiieiineereenereniereniernseereserenseeenserenssrenssrassesnssssnnens 10
Appendix B — Atomic File Object Operationsccceiveeieeeireeeienierenierneceeenerenerenserenssrenserassernssssnnens 12
Appendix C — High-Level Dataset Append FUNCLIONccceuiieeireeiireniiriecieenereenerennereanerenerensernsesennens 13
Appendix D — Append When More Than One Slice Fits in a Set of Chunksccccceeeiiiiiirneniiiinnnnee. 14
LAV E To] 4 T o 1 (o] o V2SRt 17

l-T Page 1 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Introduction

The SWMR feature will allow multiple processes to concurrently access an HDF5 file. Under this
scenario only one process (the Writer) is allowed to modify the HDF5 file, performing operations such
as adding new datasets, groups, links and attributes, and writing data to datasets. Other processes
can only read from the file (the Readers).

Implementing the full HDF5 functionality for SWMR is a challenging task that involves changes to the
HDFS5 file format and library, such as:

1. Extensions to the file format to indicate SWMR access and to improve efficiency in storage
and access for extendible datasets.

2. Enhancements to the HDFS5 library’s internal data structures to work properly under SWMR.

3. Extensions to the HDF5 library’s metadata cache to handle flushing metadata items in a well-
defined order, to assure a consistent state of the HDF5 file for a Reader’s access.

4. Improvements to the HDF5 testing framework, to verify correct behavior when multiple
concurrent processes access a file.

Over the past few years, The HDF Group developers have been working on a SWMR implementation
that addresses two major requirements:

* There is no communication between the Writer and the Readers.
* Access to the file is truly concurrent — neither the Writer nor the Reader locks the HDF5 file.

To assure a consistent view of the HDF5 file for the Readers, other requirements such as POSIX 1/0
semantics for file system access were necessary.

While the full implementation is not complete, the major enhancements in 1 — 3 above have been
implemented to enable SWMR use cases for extendible datasets.

This document summarizes the current requirements and implementation constraints for SWMR. It
also discusses the use cases for modifying a contiguous dataset and an extensible dataset to illustrate
the challenges of the current implementation approach.

|.u: Page 2 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

SWMR Requirements and Implementation Constraints

This section describes requirements and implementation constraints under which the SWMR feature
is being implemented.

1.1 Major Requirements and Constraints

The requirements listed in this subsection affect the SWMR implementation. If requirements 1 or 2
listed below are dropped (e.g., communication between the processes is allowed), implementation of
the full HDF5 functionality for SWMR becomes much easier.

1. There is no communication between the Writer and the Readers participating in the
concurrent access to the HDFS5 file.

2. Neither the Writer nor any Reader locks the HDF5 file.
The following constraint was added in order to address requirements 1 and 2:

3. The HDFS5 file resides on a file system compliant with the POSIX 1/0 semantics for access’.

1.2 Other Requirements
SWMR functionality requires HDF5 library version 1.10.0 and higher.
Files created by SWMR can be accessible by the HDF5 1.8 library.

4
5
6. The Writer and the Readers can open and close the file in an arbitrary order.
7. There is no restriction on the number of Readers.

8. Only one Writer may have the file open at a time.

9

A Reader always sees a consistent HDF5 file - no errors occur while reading HDF5 metadata
and raw data (e.g., discovering group structure, traversing links, reading attributes of the
HDF5 objects, discovering current sizes of the datasets, reading subsets of the datasets).

10. If the Writer crashes, it leaves the file in a non-corrupted state.

11. There is no significant 1/O performance penalty for file access and modifications under SWMR.

1.3 “Light Source Community”-Specific Requirements

12. Provide a mechanism (a callback function) within the HDFS5 library to inform the Writer
process that changes have been propagated to the HDF5 file.

13. The Writer may use the “direct chunk write” feature to modify datasets.

! The PosIX I/0 interface specifies that writes through the interface must be performed in a sequentially consistent
manner. Writes to the file must appear as atomic operations to any readers that access the file during the write; the
reader will see either all or none of any write. These semantics apply to any processes that access the file from any
location. GFS, GPFS, and Lustre implement POSIX semantics, while NFS system doesn’t guarantee it. For discussions, see,
for example, http://etutorials.org/Linux+systems, Section 19.3 “File System Access Semantics”

|.u: Page 3 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

1.4 Implementation constraints for the HDF5 1.10.0 release

This section spells out which operations are allowed and are not allowed in the proposed SWMR
implementation.

The following operations are allowed:
1. The Writer process is allowed to modify raw data of existing datasets by:
a. Appending data along any unlimited dimension.
b. Modify existing data

2. The Writer process is allowed to modify the value of pre-existing attributes unless the
attribute has a variable-length datatype (see 5 below).

The following operations are not allowed (the corresponding HDF5 calls will fail):

3. The Writer is not allowed to add any new objects to the file such as groups, datasets, links,
committed datatypes and attributes.

4. The Writer is not allowed to delete HDF5 objects (groups, datasets, links, committed
datatypes and attributes).

5. The Writer is not allowed to modify or append to any data items containing variably-sized
datatypes (including variable-length datatypes and region references).

6. File space recycling is not allowed. As a result the sizes of the files modified by a SWMR Writer
may be larger than files modified by non-SWMR Writers.

7. Other considerations

It is also important to understand that SWMR operations currently have no sense of
transactions or ordering, so file modifications can be propagated to the HDF5 file in ways that
may be surprising for Readers. For example, suppose a Writer is appending data to a dataset
and also writing summary data to an attribute attached to the dataset (perhaps a running
total or average). SWMR does not guarantee that the attribute will always reflect the data
written to the dataset, or vice-versa. Put another way, SWMR is only concerned with keeping
on-disk internal HDF5 data structures coherent so API calls do not fail on partially-written files.
SWMR is currently not concerned with user-level data semantics.

|.u: Page 4 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Use cases

1.5 Modifying raw data in a fixed-size dataset
Description:
Modifying raw data in a fixed-size dataset within a pre-created file and reading the
modified data back.
Goal:
Read data modified by the Writer in the pre-existing fixed-size datasets in a file.
Level:
User Level
Guarantees:

* The Reader will see the changes immediately (within the imitations of the specific file system).

Preconditions:

* Readers are not allowed to modify the file.
* The datasets are not extensible.
* All datasets that are modified by the Writer exist when the Writer opens the file.

Main Success Scenario:

1. An application creates a file with the required objects (groups, datasets, and attributes).
The Writer opens the file and datasets in the file and modifies data in the datasets.
A Reader opens the file and a dataset in a file and reads the data back.
The Reader may see one of the following:
a. The original data.
b. The partially written data if the H5Dwrite call requires several POSIX write calls (which
occurs when the data written are non-contiguous in the file or too large for a single
POSIX write call to handle).
c. The new data.

PwnN

Discussion points:

1. In order to avoid 4.b one would need to create a copy of the original data in the file and
change the library to update the dataset’s header message to point at the new data when it is
on the disk. Since file space recycling is not available at this implementation stage and copies
of the data in the file can be very large, 4.b is unavoidable unless an application would be
willing to generate a file that is much greater in size than normal.

2. The Reader will see the changes immediately.

|.u: Page 5 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

1.6 Modifying a value of existing attribute

Goal:

Read an attribute value modified by the Writer.
Level:

User Level
Guarantees:

e Readers will see the modified attribute value after the Writer issues H5Fflush or H50flush call.

Preconditions:

* Readers are not allowed to modify the file.
* The attribute exists when the Reader opens the file.

Main Success Scenario:

1. An application creates a file with the required objects (groups, datasets, and attributes).
2. The Writer opens the file and an object in the file and modifies a value of an attribute on the
object.
A Reader opens the file and the object in the file and reads the attribute back.
4. The Reader may see one of the following:
a. The original attribute value.
b. The new attribute value.

w

l.u: Page 6 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

1.7 Appending a single chunk

Description:

Appending a single chunk of raw data to a dataset along an unlimited dimension within
a pre-created file and reading the new data back.

Goal:

Read data appended by the Writer to a pre-existing dataset in a file. The dataset has one or
more unlimited dimensions. The data is appended by a hyperslab that is contained in one chunk (for
example, appending 2-dim planes along the slowest changing dimension in the 3-dim dataset).

Level:
User Level
Guarantees:

* Readers will see the modified dimension sizes after the Writer finishes HDF5 metadata
updates and issues H5Fflush or H50flush calls.
* Readers will see newly appended data after the Writer finishes the flush operation.

Preconditions:

* Readers are not allowed to modify the file.

* All datasets that are modified by the Writer exist when the Writer opens the file.
* All datasets that are modified by the Writer exist when a Reader opens the file.

* Data is written by a hyperslab contained in one chunk.

Main Success Scenario:

1. An application creates a file with required objects (groups, datasets, and attributes).

2. The Writer application opens the file and datasets in the file and starts adding data along the
unlimited dimension using a hyperslab selection that corresponds to an HDF5 chunk.

3. A Reader opens the file and a dataset in a file, and queries the sizes of the dataset; if the
extent of the dataset has changed, reads the appended data back.

Discussion points:

1. Since the new data is written to the file, and metadata update operation of adding pointer to
the newly written chunk is atomic and happens after the chunk is on the disk, only two things
may happen to the Reader:

* The Reader will not see new data.
* The Reader will see all new data written by Writer.

|.u: Page 7 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

1.8 Appending a hyperslab

Description:

Appending a hyperslab that spans several chunks of a dataset with unlimited dimensions
within a pre-created file and reading the new data back.

Goal:

Read data appended by the Writer to a pre-existing dataset in a file. The dataset has one or
more unlimited dimensions. The data is appended by a hyperslab that is contained in several chunks
(for example, appending 2-dim planes along the slowest changing dimension in the 3-dim dataset and
each plane is covered by 4 chunks).

Level:
User Level
Guarantees:

* Readers will see the modified dimension sizes after the Writer finishes HDF5 metadata
updates and issues H5Fflush or H50flush calls.
* Readers will see newly appended data after the Writer finishes the flush operation.

Preconditions:

* Readers are not allowed to modify the file.
* All datasets that are modified by the Writer exist when the Writer opens the file.
* All datasets that are modified by the Writer exist when a Reader opens the file.

Main Success Scenario:

1. An application creates a file with required objects (groups, datasets, and attributes).

2. The Writer opens the file and datasets in the file and starts adding data using H5Dwrite call
with a hyperslab selection that spans several chunks.

3. A Reader opens the file and a dataset in a file; if the size of the unlimited dimension has
changed, reads the appended data back.

Discussion points:

1. Since the new data is written to the file spans several chunks, and the metadata update
operation to add a pointer to a newly written chunk is atomic and occurs after the chunks are
written to the file, three things may happen to the Reader:

a. The Reader will not see new data.
b. The Reader will see one or more (but possibly not all) new chunks.
c. The Reader will see all new chunks.

2. To avoid b. above, SWMR has to implement a “SWMR atomic operation” mechanism to assure
that each H5Dwrite call for a particular object becomes an atomic operation, i.e., a Reader will
see none or all of the new data. Implementing this capability is possible, but would need
several new API calls, described in the appendices.

|.u: Page 8 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

1.9 Appending n-1 dimensional planes

Description:

Appending n-1 dimensional planes or regions to a chunked dataset where the data does
not fill the chunk.

Goal:

Read data appended by the Writer to a pre-existing dataset in a file. The dataset has one
unlimited dimension. The data is appended by a hyperslab that leaves one or more chunks unfilled.

Level:
User Level
Guarantees:

* Readers will see the modified dimension sizes after the Writer finishes HDF5 metadata
updates and issues H5Fflush or H50flush calls.
* Readers will see newly appended data after the Writer finishes the flush operation.

Preconditions:

* Readers are not allowed to modify the file.
* All datasets that are modified by the Writer exist when the Writer opens the file.
* All datasets that are modified by the Writer exist when a Reader opens the file.

Main Success Scenario:

1. An application creates a file with required objects (groups, datasets, and attributes).

2. The Writer opens the file and datasets in the file and starts adding data using H5Dwrite call
with a hyperslab selection that does not fill the chunk.

3. A Reader opens the file and a dataset in a file; if the size of the unlimited dimension has
changed, reads the appended data back.

Discussion points:

1. Since the new data is written to the file is smaller than a single chunk, it will not be
propagated to the disk until the chunk is full or the Writer manually flushes the data.

2. In order to see the data as it is written, users will have to manually flush the data after each
write. These files may grow to much larger sizes than equivalent non-SWMR files due to
SWMR's current restrictions on recycling free space in the file.

3. The “SWMR atomic operation” mechanism discussed in the appendices is applicable for this
use case too.

|.u: Page 9 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Appendices

In order to support SWMR access to HDF5 files in ways that are convenient to applications, we
consider several changes to the HDF5 APl covering improvements to the process of opening a file for
SWMR reads and better support for appending to datasets.

Appendix A - SWMR File Access Model

The SWMR file access model follows the standard HDF5 model: the Writer and the Readers will need
to indicate SWMR access using file access flags with the H5Fcreate and H5Fopen calls.

Writer Operations

The basic operations of a SWMR Writer are straightforward:

1. CallH5Fcreate() or H5Fopen() with the HSF_ACC_RDWR flag to create or open the file.
This will make an annotation in the file that it has been opened for writing, but is not SWMR-
safe.

2. Create HDF5 data objects and perform any non-SWMR-safe operations.

3. Begin SWMR writing by calling H5Fclose() followed by H5Fopen() with the
H5F_ACC_RDWR and H5F_ACC_SWMR_WRITE flags. This will make an annotation in the file
that it has been opened for writing and is SWMR-safe.

4. Append or update data in the HDF5 file.

5. Call H5Fclose().

Enhanced Writer Operations

In order to improve performance and usability of Writer applications, a new API routine’ can be
added to the HDFS5 File API:

* HS5Fstart_swmr() — A new file object routine that enables and disables SWMR access to an
open file. Enabling SWMR access will write the H5_OPEN_FOR_SWMR_WRITE flag to the file
and disabling it will remove the flag.

This routine could be used to set up a file with non-SWMR-safe operations, and then switch to
SWMR-safe operations, as shown by the pseudo-code below:

/* Open the file, without the SWMR flag */
FILE_ID = HS5Fopen(“File.h5”);

/* Perform non-SWMR-safe operations such as object creation */

% The name of the routine may change; it is used for illustrative purposes only.

|.u: Page 10 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

/* Enable SWMR access */
H5Fstart_swmr(FILE_ID, TRUE);

/* Perform SWMR-safe operations */

/* Close the file */
H5Fclose(FILE_ID);

Having such a routine would allow a Writer to switch to SWMR access without closing & re-opening
the file, retaining cached metadata and avoiding system call overhead.

Reader Operations

The basic operations of a SWMR Reader are even simpler:

1. Call H5Fopen() to open the file. This call will fail if the file has been opened for writing
without the H5F_ACC_SWMR_WRITE flag.

2. Read data from the file.

3. Call H5Fclose().

For the initial prototype, the Readers must open the file after the Writer has opened it for SWMR-
safe writing. Files opened by for write access by HDF5 1.10 Writers will mark the file as either SWMR-
safe or SWMR-unsafe (read access will not be marked). As a safety measure, H5Fopen calls made by
Readers (either 1.8 or 1.10) will fail when the file is marked for SWMR-unsafe writes. Switching back
to non-SWMR-safe writing will not be supported in the prototype.

|.u: Page 11 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Appendix B — Atomic File Object Operations

Situations can arise where a region in a dataset that spans several chunks corresponds to a logical
"element" in the dataset. An example would be a three-dimensional dataset that stores 2D images
with a third time dimension. If each plane is spread across more than one chunk, a reader may
encounter partial data in SWMR if not all the chunks or chunk index nodes have been flushed to the
disk.

To mitigate this, we propose adding a function to the HDF5 API that allows a user to more explicitly
control the retention and flush behavior of specific HDF5 file objects:

* H50cork()3 — A new generic object routine, which controls whether metadata for an object
is held in the cache (“corked”) or allowed to be flushed to the file.

This function could be used by an application to prevent cache flushes for a dataset until all the data
has been written (and cached). At this point, H50flush() would be called to completely flush the
metadata to the disk. Due to the way that HDF5 chunk index structures are updated under SWMR,
this would ensure that readers would either see the entire slice or none of the slice, thus creating an
“atomic operation” for the changes to the dataset®. The following pseudo-code shows its use:

/* Keep all metadata items that are relevant to a dataset in cache */

H50cork (DATASET_ID, TRUE);

/* Append a plane along the unlimited dimension */
/* Internally, this will consist of multiple data/metadata writes */
/* (Dataspace operations not shown) */

H5Dwrite (DATASET_ID,.., planel);

/* Flush all modified metadata items for the dataset */
H50f1lush (DATASET_ID);

Although this code appears very similar to standard way of writing data to a dataset, the surrounding
cork and flush calls ensure that the reader will not see part of a logical data element.

> There is already an H50refresh() routine targeted at readers, which refreshes an object’s
metadata.

* NOTE: Although this is similar in some ways to a transaction, it lacks some important semantics and
we've avoided using the term in this document.

|.u: Page 12 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Appendix C — High-Level Dataset Append Function

Since SWMR writes will often consist of a long series of dataset append operations, we propose
adding a convenience operation to the high-level HDF library that will condense the boilerplate
dataspace operations and dataset write into a single function call:

e H5DOappend()® — A new “optimized dataset” routine, which both extends a dataset’s
dataspace in a particular dimension and writes data elements to the newly extended region in
the dataset, eliminating much application code for performing similar actions.

The following pseudo-code shows its use:

/* Append a plane along the unlimited dimension */
H5DOappend (DATASET_ID,.., planeN);
Although this is very similar to the pseudo code in appendix B, the boilerplate dataset adjustments

before the append would not be present in this case, saving developer time and allowing for
optimization inside the library.

> Note that a similar routine for reading from the end of a dataset, “H5D0Opull”, would be a logical
addition as well.

'.u: Page 13 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Appendix D — Append When More Than One Slice Fits in a Set of Chunks

In situations where several appended dataset slices or regions fit into a set of chunks, the writer will
have to manually keep track of chunk boundaries in order to manually control dataset flush
operations as outlined in Appendix B.

Although this could be done with the above functionality, the scheme still has some drawbacks for an
application that would like to have chunks become visible without explicit knowledge of the chunk
boundaries. An application that managed this knowledge would look something like this pseudo-
code:

/* Determine chunk size */

H5Pget_chunk (DATASET_CREATION_PROPERTY_LIST_ID, &chunk_dims);

/* Get dataset dimensions */
SPACE_ID = H5Dget_space(DATASET_ID);
H5Sget_simple_extent_dims(SPACE_ID, .., &dims);

/* Keep all metadata items that are relevant to a dataset in cache */

H50cork (DATASET_ID, TRUE);

/* Append planes along the unlimited dimension */
for(n = ©; n < MAX; n++)

{
H5DOappend (DATASET ID,.., planeN);

/* Increment the local copy of the dataset dimensions */

dims++;

/* If we are at chunk boundary, flush the dataset */
if(dims % chunk_dims == 9)

{
/* Flush dataset */
H50f1lush (DATASET_ID);
/* Notify readers that dataset is updated */
NotifyReader (DATASET_ID);
}

|.u: Page 14 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

/* Handle any partial chunks */

/* Flush all modified metadata items for the dataset */
H50f1lush (DATASET_ID);

/* Notify readers that dataset is updated */
NotifyReader (DATASET_ID);

To avoid having a user manage chunk boundary flushes (H50f1lush call above), we can add two
properties that control the flush behavior, including optional callback functions that are invoked on
appends and flushes:

* HS5Pset_append_flush() — A new property that triggers two actions when a dataset append
operation reaches a chunk boundary: calling an application callback routine when the chunk
boundary is reached® and flushing the dataset to the file.

* HS5Pset_object_flush_cb() — A new property which triggers an application callback when
all the metadata for an object has been flushed to the file and the object is in a consistent
state.

This addition to the HDF5 API allows for much simpler code, as shown in the pseudo-code below:

/* Set property to trigger callback when objects are flushed */
H5Pset_object_flush_cb(FILE_ID, &NotifyReaderCallback);

/* Keep all metadata items that are relevant to a dataset in cache */

H50cork (DATASET_ID, TRUE);

/* Set property to trigger callback and dataset flush at chunk boundaries */
H5Pset _append flush(DATASET ID, &UpdateAttributeCallback);

/* Append planes along the unlimited dimension */
for (n = @; n < MAX; n++)
{

® This callback could be used to update an attribute attached to the dataset, for example.

|.u: Page 15 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

/* Note that any append which fills one or more chunks will trigger
the library to call the UpdateAttribute callback and then flush the
dataset, triggering the object flush callback
(NotifyReader, in this case) after the dataset was flushed */

H5DOappend (DATASET ID,.., planeN);

/* Handle any partial chunks */

/* Modify an attribute, for any partial chunks */
H5Awrite(ATTR_ID,.., &attr _value);

/* Flush all modified metadata items for the dataset */
/* (Also triggers object flush callback) */
H50f1lush (DATASET_ID);

These changes would allow an application to set up actions that occur when various events occur
(appending across a chunk boundary, flushing an object) within the HDF5 library, while keeping an
application’s monitoring of internal HDF5 state to a minimum.

l.u: Page 16 of 17

The HDF Group

March 13, 2013 RFC THG 2013-02-06.v8

Revision History

February 14, 2013 Version 1 circulated for comment within The HDF Group.

February 18, 2013 Version 2 addressed the HDF developers’ comments and sent for final
review.

February 19, 2013 Version 3 sent to Nick Rees, DLS.

February 27, 2013 Version 4 fixed minor types, added a case of pre-existing attribute and
multiple unlimited dimensions; sent to Nick Rees, DLS, and the HDF
developers.

March 3, 2013 Version 5 added use case 3.5 and fleshed out the programming model a bit.

Circulated for comment within The HDF Group.

March 5, 2013 Version 6 accepted Quincey and Dana’s comments and added transaction
mechanism example.

March 7, 2013 Version 7 added section 5; sent to Nick Rees, DLS

March 12, 2013 Version 8 converted sections 4 and 5 to appendices and changed the
transaction nomenclature. Sent to THG for comments.

March 13, 2013 Version 8 reformatted; sent to Nick Rees, DLS.

|.u: Page 17 of 17

The HDF Group

