December January 171, 20143		RFC THG 2013-12-11.v21
December January 711, 20143		RFC THG 2013-11-04.v21
[bookmark: _GoBack]RFC: H5Ocork Fine-Grained Control of Metadata Cache Flushes
Dana Robinson
The HDF5 library caches recently accessed or created file metadata in an internal cache. Flushing of objects from the cache is normally managed via a modified least-recently-used algorithm, though the user can manually override this by "corking" the cache, which prevents automatic flushes and evictions.
The current corking scheme in the HDF5 library is not very dynamic, only allowing the entire metadata cache to be corked a part of opening or creating a file. In the single-writer/multiple-readers (SWMR) data access patternsome cases, it would be useful to allow an application writer process to have more dynamic, fine-grained control over the flushing corking and flushing of the metadata cache and individual HDF5 objects such as datasets a file object's metadata.
in order to be able to control when it can be discovered by a reader process. A pair of new H5Ocork/collection of newuncork functions will allow this individual file objects to be labeled as "manual flush only" so they will not automatically be flushed by the library.dynamic, fine-grained corking control of both the entire cache and individual HDF5 objects.
This RFC makes the case for the new functions and describes its their semantics and implementation. The intended audience is advanced HDF5 users who desire control over the metadata cache. It is particularly intended for users of the future single-writer/multiple-readers (SWMR) feature.
This functionality will be a part of the future HDF5 1.10 release.

Introduction
The HDF5 library caches file metadata in an internal, per-file cache that is managed via a modified least-recently used (LRU) policy. Eviction cControl of this cache by the user is limited, primarily via the H5Pset_mdc_cache() API call that can be used to modify the file access property list used to open or create a file. In some cases, however, users may desire more fine-grained control over when metadata for an object is flushed from the cache. This extra level of control would allow a programmer to restrict expensive I/O-intensive flushes to periods of relative inactivity. In the case of the single-writer/multiple-readers (SWMR) access pattern, control over the flushing behavior would allow a client to defer writing out file metadata until, say, all chunks in a logical plane or volume had been filled with data. In effect, this allows for the control of when data appears in HDF5 storage since the primary data cannot be accessed until the metadata that refers to it has been flushed.
Normal Cache Operation
Metadata and Stored Objects
In addition to the primary data stored by the user, an HDF5 file contains file metadata that is used to organize, locate/index, and describe the contents of the file. It serves many purposes, including chunk index structures, symbol tables representing groups and links, and object headers that describe the stored data (modification times, number of elements, etc.). This file metadata is largely invisible to the user and should not be confused with user metadata, which is stored as attributes attached to HDF5 file objects such as groups and datasets.
The HDF5 file format document is available on the web[footnoteRef:1],[footnoteRef:2] and describes the metadata structures used in the file. Although this is a very low-level document intended for developers, it does give a rough idea of what file metadata objects look like. [1: Current 1.8.x format: http://www.hdfgroup.org/HDF5/doc/H5.format.html] [2: Future 1.10.x format (supported under SWMR): http://www.hdfgroup.org/HDF5/doc_test/revise_chunks/H5.format.html (this is a temporary location).]

Normal Operations
The metadata cache sits between the core object manipulation (logical) parts of the library and the I/O layer. All file object reads and writes occur via the cache. The cache cannot be disabled; the logical library code never reads metadata directly from the disk. The metadata cache is one of two key caches in the library, the other being the chunk cache which is independent and managed separately (though there are some associations under SWMR, via chunk proxies).[image:]Figure 21: Position of the metadata cache in the HDF5 library.

As an example, when a chunk index node is required by the library, a request for the node is sent to the cache, which either returns the node immediately if it is contained in the cache or reads it into the cache from disk and then returns the node if it has not been previously cached. Writing is handled similarly. The metadata cache is aware of both the type of each metadata object and the higher-level object to which it belongs. This is tracked via tags attached to each metadata object. Cache objects are evicted and, if dirty, flushed using a modified least recently used (LRU) algorithm. It is very important to understand that the HDF5 library and thus the cache are not asynchronous in any way. The cache does not operate on a background thread. Instead cache operations like flush passes are triggered by conditions such as the current free space in the cache on cache access. These cache operations then run to completion before processing resumes.
Various metadata cache parameters can be adjusted via the public H5Pset_mdc_config() API call. This function takes an input H5AC_cache_config_t struct that contains many members. Most of these parameters are relatively unimportant for SWMR aside from eviction control, discussed below in the corking section.
Corking
A cache or individual object in the cache is considered corked when evictions and flushes are prevented from occurring via the usual eviction algorithm passes. Instead, the programmer must manually flush objects using the H5Fflush() or H5Oflush() calls. The metadata cache can be corked by either calling H5Pset_mdc_config() on the file access property list with the appropriate flags set.
A Note on Flushing Datasets
The metadata cache (obviously) only manages metadata, and not raw data. In the case of chunked datasets, a separate, per-dataset cache (the chunk cache) manages the raw data. These two caches do not normally communicate. The implication of this is that a call to H5Fflush() or H5Oflush() will not result in the raw data being flushed to disk. The exception to this is the SWMR case. Under SWMR semantics, stubs that link to the raw data in the chunk cache are stored in the metadata cache. These stubs allow H5Fflush() or H5Oflush() calls to also flush raw data.
An option for future work would be to use the chunk proxies at all times so that H5Fflush() or H5Oflush() calls would also flush raw data chunks under non-SWMR conditions, but that is not in scope at this time.,
 or calling H5Ocork() on the HDF5 library's file identifier. Individual objects can be corked by calling H5Ocork() on the HDF5 object's identifier. An object or entire cache can be uncorked by calling H5Ouncork() on the HDF5 library's object or file identifier, respectively.
Evictions from the metadata cache can be prevented via the internal H5C_set_evictions_enabled() function, which is known as corking the cache. When evictions are disabled, the metadata cache will grow in size until it runs out of available memory. Control over cache corking allows advanced users control when objects become visible in the file and to avoid some of the extra flush overhead imparted by SWMR. This feature is can be enabled by the H5Pset_mdc_config() API function by setting the passed-in H5AC_cache_config_t struct's evictions_enabled member to FALSE. In the future, a more fine-grained public H5Ocork() API function that operates at the object (dataset, etc.) level will be implemented.
New H5Ocork() and H5Ouncork() Functions
Several new functions will be introduced to allow more fine-grained control over metadata cache corkingThe function signatures of the new functions will be. They are introduced here with discussions of detailed semantics later in this section.
The first set of functions allows corking and uncorking of individual persistent objects as well as checking to see if a particular object has been corked.
:
herr_t	H5Ocork(hid_t object_id)
herr_t	H5Ouncork(hid_t object_id)
htri_t	H5Ois_corked(hid_t object_id)

where object_id is a persistent object identifier as described in section 3.1.

The second set of functions are used to cork or uncork the metadata cache for an entire file as well as checking to see if the file's cache has been corked.

herr_t	H5Fcork(hid_t file_id)
herr_t	H5Funcork(hid_t file_id)
htri_t	H5Fis_corked(hid_t file_id)

where file_id is a file identifier returned from H5Fopen() or H5Fcreate().

The last function returns a list of corked objects.

herr_t	H5Oget_corked_object_list(hid_t file_id,
/*OUT*/ int *n_objects,
/*OUT*/ hid_t *object_ids[])

where file_id is a file identifier returned from H5Fopen() or H5Fcreate(), n_objects is the number of corked object identifiers, and object_ids is an array of persistent object identifiers returned by the function.
where object_id is a file object identifier as noted below. Tentative reference manual pages for both all functions can be found in the appendices section of this document.
File Persistent Objects
As mentioned in the introduction, the H5Ocork/uncork/is_corked functions will be designed for use with HDF5 objects that are stored on diskpersisted to storage. Hence, they will not work with all classes of hid_t identifiers.
Valid file persistent objects
· Files (hid_t returned from H5Fopen/create)
· Datasets (hid_t returned from H5Dopen/create)
· Groups (hid_t returned from H5Gopen/create)
· Attributes (hid_t obtained via H5Aopen/create)
· Datatypes (hid_t obtained from H5T* functions)
· Objects (hid_t returned from H5Oopen)
INVALID objects
· Files (hid_t returned from H5Fopen/create)
H5Fcork/uncork/is_corked are used with file identifiers instead.
· Dataspaces (hid_t obtained from H5S* functions or H5Dget_space())
These are not stored on disk.
· Property Lists (hid_t obtained via H5P* functions)
These are not stored on disk.
H5Ocork Semantics
H5Ocork(object_id) is used to cork specific persistent objects in the metadata cache, preventing them from being flushed to storage. The semantics of the function are fairly straightforward, with the exception of when a file ID is passed in. When it H5Ocork(object_id) is called on a file persistent object identifier:
· The object will be marked as "corked" in the metadata cache.
· SPECIAL CASE: Calling H5Ocork() on a file identifier returned from H5Fopen() or H5Fcreate() will cork the entire metadata cache[footnoteRef:3]. This will be equivalent to the corking functionality present in H5Pset_mdc_config(). [3:]

· No components of the object will be evicted or flushed to disk storage by the cache's LRU policy.
· Flushing/eviction must be performed manually by the user with the H5Oflush()[footnoteRef:4] or H5Fflush() call. [4: H5Oflush() is a new function that will appear in HDF5 1.10.0.]

· An object will remain corked until explicitly uncorked using the H5Ouncork() function, except as described below.
· When a corked object is closed, it will be uncorked and flushed as part of the closing process.
· When a file is closed, all corked objects will be uncorked and flushed as a part of the closing process.
· Calling H5Ocork() on an identifier that does not refer to a file persistent object (e.g., a property list or file identifier) is considered an error. Like any other HDF5 error, this will return a negative error code.
The call must be used carefully to avoid running out of memory. Neglecting to flush large amounts of metadata could cause the cache to become large enough to consume all memory.
H5Ouncork Semantics
H5Ouncork(object_id) is used to uncork specific persistent objects in the metadata cache, allowing the cache's normal LRU algorithm to govern their flushing from the cache to storage. When it is called on a persistent object identifier:
The semantics of the H5Ouncork() function are also fairly straightforward, with the exception of passing in a file ID. When H5Ouncork(object_id) is called on an HDF5 file object:
· The object will be marked as "uncorked" in the metadata cache.
· SPECIAL CASE: Calling H5Ouncork() on a file identifier returned from H5Fopen() or H5Fcreate() will uncork the entire metadata cache. All objects will uncorked after the call.
· Automatic flushing will resume on the object.
· It will NOT result in an immediate flush of the object.
· Calling H5Ouncork() on an identifier that does not refer to a file persistent object (e.g., a property list identifier or file identifier) is considered an error. TLike any other HDF5 error, this will return a negative error code.
· Calling H5Ouncork() on a file persistent object that has not been corked is not considered an error[footnoteRef:5]. This will return a negative error code. [5:]

· If the cache has been globally corked (either via H5Pset_mdc_config() or if H5FOcork() has been called on a file ID), then H5Ouncork() can be used to selectively uncork items.
·

· If a flush dependency child is corked, and the parent is manually flushed by the user, the child will be flushed.
· In this case, we assume that the programmer is aware of the parent/child relationship of the group and dataset, making a dataset flush implicit. Since the flush has been initiated by the programmer, this does not violate the corked flushing principle and would be allowed.
· Alternatively, this feature can be changed so that no corked children will be implicitly flushed by a manual flush, though that might provide surprising results to users (e.g., a flushed group would not appear in the file). It would also force users to perform a lot of complicated cork/uncork operations to flush dependent file objects.
H5Ois_corked Semantics
H5Ois_corked(object_id) will return TRUE when an object is corked and FALSE when it is not. It will return a negative value if object_id is not a valid persistent object.
H5Fcork Semantics
When H5Fcork(file_id) is called on a file identifier:
· A global "corked" flag will be set in the file's metadata cache[footnoteRef:6]. [6: Recall that each open file has its own metadata cache.]

· All objects in the metadata cache will be marked as "corked".
· All objects added to the metadata cache will automatically be marked as "corked".
· No corked objects will be evicted or flushed to storage by the cache's LRU policy. This does not turn off the LRU algorithm, which can still flush objects that have been selectively uncorked with H5Ouncork().
· Flushing/eviction must be performed manually by the user with the H5Oflush() or H5Fflush() call.
· Individual objects can be explicitly uncorked using the H5Ouncork() function.
· When a corked object in the corked cache is closed, it will NOT be uncorked as part of the closing process.
· When a file using a corked cache is closed, the cache and all objects in it WILL be uncorked as part of the closing process.
· Calling H5Fcork() on an identifier that does not refer to a file identifier is considered an error. This will return a negative error code.
Like the H5Ocork() function, the call must be used carefully to avoid running out of memory. Neglecting to flush large amounts of metadata could cause the cache to become large enough to consume all memory.
·

H5Funcork Semantics
When H5Funcork(file_id) is called on a file identifier:
· The global "corked" flag in the metadata cache will be unset.
· All objects in the metadata cache will be marked as "uncorked".
· Automatic flushing will resume on all objects in the cache.
· It will NOT result in an immediate flush of any objects in the cache.
· Calling H5Funcork() on an identifier that is not a file identifier is considered an error. This will return a negative error code.
· Calling H5Funcork() on a file identifier that has not been corked is considered an error. This will return a negative error code.
·

H5Fis_corked Semantics
H5Fis_corked(file_id) will return TRUE when the metadata cache for that file is corked and FALSE when it is not. It will return a negative value if object_id is not a valid file identifier.
This function operates by inspecting the global cache flag set by H5Fcork(). Manually corking all objects in the metadata cache with H5Ocork() will NOT cause this function to return TRUE.
H5O_get_corked_object_list Semantics
H5Oget_corked_object_list(hid_t file_id, /*OUT*/ int *n_objects, /*OUT*/ hid_t *object_ids[]) returns an array of persistent object identifiers that are currently corked as well as the number of elements in the array. The array of object identifiers must be freed by the caller.
Alternatively, this function could use the scheme where the caller passes in a buffer of appropriate size (determined by calling the function with a NULL pointer for the array), although this introduces potential concurrency issues if we intend to ever introduce an internally threaded library. An H5free_memory() function will be added to the library in HDF5 1.8.13 (JIRA issue HDFFV-8551).
Interaction with H5Pset_mdc_config
H5Pset_mdc_config() can also be used to cork the metadata cache, only less dynamically via the file access property list used to open or create the file. Setting evictions_enabled to TRUE has the same effect as calling H5Fcork() on the file.
Flushing Corked Objects
The flushing behavior of a corked object follows a single important principle:
While an object is corked, flushing, and thus the appearance of an object in the file, is entirely at the programmer's discretion.
The normal metadata cache operations will never flush a corked object, even if the system runs out of memory. A corked object must be flushed by the application with either H5Fflush(), which will flush the entire file's cache, or H5Oflush(), which will flush a particular object.
When SWMR is enabled, flushing semantics are modified to handle flush dependencies. This can be boiled down to two rules:
1. If a flush dependency child is corked, any parents will not be flushed by normal cache operations.
Flushing the child in this case would be out of the programmer's control, which would violate the corked flushing principle.
Consider a group containing a corked dataset. If the cache wanted to flush and evict the group to make space, it would have to also flush the dataset in case the object header had moved. This would violate programmer control over the appearance of the dataset, so the flush would not occur.
2. If a flush dependency child is corked, and the parent is manually flushed by the user, the child will be flushed.
In this case, we assume that the programmer is aware of the parent/child relationship of the group and dataset, making a dataset flush implicit. Since the flush has been initiated by the programmer, this does not violate the corked flushing principle and would be allowed.

Testing
The new functionality will be tested at two levels:
Cache Operations (test/cache.c)
The low-level cache operations of corking and uncorking objects will be tested in one or more functions added to the existing metadata cache tests in test/cache.c. These functions will use private HDF5 library functions to create specific data structures, cork them, manipulate the structures and/or the cache, and ensure that all components are flagged as corked and that they are not flushed to disk.
As an example, these tests would ensure that a corked B-tree would have all its nodes corked.
API Calls (test/cork.c – NEW)
Testing of the H5Ocork/uncork API calls will take place in a new test in test/cork.c. Objects will be created or opened, corked, manipulated and then tested (via private HDF5 API calls) to see if they remain corked and have not been written to the file.
Situations that will be tested:
· File
· Dataset (unchunked)
· Dataset (version 1 B-tree chunk indexing)
· Dataset (fixed array chunk indexing)
· Dataset (extensible array chunk indexing)
· Dataset (version 2 B-tree chunk indexing)
· Group (old style)
· Group (new style)
· Attribute (small)
· Attribute (large)
· Datatype
Each dataset configuration will be tested with both SWMR on and off. All other tests will be performed with SWMR off since SWMR is only supported in the context of dataset extension at this time.
Example Code
The following example shows an example of how the feature can be used to control the flushing of a particular object.

/* Simple example of H5Ocork and H5Ouncork.
 *
 * In this example, a dataset is created and filled with data.
 *
 * The dataset will only be flushed after a chunk has been filled.
 */

#define FILENAME "cork_test.h5"
#define DSETNAME "test"
#define NELEMENTS 1048576
#define CHUNKSIZE 128

int main(int argc, char *argv[])
{
 hid_t fid, pid, dsid, msid, fsid, did;
 hsize_t chunk_dims;
 hsize_t cur_dims, max_dims;
 hsize_t start, count;
 int i;

 /* create the file */
 fid = H5Fcreate(FILENAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

 /* create the dataset
 * 1D integer dataset, unlimited in size, chunk size = CHUNKSIZE
 */
 chunk_dims = CHUNKSIZE;
 pid = H5Pcreate(H5P_DATASET_CREATE)
 H5Pset_chunk(pid, 1, &chunk_dims);

 cur_dims = 0;
 max_dims = H5S_UNLIMITED;
 dsid = H5Screate_simple(1, &cur_dims, &max_dims);

 did = H5Dcreate2(fid, DSETNAME, H5T_NATIVE_INT, dsid, H5P_DEFAULT, pid, H5P_DEFAULT);

 H5Pclose(pid);
 H5Sclose(dsid);

 /* cork the dataset */
 H5Ocork(did);

 /* store some data */
 max_dims = NELEMENTS;
 H5Dset_extent(did, &max_dims);

 cur_dims = 1;
 max_dims = 1;
 msid = H5Screate_simple(1, &cur_dims, &max_dims);

 for(i = 0; i < NELEMENTS; i++) {

 /* write the data (in an inefficient manner) */
 fsid = H5Dget_space(did);
 start = i;
 count = 1;
 H5Sselect_hyperslab(fsid, H5S_SELECT_SET, &start, NULL, &count, NULL);
 H5Dwrite(did, H5T_NATIVE_INT, msid, fsid, H5P_DEFAULT, &i);
 H5Sclose(fsid);

 /* flush the dataset after a chunk has been filled */
 if(i % CHUNKSIZE == (CHUNKSIZE - 1)) {
 H5Oflush(did);
 }
 }

 H5Sclose(msid);

 /* uncork the dataset */
 H5Oflush(did);
 H5Ouncork(did);

 /* close everything */
 H5Dclose(did);
 H5Fclose(fid);

 return 0;
}
Acknowledgements
This work is being funded by the Diamond Light Source.
Revision History
	December 11, 2013:
	Version 1 circulated for comment to HDF5 SWMR team.

	January 7, 2014:
	Version 2 circulated for comment to HDF5 SWMR team.

[Glossary, Terminology]
file metadata	Metadata that describes the internal structure of the file. Created by the HDF5 library and largely invisible to users.
persistent object	An HDF5 object that is persisted to storage. Includes datasets, groups, attributes, and stored data types.
transient object	An HDF5 object that is not persisted to storage. Includes datasets and property lists.
user metadata	Attributes created by the user that are attached to datasets, groups, or stored data types.

Appendix: H5Ocork Reference Manual Page
Name: H5Ocork
Signature:
	herr_t H5Ocork(hid_t object_id)
Purpose:
	Prevents a file persistent HDF5 object from being evicted flushed from the metadata cache to storage.
Description:
This function is used in cases where a programmer would like to take control over when particular metadata persistent HDF5 objects are flushed from the file's metadata cache. A corked cache or object will never be flushed or evicted from the metadata cache. Instead, the programmer must manually perform flushes with H5Fflush() or H5Oflush().
Note:
HDF5 persistent objects include datasets, attributes, stored datatypes, and groups. Only hid_t identifiers that represent these objects can be passed to the function.
Corking an HDF5 file identifier (obtained from H5Fopen() or H5Fcreate()) will cork the file's entire metadata cache.
This function does not apply to hid_t identifiers that represent property lists or dataspaces since those are not stored in the file. Attempting to cork either of these is considered an error.
It is an error to pass an HDF5 file identifier (obtained from H5Fopen() or H5Fcreate()) to this function. Use H5Fcork() instead.

An object or file will be uncorked when closed.
Misuse of this function can cause the cache to exhaust available memory.
Objects can be uncorked with H5Ouncork() or H5Funcork().
Parameters:
	hid_t object_id			IN: ID of object to be corked in the cache.
						(See the above notes for restrictions)
Returns:
	Returns a non-negative value if successful. Otherwise returns a negative value.

Appendix: H5Ouncork Reference Manual Page
Name: H5Ouncork
Signature:
	herr_t H5Ouncork(hid_t object_id)
Purpose:
	Allows an object to be flushed from the metadata cacheReturns a corked persistent HDF5 object to the default metadata flush and eviction algorithm.
Description:
This function is used in cases where a programmer would like to take control over when particular metadata objectspersistent HDF5 objects are flushed from the file's metadata cache. A corked cache or object will never be flushed or evicted from the metadata cache. Instead, the programmer must manually perform flushes with H5Fflush() or H5Oflush().
Note:
Uncorking an HDF5 file identifier (obtained from H5Fopen() or H5Fcreate()) will uncork the file's entire metadata cache.
Uncorking an object or file that is not corked has no effect and is not considered an error.HDF5 persistent objects include datasets, attributes, stored datatypes, and groups. Only hid_t identifiers that represent these objects can be passed to the function.
This function does not apply to hid_t identifiers that represent property lists or dataspaces since those are not stored in the file. Attempting to cork either of these is considered an error.
It is an error to pass an HDF5 file identifier (obtained from H5Fopen() or H5Fcreate()) to this function. Use H5Funcork() instead.

Uncorking an object that is not corked is considered an error. The corked/uncorked state of an objected can be determined with H5Ois_corked().
Individual objects can be uncorked with this function after the cache has been globally corked with H5Fcork().
An object or file will be uncorked when closed by the user.
All objects will be uncorked when the file is closed.
An file or object will not necessarily be flushed as a part of the uncork process.
Parameters:
	hid_t object_id			IN: ID of object to be uncorked in the cache.
						(See the above notes for restrictions)
Returns:
	Returns a non-negative value if successful. Otherwise returns a negative value.

Appendix: H5Ois_corked Reference Manual Page
Name: H5Ois_corked
Signature:
	htri_t H5Ois_corked(hid_t object_id)
Purpose:
	Determines if a persistent HDF5 object has been corked in the metadata cache.
Description:
The H5Ocork() and H5Ouncork() functions can be used to control the flushing of a persistent HDF5 object such as a dataset from the metadata cache. This function reports whether a particular object has been corked.
Note:
HDF5 persistent objects include datasets, attributes, stored datatypes, and groups. Only hid_t identifiers that represent these objects can be passed to the function.
This function does not apply to hid_t identifiers that represent property lists or dataspaces since those are not stored in the file. Attempting to cork either of these is considered an error.
It is an error to pass an HDF5 file identifier (obtained from H5Fopen() or H5Fcreate()) to this function. Use H5Fis_corked() instead.
Parameters:
	hid_t object_id			IN: ID of an object in the cache.
						(See the above notes for restrictions)
Returns:
	Returns TRUE if an object tis corked, returns FALSE if it is not. Returns a negative value on errors.

Appendix: H5Fcork Reference Manual Page
Name: H5Fcork
Signature:
	herr_t H5Fcork(hid_t file_id)
Purpose:
	Corks a file's metadata cache, preventing all metadata from being evicted or flushed from the to storage.
Description:
This function is used in cases where a programmer would like to control when metadata is flushed from the file's metadata cache. Metadata in a corked cache will never be flushed or evicted from the metadata cache. Instead, the programmer must manually perform flushes with H5Fflush() or H5Oflush().
Note:
Only HDF5 file identifiers (obtained from H5Fopen() or H5Fcreate()) may be passed to this function. To cork individual HDF5 objects, use H5Ocork() instead.
Passing in a hid_t identifier that represents any other HDF5 object is considered an error.
Misuse of this function can cause the cache to exhaust available memory.
Parameters:
	hid_t file_id			IN: An HDF5 file identifier.
Returns:
	Returns a non-negative value if successful. Otherwise returns a negative value.

Appendix: H5Funcork Reference Manual Page
Name: H5Funcork
Signature:
	herr_t H5Funcork(hid_t file_id)
Purpose:
	Uncork's a file's metadata cache, returning it to the standard eviction and flushing algorithm.
Description:
This function is used in cases where a programmer would like to control when metadata is flushed from the file's metadata cache. Metadata in a corked cache will never be flushed or evicted from the metadata cache. Instead, the programmer must manually perform flushes with H5Fflush() or H5Oflush().
Note:
Only HDF5 file identifiers (obtained from H5Fopen() or H5Fcreate()) may be passed to this function. To uncork individual HDF5 objects, use H5Ouncork() instead.
Passing in a hid_t identifier that represents any other HDF5 object is considered an error.
A file will be uncorked when closed.
A file will not necessarily be flushed as a part of the uncork process.
Parameters:
	hid_t file_id			IN: An HDF5 file identifier.
Returns:
	Returns a non-negative value if successful. Otherwise returns a negative value.

Appendix: H5Fis_corked Reference Manual Page
Name: H5Fis_corked
Signature:
	htri_t H5Fis_corked(hid_t file_id)
Purpose:
	Determines if a file's metadata cache has been globally corked.
Description:
The H5Fcork(), H5Funcork(), and H5Pset_mdc_config() functions can be used to control the flushing behavior of persistent HDF5 objects from a file's metadata cache. This function reports whether a file's metadata cache has been globally corked and must be manually flushed by the user.
Note:
Only HDF5 file identifiers (obtained from H5Fopen() or H5Fcreate()) may be passed to this function. To determine the corked state of individual HDF5 object identifiers, use H5Ois_corked() instead.
Passing in a hid_t identifier that represents any other HDF5 object is considered an error.
Parameters:
	hid_t file_id			IN: An HDF5 file identifier.
Returns:
	Returns TRUE if the file's metadata cache is globally corked, returns FALSE if it is not. Returns a negative value on errors.

Appendix: H5Oget_corked_object_list Reference Manual Page
Name: H5Oget_corked_object_list
Signature:
herr_t	H5Oget_corked_object_list(hid_t file_id,
/*OUT*/ int *n_objects,
/*OUT*/ hid_t *object_ids[])

Purpose:
	Returns a list of all corked object identifiers in an open file's metadata cache.
Description:
The H5Ocork/uncork() and H5Fcork/uncork() functions can be used to control the flushing of persistent HDF5 file objects from the metadata cache. This function returns a list of all corked objects in a particular file's cache to the user.
Note:
Only HDF5 file identifiers (obtained from H5Fopen() or H5Fcreate()) may be passed to this function. To determine the corked state of individual HDF5 object identifiers, use H5Ois_corked() instead.
Passing in a hid_t identifier that represents any other HDF5 object is considered an error.
This function does not apply to hid_t identifiers that represent property lists or dataspaces since those are not stored in the file. Attempting to cork either of these is considered an error.
The object_ids pointer will be NULL when the number of corked objects is zero.
The array returned from this function must be freed by the caller.
Parameters:
	hid_t file_id			IN: File identifier
int *n_objects			OUT: Number of object identifiers being returned
hid_t *object_ids[]		OUT: Array of corked object identifiers
Returns:
	Returns a non-negative value if successful. On errors, a negative value will be returned and object_ids will be set to NULL.

Page 1 of 18
Page 4 of 18
image1.png
Logical Operations
J A
Metadata Cache

1/0 Layer

v —

HDFS5 File

image2.jpeg
A

The HDF Group

