March 8, 2012 THG 2012-02-07.v3

NPP Aggregation Tool Components

Albert Cheng
Larry Knox
Elena Pourmal

This document describes the components of the nagg tool for aggregating and
deaggregating NPP data files. The tool produces a set of NPP data files with the data
granules from the original files divided into smaller, larger, or the same size
aggregations, according to the specified command line options.

1 Introduction

Nagg is a tool for aggregating JPSS data granules from existing files into new files with a different
number of granules per file than in the original files. The tool may be used to create files with larger
or smaller aggregations including deaggregation to one granule per file. Future versions will also
package granules of compatible products into a single set of files or separate granules in previously
packaged files into unpackaged files with granules of one product in each.

The tool facilitates creating aggregations and/or packaging without requesting and downloading the
same data more than once.

2 Approach

The nagg tool is intended to rearrange existing data files into new files with different aggregation
sizes or different package combinations of compatible products. The tool creates copies of the
existing data and updates metadata to reflect the new aggregation. When required it also creates fill
granules with calculated timestamps and fill values for other metadata and for raw data, using
existing granules as a pattern. For all operations the tool relies only on information available in the
original files. It doesn’t have access to information used to generate the files.

Nagg has been implemented with several modules to handle different phases of the process. The
“Command parser” module processes the options specified on the command line and passes them to
the other modules. “Get granules” module produces a table of all the granules in the input files (see
Figure 1). “Select granules” module sorts the table, determines the output file names and
characteristics, and specifies the writing of the granules to the output files. “Write granules” module
uses the HDF5 library to create the output files and write the granules as specified by “Select
granules” module according to the JPSS Common Data Format Control Books.

'.g: Page 1 of 17

The HDF Group

March 8, 2012 THG 2012-02-07.v3

3 Nagg Example

How does the nagg tool work? This example uses a simple command to create new files each
containing 3-granule aggregations of REDRO granules from all the files with names matching the
pattern REDRO*.h5 in the current directory:

nagg -n 3 -t REDRO ./REDRO*.h5

Each REDRO*. h5 file has an attribute named /N_GEO_Ref whose value is the name of a geo-location
file containing the corresponding geo-location granules. If these geo-location files are present, new
geo-location files will also be created to match the new 3-granule REDRO files. If the files are not
present the tool will fail.

The nagg tool performs these steps to create the new files:
1. Parse the command line flags, their values and file names.

2. Read data from the input files and the corresponding geo-location files to create a table of
granule information.

3. Sort the granules by first Granule ID, then DPID, then by GranuleVersion as shown in
Figure 1.

4. Select granules aggregations of size specified by the -n flag and identify the aligned
boundaries between aggregations according to the Common Data Format Control Books. The
beginning and ending files may be partial aggregations depending on the available granules
and the particular boundaries for the aggregation size. The tool will create fill granules for any
missing granules within the sets of available granules. Preceding and trailing fill granules are
not written to the first and to the last file correspondingly.

5. Create files with filenames as specified by the Control Books for each aggregation and copy
the existing data and write fill data for any fill granules to the files.

Figure 1: Example of granule table produced by the “Get granules” module and sorted by the “Select
granule” module.

Granule ID DPID Granulelndex | GranuleVersion | BeginningTime EndingTime More
fields
See
Appendix
1
NPP001212767892 | REDRO 0 Al 1422244825812163 | 1422244855612163
NPP001212767892 | GCRIO 0 Al 1422244825812163 | 1422244855612163
NPP001212768212 | REDRO 1 Al 1422244857812163 | 1422244887612163
NPP001212768212 | GCRIO 1 Al 1422244857812163 | 1422244887612163
NPP001212768532 | REDRO 2 Al 1422244889812163 | 1422244919612163
NPP001212768532 | GCRIO 2 Al 1422244889812163 | 1422244919612163
'.g: Page 2 of 17

The HDF Group

March 8, 2012

THG 2012-02-07.v3

NPP001212768852 | REDRO 3 Al 1422244921812163 | 1422244951612163
NPP001212768852 | GCRIO 3 Al 1422244921812163 | 1422244951612163
NPP001212769172 | REDRO 4 Al 1422244953812163 | 1422244983612163
NPP001212769172 | GCRIO 4 Al 1422244953812163 | 1422244983612163
NPP001212769492 | REDRO 0 Al 1422244985812163 | 1422245015612163
NPP001212769492 | GCRIO 0 Al 1422244985812163 | 1422245015612163

4 Structures and variables

For each granule the tool gets metadata information needed to produce the output files and
stores it in a structure shown in Appendix 1: “granule_t structure members”.

Appendix 2: “Size definitions for nagg’s variables” shows miscellaneous variables and their
values; some values affect current capabilities of nagg; for example, the tool cannot process more
than 500 granules (NAGG_Granules_selected_max) and produce more than 30 output file
(NAGG_outputfiles_max).

5 Nagg tool software modules

” “"

This section describes the functions of the “Command parser”, “Get granules”, “Select granules” and
“Write granules” modules.

5.1 “Command parser” module

Purpose:

To parse the command line options, validate the option values and set the option variables so that
the tool may execute according to user request.

Public Functions:

5.1.1 parse_options
parse_options(int argc, char * const argv[])

Parameters:

argc IN: number of elements in argv
argv IN: the list of command options argument

Return values:

0 if successful, call leave (EXIT_FAILURE) if it encounters irrecoverable errors such as illegal options
or bad option values.

Description:

Page 3 of 17

|.g:

The HDF Group

March 8, 2012 THG 2012-02-07.v3

The parse_options() function uses the standard getopt() function to parse the command options. It
will set up the values of the following global variables during its execution.

Option Global variables Description

-n ngranulesperfile The number of granules per product in each output file. Default is 1.

-t products_arg A link list of products to store in each output file
nproducts Number of products specified in —t flag.
-d outDir Directory name in which output files are generated.

Default is NULL (generate files in the current directory).

-0 origin_arg Origin identifier of 4 characters. Default is “XXXX”.
-D domain_arg Domain identifier of 3 characters. Default is “XXX”".
-g geofiles_arg An enum variable representing different geolocation granules selection

criterion of “no”(0), “yes” (1), and “strict”(2).
<input_files> ...
inputfiles A link list of input files.

ninputfiles Number of elements in inputfiles.

5.2 “Get granules” module

Purpose:

This module reads metadata from the input files and uses it to populate the granule table.

Public Functions:

5.2.1 nagg_get_granules
nagg get granules(char **file list, int number of files,
char **products_list, int nproducts, geolocation_t geofiles_arg,
char **geoproduct granule p t, *granule_info p[], int *number_of_granules p)

Parameters:
file_list IN: list of files containing granules to be added to the granule table.
number_of_files IN: number of file names in the list.
products_list IN: list of product types for which granules will be written to a file.
nproducts IN: number of products types in the list.
geofiles_arg IN: enum value from -g command option (default GEOFILE_YES).
geoproduct OUT: address of variable to return the DPID of the geolocation product.

*granule_info_p[] INOUT: address of the granule table to be populated.
*number_of_granules_p INOUT: address of variable for number of granules put in
the table.

'.g: Page 4 of 17

The HDF Group

March 8, 2012 THG 2012-02-07.v3

Return values:

0 if successful, -1 otherwise

Description:

The nagg_get_granules() function opens and reads the files in the list provided by the command
parser, putting the values of attributes necessary for reaggregating the granules in the members of an
instance of the granule_t structure which is added to the granule table. Unless the -g no option is
specified or the file is a GEO file, the file specified by the file’s N_GEO_Ref attribute will also be
opened and read, and its granules added to the granule table.

Error messages will be returned if a file specified is not an HDF5 file, if the file does not exist or
cannot be accessed due to insufficient file permissions, or if the file cannot be opened due to an
HDF5 failure. The tool will not continue if any of these errors are encountered.

The attributes from which granule information is gathered are attributes of several different objects
in the file. Some are attributes of the root group. Others are attributes of the product groups which
are subgroups of the /Data_Products group. The function iterates through all subgroups of
/Data_Products, collecting granule information from the groups and their aggregate and granule
datasets.

5.3 Select granules module
Purpose:

To select granules from the given granule_info table that matches one of the products in the given
products list or the geolocation product according to the given number of granules per file.

It returns a list of selected granules, including fill granules, to be written to the output file(s).
Public Functions:
5.3.1 select_granules

select_granules(granule p t granule info[], int * _gindex, char **products_list,
int nproducts, int total_nproducts, char *geoproduct, granule p t
granules_selected[], int ngranulesperfile, int * granules remain, int

* total granules file)

Parameters:
granule_info IN: table of granules for selection.
* gindex INOUT: index of the next available granule in the

granule_info for selection. It reaches the end of
the table if _granules remain is equal to .
**products_list IN: the list of products to match.

nproducts IN: number of elements in products_list.

total nproducts IN: number of products and the geolocation product if
wanted.

*geoproduct IN: geolocation product (NULL if not wanted.)

granules selected INOUT: a table of selected granules for output. It is
expected that sufficient space has been allocated

'.g: Page 5 of 17

The HDF Group

March 8, 2012

THG 2012-02-07.v3

for granules selected to store all granules

selected.

ngranulesperfile IN: number of granules of each product per output file.
* granules _remain INOUT: number of granules in the granule info table

available for selection.

* total _granules_file OUT: number of granules in the granules_selected

table.

Return values:

Returns SUCCEED (0) if success; FAIL (-1) otherwise.

If return values is FAIL, the values of the OUT or INOUT parameters are undefined.

Description:

The select_granules function selects granules that will fit in the output file according to bucket

alignment boundary. The following is a description of the algorithms used.

Nagg algorithm in the calculation of bucket alignment:

Let N be the number of granules requested by the nagg user to reaggregate the NPP product files.

Let Tg be the duration of the first selected granule. (This value is different for different products and

is defined in the products table.)
Then Tbucket = N*Tg seconds.
Let An be the n-th bucket since epoch.
Let Asn and Aen be the starting and ending time of An.
Let Gs be the beginning time of the first selected granule.
Then

An = floor(Gs/Tbucket)

An*(Tbucket)
As + Tbucket

Asn

Aen

How nagg adds fill granules to produced files:

First produced file
For the first file, if the starting time of the first selected granule
is bigger than Asn, no fill granules are added before copying existing
granules to the new file. This will produce a partial file.

Second to (n-1)-th files
N existing granules per product requested are copied to each of the
new files, insert fill granules in place of any missing granules.

Last (n-th) file

|.g:

The HDF Group

Page 6 of 17

March 8, 2012 THG 2012-02-07.v3

Remaining granules per product requested are copied to the last file.

If the ending time of the last granule is less than the ending time of the last bucket, no fill granules
are added. This will produce a partial file.

5.4 “Write granules” module

Purpose:

To create output files and write granules as directed.

Public Functions:

5.4.1 start_write function

start_write(const char **outfiles, int noutfiles, const char *outgeofile,
char **products_list, int nproducts, const char *creationdate,
const char *creationtime, int ngranulesperfile)

Parameters:

outfiles IN: list of file names to be created for writing an output aggregation

noutfiles IN: number of names in the outfiles list.

outgeofile IN: name of the corresponding geo-location file, or null.

products_list IN: list of DPIDs, one for each product. Only one product is supported
for this version.

nproduct IN: number of DPIDs in the products_list argument.

creationdate IN: date of creation of the output files (for writing to the
N_HDF_Creation_Date attribute)

creationtime IN: time of creation of the output files (for writing to

N_HDF_Creation_Time attribute).
ngranulesperfile IN: number of granules in each aggregation.

Return values:

0 if successful, -1 otherwise

Description:

The start_write() function is the first function called when writing an aggregation of
granules. For a single product with the corresponding geo granules in a separate file, start_write()
creates the product and geo output files. When multiple products are supported in the future, for
the -S nagg tool option, start_write() will create an output file for each product for each
aggregation of granules, plus the geo file if geo granules are aggregated separately. When packaging
is supported, start_write() will create one output file for all products in an aggregation.

All of the granules selected for an aggregation will be written to the output files before any
granules are selected for the next aggregation. The granules within an aggregation may be written in
any order, and typically will be written one to each output file in rotation. The write granules module
creates an array of product_info_t structures to keep track for each product of output filenames,

'.g: Page 7 of 17

The HDF Group

March 8, 2012 THG 2012-02-07.v3

input and output file handles, number of granules written, and a pointer to the previously written
granule.

typedef struct {
const char dpid[DPID_size+1];
hid_t infile;
hid t outfile;
const char * outfilename;
int last_i_granule;
int granules_written;
granule p t prev_granule;
} product_info_t;

A product_info_t structure is created and populated for each product and the geofile by the
start_write() function. Thewrite_granules() function will then select the product_info_t for
each granule that matches its DPID. The product_info_t for the separate geolocation file is created
last so that its index will always be nproducts.

The start_write() function also writes 3 attributes to the root group of the files:
N_GEO_Ref, for files except the geo file, N_HDF_Creation_Date, and N_HDF_Creation_Time. Values
for these attributes are generated by nagg with the new geo file name and the current time.

5.4.2 write_granules function
write granules(granule p t granule, int i_granule)

Parameters:

granule IN: pointer to a granule_t structure containing information about a granule in
an input file.
i_granule IN: the index of this granule in the aggregation.

Return values:

0 if successful, -1 otherwise

Description:

The write_granules() function is called for each granule selected to be written to an
aggregation, and is responsible for writing most of the data and attributes to the new file, whether
the values are from the original file or are generated by the nagg tool. The function does the
following:

e Selects the product_info_t structure matching the granule’s product ID (DPID) to find the
correct output file.
e Opens the input file specified by granule->file_in.
e |Initializes the output file when first called with a granule.
0 Copies root group attributes except those written by start_write() from the input file
to the output file.
0 Creates group structure in the file, creating product groups in /A1l _Data and

/Data_Products. Product groups in /All Data are named
<productname> All; those in /Data_Products are named <productname>.

'.g: Page 8 of 17

The HDF Group

March 8, 2012 THG 2012-02-07.v3

0 Copies datasets from the /All Data group in the input file to the /A1l _Data group
in the output file; resizes the datasets for the new aggregation size.

0 Copies attributes from the /Data_Products/<productname> group in the input file
to the /Data_Products/<productname> group in the output file.

e Copies the /Data_Products/<productname>/<productname>_Gran_n dataset for the
granule in the input file to the dataset for the granule in the output file. References and
metadata that are specific to the new file will be overwritten in subsequent steps.

e Copies the granule’s hyperslab for each dataset in /A11_Data from the input file to the
output file creating a region reference to the new location in the granules new file’s
/Data_Products/<productname>/<productname>_Gran_n dataset

e Creates the /Data_Products/<productname>/<productname>_Aggr dataset with object
references to all the datasets in /A1l _Data/<productname> group. Copies attributes from
the Aggregate dataset in the input file to the Aggregate dataset in the output file.

e Copies values for the Aggregate dataset’s AggregateBeginningDate,
AggregateBeginningGranuleID, AggregateBeginningOrbitNumber and
AggregateBeginningTime from the first granule in the aggregation.

e Increments the value of the variable that keeps track of the number of granules written.

5.4.3 end_write function

Parameters:

There are no parameters for the end_write function

Return values:

0 if successful, -1 otherwise

Description:

For each output file in the aggregation, the end_write() function checks to see if the specified
number of granules for an aggregation have been written to the file. If not, error status will be
returned and an error message displayed.

e Update AggregateEndingDate, AggregateEndingGranulelD,
AggregateEndingOrbitNumber and AggregateEndingTime from the last granule in the
aggregation.

e Update AggregateNumberGranules with the number of granules written.

e Close the file

'.g: Page 9 of 17

The HDF Group

March 8, 2012

Appendix 1: granule_t structure members

THG 2012-02-07.v3

Name Type Description (from CDFCB | Source
Vol V, Table 4.4.4)
product_id charl] 5 character DPID Look up product_name in
table
product_name char(] Collection Short Name Name of group in
/Data_Products
granule_input_index Int index of the granule’s Nagg tool
dataset in the input file
(The rest of these
descriptions are the
definitions of the
attributes in the column
to the right. These may
need revision.)
granule_id char(] The unique identifier for | Attribute /<Data_Products
each RDR granule /<product group>
composed of the /<product _Gran_n dataset>
concatenation of two /N_Granule_ID
components:
(1) The three character
satellite identifier
[alias
“Platform_Short_Name”],
(2) A zero left filled, 12
character number,
specifying the number of
tenths of a second
since the first ascending
node after launch)
granule_version char|] Indicates the version | Attribute /<Data_Products

number of the granule

that occurs as the result
of an automatic

repair of a granule, an
IDPS operator

commanded re-execution
of a granule, or a

/<product group>
/<product _Gran_n dataset>
/N_Granule_Version

The HDF Group

Page 10 of 17

March 8, 2012

THG 2012-02-07.v3

manual execution of a
granule.

granule_version_number | Int /*granule version
number - derived from
granule - version: N/A=>-
1, An=>n

granule_start_time_IET unsigned The time of the beginning | Attribute /<Data_Products

long long of the temporal /<product group>

range of the data /<prodect __GrarT_n dataset>
contained in the granule, /N_Beginning_Time_IET
expressed in IET.

granule_end_time_IET unsigned The time of the ending of | Attribute /<Data_Products

long long the temporal range /<product group>

of data contained in the | /<product Gran_n dataset>
granule, expressed /N_Ending_Time_IET
in IET.

beginning_date char|] Beginning date of the | Attribute /<Data_Products
temporal range /<product group>
(observation date) for a /<pr<.3du.ct _Gran_n dataset>

/Beginning_Date

granule.

beginning_time char|] Beginning time of the | Attribute /<Data_Products
temporal range /<product group>
(observation time) for a /<prc.)du_ct _G_ran_n dataset>
granule. /Beginning_Time

ending_time char(] Ending date of the | Attribute /<Data_Products
temporal range /<product group>
(observation date) for a /<prc.)duct__Gran_n dataset>
granule. /Ending_Time

orbit_number uinte4 _t The number of the orbit | Attribute /<Data_Products
at the start of the /<product group>
data collection for a data /<prodect ._Gran_rf dataset>

/N_Beginning_Orbit_Number

granule.

geofile char * Filename of the HDF5 file | /N_GEO_Ref
containing the
related Geolocation
information.

file_in char * Input file name

The HDF Group

Page 11 of 17

March 8, 2012

Appendix 2: Size definitions for nagg’s variables

/*Granule macro definitions */

t#tdefine
ttdefine

#define
#define
#define
#define
#define
#define
#define

tdefine
*/
#tdefine

ttdefine
#tdefine
ttdefine

/* NPP data product file name struct */

#define
#define
#define
#define
#define
#define
#define
#define
#define

NAGG_Product_Type size
NAGG_Granule_ID_ size

NAGG_GRANVER_size
NAGG_DATE_size
NAGG_TIME size
NAGG_Granule_info_max
NAGG_Product_list max
NAGG_outputfiles_max
NPP_Product_max

NPP_Geo_Location_max

63
15

15

14
7000
30
30
99
19

NAGG_Granules_selected_max 500

Product_DPID
Product_sname

Product_lname

DPID_size
DPID_NUM_MAX
SPACECRAFT_size
Data_date_size
Data_time_size
Orbit_number_size
Creation_date_size
Origin_size

Domain_size

5
30
3

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*
/*
/*

/*
/*
/*
/*
/*
/*
/*
/*
/*

THG 2012-02-07.v3

up to 63 chars long */
Satellite 3 bytes, */

10 microsec: 12 bytes */
Total 15 bytes */

Granule version info size */

Granule date info size */

Granule time info size */

Max
Max
Max
Max

Max

number
number
number
number

number

of granules managed */
of products requested */
of output file names */
of NPP Products */

of NPP Geolocations products

Max number of granules selected */
to output */
DPID column in Product Table*/

short name column in Product Table*/

long name column in Product Table*/

DPID name size */
max number of DPIDs */
Spacecraft ID */
Date: YYYYMMDD */
Time: HHMMSSS */

Orbit: nnnnn */
Creation Date: YYYYMMDDHHMMSSssssss */
Origin: XXXX */
Domain: XXX */

The HDF Group

Page 12 of 17

March 8, 2012 THG 2012-02-07.v3

Appendix 3: Products and GEO Products Tables

Source: Common Data Format Control Book Vol I; Raytheon: INF_CFG.xml

/* NPP Products Table */
char *product_table[NPP_Product_max][3] =

{

/* DPID Short Name Approximate duration */
“ICALLI”, “CrIMSS-CrIS-AVMP-LOS-IR-IP”, 31997000,
“ICALM”, “CrIMSS-CrIS-AVMP-LOS-MW-IP”, 31997000,
“ICCCR”, “CrIMSS-CrIS-CLOUD-CLEARED-RAD-IP”, 31997000,
“ICISE”, “CrIMSS-CrIS-IR-SURF-EMISSIVITY-IP”, 31997000,
“ICMSE”, “CrIMSS-CrIS-MW-SURF-EMISSIVITY-IP”, 31997000,
“ICSTT”, “CrIMSS-CrIS-SKIN-TEMP-IP”, 31997000,
“ICTLI”, “CrIMSS-CrIS-AVTP-LOS-IR-IP”, 31997000,
“ICTLM”, “CrIMSS-CrIS-AVTP-LOS-MW-IP”, 31997000,
“IICMO”, “VIIRS-CM-IP”, 31997000,
"SATMR", "ATMS-REMAP-SDR", 31997000,
"SATMS", "ATMS-SDR", 31997000,
"SCRIS", "CrIS-SDR", 31997000,
"SOMPS", "OMPS-NP-SDR", 37405000,
"SOMTC", "OMPS-TC-SDR", 37405000,
"SOMSC", "OMPS-TC-Cal-SDR", 2700000000UL,
"SOMNC", "OMPS-NP-Cal-SDR", 2700000000UL,
"SVDNB", "VIIRS-DNB-SDR", 85350000,
"SvI01", "VIIRS-11-SDR", 85350000,
"Sv102", "VIIRS-12-SDR", 85350000,
"SVI03", "VIIRS-I13-SDR", 85350000,
"Sv104", "VIIRS-14-SDR", 85350000,
"SVI05", "VIIRS-I5-SDR", 85350000,
"SVMO01", "VIIRS-M1-SDR", 85350000,
"SVMO02", "VIIRS-M2-SDR", 85350000,
"SVMO03", "VIIRS-M3-SDR", 85350000,
"SVMO04", "VIIRS-M4-SDR", 85350000,
"SVMO05", "VIIRS-M5-SDR", 85350000,
"SVMO06", "VIIRS-M6-SDR", 85350000,
"SVMO07", "VIIRS-M7-SDR", 85350000,
"SVMO08", "VIIRS-M8-SDR", 85350000,
"SVMO09", "VIIRS-M9-SDR", 85350000,
"SVM10", "VIIRS-M10-SDR", 85350000,
"SVM11", "VIIRS-M11-SDR", 85350000,
"SVM12", "VIIRS-M12-SDR", 85350000,
"SVM13", "VIIRS-M13-SDR", 85350000,
"SVM14", "VIIRS-M14-SDR", 85350000,
"SVM15", "VIIRS-M15-SDR", 85350000,
"'SVM16", "VIIRS-M16-SDR", 85350000,
"TATMS", "ATMS-TDR", 31997000,
"REDRQ", "CrIMSS-EDR", 31997000,
"OO0TCO", "OMPS-TC-EDR", 37405000,
"VAOOQO", "VIIRS-Aeros-EDR", 85350000,

|.g: Page 13 of 17

The HDF Group

March 8, 2012

"VCBHO",
"VCCLO",
"VCEPOQ",
"VCOTO",
"VCTHO",
"VCTPO",
"VCTTO",
"VI1BO",
"VI2BO",
"VI3BO",
"VI4BO",
"VI5BO",
"VISTO",
"VLSTO",
"VM010",
"VMO020",
"VMO030",
"VMO040",
"VMO050",
"VMO060",
"VNCCO",
"VNHFO",
"VOCCO",
"VISAO",
"VSCDO",
"VSCMO",
"VSICO",
"VSSTO",
"VSTYO",
"VSUMO",
"VIVIO",
"REDRS",
"00TCS",
"VAOOS",
"VCBHS",
"VCCLS",
"VCEPS",
"VCOTS",
"VCTHS",
"VCTPS",
"VCTTS",
"VISTS",
"VLSTS",
"VNCCS",
"VNHFS",
"VOCCS",
"VISAS",
"VSCDS",
"VSCMS",

"VIIRS-CBH-EDR",
"VIIRS-CCL-EDR",
"VIIRS-CEPS-EDR",
"VIIRS-COT-EDR",
"VIIRS-CTH-EDR",
"VIIRS-CTP-EDR",
"VIIRS-CTT-EDR",
"VIIRS-11-IMG-EDR",
"VIIRS-12-IMG-EDR",
"VIIRS-13-IMG-EDR",
"VIIRS-14-IMG-EDR",
"VIIRS-I5-IMG-EDR",
"VIIRS-IST-EDR",
"VIIRS-LST-EDR",
"VIIRS-M1ST-EDR",
"VIIRS-M2ND-EDR",
"VIIRS-M3RD-EDR",
"VIIRS-MA4TH-EDR",
"VIIRS-M5TH-EDR",
"VIIRS-M6TH-EDR",
"VIIRS-NCC-EDR",
"VIIRS-NHF-EDR",
"VIIRS-OCC-EDR",
"VIIRS-SA-EDR",
"VIIRS-SCD-BINARY-SNOW-FRAC-EDR",
"VIIRS-SCD-BINARY-SNOW-MAP-EDR",
"VIIRS-SIC-EDR",
"VIIRS-SST-EDR",
"VIIRS-ST-EDR",
"VIIRS-SusMat-EDR",
"VIIRS-VI-EDR",
"CrIMSS-EDR-SUB",
"OMPS-TC-EDR-SUB",
"VIIRS-Aeros-EDR-SUB",
"VIIRS-CBH-EDR-SUB",
"VIIRS-CCL-EDR-SUB",
"VIIRS-CEPS-EDR-SUB",
"VIIRS-COT-EDR-SUB",
"VIIRS-CTH-EDR-SUB",
"VIIRS-CTP-EDR-SUB",
"VIIRS-CTT-EDR-SUB",
"VIIRS-IST-EDR-SUB",
"VIIRS-LST-EDR-SUB",
"VIIRS-NCC-EDR-SUB",
"VIIRS-NHF-EDR-SUB",
"VIIRS-OCC-EDR-SUB",
"VIIRS-SA-EDR-SUB",
"VIIRS-SCD-BINARY-SNOW-FRAC-EDR-SUB",
"VIIRS-SCD-BINARY-SNOW-MAP-EDR-SUB",

85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
31997000,
37405000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,
85350000,

THG 2012-02-07.v3

|.g:

The HDF Group

Page 14 of 17

March 8, 2012 THG 2012-02-07.v3

"VSICS", "VIIRS-SIC-EDR-SUB", 85350000,
"VSSTS", "VIIRS-SST-EDR-SUB", 85350000,
"VSTPS", "VIIRS-ST-EDR-SUB", 85350000,
"VSUMS", "VIIRS-SusMat-EDR-SUB", 85350000,
"VIVIS", "VIIRS-VI-EDR-SUB", 85350000, };

/* NPP Geolocation Table
* The source is NPOESS Common Data Format Control Book Volume I, pp 328-9,
* Table A-8, Geolocation Identifiers.

*
/
char *geolocation_table[NPP_Geo_Location_max][4] =
{
"GATMOQ", "ATMS-SDR-GEQ", 31997000,
"GCRSO", "CrlS-SDR-GEQ", 31997000,
"GAERQO", "VIIRS-Aeros-EDR-GEQ", 85350000,
"GCLDO", "VIIRS-CLD-AGG-GEQ", 85350000,
"GDNBQO", "VIIRS-DNB-GEQ", 85350000,
"GNCCO", "VIIRS-NCC-EDR-GEQ", 85350000,
"GIGTO", "VIIRS-IMG-GTM-EDR-GEQ", 85350000,
"GIMGOQO", "VIIRS-IMG-GEQ", 85350000,
"GITCO", "VIIRS-IMG-GEO-TC", 85350000,
"GMGTQ", "VIIRS-MOD-GTM-EDR-GEQ", 85350000,
"GMODOQ", "VIIRS-MOD-GEQ", 85350000,
"GMTCQO", "VIIRS-MOD-GEO-TC", 85350000,
"GNHFO", "VIIRS-NHF-EDR-GEQ", 85350000,
"GOTCO", "OMPS-TC-GEQ", 37405000,
"GOSco", "OMPS-TC-Cal-GEQ", 2700000000UL,
"GONPQ", "OMPS-NP-GEQ", 37405000,
"GONCO", "OMPS-NP-Cal-GEQ", 2700000000UL,
"GCRIO", "CrIMSS-EDR-GEO-TC", 31997000,
"GATRO", "ATMS-REMAP-SDR-GEQ", 31997000,
2

H‘J: Page 15 of 17

The HDF Group

March 8, 2012

THG 2012-02-07.v3

Appendix 4: NPOESS Common Terms
Table 3.5.1-1, NPOESS Data Product Common Terms

Term

Definition

Aggregation

Dereferences (or “points”) to an HDF5 group that contains one or more datasets.
These datasets are the individual RDR granules. Granules are ordered temporally.
The aggregation can be accessed with the HDF5 reference object.For a detailed
explanation of aggregations, see Section 3.5.12, DDS Aggregation Methodology.

Attribute An attribute is a single, named parameter that has one or more values (where
more than one value is applicable, the list of values is stored as an array in the
NPOESS HDF5 File).

Granule* Stored purely as an array of bytes (unsigned char) referenced with a single object
ID.

HDF5 User A subset of metadata attributes stored in the NPOESS HDF5 File. The User Block

Block can be thought of as a “header” on top of the HDF5 file stored as ASCIl and is
viewable without the need of the HDF5 API.

Metadata* Attributes that are attached to datasets and groups within the NPOESS HDF5 file

which help identify and describe the data. All of the groups and datasets within the
HDF5 file, with the exception of the All_Data hierarchy and the Data_Products
Group, have a set of these attributes.

NPOESS Data
Product Profile

An XML representation of Granule properties. Each Product Profile describes the
contents and properties of a granule (e.g., parameter names, data types, data
dimensions, measurement units, which dimension is the aggregation dimension).
The NPOESS Data Product Profiles are rendered as tables in the CDFCB—X. NPOESS
Data Product Profiles are produced for SDRs, TDRs, EDRs, IPs, and associated
Geolocations.

NPOESS HDF5
File

An aggregation of one or more data product granules with associated metadata.
The file organization is depicted with a UML diagram. The granules within a file are
described by the Product Profile. The data within the granule is ordered and
presented following the Style Guide. An NPOESS HDFS5 file is usually one granule
type, although multiple granule types are allowed (e.g., measurement and
geolocation granules delivered together or multiple measurements sharing the
same geolocation.) Using the HDF5 API, a user can retrieve granules either singly or
together. The organization within the HDF5 file can be explained by using the
example of a directory tree. Within the file there is a root directory with two sub-
directories, these sub-directories are named “All_Data” and “Data_Products”. The
All_Data directory contains all of the data that was requested, and the
Data_Products directory contains sub-directories, which help to organize the data,
references to allow extraction of the data, and metadata to identify and describe
the data.

RDR*

Raw data received from the spacecraft and packaged into HDF5 is referred to as a
Raw Data Record (RDR). The data granules composing an RDR are the actual CCSDS
application packets from the sensor, and don’t directly map into a set of data
arrays. Granules that compose the RDR HDF5 files are aggregated application
packets for a given sensor.

The HDF Group

Page 16 of 17

March 8, 2012

THG 2012-02-07.v3

Style Guide Section 3.5.4, Data Product Style Guide, constrains the possible choices for how
data is stored within a granule: Grid, Swath, and/or Sparse Array.
UML Diagram Provides a visual depiction of the NPOESS HDF5 file organization

(Class Diagram)

The HDF Group

Page 17 of 17

	1 Introduction
	2 Approach
	3 Nagg Example
	4 Structures and variables
	5 Nagg tool software modules
	5.1 “Command parser” module
	Purpose:
	Public Functions:
	Parameters:

	5.2 “Get granules” module
	Purpose:
	Public Functions:
	Parameters:

	5.3 Select granules module
	Purpose:
	To select granules from the given granule_info table that matches one of the products in the given products list or the geolocation product according to the given number of granules per file.
	It returns a list of selected granules, including fill granules, to be written to the output file(s).
	Public Functions:
	Parameters:

	5.4 “Write granules” module
	Purpose:
	Public Functions:
	Parameters:
	Return values:
	Description:
	Parameters:
	Return values:
	Description:
	Parameters:
	Return values:
	Description:

