March 23, 2012 RFC THG 2012-03-15.v3

RFC: Support for multiple products in nagg

Larry Knox
Albert Cheng

Previous nagg prototypes aggregated only one product plus an associated geoproduct.
The next version will support multiple compatible input and output products. This
document presents details of the operation of nagg and changes to be made for
aggregating multiple products.

1 Purpose

This describes the addition of the feature of support multiple sensor data products to the Nagg tool.
The output files can be in the Packaged and Unpackaged formats. Section 2 describes the
Functionality specification of the multiple data products features and the two output formats. Section
3 describes the Implementation design. Section 4 describes the Implementation details.

2 Functionality Specification

Two new functions are added to the Nagg tool, the multiple sensor data products and the two output
file formats. We describe the output formats first since the multiple products build on top of the two
output formats.

2.1 Packaged and Unpackaged file Formats

There are two data product file formats according to section “3.5.7 Geolocation Packaging (From
CDFCB Vol1.)”.

There are two options for receiving Geolocation data for NPP/NPOESS Data Products5:

1. Packaging Off — For all data products with the same geolocation data, deliver only one
geolocation HDFS5 file and reference the geolocation HDF5 file from each
corresponding data product HDF5 file per request. Each data product requested is also
delivered in a separate HDF5 file

2. Packaging On — Package all data products sharing the same geolocation data in a single
HDF5 file and include their corresponding geolocation data in the HDFS5 file with the
data products per request.

The figure below illustrates the two file formats where “Packages on” is equivalent to Packaged files
and “Packaging off” is to Packaged off files.

FT Page 1 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

DPS Packaging Baseline f@“\.

CDFCB-X Volume | ~

Packaging only applies to products with
geolocation data

Filel File2

File3

Filel

. - g

File2

= - -

Packaging On

Packaging Off

PROPOSED nagg utility - DRAFT FOR

DISCUSSION 12

11/4/11

Figure 1: Packaged and Unpackaged File Formats

2.2 The Simple (-S) Option of the Nagg Tool

The Nagg tool has the default to produce output files in Packaged format, that is granules of sensor
products and their corresponding Geolocation product of the same time duration are aggregated into

one file.

When the Simple (-S) option is specified, the Nagg tool produce in Unpackaged format, that is one file

each for the granules of each sensor product and their corresponding Geolocation product.

Examples

For simplicity, the following assume all input granules are aggregated into 1 bucket time period. If
there are more granules, more sets of files of the same layout, are produced. Other Nagg options,

such as the required —n and input files are not shown here.
% nagg —t EDR4 ...

Produces 1 file containing EDR4 and GEO2 granules.
% nagg —S —t EDR4 ...

Produces 1 file containing EDR4 granules and 1 file of GEO2 granules.

l-u: Page 2 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

2.3 Multiple Products List

The —t (product) option may take an argument of a list of multiple sensor product IDs, separated by
commas. The list of products must be compatible, that is, they all use the same Geolocation product.
The Nagg tool will aggregate the granules of all given sensor products and the Geolocation product
into the output files, in either Packaged or Unpackaged file formats.

A Nagg Tool Extension

If for some reasons that the users do not want the Geolocation product in the output files or the
Geolocation product granules are missing from the input files, they may use the “-g no” option to tell
the Nagg tool not to look for nor produce Geolocation granules.

Geolocation Product Only Output

If the users want to aggregate only Geolocation granules and do not care for any sensor products,
they may specify the Geolocation product ID via —g and do not use the —t option at all. For example,

% nagg —g GEO2 ...

Produces 1 file containing GEO2 granules.

2.4 Formal Description of the two options
-t list

list specifies a comma separated list of NPP sensor record type mnemonics. Unless -S is
specified the granule types will be packaged together. Types must be compatible to be
packaged together. (Use -h to list valid package groupings). If only the Geolocation granules
are aggregated, this option should not be used and the -g option should specify the geo-
product-ID.

-g criterion

criterion is the criterion for searching the Geolocation granules

no | 0: aggregate product files without Geolocation input or output

yes | 1: allow approximate matching of Geolocation input filenames (default)

strict | 2: require exact matching of geolocation input filenames
geo-product-ID: only the Geolocation granules of geo-product-ID are aggregated. When this is
specified, -t should not be used.

Simple aggregates are produced. Each type is packaged separately. Default is not set, that is,
all types are packaged together.

2.5 Examples Using the Three Options

% nagg —t SDR1,EDR1 SDR1*.h5 EDR1*.h5
One output file containing SDR1, EDR1 and GEO1

I-T Page 3 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

% nagg —t SDR1,EDR1 —S SDR1*.h5 EDR1*.h5
Three output files containing SDR1, EDR1 and GEO1 each in separate files

% nagg —t SDR1,EDR1 —g no SDR1*.h5 EDR1*.h5
One output file containing SDR1 and EDR1

% nagg —t SDR1,EDR1 —g no —S SDR1*.h5 EDR1*.h5
Two output files containing SDR1 and EDR1 each in separate files

% nagg —g GEO1 GEO1*.h5
One output file containing GEO1

The following examples incur errors for different reasons:

% nagg —t SDR1,SDR2 SDR1*.h5 SDR2*.h5
ERROR: Incompatible Geolocation products because SDR1 uses GEO1 while SDR2 uses GEO?2.

% nagg —t SDR1,EDR1 SDR1*.h5
ERROR: Missing EDR1 product granules.

% nagg -g GEO1 SDR1*.h5
ERROR: Missing GEO1 product granules. Note that even though nagg can have found the
GEOL1 granules via the SDR1 Geolocation reference, the option tells the Nagg tool to look for
GEOL1 granules directly.

% nagg —g GEO1 SDR1_GEO1*.h5
This succeeds because SDR1_GEO1*.h5 are packaged files containing both SDR1 and GEO1
granules.

3 Implementation Design

This section describes the interfaces of functions in the Nagg tool that is involved in the support of
the two new features.

3.1 parse_options

parse_options(int argc, char * const argv[])

Parameters:

argc IN: number of elements in argv

argv IN: the list of command options argument
Return values:

0 if successful, call leave (EXIT_FAILURE) if it encounters irrecoverable errors such as illegal options
or bad option values.

FT Page 4 of 17

The HDF Group

March 23, 2012

Description:

RFC THG 2012-03-15.v3

The parse_options() function uses the standard getopt() function to parse the command options. It
will set up the values of the following global variables during its execution.

Option Global variables

Description

-n ngranulesperfile The number of granules per product in each output file. Default is 1.

-t products_arg
nproducts
geoproduct

-g geofiles_arg

-d outDir

-0 origin_arg
-D domain_arg

-S outfile_format

<input_files> ...
inputfiles

ninputfiles

A linked list of products requested.
Number of products specified in —t flag.

The Geolocation product ID used by the products. The Geolocation
product should not be specified in this list since it is determined
according to a pre-defined Products Table and assigned to the variable
geoproduct. If the user wants to aggregate the Geolocation product
only, he should specify it via the —g option and not use —t at all.

An enum variable representing different geolocation granules selection
criterion of “no”(0), “yes” (1), “strict”(2), and “geoproduct(3)”. If the
criterion is actually a Geolocation product ID (and —t is not specified),
the product ID is assigned to the variable geoproduct. (See —t option
above.)

Directory name in which output files are generated.
Default is NULL (generate files in the current directory).
Origin identifier of 4 characters. Default is “XXXX”.
Domain identifier of 3 characters. Default is “XXX".

An enum variable representing the output file format of PACKAGED and
UNPACKAGED for the Packaged and Unpackaged formats respectively.

A link list of input files.

Number of elements in inputfiles.

The parse options module checks that all requested products are compatible, as determined by all of
them use the same Geolocation product. It is an error if the requested products are not compatible
(using different Geolocation products).

3.2 get_geo_id_by_product_id

get geo id by product_id(char *prod_id)

Parameter:

prod_id IN: 5 character product DPID of a sensor product.

Return values:

2.5

The HDF Group

Page 5 of 17

March 23, 2012 RFC THG 2012-03-15.v3

DPID of the Geolocation product that the sensor product uses.

NULL otherwise.
3.3 set_granule_pattern
set_granule_pattern(char *product_id, granule_p_t granule)

Parameters:
product_id IN: DPID of product or GEO product

granule_p_t IN: pointer to granule structure to be used to get information to be saved for
creating attributes and datasets for product in output file.

Return values:

0 if successful, -1 otherwise

Input/output scenarios

Inputs: product DPID not already in array, valid granule
Results: new gran_pattern_p_t structure for product in array.
Return value: %]

Inputs: product DPID already in array, valid granule

Return value: -1

Inputs: malformed DPID or invalid or incomplete granule
Return value: -1

3.4 has_granule_pattern

has_granule_pattern(char *product_id)

Parameters:

product_id IN: DPID of product or GEO product

Return values:

1 if pattern structure exists for product
0 if pattern structure for product does not exist
-1 if product_id is malformed (not 5 characters)

Input/output scenarios

Input: valid product DPID

Condition: granule in array for product DPID
Return value: 1

Input: valid product DPID

Condition: no granule in array for product DPID

FT Page 6 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

Return value: 0
Input: invalid product DPID
Return value: -1

3.5 get_granule_pattern

get_granule_pattern(char *product_id)

Parameters:
product_id IN: DPID of product or GEO product
Returns:

gran_pattern_p_t structure if successful, NULL otherwise

Input/output scenarios

Input: valid product DPID

Condition: granule in array for product DPID
Returns: gran_pattern_p_t structure.

Input: valid product DPID

Condition: no granule in array for product DPID
Returns: NULL

Input: invalid product DPID

Returns: NULL

3.6 nagg_get_granules

nagg get granules(char **file 1list, int number_of files,
char **products_list, int nproducts, geolocation_t geofiles arg,
char *geoproduct, granule p t *granule _info p[], int *number_of_granules p)

Parameters:
file_list IN: list of files containing granules to be added to the granule table.
number_of_files IN: number of file names in the list.
products_list IN: list of product types for which granules will be written to a file.
nproducts IN: number of products types in the list.
geofiles_arg IN: enum value from —g command option (default GEOFILE_YES).
geoproduct IN: the DPID of the geolocation product.

*granule_info_p[] OUT: address of the granule table to be populated.
*number_of_granules_p OUT: address of variable for number of granules put in
the table.

Return values:

0 if successful, -1 otherwise

FT Page 7 of 17

The HDF Group

March 23, 2012

Input/output scenarios

file_list SDR1*.h5 EDR1*.h5

Inputs:

Returns:

Inputs:

Returns:

Inputs:

Returns:

Inputs:

Returns:

products_list SDR1 EDR1
geoproduct GEO1

0
granule_info_p

number_of_granules_p
gran_pattern_p

RFC THG 2012-03-15.v3

pointer to table of SDR1, EDR1, and GEO1 granules found
in files SDR1*.h5 EDR1*.h5 and files referenced in those
files’ N_GEO_Ref attributes.

number of granules in granule_info_p table.

array of structures containing sufficient information to
create attributes and datasets for SDR1, EDR1, and GEO1
products.

file_list SDR1*.h5 EDR1*.h5

products_list SDR1 EDR1
geoproduct NULL

0
granule_info_p

number_of_granules_p
gran_pattern_p

file_list GEO1*.h5
products_list NULL
geoproduct GEO1

0
granule_info_p

number_of _granules_p
gran_pattern_p

file_list EDR1*.h5
products_list SDR1 EDR1

geoproduct NULL

-1

pointer to table of SDR1 and EDR1 granules found in files
SDR1*.h5 EDR1*.h5.

number of granules in granule_info_p table.

array of structures containing sufficient information to
create attributes and datasets for SDR1 and EDR1
products.

pointer to table of GEO1 granules found in files
GEO1*.h5.
number of granules in granule_info_p table.

array of structures containing sufficient information to
create attributes and datasets for GEO1 product.

2.5

The HDF Group

Page 8 of 17

March 23, 2012 RFC THG 2012-03-15.v3

granule_info_p undefined

number_of _granules_p undefined

gran_pattern_p undefined
Inputs: file_list SDR1*.h5 EDR1*.h5

products_list NULL
geoproduct GEO1
condition: external GEO files available with GEO1 granules

Returns: -1
granule_info_p undefined
number_of_granules_p undefined
gran_pattern_p undefined
Inputs: file_list SDR1*.h5 EDR1*.h5

products_list SDR1 EDR1
geoproduct GEO1
condition: no external files available with GEO1 granules

Returns: -1
granule_info_p undefined
number_of_granules_p undefined
gran_pattern_p undefined

3.7 select_granules

select_granules(granule p t granule_info[], int * _gindex, char **products_list,
int nproducts, int total nproducts, char *geoproduct, granule p t
granules_selected[], int ngranulesperfile, int * granules_remain, int
* total granules file)

Parameters:
granule info IN: table of granules for selection.
* gindex INOUT: index of the next available granule in the

granule _info for selection. It reaches the end of
the table if _granules remain is equal to 0.
**products_list IN: the list of products to match.

nproducts IN: number of elements in products_1list.

total nproducts IN: number of products and the geolocation product if
wanted.

*geoproduct IN: geolocation product (NULL if not wanted.)

granules selected INOUT: a table of selected granules for output. It is
expected that sufficient space has been allocated
for granules _selected to store all granules
selected.

ngranulesperfile 1IN: number of granules of each product per output file.

* granules _remain INOUT: number of granules in the granule_info table

I-T Page 9 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

available for selection.
* total granules file OUT: number of granules in the granules selected
table.

Return values:

Returns SUCCEED (0) if success; FAIL (-1) otherwise.
If return values is FAIL, the values of the OUT or INOUT parameters are undefined.

3.8 compose_output_fname <<this section needs more work>>
/* Compose the output file name.

* Parameters:

* granule info p: IN: The table of all granules.

* number_of granules: IN: number of granules in granule_info p.

* products list: IN: The list of all products requested.

* nproducts: IN: Number of products in the list.

* ngranulesperfile 1IN: Number of granules to be writtern to the output file.
* createtime: OUT: creation time string is returned via it.

* output_fname OUT: Composed new output file name is returned via it.

* geo_fname OUT: Composed new Geo-file name is returned via it.

* Return code:

* positive: output filename composed.

* 0: all filled granules; no output file composed.
* negative: error encountered.

*/

/* Algorithm
* file name convension
* <DPID>-...-<DPID> <spacecraft>_d<Start _date> t<Start time> e<Stop_time> \
* b<Orbit_number> c<Creation_date> <Origin> <Domain>.h5
*/
int
compose_output fname(granule p t granule_info_p[], int number_of granules,
char **products_list, int nproducts, int ngranulesperfile,

char *creationdate, char **output_fname, char **geo_fname)

|.g: Page 10 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

select_granules(granule p t granule_info[], int * gindex, char **products_list,
int nproducts, int total nproducts, char *geoproduct, granule p t
granules_selected[], int ngranulesperfile, int * granules_remain, int
* total granules file)

Parameters:
granule info IN: table of granules for selection.
* gindex INOUT: index of the next available granule in the

granule _info for selection. It reaches the end of
the table if _granules remain is equal to 0.
**products_list IN: the list of products to match.

nproducts IN: number of elements in products_1list.

total nproducts IN: number of products and the geolocation product if
wanted.

*geoproduct IN: geolocation product (NULL if not wanted.)

granules selected INOUT: a table of selected granules for output. It is
expected that sufficient space has been allocated
for granules _selected to store all granules
selected.

ngranulesperfile 1IN: number of granules of each product per output file.

* granules _remain INOUT: number of granules in the granule_info table
available for selection.

* total granules file OUT: number of granules in the granules selected

table.

Return values:

Returns SUCCEED (0) if success; FAIL (-1) otherwise.
If return values is FAIL, the values of the OUT or INOUT parameters are undefined.

3.9 start_write

start_write(const char **outfiles, int noutfiles, const char *outgeofile,
char *geoproduct, char **products_list, int nproducts,
const char *creationdate, const char *creationtime, int ngranulesperfile,
gran_pattern_p_t *gran_pattern_p[])

Parameters:
outfiles IN: list of file names to be created for writing an output aggregation
noutfiles IN: number of names in the outfiles list.
outgeofile IN: name of the corresponding geo-location file, or NULL.
geoproduct IN: DPID of the corresponding geoproduct, or NULL.
products_list IN: list of DPIDs, one for each product. Only one product is supported

for this version.

nproduct IN: number of DPIDs in the products_list argument.
creationdate IN: date of creation of the output files (for writing to the

N_HDF_Creation_Date attribute)

|.g: Page 11 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

creationtime IN: time of creation of the output files (for writing to
N_HDF_Creation_Time attribute).

ngranulesperfile IN: number of granules in each aggregation.

gran_pattern_p[] IN:address of variable for product granule pattern information.

Return values:

0 if successful, -1 otherwise

Input/output
0/0 1/n n/n
noutfiles/nproducts:
outgeofile && | Geoproduct in | Error (possible | 1 Product in
geoproduct outgeofile but option not | each outfile
provided)
Geoproduct
in outgeofile
NULL && geoproduct Error N products and | Error (option
geoproduct in 1 | not provided)
outfile
NULL && NULL Error N products in 1 | N products in
outfile n outfiles
Outgeofile && NULL Error Error Error

4 Implementation Details

This section describes the interfaces of functions in the Nagg tool that is involved in the support of
the two new features.

4.1 parse_options

Description:
The parse_options() function uses the standard getopt() function to parse the command options. It
will set up the values of the following global variables during its execution.

|.g: Page 12 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

Option Global variables Description

-n ngranulesperfile The number of granules per product in each output file. Default is 1.

-t products_arg A linked list of products to store in each output file
nproducts Number of products specified in —t flag.
-d outDir Directory name in which output files are generated.

Default is NULL (generate files in the current directory).

-0 origin_arg Origin identifier of 4 characters. Default is “XXXX”.
-D domain_arg Domain identifier of 3 characters. Default is “XXX”.
-g geofiles_arg An enum variable representing different geolocation granules selection

criterion of “no”(0), “yes” (1), “strict”(2), and “geoproduct(3)”.
<input_files> ...
inputfiles A link list of input files.

ninputfiles Number of elements in inputfiles.

The parse options module will now be checking that all requested products are compatible, as
determined by all of them having one corresponding GEO product. Leave(EXIT_FAILURE) should be
called if the requested products are not compatible (use more than one geo product).

Parse options will also need to handle multiple entries in the —t string.

4.2 get_geo_id_by_product_id
Description:

This function returns the DPID of the sensor data product’s corresponding geo product. Geo products
have no corresponding geo product, so the function should return NULL when called for a geo
product. Geo product names can be obtained using get_product_sname_by_id(geo_product_id).

4.3 set_granule_pattern
gran_pattern_p_t structure

Will contain structures, which are to be allocated and populated while getting granules, with
information for creating attributes and raw data datasets.

Description:

Function to create a gran_pattern_t structure for the input product and populate it with information
from the input granule.

4.4 has_granule_pattern
Description:

Function to test whether or not there is a gran_pattern_t structure for the input product.

|.u: Page 13 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

4.5 get_granule_pattern
Description:

Function to get the gran_pattern_t structure for the input product.

4.6 nagg_get_granules

Description:

The nagg _get_granules() function opens and reads the files in the list provided by the command
parser, putting the values of attributes necessary for reaggregating the granules in the members of an
instance of the granule_t structure which is added to the granule table. Unless the -g no option is
specified or the file is a GEO file, the file specified by the file’s N_GEO_Ref attribute will also be
opened and read, and its granules added to the granule table.

Error messages will be returned if a file specified is not an HDF5 file, if the file does not exist or
cannot be accessed due to insufficient file permissions, if the file cannot be opened due to an HDF5
failure. Error messages will also result if no granules are found for a requested product, for any of the
input combinations resulting in error output in section 3.8, or if the geo product is not found except
when “-g no” is not specified. The tool will not continue if any of these errors are encountered.

The attributes from which granule information is gathered are attributes of several different objects
in the file. Some are attributes of the root group. Others are attributes of the product groups which
are subgroups of the /Data_Products group. The function iterates through all subgroups of
/Data_Products, collecting granule information from the groups and their aggregate and granule
datasets.

There will now be a pointer to an array of granule_pattern_t structures, one for each product plus
one for the geoproduct. The information from the first granule for each product will be saved in one
of these structures and will be used in write granules to initialize files when the first granule is a fill
granule. This may be extended to initialize all files from the pattern granule in the future, especially if
compression is added.

The nagg_get_granules() function needs to add only granules in the product list or the corresponding
geo granules from files indicated by granules in the product list to the granule table. It also needs to
check for a geo group in the files with the product as well as checking for an N_Geo_Ref attribute
with the name of a geo file.

4.7 select_granules

Description:
The select_granules function selects granules that will fit in the output file according to bucket
alignment boundary. The following is a description of the algorithms used.

Nagg algorithm in the calculation of bucket alignment:

Let N be the number of granules requested by the nagg user to reaggregate the NPP product files.

|.g: Page 14 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

Let Tg be the duration of the first selected granule. (This value is different for different products and
is defined in the products table.)

Then Tbucket = N*Tg seconds.

Let An be the n-th bucket since epoch.

Let Asn and Aen be the starting and ending time of An.
Let Gs be the beginning time of the first selected granule.

Then

An = floor(Gs/Tbucket)
An*(Tbucket)
As + Tbucket

Asn

Aen

How nagg adds fill granules to produced files:

First produced file
For the first file, if the starting time of the first selected granule
is bigger than Asn, no fill granules are added before copying existing
granules to the new file. This will produce a partial file.

Second to (n-1)-th files
N existing granules per product requested are copied to each of the
new files, insert fill granules in place of any missing granules.

Last (n-th) file
Remaining granules per product requested are copied to the last file.

If the ending time of the last granule is less than the ending time of the last bucket, no fill granules
are added. This will produce a partial file.

4.8 start_write

Description:

The start_write() function is the first function called when writing an aggregation of
granules. For a single product with the corresponding geo granules in a separate file, start_write()
creates the product and geo output files. When multiple products are supported in the future, for
the -S nagg tool option, start_write() will create an output file for each product for each
aggregation of granules, plus the geo file if geo granules are aggregated separately. When packaging
is supported, start_write() will create one output file for all products in an aggregation.

All of the granules selected for an aggregation will be written to the output files before any
granules are selected for the next aggregation. The granules within an aggregation may be written in
any order, and typically will be written one to each output file in rotation. The write granules module

|.u: Page 15 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

creates an array of product_info_t structures to keep track for each product of output filenames,
input and output file handles, number of granules written, and a pointer to the previously written
granule.

typedef struct {
const char dpid[DPID size+1];
hid_t infile;
hid t outfile;
const char * outfilename;
int last i granule;
int granules written;
granule p t prev_granule;
} product_info_t;

A product_info_t structure is created and populated for each product and the geofile by the
start_write() function. Thewrite_granules() function will then select the product_info_t for
each granule that matches its DPID. The product_info_t for the separate geolocation file is created
last so that its index will always be nproducts.

The start_write() function also writes 3 attributes to the root group of the files:
N_GEO_Ref, for files except the geo file, N_HDF_Creation_Date, and N_HDF_Creation_Time. Values
for these attributes are generated by nagg with the new geo file name and the current time.

Start_write will also determine from the parameters whether the output is to be packaged or
unpackaged. If unpackaged, each product will be written to a separate file, including the geo
product. If packaged, all products will be written to a single file, including the geo product.

4.9 write_granules

Description:

The write_granules() function is called for each granule selected to be written to an
aggregation, and is responsible for writing most of the data and attributes to the new file, whether
the values are from the original file or are generated by the nagg tool. The function does the
following:

* Selects the product_info_t structure matching the granule’s product ID (DPID) to find the
correct output file.
* Opens the input file specified by granule->file_in.
* |Initializes the output file when first called with a granule.
o Copies root group attributes except those written by start_write() from the input file
to the output file.

o Creates group structure in the file, creating product groups in /A11_Data and
/Data_Products. Product groups in /All Data are named
<productname> All; those in /Data Products are named <productname>.

o Copies datasets from the /Al1l_Data group in the input file to the /A11_Data group
in the output file; resizes the datasets for the new aggregation size.

o Copies attributes from the /Data_Products/<productname> group in the input file
to the /Data_Products/<productname> group in the output file.

|.g: Page 16 of 17

The HDF Group

March 23, 2012 RFC THG 2012-03-15.v3

* Copies the /Data_Products/<productname>/<productname>_Gran_n dataset for the
granule in the input file to the dataset for the granule in the output file. References and
metadata that are specific to the new file will be overwritten in subsequent steps.

* Copies the granule’s hyperslab for each dataset in /A11_Data from the input file to the
output file creating a region reference to the new location in the granules new file’s
/Data_Products/<productname>/<productname>_Gran_n dataset

* Creates the /Data_Products/<productname>/<productname>_Aggr dataset with object
references to all the datasets in /A11_Data/<productname> group. Copies attributes from
the Aggregate dataset in the input file to the Aggregate dataset in the output file.

* Copies values for the Aggregate dataset’s AggregateBeginningDate,
AggregateBeginningGranuleID, AggregateBeginningOrbitNumber and
AggregateBeginningTime from the first granule in the aggregation.

Increments the value of the variable that keeps track of the number of granules written.

|.g: Page 17 of 17

The HDF Group

