
March 23, 2012 RFC THG 2012-03-15.v3

Page 1 of 18

RFC: Support for Multiple Products in nagg

Larry Knox
Albert Cheng

Previous nagg prototypes aggregated only one product plus an associated geolocation
product. The next version will support multiple compatible input and output products.
This document presents details of the operation of nagg and changes to be made for
aggregating multiple products.

Contents

1 Purpose ... 2

2 Functionality Specification .. 2
2.1 Packaged and Unpackaged File Formats .. 2
2.2 The Simple (-S) Option of the nagg Tool ... 3
2.3 Multiple Products List ... 4
2.4 Formal Description of the Command Line Options .. 4
2.5 Examples Using the New Command Line Options ... 6

3 Implementation Design ... 6
3.1 parse_options ... 6
3.2 get_gpid_by_id ... 8
3.3 set_granule_pattern ... 8
3.4 get_granule_pattern .. 9
3.5 nagg_get_granules ... 9
3.6 select_granules ... 11
3.7 compose_output_fname <<this section needs more work>> ... 12
3.8 start_write .. 13

4 Implementation Details .. 14
4.1 parse_options ... 14
4.2 get_gpid_by_id ... 15
4.3 set_granule_pattern ... 15
4.4 get_granule_pattern .. 15
4.5 nagg_get_granules ... 15
4.6 select_granules ... 16
4.7 start_write .. 17
4.8 write_granules .. 18

March 23, 2012 RFC THG 2012-03-15.v3

Page 2 of 18

1 Purpose
This document describes the addition of the support for multiple sensor data products feature to the
nagg tool. The output files can be in the Packaged and Unpackaged formats. Section 2 describes the
functionality specification of the multiple data products features and the two output formats. Section 3
describes the implementation design. Section 4 describes the implementation details.

2 Functionality Specification
Two new functions will be added to the nagg tool: the multiple sensor data products and the two output
file formats. We describe the output formats first since the multiple products build on top of the two
output formats.

2.1 Packaged and Unpackaged File Formats
There are two data product file formats according to section “3.5.7 Geolocation Packaging (From CDFCB
Vol1.)”.

There are two options for receiving geolocation data for NPP/NPOESS Data Products5:
1. Packaging Off – For all data products with the same geolocation data, deliver only one

geolocation HDF5 file and reference the geolocation HDF5 file from each corresponding
data product HDF5 file per request. Each data product requested is also delivered in a
separate HDF5 file

2. Packaging On – Package all data products sharing the same geolocation data in a single
HDF5 file and include their corresponding geolocation data in the HDF5 file with the
data products per request.

The figure below illustrates the two file formats.

March 23, 2012 RFC THG 2012-03-15.v3

Page 3 of 18

IDPS Packaging Baseline
CDFCB-X Volume I

12

Packaging On

Packaging Off

Packaging only applies to products with
geolocation data

File1

EDR1SDR1 GEO1

File2

EDR3EDR2

EDR4

SDR2

GEO2

File2

EDR1

File1

SDR1

File3

GEO1

File6

EDR3

File5

EDR2

File7

EDR4

File4

SDR2

File8

GEO2

11/4/11 PROPOSED nagg utility - DRAFT FOR
DISCUSSION

Figure 1: Packaged and Unpackaged File Formats

2.2 The Simple (-S) Option of the nagg Tool
The nagg tool has the ability to produce output files in the packaged format where granules of sensor
products and their corresponding geolocation product of the same time duration are aggregated into
one file.

When the Simple (-S) option is specified, the nagg tool produces results in the unpackaged format where
there is one file each for the granules of each sensor product and their corresponding geolocation
product. See the figure above.

Examples

The examples in the table below compare the results when the –S option is and is not used. These
examples assume that all input granules are aggregated into one bucket time period. If there are more
granules, more sets of files of the same layout are produced. Other nagg options, such as the required –
n and input files, are not shown here.

Example Command Line Results
% nagg –t EDR4 … Produces one file containing EDR4 and GEO2 granules.

March 23, 2012 RFC THG 2012-03-15.v3

Page 4 of 18

Example Command Line Results
% nagg –S –t EDR4 … Produces one file containing EDR4 granules and one file of GEO2

granules.

2.3 Multiple Products List
The –t command line option may take an argument of a list of multiple sensor product IDs separated by
commas. The list of products must be compatible: they must all use the same geolocation product. The
nagg tool will aggregate the granules of all given sensor products and the geolocation product into the
output files in either Packaged or Unpackaged file formats.

A nagg Tool Extension

If for some reason users do not want the geolocation product in the output files or if the geolocation
product granules are missing from the input files, users may add the -g no option to tell the nagg tool
not to look for nor produce geolocation granules.

Geolocation Product Only Output

If the users want to aggregate only geolocation granules and do not want any sensor products, they may
specify the geolocation product ID with the –g command line option and not use the –t option at all. An
example is shown below.

Example Command Line Results
% nagg –g GEO2 … Produces one file containing GEO2 granules.

2.4 Formal Description of the Command Line Options
The new command line options are described below.

-t list list specifies a comma separated list of NPP sensor record type mnemonics.

Unless -S is specified the granule types will be packaged together. Types must be
compatible to be packaged together. (Use -h to list valid package groupings). If
only the geolocation granules are aggregated, this option should not be used and
the -g option should specify the geo-product-ID.

-g criterion criterion is the criterion for searching the geolocation granules. Possible values

for criterion are no, yes, strict, and geo-product-ID and are described in the table
below.

Criterion Comments
no | 0 Aggregate product files without geolocation input or output.
yes | 1 Allow approximate matching of geolocation input filenames (default).
strict | 2 Require exact matching of geolocation input filenames.
geo-product-ID Only the geolocation granules of geo-product-ID are aggregated. When

this is specified, -t should not be used.

March 23, 2012 RFC THG 2012-03-15.v3

Page 5 of 18

-S Simple aggregates are produced. Each type is packaged separately. All granule

types including geolocation products are packaged in one file.

March 23, 2012 RFC THG 2012-03-15.v3

Page 6 of 18

2.5 Examples Using the New Command Line Options

Example Command Line Results
% nagg –t SDR1,EDR1 SDR1*.h5 EDR1*.h5 One output file containing SDR1,

EDR1, and GEO1
% nagg –t SDR1,EDR1 –S SDR1*.h5 EDR1*.h5 Three output files containing SDR1,

EDR1, and GEO1 each in separate files
% nagg –t SDR1,EDR1 –g no SDR1*.h5 EDR1*.h5 One output file containing SDR1 and

EDR1
% nagg –t SDR1,EDR1 –g no –S SDR1*.h5 EDR1*.h5 Two output files containing SDR1 and

EDR1 each in separate files
% nagg –g GEO1 GEO1*.h5 One output file containing GEO1

The following examples incur errors for different reasons.

Example Command Line Results
% nagg –t SDR1,SDR2 SDR1*.h5 SDR2*.h5 ERROR: Incompatible geolocation

products because SDR1 uses GEO1
while SDR2 uses GEO2.

% nagg –t SDR1,EDR1 SDR1*.h5 ERROR: Missing EDR1 product
granules.

% nagg -g GEO1 SDR1*.h5 ERROR: Missing GEO1 product
granules. Note that even though nagg
can have found the GEO1 granules via
the SDR1 geolocation reference, the
option tells the nagg tool to look for
GEO1 granules directly.

% nagg –g GEO1 SDR1_GEO1*.h5 This succeeds because
SDR1_GEO1*.h5 are packaged files
containing both SDR1 and GEO1
granules.

3 Implementation Design
This section describes the interfaces of functions in the nagg tool that is involved in the support of the
two new features.

3.1 parse_options

parse_options(int argc, char * const argv[])

March 23, 2012 RFC THG 2012-03-15.v3

Page 7 of 18

Parameters:

argc IN: number of elements in argv
argv IN: the list of command options argument

Return Values:

0 if successful.
Call leave(EXIT_FAILURE) if it encounters irrecoverable errors such as illegal options or bad option
values.

Description:

The parse_options() function uses the standard getopt() function to parse the command options. It
will set up the values of the following global variables during its execution.

Command Line
Option

Global Variables Description

-n ngranulesperfile The number of granules per product in each output
file. Default is 1.

-t products_arg A linked list of products requested.
 nproducts Number of products specified in –t flag.
 geoproduct The geolocation product ID used by the products. The

geolocation product should not be specified in this list
since it is determined according to a pre-defined
Products Table and assigned to the variable
geoproduct. If the user wants to aggregate the
geolocation product only, he should specify it via the –
g option and not use –t at all.

-g geofiles_arg An enum variable representing different geolocation
granule selection criterion. Valid values are “no”(0),
“yes” (1), “strict”(2), and “geoproduct(3)”. If the
criterion is actually a geolocation product ID (and –t
is not specified), the product ID is assigned to the
variable geoproduct. (See –t option above.)

-d outDir Directory name in which output files are generated.
Default is NULL (generate files in the current
directory).

-O origin_arg A four character origin identifier. Default is “XXXX”.
-D domain_arg A three character domain identifier. Default is “XXX”.
-S outfile_format An enum variable representing the output file format

of PACKAGED and UNPACKAGED for the Packaged and
Unpackaged formats respectively.

<input_files> …
 inputfiles A link list of input files.
 ninputfiles Number of elements in inputfiles.

March 23, 2012 RFC THG 2012-03-15.v3

Page 8 of 18

The parse options module checks that all requested products are compatible; products are compatible if
they use the same geolocation product. It is an error if the requested products are not compatible (using
different geolocation products).

3.2 get_gpid_by_id

get_gpid_by_id(const char *prod_id)

Parameter:

prod_id IN: 5 character product identifier (DPID) of a sensor product.

Return Values:

DPID of the geolocation product that the sensor product uses.
NULL otherwise.

3.3 set_granule_pattern
set_granule_pattern(granule_p_t granule)

Parameters:

granule_p_t IN: pointer to granule structure to be used to get information to be saved for
creating attributes and datasets for product in output file.

Return Values:

0 if successful.
-1 otherwise.

Input/Output Scenarios

Inputs: Product DPID not already in array, valid granule
Results: New gran_pattern_p_t structure for product in array.
Return value: 0

Inputs: Product DPID already in array, valid granule
Return value: -1

Inputs: Malformed DPID or invalid or incomplete granule
Return value: -1

March 23, 2012 RFC THG 2012-03-15.v3

Page 9 of 18

3.4 get_granule_pattern
get_granule_pattern(const char *product_id)

Parameters:

product_id IN: product identifier (DPID) of the product or geolocation product

Returns:
gran_pattern_p_t structure if successful.
NULL otherwise.

Input/Output Scenarios

Input: Valid product DPID
Condition: Granule in array for product DPID
Returns: gran_pattern_p_t structure.

Input: Valid product DPID
Condition: No granule in array for product DPID
Returns: NULL

Input: Invalid product DPID
Returns: NULL

3.5 nagg_get_granules

nagg_get_granules(char **file_list, int number_of_files,
 char **products_list, int nproducts, geolocation_t geofiles_arg,
 char *geoproduct, granule_p_t *granule_info_p[], int
*number_of_granules_p)

Parameters:

file_list IN: list of files containing granules to be added to the granule table.
number_of_files IN: number of file names in the list.
products_list IN: list of product types for which granules will be written to a file.
nproducts IN: number of products types in the list.
geofiles_arg IN: enum value from –g command option (default GEOFILE_YES).
geoproduct IN: the DPID of the geolocation product.
*granule_info_p[] OUT: address of the granule table to be populated.
*number_of_granules_p OUT: address of variable for number of granules put in the table.

March 23, 2012 RFC THG 2012-03-15.v3

Page 10 of 18

Return Values:

0 if successful.
-1 otherwise.

Input/Output Scenarios

Inputs: file_list SDR1*.h5 EDR1*.h5
 products_list SDR1 EDR1
 geoproduct GEO1

Returns: 0
 granule_info_p Pointer to table of SDR1, EDR1, and GEO1 granules

found in files SDR1*.h5, EDR1*.h5, and files
referenced in those files’ N_GEO_Ref attributes.

 number_of_granules_p Number of granules in granule_info_p table.
 gran_pattern_p Array of structures containing sufficient

information to create attributes and datasets for
SDR1, EDR1, and GEO1 products.

Inputs: file_list SDR1*.h5 EDR1*.h5
 products_list SDR1 EDR1
 geoproduct NULL

Returns: 0
 granule_info_p Pointer to table of SDR1 and EDR1 granules found

in files SDR1*.h5 and EDR1*.h5.
 number_of_granules_p Number of granules in granule_info_p table.
 gran_pattern_p Array of structures containing sufficient

information to create attributes and datasets for
SDR1 and EDR1 products.

Inputs: file_list GEO1*.h5
 products_list NULL
 geoproduct GEO1

Returns: 0
 granule_info_p Pointer to table of GEO1 granules found in files

GEO1*.h5.
 number_of_granules_p Number of granules in granule_info_p table.
 gran_pattern_p Array of structures containing sufficient

information to create attributes and datasets for
the GEO1 product.

March 23, 2012 RFC THG 2012-03-15.v3

Page 11 of 18

Inputs: file_list EDR1*.h5
 products_list SDR1 EDR1
 geoproduct NULL

Returns: -1
 granule_info_p undefined
 number_of_granules_p undefined
 gran_pattern_p undefined

Inputs: file_list SDR1*.h5 EDR1*.h5
 products_list NULL
 geoproduct GEO1
 Condition: external geolocation files available with

GEO1 granules.

Returns: -1
 granule_info_p undefined
 number_of_granules_p undefined
 gran_pattern_p undefined

Inputs: file_list SDR1*.h5 EDR1*.h5
 products_list SDR1 EDR1
 geoproduct GEO1
 Condition: no external files available with GEO1

granules.

Returns: -1
 granule_info_p undefined
 number_of_granules_p undefined
 gran_pattern_p undefined

3.6 select_granules
select_granules(granule_p_t granule_info[], int *_gindex, char
**products_list, int nproducts, int total_nproducts, char *geoproduct,
granule_p_t granules_selected[], int ngranulesperfile, int *_granules_remain,
int *_total_granules_file)

Parameters:

granule_info IN: table of granules for selection.
*_gindex INOUT: index of the next available granule in the granule_info for

selection. It reaches the end of the table if _granules_remain is equal
to 0.

March 23, 2012 RFC THG 2012-03-15.v3

Page 12 of 18

**products_list IN: the list of products to match.
nproducts IN: number of elements in products_list.
total_nproducts IN: number of products and the geolocation product if wanted.
*geoproduct IN: geolocation product (NULL if not wanted.)
granules_selected INOUT: a table of selected granules for output. It is expected that

sufficient space has been allocated for granules_selected to store all
granules selected.

ngranulesperfile IN: number of granules of each product per output file.
*_granules_remain INOUT: number of granules in the granule_info table available for

selection.
*_total_granules_file OUT: number of granules in the granules_selected table.

Return Values:

0 if success.
-1 otherwise. If the return value is -1, the values of the OUT or INOUT parameters are undefined.

3.7 compose_output_fname <<this section needs more work>>

/* Compose the output file name.
 * Parameters:
 * granule_info_p: IN: The table of all granules.
 * number_of_granules: IN: number of granules in granule_info_p.
 * products_list: IN: The list of all products requested.
 * nproducts: IN: Number of products in the list.
 * ngranulesperfile IN: Number of granules to be writtern to the output
file.
 * createtime: OUT: creation time string is returned via it.
 * output_fname OUT: Composed new output file name is returned via
it.
 * geo_fname OUT: Composed new Geo-file name is returned via it.
 * Return code:
 * positive: output filename composed.
 * 0: all filled granules; no output file composed.
 * negative: error encountered.
 */
/* Algorithm
 * file name convension
 * <DPID>-...-<DPID>_<spacecraft>_d<Start_date>_t<Start_time>_e<Stop_time> \
 * _b<Orbit_number>_c<Creation_date>_<Origin>_<Domain>.h5
 */
int
compose_output_fname(granule_p_t granule_info_p[], int number_of_granules,
 char **products_list, int nproducts, int ngranulesperfile,
 char *creationdate, char **output_fname, char **geo_fname)
select_granules(granule_p_t granule_info[], int *_gindex, char
**products_list, int nproducts, int total_nproducts, char *geoproduct,
granule_p_t granules_selected[], int ngranulesperfile, int *_granules_remain,
int *_total_granules_file)

March 23, 2012 RFC THG 2012-03-15.v3

Page 13 of 18

Parameters:

granule_info IN: table of granules for selection.
*_gindex INOUT: index of the next available granule in the granule_info for

selection. It reaches the end of the table if _granules_remain is equal to
0.

**products_list IN: the list of products to match.
nproducts IN: number of elements in products_list.
total_nproducts IN: number of products and the geolocation product if wanted.
*geoproduct IN: geolocation product (NULL if not wanted.)
granules_selected INOUT: a table of selected granules for output. It is expected that

sufficient space has been allocated for granules_selected to store all
granules selected.

ngranulesperfile IN: number of granules of each product per output file.
*_granules_remain INOUT: number of granules in the granule_info table available for

selection.
*_total_granules_file OUT: number of granules in the granules_selected table.

Return Values:

0 if success.
-1 otherwise. If the return value is -1, the values of the OUT or INOUT parameters are undefined.

3.8 start_write
start_write(NPPFileName_t *outfiles, int noutfiles, const char *outgeofile,
 char *geoproduct, char **products_list, int nproducts,
 const char *creationdate, const char *creationtime, int ngranulesperfile)

Parameters:

outfiles IN: list of file names to be created for writing an output aggregation
noutfiles IN: number of names in the outfiles list.
outgeofile IN: name of the corresponding geolocation file or NULL.
geoproduct IN: DPID of the corresponding geoproduct or NULL.
products_list IN: list of DPIDs, one for each product. Only one product is supported for

this version.
nproduct IN: number of DPIDs in the products_list argument.
creationdate IN: date of creation of the output files (for writing to the

N_HDF_Creation_Date attribute)
creationtime IN: time of creation of the output files (for writing to

N_HDF_Creation_Time attribute).
ngranulesperfile IN: number of granules in each aggregation.

Return Values:

0 if successful.
-1 otherwise.

March 23, 2012 RFC THG 2012-03-15.v3

Page 14 of 18

Input/Output

noutfiles/nproducts: 0/0 1/n n/n
outgeofile && geoproduct Geoproduct in

outgeofile
Error (possible but
option not provided)

One product in each outfile.
Geoproduct in outgeofile

NULL && geoproduct Error N products and
geoproduct in one
outfile

Error (option not provided)

NULL && NULL Error N products in one
outfile

N products in n outfiles

outgeofile && NULL Error Error Error

4 Implementation Details
This section describes the interfaces of functions in the nagg tool that are involved in the support of the
new features.

4.1 parse_options

Description:

The parse_options() function uses the standard getopt() function to parse the command options. It
will set up the values of the following global variables during its execution.

Option Global Variables Description
-n ngranulesperfile The number of granules per product in each output

file. Default is 1.
-t products_arg A linked list of products to store in each output file.
 nproducts Number of products specified in –t flag.
-d outDir Directory name in which output files are generated.

Default is NULL (generate files in the current
directory).

-O origin_arg A four character origin identifier. Default is “XXXX”.
-D domain_arg A three character domain identifier. Default is “XXX”.
-g geofiles_arg An enum variable representing different geolocation

granule selection criterion. Valid values are “no”(0),
“yes” (1), “strict”(2), and “geoproduct(3)”.

<input_files> …
 inputfiles A link list of input files.
 ninputfiles Number of elements in inputfiles.

March 23, 2012 RFC THG 2012-03-15.v3

Page 15 of 18

The parse options module will now be checking that all requested products are compatible (all of the
products having one corresponding geolocation product). Leave(EXIT_FAILURE) should be called if
the requested products are not compatible (use more than one geolocation product).
Parse options will also need to handle multiple entries in the –t string.

4.2 get_gpid_by_id

Description:

This function returns the DPID of the sensor data product’s corresponding geolocation product.
Geolocation products have no corresponding geolocation product, so the function should return NULL
when calling for a geolocation product. Geolocation product names can be obtained using
get_product_sname_by_id(geo_product_id).

4.3 set_granule_pattern
Uses the gran_pattern_p_t structure. Will contain structures, which are to be allocated and
populated while getting granules, with information for creating attributes and raw data datasets.

Description:

This function creates a gran_pattern_t structure for the input product and populates it with
information from the input granule.

4.4 get_granule_pattern

Description:

Use this function to get the gran_pattern_t structure for the input product.

4.5 nagg_get_granules

Description:

The nagg_get_granules() function opens and reads the files in the list provided by the command
parser. It gets the values needed to re-aggregate the granules from attributes in the file and puts them
in the members of a granule_t structure instance as described in Appendix 1 of the NPP Aggregation
Tool Components document. Unless the –g no option is specified or the file is a geolocation file, the file
specified by the file’s N_GEO_Ref attribute will also be opened and read, and its granules will be added
to the granule table.

The attributes from which granule information is gathered are attributes of several different objects in
the file. Some are attributes of the root group. Others are attributes of the product groups which are
sub-groups of the /Data_Products group. The function iterates through all sub-groups of
/Data_Products collecting granule information from the groups and their aggregate and granule
datasets.

March 23, 2012 RFC THG 2012-03-15.v3

Page 16 of 18

There will now be a pointer to an array of granule_pattern_t structures: one for each product plus
one for the geolocation product. The information from the first granule for each product will be saved in
one of these structures and will be used in write granules to initialize files when the first granule is a fill
granule. This may be extended to initialize all files from the pattern granule in the future, especially if
compression is added.

The nagg_get_granules() function needs to add only granules in the product list or the
corresponding geolocation granules from files indicated by granules in the product list to the granule
table. It also needs to check for a geolocation group in the files with the product as well as checking for
an N_Geo_Ref attribute with the name of a geolocation file.

Error messages will be returned under the following conditions:

• If a file specified is not an HDF5 file
• If the file does not exist or cannot be accessed due to insufficient file permissions
• If the file cannot be opened due to an HDF5 failure
• If no granules are found for a requested product
• For any of the input combinations resulting in error output listed in the “start_write” section on

page 13
• If the geolocation product is not found except when -g no is specified

The tool will not continue if any of these errors are encountered.

4.6 select_granules

Description:

The select_granules function selects granules that will fit in the output file according to bucket
alignment boundary. The following is a description of the algorithms used.

nagg algorithm in the calculation of bucket alignment:

• Let N be the number of granules requested by the nagg user to re-aggregate the NPP
product files.

• Let Tg be the duration of the first selected granule (This value is different for different
products and is defined in the products table).

• Then Tbucket = N*Tg seconds.
• Let An be the nth bucket since epoch.
• Let Asn and Aen be the starting and ending time of An.
• Let Gs be the beginning time of the first selected granule.

Then

An = floor(Gs/Tbucket)
Asn = An*(Tbucket)
Aen = As + Tbucket

March 23, 2012 RFC THG 2012-03-15.v3

Page 17 of 18

How fill granules are added to produced files:

First produced file For the first file, if the starting time of the first selected granule is bigger

than Asn, no fill granules are added before copying existing granules to
the new file. This will produce a partial file. By partial, we mean that
fewer granules are put into the file than requested.

Second to (n-1)th files N existing granules per product requested are copied to each of the new
files; insert fill granules in place of any missing granules.

Last (nth) file Remaining granules per product requested are copied to the last file. If
the ending time of the last granule is less than the ending time of the last
bucket, no fill granules are added. This will produce a partial file.

4.7 start_write

Description:

The start_write() function is the first function called when writing an aggregation of granules. For a
single product with the corresponding geolocation granules in a separate file, start_write() creates
the product and geolocation output files. When multiple products are supported in the future, for the –
S nagg tool option, start_write() will create an output file for each product for each aggregation of
granules plus the geolocation file if geolocation granules are aggregated separately. When packaging is
supported, start_write() will create one output file for all of the products in an aggregation.

All of the granules selected for an aggregation will be written to the output files before any granules are
selected for the next aggregation. The granules within an aggregation may be written in any order and
typically will be written one to each output file in rotation. The write granules module creates an array
of product_info_t structures to keep track for each product the output filenames, input and output
file handles, number of granules written, and a pointer to the previously written granule. The
product_info_t structure is shown below.

typedef struct {
 const char dpid[DPID_size+1];
 hid_t infile;
 hid_t outfile;
 const char * outfilename;
 int last_i_granule;
 int granules_written;
 granule_p_t prev_granule;
} product_info_t;

A product_info_t structure is created and populated for each product and geolocation file by the
start_write() function. The write_granules() function will then select the product_info_t for
each granule that matches its DPID. The product_info_t for the separate geolocation file is created
last so that its index will always be nproducts.

March 23, 2012 RFC THG 2012-03-15.v3

Page 18 of 18

The start_write() function also writes three attributes to the root group of the files: N_GEO_Ref
(for files except the geolocation file), N_HDF_Creation_Date, and N_HDF_Creation_Time. Values
for these attributes are generated by nagg with the new geolocation file name and the current time.

start_write will also determine from the parameters whether the output is to be packaged or
unpackaged. If unpackaged, each product will be written to a separate file, including the geolocation
product. If packaged, all products will be written to a single file, including the geolocation product.

4.8 write_granules

Description:

The write_granules() function is called for each granule selected to be written to an aggregation
and is responsible for writing most of the data and attributes to the new file. The written values might
be from the original file or might be generated by the nagg tool. The function does the following:

• Selects the product_info_t structure matching the granule’s product identifier (DPID) to find
the correct output file.

• Opens the input file specified by granule->file_in.
• Initializes the output file when first called with a granule.

o Copies root group attributes except those written by start_write() from the input
file to the output file.

o Creates group structure in the file. Creates product groups in /All_Data and
/Data_Products. Product groups in /All_Data are named <productname>_All;
those in /Data_Products are named <productname>.

o Copies datasets from the /All_Data group in the input file to the /All_Data group
in the output file; resizes the datasets for the new aggregation size.

o Copies attributes from the /Data_Products/<productname> group in the input file
to the /Data_Products/<productname> group in the output file.

• Copies the /Data_Products/<productname>/<productname>_gran_n dataset for the
granule in the input file to the dataset for the granule in the output file. References and
metadata that are specific to the new file will be overwritten in subsequent steps.

• Copies the granule’s hyperslab for each dataset in /All_Data from the input file to the output
file creating a region reference to the new location in the granule’s new
/Data_Products/<productname>/<productname>_gran_n dataset.

• Creates the /Data_Products/<productname>/<productname>_Aggr dataset with object
references to all the datasets in /All_Data/<productname> group. Copies attributes from
the aggregate dataset in the input file to the aggregate dataset in the output file.

• Copies values for the aggregate dataset’s AggregateBeginningDate,
AggregateBeginningGranuleID, AggregateBeginningOrbitNumber, and
AggregateBeginningTime from the first granule in the aggregation.

• Increments the value of the variable that keeps track of the number of granules written.

	1 Purpose
	2 Functionality Specification
	2.1 Packaged and Unpackaged File Formats
	2.2 The Simple (-S) Option of the nagg Tool
	2.3 Multiple Products List
	2.4 Formal Description of the Command Line Options
	2.5 Examples Using the New Command Line Options

	3 Implementation Design
	3.1 parse_options
	3.2 get_gpid_by_id
	3.3 set_granule_pattern
	3.4 get_granule_pattern
	3.5 nagg_get_granules
	3.6 select_granules
	3.7 compose_output_fname <<this section needs more work>>
	3.8 start_write

	4 Implementation Details
	4.1 parse_options
	4.2 get_gpid_by_id
	4.3 set_granule_pattern
	4.4 get_granule_pattern
	4.5 nagg_get_granules
	4.6 select_granules
	4.7 start_write

