
August 28, 2013 RFC THG 2013-08-13.v4

Page 1 of 21

RFC: Nagg Option for Compressing Datasets

Larry Knox
Elena Pourmal

This document describes and makes implementation recommendations for a new
feature to enable compression when creating aggregations with nagg.

The HDF Group developers solicit requirements, comments, and suggestions from
nagg users before starting implementation to ensure that the feature will address
users’ needs.

We assume that the reader is familiar with nagg and the JPSS data products.

Table of Contents

1 Introduction .. 2

2 Compressing JPSS files with h5repack .. 3

3 Compression methods in nagg... 7

4 Changing storage layout with nagg .. 9

5 Command line flags to support compression and chunking .. 12

6 Testing .. 15

7 Summary and Recommendations .. 16

8 Revision History .. 17

9 Appendix A-1 Effect of compression on datasets in a VIIRS-M7-SDR file 18

10 Appendix A-2 Effect of compression on datasets in an OMPS-NP-SDR file 20

August 28, 2013 RFC THG 2013-08-13.v4

Page 2 of 21

1 Introduction

Nagg (http://www.hdfgroup.org/projects/npoess/nagg_index.html) is a tool for aggregating JPSS
data products from existing files into new files with a different number of granules per file or
different combinations of compatible products than in the original files.

The data files for many of these products are quite large. Since nagg writes new files, the amount of
space to store both original JPSS files and newly aggregated ones is twice the original space. One can
reduce the size of a JPSS file by compressing the file with one of the freely available compression
utilities such as gzip. While this approach reduces the file size in most cases, it is not desired
because one has to uncompress the entire file before reading data with the HDF5 library or tools.
Instead, one can apply HDF5 compression to individual datasets stored in the file. We refer readers
not familiar with HDF5 compression filters to http://www.hdfgroup.org/HDF5/Tutor/compress.html.

The proposed compression feature in nagg will reduce amount of disk space needed when the tool is
used on JPSS files and will improve I/O performance during aggregation due to a smaller amount of
data being written. Since nagg has knowledge of the JPSS file structure and the properties of the
stored datasets, compression may be applied in a “smart” fashion avoiding work to compress data
that cannot benefit from compression due to its size or properties (such as data type).

IDPS is planning to add compression to NPP files provided for download beginning in January of 2014.
In certain cases it will be beneficial for users to change the compression method or the storage
layout. This can be done with h5repack, but at the cost of reading and writing the file a second
time. The proposed changes to nagg will combine the capability to change compression or storage
layout with the aggregation and packaging capabilities.

This document is organized as follows. Section 2 discusses benefits of compression for JPSS data
shown by using the h5repack utility; it also discusses disadvantages of using h5repack, thus
justifying compression implementation in nagg. Section 3 considers tradeoffs between different
compression methods available to nagg. Section 4 proposes a capability to modify chunk sizes during
the aggregation. Section 5 introduces the command line flags to enable compression and new
chunking properties of aggregated data. Section 6 outlines testing to be added for the new features.
Section 7 summarizes the findings and recommendations of this RFC.

http://www.hdfgroup.org/projects/npoess/nagg_index.html

August 28, 2013 RFC THG 2013-08-13.v4

Page 3 of 21

2 Compressing JPSS files with h5repack

One can use the h5repack http://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack utility
to rewrite an HDF5 file applying compression and changing storage layouts for one or more datasets.
h5repack supports all compression methods available in HDF5. Dynamically loaded compression
methods will be available for h5repack in the HDF5 release 1.8.12 and for nagg in the 1.5.2 release.
For further information on dynamically loaded filters, see
http://www.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFi
lters.pdf.

We used h5repack with sample files for six NPP products packaged with their GEO product. The files
were repacked with the SZIP compression and with the Shuffle filter followed by the GZIP
compression to see how effective some common compression methods were for reducing the sizes of
NPP files. With one exception, the output files were smaller than the input files. The exception was
the GCRIO-REDRO file, which increased in size by 2%. Other products decreased in size by a range of
14% to 69% Table 1.

Compression method:

Products in file:

SZIP SHUF + GZIP

GCRSO-SCRIS 66 56

GATMO-SATMS 84 79

GMODO-SVM07 42 35

GDNBO-SVDNB 40 31

GONPO-SOMPS 60 56

GCRIO-REDRO 88

74

Table 1: Output file size as % of original size for compressed NPP files

In order to obtain specific evidence of the effects of compression on various datasets in some NPP
product files, h5repack applied GZIP level 7 alone and GZIP level 7 preceded by the SHUFFLE filter to
4 granule GMODO-SVM07 and GONPO-SOMPS aggregated files. The tables below show the results of
repacking the GMODO-SVM07 and GONPO-SOMPS files with h5repack.

GMODO-SVM07_npp_d20121002_t2357443_e0003247_ …_noaa_ops.h5 was first compressed with
“h5repack -f GZIP=7”. The file size decreased by 30% from 393458600 bytes to 276523430 bytes.
The same file was compressed with “h5repack –f SHUF -f GZIP=7”. The resulting file was 65% smaller,
137765191 bytes. Table 2 shows the types and sizes of the corresponding datasets in the output
files. A table showing effect of compression for each dataset in this file can be found in Appendix A-1.

http://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack
http://www.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf

August 28, 2013 RFC THG 2013-08-13.v4

Page 4 of 21

Datasets in
/All_Data/VIIRS-M7-
SDR_All group:

Original size in bytes
(% of total file size)

Size and compression
ratio with -f GZIP=7

Size and compression
ratio with –f SHUF -f
GZIP=7

Small Datasets (12) 6,080 (.0015%) 576 (10.55:1) 588 (10.34:1)

Large Datasets (3) 68,812,800 (17.5%) 46,574,399 (1.477:1) 40,743,531 (1.688:1)

Datasets in /All_Data/
VIIRS-MOD-GEO_All:

Small Datasets (12) 11,936 (.0029%) 10,526 (1.124:1) 8,396 (1.422:1)

Large Datasets (9) 324,403,200 (82.4%) 229,707,941 (1.412:1) 97,183,519 (3.338:1)

Table 2: Summary of dataset changes with –f GZIP=7 and –f SHUF –f GZIP=7 in GMODO-SVM07
product file.

The size changes of the Large Datasets in the Geolocation group dominate the overall effect because
they make up 82% of the total file size. The large datasets (> 10K bytes) in both groups in the file
account for 99.9% of the file size, while the 24 small datasets account for less than 0.1%. While
compressing the small datasets in many cases further reduces the file size, some of them actually
increase in size, and the contribution to the overall reduction of the file size is minimal. The shuffle
filter followed by the GZIP filter more than doubles the effective compression for this and other VIIRS
products.

The same procedure was repeated with an OMPS-NP-SDR file GONPO-
SOMPS_npp_d20120508_t0333549_e0336247_b02735_c20130809150538592361_XXXX_XXX.h5.
This file was smaller than the VIIRS file with much smaller datasets, but the size of the output file with
Shuffle + GZIP was still about 45% smaller than the original file. Table 3 below shows the types and
sizes of the corresponding datasets in the output files. A table showing effect of compression for each
dataset can be found in Appendix A-2.

August 28, 2013 RFC THG 2013-08-13.v4

Page 5 of 21

Datasets in
/All_Data/OMPS-NP-
SDR_All:

Original size in
Bytes (% of total
file size)

Size and Compression
ratio with -f GZIP=7

Size and Compression
ratio with –f SHUF -f
GZIP=7

Small Datasets (15) 888 (0.47%) 216 (4.1:1) 254 (3.5:1)

Large Datasets (6) 179,200 (95.09%) 5909 (30.3:1) 5333 (33.6:1)

Datasets in /All_Data/
OMPS-NP-GEO_All:

Small Datasets (21) 8356 (4.43%) 949 (8.8:1) 1470 (5.68:1)

Large Datasets (0)

Table 3: Summary of dataset changes with –f GZIP=7 and –f SHUF –f GZIP=7 in GONPO-SOMPS
product file.

The files for the OMPS-NP-SDR and OMPS-NP-GEO products are much smaller than the VIIRS files.
The large datasets (>10K bytes) are also much smaller than those in the VIIRS files. Compression has
a less pronounced effect on the files because the size of the metadata is similar for both products and
both GEO products. As a result, compression for the OMPS product is applied to at most 50% of the
file, where for the VIIRS products a slightly larger amount of metadata accounts for only .05% of the
file size.

IDPS is planning to use a dataset size threshold for applying compression, currently 1K, but 100K is
being considered. Compression will reduce file size, but if IDPS goes to 100K as the threshold for
compression it is possible none of the datasets in this file will be big enough to be compressed.
Compressing all of the datasets in the GONPO-SOMPS file results in an output file 55.5% as big as the
original file. Compressing only the large datasets results in 57.6% of the original size.

Compression of an Ancillary file was attempted with GZIP and SZIP, but effectively produced no
change. There was only one sizeable dataset, which used nearly all of the possible values for the
U8BE type, more or less randomly distributed.

While h5repack provides the needed features (compression and chunking) there are two obvious
disadvantages in using h5repack vs. directly writing compressed datasets with nagg:

1. First, nagg reads data from the original files and writes aggregation files, and then h5repack
reads data again and writes it applying compression. The I/O operations will be doubled. If
both nagg and h5repack are run on a collection of the JPSS files the disadvantage of this
approach is obvious.

2. Not all data in a JPSS file will benefit from compression. For example, datasets with the region
references stored under the /Data_Products group do not benefit from compression at all
because data of the HDF5 reference type cannot be compressed. If h5repack is applied to
the whole file, performance of the tool will suffer. A user will need to specifically exclude the
datasets with the references making the whole process more complex and cumbersome.

August 28, 2013 RFC THG 2013-08-13.v4

Page 6 of 21

The optimal compression method for a dataset may vary according to the dataset’s datatype and the
distribution patterns of values in the dataset. It is also possible that users will want to use
compression software unknown to nagg. Nagg can provide users with the flexibility to specify
different compression methods for various datasets, and should avoid compression for very small
datasets. Furthermore, while it will be appropriate for IDPS to choose one combination of dataset
storage layouts and compression methods that will maximize efficiency for delivering NPP data files,
users and applications may need or want to convert their files to use different layouts and methods.

August 28, 2013 RFC THG 2013-08-13.v4

Page 7 of 21

3 Compression methods in nagg

The experiments in section 2 considered the effects of GZIP and Shuffle + GZIP on the size of the files
and individual datasets. A set of tests was run with results in the table below with those same filters
and with the SZIP filter. The VIIRS-DNB-SDR product was chosen to avoid fill granules, which typically
have datasets where every value is identical and for which no data may be written, reducing the time
to write the dataset. Files with 4, 16, and 72 granule aggregations were tested with h5repack and
custom versions of nagg built to apply the same specific filters.

Nagg and h5repack with the same filters and parameters produce the same size files. Nagg takes
longer on small files because it constructs a table of granules in the input files, while h5repack takes
longer for the larger files. Nagg is significantly faster than h5repack for the largest aggregation.
The reason for the longer h5repack time to process larger files is under investigation.

Shuffle doubles the effectiveness of the gzip compression, and at the same time reduces the
processing times for both nagg and h5repack. It is not effective and appears to be detrimental in
combination with szip. Szip wins for fastest processing time; shuffle + gzip for effective compression.
Possibly the latter is due to the narrow range of values in geolocation file datasets relative to the
range of numbers for the datatypes.

IDPS is planning to apply compression to datasets larger than some threshold (100K is being
discussed). When granules are aggregated, datasets that were uncompressed may cross the
threshold. Nagg could calculate the size of the output dataset, and compress any datasets that cross
the threshold due to aggregation. It could also apply compression according to a user threshold
supplied on the command line

The 2x16 granule file was also processed with an experimental version of nagg using the HDF5
example bzip2 dynamically loaded filter. The resulting file was 66% of the original size with a runtime
of 6:41. The compression ratio is similar to GZIP. While the run time will not generate much
excitement, the test demonstrates that nagg can write output datasets using a dynamically loaded
filter.

The discussion above is summarized in Table 4.

August 28, 2013 RFC THG 2013-08-13.v4

Page 8 of 21

 No
compression

gzip
level 7

shuffle + gzip
level 7

–f
SZIP=32,NN

–f SHUF

-f
SZIP=32,NN

-f SHUF

-f SZIP=
32,EC

2x4 granules:
file size

.574 .415

(72%)

.183

(25%)

.230

(40%)

.269

(47%)

.516

(90%)

h5repack run
time

0:02 0:44 0:21 0:07 0:08 0:07

Nagg run
time

0:04 0:44 0:24 0:06 0:07 Not
tested

2x16 granules:
file size

2.298 1.649

(72%)

.718

(31%)

.914

(40%)

1.064

(46%)

2.060

(90%)

h5repack run
time

0:18 3:03 1:30 0:25 0:30 0:25

nagg run
time

0:33 3:03 1:41 0:26 0:31 Not
Tested

2x72 granules:
file size

10.340 7.496

(72%)

3.333

(32%)

4.199

(41%)

4.876

(47%)

9.313

(90%)

h5repack run
time

1:56 20:24 13:44 9:49 9:58 9:59

nagg run
time

2:38 13:47 7:43 2:53 Error1 Not
tested

Table 4: Processing times for compression on GDNBO-SVDNB files of various sizes with nagg and
h5repack on a 64-bit Linux machine (platypus). Sizes are in GB, times in minutes:seconds, and % of
original size is displayed.

1 HDF5 returns an error indicating that Szip decompression failed.

August 28, 2013 RFC THG 2013-08-13.v4

Page 9 of 21

4 Changing storage layout with nagg

The HDF5 datasets that describe NPP product granule use a special storage layout called chunked
layout or chunk storage (see “HDF5 Datasets” chapter in the HDF5 User’s Guide
http://www.hdfgroup.org/HDF5/doc/UG/UG_frame10Datasets.html). When chunk storage is used, a
dataset is logically divided into chunks or tiles (in 2-D case), and each chunk is stored as a contiguous
sequence of bytes in an HDF5 file.

Chunk storage is required if more data will be added to a dataset and/or to store compressed data.
Chunking is also used to improve performance when reading and writing a subset of data stored in an
HDF5 file, especially if data is compressed. For more information about HDF5 chunking and how
chunking parameters such as chunk size and size of the chunk cache affect I/O performance we refer
the reader to http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html. In this section
we just outline why the current chunk sizes may affect sub-setting of aggregated datasets.

For each HDF5 dataset that is used to describe an NPP granule, the chunk size for that dataset is
equal to the size of the dataset. For example, this output occurs for the Radiance dataset when
running “h5dump –p –H
SVDNB_npp_d20130727_t0000538_e0002179_b09046_c20130727063722389520_noaa_ops.h5”:

 DATASET "Radiance" {

 DATATYPE H5T_IEEE_F32BE

 DATASPACE SIMPLE { (768, 4064) / (H5S_UNLIMITED, H5S_UNLIMITED) }

 STORAGE_LAYOUT {

 CHUNKED (768, 4064)

 SIZE 12484608

 }

…

 }

Note that the current dimensions of the dataspace are the same as the dimensions of the chunk.

When nagg aggregates NPP granules it doesn’t currently change the chunk sizes. This is illustrated in
Figure 1.

http://www.hdfgroup.org/HDF5/doc/UG/UG_frame10Datasets.html
http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html

August 28, 2013 RFC THG 2013-08-13.v4

Page 10 of 21

Figure 1: nagg aggregates data using default chunk size. Aggregated dataset is stored in three
chunks.

The chunk size for “Radiance” dataset is MxN and corresponds to the size of the dataset in a granule
file. When nagg aggregates granules, it creates a “Radiance” dataset in a new HDF5 file. The
dimensions of the dataset will be 3MxN and chunk size will still be MxN as in the original dataset.

Since granules can be pretty big (The VIIRS-IMG-GTM-EDR-GEO product has seven 50MB datasets,
each stored as a single 1541 x 8241 chunk) and compressed (in the future) I/O performance may
suffer when sub-setting is performed on the read. The following discussion outlines the issue.

HDF5 performs I/O operations on the whole chunk. This means that when a subset of a dataset is
read, all chunks that store data from that subset have to be read. Figure 2 illustrates the idea.

On the left, the “Radiance” dataset is stored in three chunks A, B, and C. When the highlighted subset
is read, all three chunks A, B, and C must be read separately. The HDF5 library reads a chunk, selects
requested data from each chunk and places it in the application buffer. I.e., in this particular case the
HDF5 library has to read all data in order to read the requested subset.

On the right, the same dataset is stored using nine chunks. The subset is stored in the chunks a, b,
and c. When library reads the subset, three times less data is read. If “Radiance” dataset is
compressed, then clearly less CPU time is required to uncompress the data.

August 28, 2013 RFC THG 2013-08-13.v4

Page 11 of 21

Figure 2: Reading a subset from the dataset with different chunk sizes. Reading a highlighted subset
from the dataset stored in three chunks will require reading all data (on the left), while reading the
same subset from the dataset stored in nine chunks will require reading only the third of total data.

We recommend adding a capability to nagg to specify chunk size when aggregating data. This will
allow a user to tune HDF5 storage for better I/O for sub-setting data from the aggregated datasets.

August 28, 2013 RFC THG 2013-08-13.v4

Page 12 of 21

5 Command line flags to support compression and chunking

Command options to enable compression and new storage layout properties of aggregated data will
be “borrowed” to match the long form of the h5repack utility options. The single character
h5repack options will not be used since one of them (-l) is already in use for the nagg utility. If no
compression or storage layout property is specified, the properties of the datasets in the input files
will be preserved.

Examples of the nagg command line for changing layout and adding compression:

1. nagg -n4 -tSVDBN --minimum=10240 --filter=SHUF --filter=GZIP=7
SVDNB_npp_d20130727_t0*.h5

This command will create packaged 4 granule aggregations of VIIRS-DNB-SDR and VIIRS-DNB-GEO
products from files matching the SVDNB_npp_d20130727_t000*.h5 pattern. All datasets of at
least 10240 bytes size will be compressed with the Shuffle and GZIP filters.

2. nagg -n4 -tSVDBN --layout=/All_Data/VIIRS-DNB-GEO_All/Height,/All_Data/VIIRS-DNB-
GEO_All/Latitude,/All_Data/VIIRS-DNB-GEO_All/Longitude,/All_Data/VIIRS-DNB-
GEO_All/LunarAzimuthAngle,/All_Data/VIIRS-DNB-GEO_All/LunarZenithAngle,/All_Data/VIIRS-
DNB-GEO_All/QF2_VIIRSSDRGEO,/All_Data/VIIRS-DNB-GEO_All/SCAttitude,/All_Data/VIIRS-
DNB-GEO_All/SCPosition,/All_Data/VIIRS-DNB-GEO_All/SCVelocity,/All_Data/VIIRS-DNB-
GEO_All/SatelliteAzimuthAngle,/All_Data/VIIRS-DNB-GEO_All/SatelliteRange,/All_Data/VIIRS-
DNB-GEO_All/SatelliteZenithAngle,/All_Data/VIIRS-DNB-
GEO_All/SolarAzimuthAngle,/All_Data/VIIRS-DNB-GEO_All/SolarZenithAngle,/All_Data/VIIRS-
DNB-SDR_All/QF1_VIIRSDNBSDR,/All_Data/VIIRS-DNB-SDR_All/Radiance:CHUNK=768x1016 --
minimum=10240 --filter=SZIP=32,NN SVDNB_npp_d20130727_t0*.h5

Command 2 will create the same packaged 4 granule aggregations as command 1. This command
also changes the storage layout for improved performance when subsetting only a part of the
swath, and applies SZIP compression instead of Shuffle and GZIP. The datasets to which the
layout change is to be applied are specified by the list of datasets in --layout=<list of datasets>:
CHUNK=768x1016.

3. nagg -n4 -tSVDBN --layout=CHUNK=768x1016 --minimum=10240 --filter=SZIP=32,NN GDNBO-
SVDNB_npp_d20130727_t0035017_e0057470_b09046_c20130731205748151135_XXXX_XXX
.h5.

Command 3 will have the same effect as command 2, but with a potential for unexpected
consequences. The new layout is exactly ¼ of the original chunk and granule size for all the
datasets listed in command 2. However, there are several other datasets with a different rank,
and the h5repack behavior in that case is to issue a warning and create the dataset with the
original properties of the dataset. Another unexpected consequence encountered is that in the
case where the –layout chunk rank matches a dataset but has one or more dimensions that are
larger than the original dataset, the larger chunk size will be used and extra storage space
allocated, increasing the file size. Currently it is expected that nagg will follow this h5repack
behavior. For these files the result was a .01% increase in the size of the output file using
command 3 instead of command 2, but users should be aware of the possible consequences.

August 28, 2013 RFC THG 2013-08-13.v4

Page 13 of 21

The following flags are proposed for nagg:
--minimum=size

Apply filter(s) only to objects whose size in bytes is equal to or greater than size.
size must be an integer greater than one (1).

Default: If no size is specified, a threshold of 1024 bytes is assumed.

--filter=filter
Filter type

filter is a string of the following format:

list_of_objects : name_of_filter[=filter_parameters]

list_of_objects is a comma separated list of object names meaning apply the filter(s)
only to those objects. If no object names are specified, the filter is applied to all
objects.

name_of_filter can be one of the following:
 GZIP, to apply the HDF5 GZIP filter (GZIP compression)
 SZIP, to apply the HDF5 SZIP filter (SZIP compression)
 SHUF, to apply the HDF5 shuffle filter
 FLET, to apply the HDF5 checksum filter
 NBIT, to apply the HDF5 N-bit filter
 SOFF, to apply the HDF5 scale/offset filter
 NONE, to remove any filter(s)

filter_parameters conveys optional compression information:
 GZIP=deflation_level from 1-9

 SZIP=pixels_per_block,coding_method
 pixels_per_block is a even number in the range 2-32.
 coding_method is EC or NN.
 SHUF (no parameter)
 FLET (no parameter)
 NBIT (no parameter)
 SOFF=scale_factor,scale_type
 scale_factor is an integer.
 scale_type is either IN or DS.
 NONE (no parameter)

--layout=layout
Layout type

layout is a string of the following format:

August 28, 2013 RFC THG 2013-08-13.v4

Page 14 of 21

list_of_objects : layout_type[=layout_parameters]

list_of_objects is a comma separated list of object names, meaning that layout
information is supplied for those objects. If no object names are specified, the layout is
applied to all objects.

layout_type can be one of the following:
 CHUNK, to apply chunking layout
 COMPA, to apply compact layout
 CONTI, to apply contiguous layout

layout_parameters is present only in the CHUNK case and specifies the chunk size of
each dimension in the following format with no intervening spaces:
 dim_1 × dim_2 × ... dim_n

August 28, 2013 RFC THG 2013-08-13.v4

Page 15 of 21

6 Testing

Tests should be run with a variety of NPP products to verify the following:
1. Output files are valid HDF5 files and can be opened with HDF5 tools. Note that displaying

data with h5dump for a dynamically loaded filter will require setting the environment
variables HDF5_PLUGIN_PATH to the directory containing the filter plugin and
LD_LIBRARY_PATH to the directory containing the filter library file.

2. Filter and layout changes were applied to output files.
3. Output file size is in line with a generally expected range for the filter and the product.

Results that differ significantly from expectations based on previous results should be noted,
investigated and potentially documented as results will vary with different combinations of
products and filters.

4. Processing times similarly meet or modify expectations.
5. Compression with a filter can be removed as well as added.
6. A performance test processing compressed and uncompressed files created by nagg should be

devised.

August 28, 2013 RFC THG 2013-08-13.v4

Page 16 of 21

7 Summary and Recommendations

 Compression (which requires a chunked storage layout) significantly reduces the size of many NPP
product files. While GCRIO-REDRO and Ancillary files do not compress well, size reduction for
randomly selected NPP product files with SZIP/SHUFFLE + GZIP ranged from 16%/21% for
GATMO-SATMS to 60%/69% for GDNBO-SVDNB.

 IDPS sets the dataset chunk sizes to the granule size. These can be up to about 50 MB. IDPS is
also planning to add compression for most of its NPP files, probably with the same compression
method for all products. Users with applications that regularly access subsets of granule data may
want to change the storage layout or compression method to achieve better I/O performance.

 While compression and layout changes could be accomplished with h5repack, if aggregation or
packaging changes are also desired, using both h5repack and nagg would require multiple
commands and 2 new complete copies of the data. Adding the capability to nagg to change
dataset compression and layout while also changing aggregation and packaging arrangements
should provide benefit to users by reducing the necessary commands to run and the number of
times the data must be read and written. We recommend adding these capabilities to the nagg
tool as described herein.

August 28, 2013 RFC THG 2013-08-13.v4

Page 17 of 21

8 Revision History

August 13, 2013: Version 1 available for internal review.

August 19, 2013 Version 2 was edited and formatted; sent for internal review

August 20, 2013

October 21, 2013

Version 3; sent to JPSS

Version 4; checked into subversion repository.

August 28, 2013 RFC THG 2013-08-13.v4

Page 18 of 21

9 Appendix A-1 Effect of compression on datasets in a VIIRS-M7-SDR file

This table shows the effect of h5repack with the GZIP filter and with the shuffle+GZIP filters on the
size of all datasets in a packaged file with 4 VIIRS-M7-SDR granules and 4 VIIRS-MOD-GEO granules.

Total size of file: 393,461,512 bytes.
File metadata: 212,848 bytes
Raw data: 393,236,032 bytes

Using the shuffle filter before GZIP compression doubles the effective compression for this product.
The primary gain is in the VIIRS-MOD-GEO datasets, probably because the values are in a narrow range
and relatively small compared to the maximum possible values for the F32 data type. Adding the
shuffle filter also significantly reduces the processing time required to add GZIP compression to the
file.

The size of the largest of the “small” datasets is 3,072 bytes, and of the smallest of the “large”
datasets is 9,830,400 bytes. Minimum size thresholds for compressing datasets from 3K to 9,000K
bytes would result in compressing the larger datasets in this file. Compressing only the large files has
no significant effect on the effective compression for the entire file for these products.

Datasets in /All_Data/VIIRS-
M7-SDR_all

Original
size (Bytes)

Size and
Compression
ratio with -f
GZIP=7

Size and Compression ratio
with –f SHUF -f GZIP=7

Small Datasets:

ModeGran 4 36 (0.111:1) 36 (0.111:1)

ModeScan 192 48 (4.000:1) 48 (4.000:1)

NumberOfBadChecksums 768 48 (16.000:1) 48 (16.000:1)

NumberOfDiscardedPkts 768 48 (16.000:1) 48 (16.000:1)

NumberOfMissingPkts 768 48 (16.000:1) 48 (16.000:1)

NumberOfScans 16 48 (0.333:1) 48 (0.333:1)

PadByte1 12 44 (0.273:1) 44 (0.273:1)

QF2_SCAN_SDR 192 52 (3.692:1) 52 (3.692:1)

QF3_SCAN_RDR 192 48 (4.000:1) 48 (4.000:1)

QF4_SCAN_SDR 3072 60 (51.200:1) 60 (51.200:1)

QF5_GRAN_BADDETECTOR 64 44 (1.455:1) 44 (1.455:1)

ReflectanceFactors 32 52 (0.615:1) 64 (0.500:1)

Large Datasets:

QF1_VIIRSMBANDSDR 9830400 170931
(57.511:1)

170931 (57.511:1)

Radiance 39321600 30003876
(1.311:1)

25837150 (1.522:1)

Reflectance 19660800 16399592
(1.199:1)

14735450 (1.334:1)

August 28, 2013 RFC THG 2013-08-13.v4

Page 19 of 21

Datasets in /All_Data/ VIIRS-
MOD-GEO_All

Small Datasets:

MidTime 1536 989 (1.553:1) 748 (2.053:1)

ModeGran 4 36 (0.111:1) 36 (0.111:1)

ModeScan 192 48 (4.000:1) 48 (4.000:1)

NumberOfScans 16 48 (0.333:1) 48 (0.333:1)

PadByte1 12 44 (0.273:1) 44 (0.273:1)

QF1_SCAN_VIIRSSDRGEO 192 52 (3.692:1) 52 (3.692:1)

SCAttitude 2304 2294 (1.004:1) 1983 (1.162:1)

SCPosition 2304 2132 (1.081:1) 1623 (1.420:1)

SCSolarAzimuthAngle 768 812 (0.946:1) 662 (1.160:1)

SCSolarZenithAngle 768 809 (0.949:1) 547 (1.404:1)

SCVelocity 2304 2271 (1.015:1) 1856 (1.241:1)

StartTime 1536 991 (1.550:1) 749 (2.051:1)

Large Datasets:

Height 39321600 317350
(123.906:1)

256657 (153.207:1)

Latitude 39321600 30291485
(1.298:1)

12638737 (3.111:1)

Longitude 39321600 31961261
(1.230:1)

12111248 (3.247:1)

QF2_VIIRSSDRGEO 9830400 9616
(1022.296:1

9616 (1022.296:1)

SatelliteAzimuthAngle 39321600 33272093
(1.182:1)

15279686 (2.573:1)

SatelliteRange 39321600 32856607
(1.197:1)

14091418 (2.790:1)

SatelliteZenithAngle 39321600 34629645
(1.135:1)

14965389 (2.628:1)

SolarAzimuthAngle 39321600 34312947
(1.146:1)

15279686 (2.573:1)

SolarZenithAngle 39321600 32056937
(1.227:1)

12551082 (3.133:1)

August 28, 2013 RFC THG 2013-08-13.v4

Page 20 of 21

10 Appendix A-2 Effect of compression on datasets in an OMPS-NP-SDR file

This table shows the effect of h5repack with the GZIP filter and with the shuffle+GZIP filters on the
size of all datasets in a packaged file with 4 OMPS-NP-SDR granules and 4 OMPS-NP-GEO granules.

Total size of file: 409,192 bytes.
File metadata: 204,280 bytes
Raw data: 190,796 bytes
Compression ratios are actually higher for this file than for the VIIRS file, but the higher % of
metadata, which is not compressed, reduces the effect on the overall file size. The addition of the
shuffle filter results in better compression, but the improvement is less dramatic than in the VIIRS file.

The size of the largest of the “small” datasets is 1,600 bytes, and of the smallest of the “large”
datasets is 16,000 bytes. Minimum size thresholds for compressing datasets from 1.6K to 15K bytes
would result in compressing the larger datasets in this file. Compressing only the large files reduces
the effective compression by 2% for these products.

Datasets in /All_Data/
OMPS-NP -SDR_All

Original size
(Bytes)

Size and
Compression ratio
with -f GZIP=7

Size and
Compression ratio
with –f SHUF -f
GZIP=7

Small Datasets:

BadCal 4 12 (0.333:1) 12 (0.333:1)

Bias1 16 14 (1.143:1) 19 (0.842:1)

DarkExposeEarth 32 19 (1.684:1) 30 (1.067:1)

GainTblVersion 16 14 (1.143:1) 16 (1.000:1)

LinearityTblVersion 16 14 (1.143:1) 16 (1.000:1)

NPLinearCorrection 20 14 (1.429:1) 14 (1.429:1)

NumberOfIFOVs 8 12 (0.667:1) 14 (0.571:1)

NumberOfSpectralPixels 8 12 (0.667:1) 14 (0.571:1)

NumberOfSwaths 8 12 (0.667:1) 14 (0.571:1)

QualityEarth 40 16 (2.500:1) 19 (2.105:1)

RadFlag 400 23 (17.391:1) 30 (13.333:1)

SAA 20 14 (1.429:1) 14 (1.429:1)

SolarEclipse 100 15 (6.667:1) 15 (6.667:1)

SunGlint 100 12 (8.333:1) 12 (8.333:1)

WaveFlag 100 15 (6.667:1) 15 (6.667:1)

Large Datasets:

Cal 16000 645 (24.806:1) 586 (27.304:1)

DarkCurrentEarth 19200 622 (30.868:1) 655 (29.313:1)

RadianceEarth 80000 2441 (32.773:1) 2155 (37.123:1

SmearDataEarth 16000 798 (20.050:1) 656 (24.390:1)

SolarFlux 16000 657 (24.353:1) 616 (25.974:1)

Wavelengths 32000 746 (42.895:1) 665 (48.120:1)

Datasets in /All_Data/
OMPS-NP-GEO_All

Small Datasets:

Height 400 28 (14.286:1) 40 (10.000:1)

August 28, 2013 RFC THG 2013-08-13.v4

Page 21 of 21

Latitude 400 37 (10.811:1) 55 (7.273:1)

LatitudeCorners 1600 75 (21.333:1) 104 (15.385:1)

Longitude 400 37 (10.811:1) 56 (7.143:1)

LongitudeCorners 1600 76 (21.053:1) 103 (15.534:1)

MidTime 160 47 (3.404:1) 65 (2.462:1)

MoonVector 240 69 (3.478:1) 79 (3.038:1)

NumberOfIFOVs 8 12 (0.667:1) 14 (0.571:1)

NumberOfSwaths 8 12 (0.667:1) 14 (0.571:1)

QF1_OMPSNPGEO 20 15 (1.333:1) 15 (1.333:1)

RelativeAzimuthAngle 400 36 (11.111:1) 54 (7.407:1)

SCAttitude 240 69 (3.478:1) 79 (3.038:1)

SCPosition 240 71 (3.380:1) 83 (2.892:1

SCVelocity 240 68 (3.529:1) 80 (3.000:1)

SatelliteAzimuthAngle 400 37 (10.811:1) 55 (7.273:1)

SatelliteRange 400 34 (11.765:1) 48 (8.333:1)

SatelliteZenithAngle 400 36 (11.111:1) 51 (7.843:1)

SolarAzimuthAngle 400 36 (11.111:1) 55 (7.273:1)

SolarZenithAngle 400 36 (11.111:1) 55 (7.273:1)

StartTime 160 47 (3.404:1) 69 (2.319:1)

SunVector 240 71 (3.380:1) 80 (3.000:1)

