Testing EOS Big Data Files

I Compatibility Testing Goals

1. Insure that tools from each new HDF5 version will successfully process files created by any previous HDF5 version.
2. Insure that tools from some number of previous versions of hdf5 will successfully process files created by the current version unless the design of the current version explicitly states that this is impossible.
II Why test EOS Data files?

Running HDF5 tools with files created by applications written by users outside The HDF Group provides an opportunity to diversify testing of HDF5 software with data files produced in ways that are not expected or foreseen by HDF5 developers. While testing the HDFView release candidate in November of 2007 a file chosen as an example of a large hdf5 data file from NASA’s MLS datapool could not be opened by HDFView. The file could not be processed by v1.6.6 or v1.8.0 h5dump or h5ls either, due to an incorrect message count in the file header. This condition was created by a bug in version 1.6.5 (see “RFC Addressing HDF5 file corruption issue”. http://www.hdfgroup.uiuc.edu/RFC/HDF5/HDF5-corruption-bug/AURA-corruption-2007-11-12.pdf):

 A total of 10 such corrupted files from the MLS-Aura_L2AUX-Cloud series 2004 - 2007 were found and saved in /mnt/scr1/NASA/corrupted/MLS. Our chances of choosing a corrupt file at random were small considering that although we tested a number of files only 10 were found. It was decided that in order to maintain backward compatibility the hdf5 library and tools should correctly read such files when opened read-only, should correct the erroneous header when opened read-write, and should have a compile flag added to enable strict file checking which would cause errors to be reported when attempting to open such files. The default for this flag is off for production mode and on for debug mode.

In July of 2008 these files were checked again using h5check, h5dump, h5ls, h5repack and h5stat. H5check no longer recognized the error in the file header. This has since been corrected, but whether or not it was tested is undetermined. H5dump with strict file checking reports an internal error. Without strict file checking and with no options h5dump takes 7-10 minutes to dump the file contents to the terminal, but with the –H option it produces 30 lines of output in a second or two. H5ls with strict file checking returns “**NOT FOUND**” – 8 months ago it just returned silently. Running h5stat with strict file checking causes a segmentation fault. These results indicate improvement in output to users in some cases, a need for more rigorous testing in others.
III Proposed Testing
Testing NASA instrument files
NASA has a series of files from each of 4 instruments that are available for download. The corrupted files described above are from one of these instruments. The source and date of creation are evident from the filename and path. We can also ask NASA which hdf5 versions were used in creating the files in an attempt to periodically test files from as many versions as possible. Some specific tests that seem appropriate:
1. Run current version h5dump on one file produced by previous HDF5 versions. The file selected should be rotated or randomly selected, and h5dump is expected to be able to dump all information in these files. Previous versions should be able to dump files produced by the current version, which can be created by running h5repack on NASA files.

2. Run h5repack on the same files and verify that both the current version and the version of h5dump matching the version that created the file can dump all information from the newly created file.

3. Run h5ls and h5stat on both versions of the file and verify that the appropriate information is printed with no unexpected errors.
4. Run h5diff on the original and repacked version of each file.

5. Run h5copy if it is possible to do so without prior knowledge of the file contents.

Files that identify problems should be saved either as is or in a modified form for regression testing of the solution to the problem.
Initial implementation with hand selected files, parts 1 & 3: October 10, 2008
Initial implementation with hand selected files, parts 2, 4 & 5: October 17, 2008
Implementation with auto-download of random files: January 1, 2009
Testing known corrupted files

The files discussed in the second section and other known corrupted files should be tested as part of the daily (or periodic) tests to insure that the solution determined for each type of corrupted file remains effective. For example, in the case of the files with an incorrect message count:

1. Open one or more of the files with h5dump (with the –H or other appropriate option to minimize output) h5ls, h5repack and h5stat for read-only access with current versions of HDF5 (v1.6.8, v1.8.2, v1.9.0). File should be readable in production mode, unreadable in debug mode unless strict file checking is explicitly enabled or disabled. In general this applies to all following tests.

2. Files opened for read-write access (with h5repack?) should rewrite the corrupted object header with the correct number of messages. It should then be possible to open the repaired file with strict file checking version tools that previously failed to open the file.

3. H5check should find Non-compliance errors in these files – specifically a “Corrupt object header”. There doesn’t appear to be a strict file checking flag for h5check; it seems reasonable that it should always detect corrupted files.

4. The cause of the segmentation fault for h5stat should be determined and an appropriate regression test designed and run.

Tests should be designed to fit each individual problem.

Initial implementation part 1: October 10, 2008

Initial implementation part 2: October 17, 2008

Implementation parts 3 & 4: December 1, 2008
Create a big data file repository for regular h5lib testing

Large files used for daily tests may be useful for make check or make test, but would be undesirable as part of the HDF5 distribution. Such files could be made available through a separate svn repository and a configuration option for build and install testing on the user’s machine as well as for HDF5 daily tests.

Initial setup of repository: November 10, 2008

Integration with HDF5 daily tests: February 1, 2009
Create an HDF5 Data File Verification server

This testing would have two purposes: provide users an opportunity to verify that their existing data files are compatible with new versions of HDF5, and provide a way for users to submit interesting or problem files to The HDF Group. The server would:
1. Allow users to upload (probably by ftp) a file to be tested, promising to delete the test file and all files derived from it.

2. Run HDF5 tools to verify the compatibility of the test file with the version tested.

3. Report the test results to the user and to The HDF Group.

4. Suggest that the user submit any interesting or problem files for further testing and HDF5 improvement.

Begin initial setup for concept testing: January 1, 2009

Server on-line for public users: May 1, 2009
IV Summary - Testing EOS Data files as part of Compatibility Testing

Several large EOS Data files were found for which HDF5 is not backward compatible as advertised. These were discovered unintentionally, suggesting that random testing of HDF5 using data files available from NASA, and potentially from other outside users may uncover compatibility issues that would otherwise go unnoticed. Other tests should be added as new compatibility problems are found or anticipated. Testing of files from outside sources will strengthen regression testing and help to insure data file compatibility across HDF5 versions.
V Actual Testing

February 17, 2009

The actual testing script currently runs as follows:
Part I

1. The corrupted file collection is processed with h5check, h5copy, h5dump –H, h5ls, and h5stat. This is done with strict format checking both enabled and disabled in each of versions 1.6, 1.8 and 1.9(trunk), with the exception of h5copy and h5stat not existing in version 1.6. The –H option is used for h5dump to keep the running time at a reasonable level.

In general the test succeeds if the return value for the corrupted files is 0 with strict format checking disabled and non-0 with strict format checking enabled. The current exception is h5stat in version 1.8. Since this version of h5stat always returns 0, the h5stat output is checked for the string “Unable to traverse object” to identify the corrupted files.

There are 10 of these corrupted Aura Cloud files at ~250 MB each. Although checking them all is somewhat redundant, the time involved is relatively short. If other corrupted files are found it may be unnecessary to check all of them for every test.

2. One of the corrupted files, chosen on a rotating basis, is repacked with versions 1.8 and 1.9 with strict format checking disabled. The incorrect message count in the file header should be corrected in this process, enabling versions with strict format checking to open the file.
(See diagram next page)
3.

Part II
4. All selected and repacked files are processed as in step 1, but with opposite expectations for resulting return values.
5. The selected NASA files are repacked with h5repack versions 1.8 and 1.9, strict format checking enabled. While h5repack version 1.6 is not currently tested, tests could be added to see that it responds appropriately to h5 files that it cannot process.

Part III
6. H5diff is run on repacked and original files. The return value is checked and is expected to be non-0 for originally corrupted files with strict format checking enabled and 0 for all other cases.

7. H5dump –H is run on all files created by h5copy. Because the tests use “/” as the source object for h5copy and the library function H5Ocopy used by h5copy will not allow “/” as the destination object, h5diff cannot be used to check the correctness of the copy. Hence we use h5dump –H to verify that the file is copied with at least sufficient correctness to be processed by h5dump.

Part III

To be implemented next:

Daily download of sample NASA hdf5 files (see Notes, below). Files are available from 2004 – 2008, and samples will be chosen for 2 purposes: 1.) to cover the entire period with the intent of collecting samples produced by all 1.6 and later versions of hdf5, and 2.) to process files with hdf5 tools that are currently being produced by hdf5 users outside The HDF Group using the latest available features available.
VI Notes

FTP Servers/directories for NASA files:

ftp://aurapar2u.ecs.nasa.gov

some OMI files

/data/s4pa/Aura_OMI_Level2/

directory with 25 subdirectories, 325,000+ files

/data/s4pa/Aura_OMI_Level2/OMAERO.003

/data/s4pa/Aura_OMI_Level2/OMAERUV.002

/data/s4pa/Aura_OMI_Level2/OMAERUV.003

/data/s4pa/Aura_OMI_Level2/OMBRO.002

/data/s4pa/Aura_OMI_Level2/OMBRO.003

/data/s4pa/Aura_OMI_Level2/OMCLDO2.002

/data/s4pa/Aura_OMI_Level2/OMCLDO2.003

/data/s4pa/Aura_OMI_Level2/OMCLDRR.002

/data/s4pa/Aura_OMI_Level2/OMCLDRR.003

/data/s4pa/Aura_OMI_Level2/OMDOAO3.002

/data/s4pa/Aura_OMI_Level2/OMDOAO3.003

/data/s4pa/Aura_OMI_Level2/OMHCHO.002

/data/s4pa/Aura_OMI_Level2/OMHCHO.003

/data/s4pa/Aura_OMI_Level2/OMNO2.002

/data/s4pa/Aura_OMI_Level2/OMNO2.003

/data/s4pa/Aura_OMI_Level2/OMO3PR

/data/s4pa/Aura_OMI_Level2/OMO3PR.003

/data/s4pa/Aura_OMI_Level2/OMOCLO.002

/data/s4pa/Aura_OMI_Level2/OMOCLO.003

/data/s4pa/Aura_OMI_Level2/OMSO2.002

/data/s4pa/Aura_OMI_Level2/OMSO2.003

/data/s4pa/Aura_OMI_Level2/OMTO3.002

/data/s4pa/Aura_OMI_Level2/OMTO3.003

/data/s4pa/Aura_OMI_Level2/OMUVB.002

/data/s4pa/Aura_OMI_Level2/OMUVB.003

ftp://acdisc.gsfc.nasa.gov

some OMI, all MLS and HIRDL files

/data/s4pa/Aura_OMI_Level2G/OMAEROG.003

/data/s4pa/Aura_OMI_Level2G/OMAERUVG.002

/data/s4pa/Aura_OMI_Level2G/OMAERUVG.003

*/data/s4pa/Aura_OMI_Level2G/OMCLDO2G.002

/data/s4pa/Aura_OMI_Level2G/OMCLDO2G.003

*/data/s4pa/Aura_OMI_Level2G/OMCLDRRG.002

/data/s4pa/Aura_OMI_Level2G/OMCLDRRG.003

*/data/s4pa/Aura_OMI_Level2G/OMDOAO3G.002

/data/s4pa/Aura_OMI_Level2G/OMDOAO3G.003

/data/s4pa/Aura_OMI_Level2G/OMHCHOG.003

*/data/s4pa/Aura_OMI_Level2G/OMNO2G.002

/data/s4pa/Aura_OMI_Level2G/OMNO2G.003

/data/s4pa/Aura_OMI_Level2G/OMSO2G.003

*/data/s4pa/Aura_OMI_Level2G/OMTO3G.002

/data/s4pa/Aura_OMI_Level2G/OMTO3G.003

/data/s4pa/Aura_MLS_Level2/ML2BRO.001

/data/s4pa/Aura_MLS_Level2/ML2BRO.002

/data/s4pa/Aura_MLS_Level2/ML2CH3CN.002

/data/s4pa/Aura_MLS_Level2/ML2CLO.001

/data/s4pa/Aura_MLS_Level2/ML2CLO.002

/data/s4pa/Aura_MLS_Level2/ML2CO.001

/data/s4pa/Aura_MLS_Level2/ML2CO.002

/data/s4pa/Aura_MLS_Level2/ML2DGG.001

/data/s4pa/Aura_MLS_Level2/ML2DGG.002

/data/s4pa/Aura_MLS_Level2/ML2DGM.001

/data/s4pa/Aura_MLS_Level2/ML2DGM.002

/data/s4pa/Aura_MLS_Level2/ML2GPH.001

/data/s4pa/Aura_MLS_Level2/ML2GPH.002

/data/s4pa/Aura_MLS_Level2/ML2H2O.001

/data/s4pa/Aura_MLS_Level2/ML2H2O.002

/data/s4pa/Aura_MLS_Level2/ML2HCL.001

/data/s4pa/Aura_MLS_Level2/ML2HCL.002

/data/s4pa/Aura_MLS_Level2/ML2HCN.001

/data/s4pa/Aura_MLS_Level2/ML2HCN.002

/data/s4pa/Aura_MLS_Level2/ML2HNO3.001

/data/s4pa/Aura_MLS_Level2/ML2HNO3.002

/data/s4pa/Aura_MLS_Level2/ML2HO2.001

/data/s4pa/Aura_MLS_Level2/ML2HO2.002

/data/s4pa/Aura_MLS_Level2/ML2HOCL.001

/data/s4pa/Aura_MLS_Level2/ML2HOCL.002

/data/s4pa/Aura_MLS_Level2/ML2IWC.001

/data/s4pa/Aura_MLS_Level2/ML2IWC.002

/data/s4pa/Aura_MLS_Level2/ML2N2O.001

/data/s4pa/Aura_MLS_Level2/ML2N2O.002

/data/s4pa/Aura_MLS_Level2/ML2O3.001

/data/s4pa/Aura_MLS_Level2/ML2O3.002

/data/s4pa/Aura_MLS_Level2/ML2OH.001

/data/s4pa/Aura_MLS_Level2/ML2OH.002

/data/s4pa/Aura_MLS_Level2/ML2RHI.001

/data/s4pa/Aura_MLS_Level2/ML2RHI.002

/data/s4pa/Aura_MLS_Level2/ML2SO2.002

/data/s4pa/Aura_MLS_Level2/ML2T.001

/data/s4pa/Aura_MLS_Level2/ML2T.002

/data/s4pa/SORCE_Level3/SOR3SSID

/data/s4pa/Aura_HIRDLS_Level2/HIRDLS2.003
ftp:// acdisc.sci.gsfc.nasa.gov
/data/s4pa/Earth_Probe_TOMS_Level2/TOMSEPL2/

/data/s4pa/Nimbus_7_TOMS_Level2/TOMSN7L2/

ftp://l4ftl01.larc.nasa.gov

TES files

/longterm/TES/TL2ANC.003

/longterm/TES/TL2ANC.004

/longterm/TES/TL2ANCS.003

/longterm/TES/TL2ANCS.004

/longterm/TES/TL2ATMTL.002

/longterm/TES/TL2ATMTL.003

/longterm/TES/TL2ATMTL.004

/longterm/TES/TL2ATMTN.003

/longterm/TES/TL2ATMTN.004

/longterm/TES/TL2CH4N.003

/longterm/TES/TL2CH4N.004

/longterm/TES/TL2CH4NS.003

/longterm/TES/TL2CH4NS.004

/longterm/TES/TL2CON.003

/longterm/TES/TL2CON.004

/longterm/TES/TL2CONS.003

/longterm/TES/TL2CONS.004

/longterm/TES/TL2H2OL.003

/longterm/TES/TL2H2OL.004

/longterm/TES/TL2H2ON.003

/longterm/TES/TL2H2ON.004

/longterm/TES/TL2H2ONS.003

/longterm/TES/TL2H2ONS.004

/longterm/TES/TL2HDOL.003

/longterm/TES/TL2HDOL.004

/longterm/TES/TL2HDON.003

/longterm/TES/TL2HDON.004

/longterm/TES/TL2HDONS.003

/longterm/TES/TL2HDONS.004

/longterm/TES/TL2HNO3L.002

/longterm/TES/TL2HNO3L.003

/longterm/TES/TL2HNO3L.004

/longterm/TES/TL2HNO3S.003

/longterm/TES/TL2HNO3S.004

/longterm/TES/TL2O3L.002

/longterm/TES/TL2O3L.003

/longterm/TES/TL2O3L.004

/longterm/TES/TL2O3N.002

/longterm/TES/TL2O3N.003

/longterm/TES/TL2O3N.004

/longterm/TES/TL2O3NS.003

/longterm/TES/TL2O3NS.004

/longterm/TES/TL2SUM.003

/longterm/TES/TL2SUM.004

/longterm/TES/TL2SUMS.003

/longterm/TES/TL2SUMS.004

/longterm/TES/TL2SUP.004

/longterm/TES/TL2SUPS.004

/longterm/TES/TL2TLS.003

/longterm/TES/TL2TLS.004

/longterm/TES/TL2TNS.003

/longterm/TES/TL2TNS.004

/longterm/TES/TL3ATD.001

/longterm/TES/TL3ATD.002

/longterm/TES/TL3ATM.001

/longterm/TES/TL3CH4D.001

/longterm/TES/TL3CH4D.002

/longterm/TES/TL3CH4M.001

/longterm/TES/TL3COD.001

/longterm/TES/TL3COD.002

/longterm/TES/TL3COM.001

/longterm/TES/TL3H2OD.001

/longterm/TES/TL3H2OD.002

/longterm/TES/TL3H2OM.001

/longterm/TES/TL3HDOD.001

/longterm/TES/TL3HDOD.002

/longterm/TES/TL3HDOM.001

/longterm/TES/TL3HNOD.001

/longterm/TES/TL3HNOD.002

/longterm/TES/TL3O3D.001

/longterm/TES/TL3O3D.002

/longterm/TES/TL3O3M.001

NASA Instruments producing HDF5 files:

HIRDL

MLS

OMI

TES

Other NASA HDF5 file categories:

SORCE

TOMS

enabled and disabled

0 = pass

Return values

Copies of files from h5copy

Non-0 = fail

Strict formatchecks

h5dump

H5check h5copy h5diff h5dump h5ls h5stat

enabled and disabled

0 = pass

Return values

Copies of files from h5repack

Non-0 = fail

Strict formatchecks

Non-0 = fail

0 = pass

Return values

enabled

disabled

Non-0 = pass

0 = fail

Return values

Strict formatchecks

Files with known corrupt headers

H5check h5copy h5dump h5ls h5repack h5stat

Copies of file from h5copy and h5repack for testing in Part III (corrected)

0 = pass

Return values

Downloaded NASA files (status to be determined)

Copies of file from h5copy and h5repack for testing in Part III

Non-0 = fail

0 = pass

Return values

enabled

disabled

Non-0 = fail

Strict formatchecks

H5check h5copy h5dump h5ls h5repack h5stat

