
SZ Tutorial Hands-on

SZ Tutorial Hands-on Guide
Version of February 3, 2018

SZ development team

Table of contents

1 Introduction 1

2 Download and Installation 1

3 Quick Start 1

3.1 Quick test of installation . 1

3.2 Executable command: sz . 2

4 API 3

5 Optimization of Compression Quality 5

6 Exercises 7

SZ Tutorial Hands-on Guide

SZ development team

1 Introduction

SZ is developed by Mathematics and Computer Science (MCS) division at Argonne National Lab-
oratory. It is an error-bounded lossy data compressor, supporting offline compression and online
in-situ compression. It provides different ways to control compression errors on demand, includ-
ing absolute error bound, relative error bound, peak signal-to-noise ratio (PSNR), etc. It supports
both C and Fortran programming language and multiple I/O libraries/formats, such as HDF5, Adios
and NetCDF. Note that the latest version of SZ is implemented based on our IPDPS17 paper [1]
instead of IPDPS16 paper [2].

2 Download and Installation

Downloading SZ [1, 3, 4]:

[user@host]$ git clone http :// github.com/disheng222/SZ

Installating SZ:

[user@host]$./ configure --prefix =[INSTALL_DIR]

[user@host]$ make;make install

Note:

1. The dynamic link and static link are named as libSZ.so and libSZ.a (uppercase).

2. Zlib is already integrated in the SZ package. If you link libSZ.so or libSZ.a, you also need
linking libZlib.so or libZlib.a to your code.

3. The above installation does not support Fortran by default. If you want to enable Fortran,
please use –enable-fortran option when running the command “configure –prefix=[INSTALL DIR]”.

3 Quick Start

3.1 Quick test of installation
Go to the example/ directory and run test.sh to see if it can successfully compress some sample
data files with different dimensions and various data types (single-precision or double-precision)
using an absolute error bound of 1E-4. If the maximum absolute errors printed on the screen are
all no greater than 1E-4, the test is supposed to be successful.

[user@host]$ cd example/

[user@host]$./test.sh

1

============== testing compression and decompression of 1D array ==============

./ testdouble_compress sz.config testdata/x86/testdouble_8_8_128.dat 8192

cfgFile=sz.config

[SZ] Reading SZ configuration file (sz.config) ...

timecost =0.006269

done

./ testdouble_decompress sz.config testdata/x86/testdouble_8_8_128.dat.sz 8192

timecost =0.010932

done

Max absolute error = 9.861434847902028622E-05

Max relative error = 2.009658648889981253E-05

Max pw_relative err = 9.861434847902028622E-05

......

./ testdouble_compress sz.config testdata/x86/testdouble_8_8_8_128.dat 8 8 8 128

cfgFile=sz.config

[SZ] Reading SZ configuration file (sz.config) ...

timecost =0.005040

done

./ testdouble_decompress sz.config testdata/x86/testdouble_8_8_8_128.dat.sz 8 8 8 128

timecost =0.005727

done

Max absolute error = 9.977675269823294002E-05

Max relative error = 6.6517828359110580554E-05

Max pw_relative err = 9.96184650388087789E-05

3.2 Executable command: sz
You can use the executable command “sz” to do the compression and decompression simply. The
input data file is in binary format. “sz -h” will print the help information.

Usage: sz <options >

Options:

* operation type:

-z <compressed file >: the compression operation with an optionally

specified output file. (the compressed file will be

named as <input_file >.sz if not specified)

-x <decompressed file >: the decompression operation with an optionally

specified output file. (the decompressed file will be

named as <cmpred_file >.out if not specified)

-p: print meta data (configuration info)

-h: print the help information

* data type:

-f: single precision (float type)

-d: double precision (double type)

* configuration file:

-c <configuration file > : configuration file sz.config

* error control: (the error control parameters here will overwrite the setting

in sz.config)

-M <error bound mode > : 10 options as follows.

ABS (absolute error bound)

REL (value range based error bound

ABS_AND_REL (using min{ABS , REL})

ABS_OR_REL (using max{ABS , REL})

PSNR (peak signal -to-noise ratio)

PW_REL (point -wise relative error bound)

-A <absolute error bound >: specifying absolute error bound

-R <value_range based relative error bound >: specifying relative error bound

-P <point -wise relative error bound >: specifying point -wise relative error bound

2

* input data file:

-i <original data file > : original data file

-s <compressed data file > : compressed data file in decompression

* output type of decompressed file:

-b (by default) : decompressed file stored in binary format

-t : decompreadded file stored in text format

-T : pre -processing with Tucker Tensor Decomposition

* dimensions:

-1 <nx> : dimension for 1D data such as data[nx]

-2 <nx> <ny> : dimensions for 2D data such as data[ny][nx]

-3 <nx> <ny> <nz> : dimensions for 3D data such as data[nz][ny][nx]

-4 <nx> <ny> <nz> <np >: dimensions for 4D data such as data[np][nz][ny][nx]

* print compression results:

-a : print compression results such as distortions

* examples:

sz -z -f -c sz.config -i testdata/x86/testfloat_8_8_128.dat -3 8 8 128

sz -z -f -c sz.config -M ABS -A 1E-3 -i testdata/x86/testfloat_8_8_128.dat \

-3 8 8 128

sz -x -f -s testdata/x86/testfloat_8_8_128.dat.sz -3 8 8 128

sz -x -f -s testdata/x86/testfloat_8_8_128.dat.sz \

-i testdata/x86/testfloat_8_8_128.dat -3 8 8 128 -a

sz -z -d -c sz.config -i testdata/x86/testdouble_8_8_128.dat -3 8 8 128

sz -x -d -s testdata/x86/testdouble_8_8_128.dat.sz -3 8 8 128

sz -p -s testdata/x86/testdouble_8_8_128.dat.sz

Note:

• The error bounds could be set in the configuration file sz.config or using the options -M/-A/-
R/-P in the command. The error controls in the command using -M/-A/-R/-P will overwrite
the settings in the configuration file.

• Data types and other parameters can be set in the configuration file sz.config.

• -z and -x indicate ’compression’ and ’decompression’ respectively. They can also be used to
specify the ’compressed data file’ for the operation of compression and ’decompressed data
file’ for the operation of decompression. For instance, sz -z ./testdata.sz -i testdata/x86/testfloat 8 8 128.dat
-3 8 8 128; sz -x ./testdata.sz.out -s ./testdata.sz -3 8 8 128

Types of Error bounds:

• absolute error bound (-M ABS): The absolute error bound (denoted δ) is a constant, such as
10−6 (a.k.a., 1E-6).

• relative error bound (-M REL): The relative error bound ratio (a.k.a., value-range based rela-
tive error bound).

• point-wise relative error bound (-M PW REL): Different data points have different error bounds.
the larger the value, the larger the absolute error bound for that data point.

• peak signal-to-noise ratio (-M PSNR): the larger the PSNR, the smaller the normalized mean
squared error.

4 API

Most common APIs are listed as follows. More APIs can be found in the user guide.

3

• int SZ Init(char *configFilePath); /*return SZ SCES or SZ NSCS*/

• unsigned char *SZ compress(int dataType, void *data, size t *outSize, size t r5, size t r4,
size t r3, size t r2, size t r1);

• void *SZ decompress(int dataType, unsigned char *bytes, size t byteLength, size t r5, size t
r4, size t r3, size t r2, size t r1);

• void SZ Finalize();

We present an example to illustrate compression in the C code. The example code can be found
in testfloat compress.c in the directory example/.

1 int main(int argc , char * argv [])

2 {

3 size_t r5=0,r4=0,r3=0,r2=0,r1=0;

4

5 /*Get the dimension information and set configuration file - cfgFile */

6

7

8 /* Initializing the compression environment by loading the configuration file.

SZ_Init(null) will adopt default setting in the compression.*/

9 int status = SZ_Init(cfgFile);

10 if(status == SZ_NSCS)

11 exit (0);

12 sprintf(outputFilePath , "%s.sz", oriFilePath); // specify compression file path

13

14 //read the binary data

15 size_t nbEle;

16 float *data = readFloatData(oriFilePath , &nbEle , &status);

17 if(status != SZ_SCES)

18 {

19 printf("Error: data file %s cannot be read!\n", oriFilePath);

20 exit (0);

21 }

22

23 /* Perform compression. r5,, r1 are sizes at each dimension. The size of a

nonexistent dimension is 0. For instance , for a 3D dataset (10 x20x30), the

setting is r5 = 0, r4 = 0, r3 = 10, r2 = 20, r3 = 30. SZ_FLOAT indicates single

-precision. */

24 size_t outSize;

25 unsigned char *bytes = SZ_compress(SZ_FLOAT , data , &outSize , r5, r4 , r3 , r2 ,

r1);

26

27 //write the compression bytes to ’outputFilePath ’

28 writeByteData(bytes , outSize , outputFilePath , &status);

29 if(status != SZ_SCES)

30 {

31 printf("Error: data file %s cannot be written !\n", outputFilePath);

32 exit (0);

33 }

34

35 /*Do not forget to free the memory of compressed data if they are not useful

any more.*/

36 free(bytes);

37 free(data);

38 SZ_Finalize ();

39 return 0;

40 }

4

We present an example to illustrate decompression in the C code, and it can be found in test-
float decompress.c. Note that the decompression does not need SZ Init(configFile).

1 int main(int argc , char * argv [])

2 {

3 size_t r5=0,r4=0,r3=0,r2=0,r1=0;

4 size_t byteLength;

5

6

7 /*read compressed data file*/

8 int status;

9 unsigned char *bytes = readByteData(zipFilePath , &byteLength , &status);

10 if(status != SZ_SCES)

11 {

12 printf("Error: %s cannot be read!\n", zipFilePath);

13 exit (0);

14 }

15

16 /* Perform decompression */

17 float *data = SZ_decompress(SZ_FLOAT , bytes , byteLength , r5 , r4 , r3 , r2 , r1);

18 free(bytes); /*free the memory of compressed data*/

19

20 /*write decompressed data in bytes */

21 writeFloatData_inBytes(data , nbEle , outputFilePath , &status);

22 if(status != SZ_SCES)

23 {

24 printf("Error: %s cannot be written !\n", outputFilePath);

25 exit (0);

26 }

27

28 free(data);/*free memory for decompressed data*/

29 return 0;

30 }

5 Optimization of Compression Quality

In this section, we introduce how to optimize the compression quality based on specific user de-
mand, by adjusting different parameter settings in the configuration file sz.config. The involved
setting includes four parameters, quantization intervals, max quant intervals, szMode, and gzip-
Mode.

• quantization intervals: it has two options (a positive integer number or 0). If it is set to a
positive number such as 65536, the compression will adopt such a specific number of bins
in the linear-scaling quantization step of the compression. If it is set to 0, SZ will optimize the
the number of quantization bins based on max quant intervals. In general, we recommend
to set quantization intervals to 0.

• max quant intervals: This parameter is valid only when quantization intervals = 0. In this
case, SZ will estimate the best-fit number of quantization bins based on the maximum num-
ber of bins (specified by max quant intervals), such that 99% of data points are predictable
during the compression.

• szMode: SZ BEST SPEED (without Gzip) or SZ BEST COMPRSSION (with Gzip)

• gzipMode: Gzip BEST SPEED, Gzip DEFAULT COMPRSSION or Gzip BEST COMPRSSION

5

Based on our experience, we recommend the following settings based on your demand.

• BEST CMPR hard sett: If you want to get the best compression ratio, while the data set
is very large in size (such as 5GB+) and very hard to compress or the error bound is set to
pretty small (such as 1E-8), the recommended setting is as follows. Note that we recommend
using szMode = SZ BEST SPEED, because for hard-to-compress cases, we observe that
SZ BEST SPEED and SZ BEST COMPRESSION lead to very similar compression ratio in
general.

quantization_intervals = 0

max_quant_intervals = 4194304

szMode = SZ_BEST_SPEED

gzipMode = Gzip_BEST_SPEED

• BEST CMPR easy sett: If you want to get the best compression ratio, and the data set is
easy to compress or the error bound is relatively high, the recommended setting is as follows.
Note that we recommend setting szMode to SZ BEST COMPRESSION because based on
our experience, SZ BEST COMPRESSION is important for easy-to-compress cases.

quantization_intervals = 0

max_quant_intervals = 65536

szMode = SZ_BEST_COMPRESSION

gzipMode = Gzip_BEST_SPEED

• GOOD RATE general sett: If you want to have a fast compression rate with a good com-
pression ratio, the recommended setting is as follows.

quantization_intervals = 0

max_quant_intervals = 65536

szMode = SZ_BEST_SPEED

gzipMode = Gzip_BEST_SPEED

• BEST RATE general sett: If you want to have the fastest compression rate, the recom-
mended setting is as follows.

quantization_intervals = 65536

max_quant_intervals = 65536 #to be ignored since quantization_intervals > 0

szMode = SZ_BEST_SPEED

gzipMode = Gzip_BEST_SPEED

The following table presents the compression ratios and compression rate, using different set-
tings. Based on the table, we can see that BEST RATE general sett always leads to the best
compression speed (i.e., highest compression rate). BEST CMPR easy sett leads to the best
compression ratio in this case. Note that this data set is very small in size (it is only 100MB),
so BEST CMPR hard sett’s compression ratio is not as high as that of BEST CMPR easy sett,
because of overhead of Huffman tree. If the data size is very large and the error bound is set very
small, BEST CMPR easy sett is the recommended setting.

6

Table 1: Evaluation using different settings (Hurricane dataset: Uf01.dat (100x500x500,single-precision)

abs err=1E-8 abs err=1E-4
compression ratio compression time compression ratio compression time

BEST CMPR hard sett 1.52 2.503 sec 5.96 1.236 sec
BEST CMPR easy sett 1.792 3.08 sec 6.05 1.689 sec
GOOD RATE general sett 1.70 1.519 sec 5.96 1.194 sec
BEST RATE general sett 1.704 1.346 sec 6 0.953 sec

6 Exercises

1. Compress CLDLOW.dat in CESM-ATM-Tylor, with value range based relative error bound =
0.0001, targeting the best compression ratio.

2. Compress xx.dat in HACC, using value range based relative error bound = 0.001, targeting
the best compression ratio.

3. Compress vx.dat in HACC, using point-wise relative error bound = 0.001, targeting the best
compression ratio.

7

References

[1] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy compression for scien-
tific data sets based on multidimensional prediction and error-controlled quantization,” in 2017
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 1129–1139,
May 2017.

[2] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression with SZ,” in IPDPS
2016, pp. 730–739, 2016.

[3] S. Di, D. Tao, and F. Cappello. SZ (github website): http://github.com/disheng222/SZ. Online.

[4] S. Di, D. Tao, and F. Cappello. SZ (Argonne website):
https://collab.cels.anl.gov/display/ESR/SZ. Online.

8

	Introduction
	Download and Installation
	Quick Start
	Quick test of installation
	Executable command: sz

	API
	Optimization of Compression Quality
	Exercises

