Perl Wrappers for HDF5 APIs
Reference Manual
The HDF Group

February, 2008

2Introduction

3H5D: Datasets Interface

9H5F: File Interface

12H5P: Property List Interface

15H5S: Dataspace Interface

19H5T: Datatype Interface

Introduction

HDF5 is a widely used portable file format and library for storing, retrieving, analyzing, visualizing and converting data. HDF5 stores multidimensional arrays along with metadata in a portable file format. It supports hierarchical and other organizing structures, providing users with a high degree of flexibility for organizing and managing data.
The HDF5 library provides several interfaces, each of which supplies the tools required to meet specific aspects of the HDF5 data-handling requirements.

In this document, we describe Perl wrappers for subsets of HDF5 APIs of the following interfaces:

	Dataset Interface
	The H5D API for manipulating scientific datasets.

	File Interface
	The H5F API for accessing HDF files.

	Property List Interface
	The H5P API for manipulating object property lists.

	Dataspace Interface
	The H5S API for defining dataset dataspace.

	Datatype Interface
	The H5T API for defining dataset element information.

H5D: Datasets Interface

These functions create and manipulate dataset objects, and set and retrieve their constant or persistent properties.
Name: HDFPerl::h5dcreate_p
Signature:

int HDFPerl::h5dcreate_p(int loc_id, char string name, int type_id,
int space_id, int create_plist_id)

Purpose:

Creates a dataset at the specified location.

Description:

HDFPerl::h5dcreate_p creates a dataset with a name, name, in the file or in the group specified by the identifier loc_id. The dataset has the datatype and dataspace identified by type_id and space_id, respectively. The specified datatype and dataspace are the datatype and dataspace of the dataset as it will exist in the file, which may be different than in application memory. Dataset creation properties are specified by the argument create_plist_id.

Dataset names within a group are unique: HDFPerl::h5dcreate_p will return an error if a dataset with the name specified in name already exists at the location specified in loc_id.

As is the case for any object in a group, the length of a dataset name is not limited.

create_plist_id is a $Init::H5P_DATASET_CREATE property list created with HDFPerl::h5pcreate_p and initialized with functions of the Property List Interface (H5P).
HDFPerl::h5dcreate_p returns an error if the dataset's datatype includes a variable-length (VL) datatype and the fill value is undefined, i.e., set to NULL in the dataset creation property list. Such a VL datatype may be directly included, indirectly included as part of a compound or array datatype, or indirectly included as part of a nested compound or array datatype.

HDFPerl::h5dcreate_p returns a dataset identifier for success or a negative value for failure. The dataset identifier should eventually be closed by calling HDFPerl::h5dclose_p to release the resources it uses.

Parameters:

	int loc_id
	IN: Identifier of the file or group within which to create the dataset.

	char string name
	IN: The name of the dataset to create.

	int type_id
	IN: Identifier of the datatype to use when creating the dataset.

	int space_id
	IN: Identifier of the dataspace to use when creating the dataset.

	int create_plist_id
	IN: Identifier of the dataset creation property list.

Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5dopen_p

Signature:

int HDFPerl::h5dopen_p(int loc_id, char string name)

Purpose:

Opens an existing dataset.

Description:

HDFPerl::h5dopen_p opens an existing dataset for access in the file or group specified in loc_id. name is a dataset name and is used to identify the dataset in the file.

Parameters:

	int loc_id
	IN: Identifier of the file or group within which the dataset to be accessed will be found.

	const string name
	IN: The name of the dataset to access.

Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5dextend_p

Signature:

int HDFPerl::h5dextend_p(int dataset_id, array_reference size)

Purpose:

Extends a dataset.

Description:

HDFPerl::h5dextend_p verifies that the dataset is at least of size described in the array referenced by size, extending it if necessary. The dimensionality of size is the same as that of the dataspace of the dataset being changed.

This function can be applied to the following datasets:

· Any dataset with unlimited dimensions

· A dataset with fixed dimensions if the current dimension sizes are less than the maximum sizes set with maxdims.
Parameters:

	int dataset_id
	IN: Identifier of the dataset.

	array_reference size
	IN: Reference for an array containing the new magnitude of each dimension.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::h5dget_space_p

Signature:

int HDFPerl::h5dget_space_p(int dataset_id)

Purpose:

Returns an identifier for a copy of the dataspace for a dataset.

Description:

HDFPerl::h5dget_space_p returns an identifier for a copy of the dataspace for a dataset. The dataspace identifier should be released with the HDFPerl::h5sclose_p function.

Parameters:

	int dataset_id
	IN: Identifier of the dataset to query.

Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5dclose_p

Signature:

int HDFPerl::h5dclose_p(int dataset_id)

Purpose:

Closes the specified dataset.

Description:

HDFPerl::h5dclose_p ends access to a dataset specified by dataset_id and releases resources used by it. Further use of the dataset identifier is illegal in calls to the dataset API.

Parameters:

	int dataset_id
	IN: Identifier of the dataset to close access to.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::[h5dwrite_double_p | h5dwrite_float_p | h5dwrite_int_p |

h5dwrite_int8_p | h5dwrite_string_p | h5dwrite_vlstring_p]

Signature:

int HDFPerl::h5dwrite_datatype_p(int dataset_id, int mem_type_id,
int mem_space_id, int file_space_id, int xfer_plist_id,
array_reference buf)

where datatype in the name of the function should be replaced with double, float, int, int8, string, or vlstring as appropriate.

Purpose:

Writes raw data from an array buffer to a dataset.

Description:

These APIs write to a dataset, specified by its identifier dataset_id, from the application memory buffer buf into the file. Data transfer properties are defined by the argument xfer_plist_id. The memory datatype of the dataset is identified by the identifier mem_type_id. The part of the dataset to write is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. If no selection is performed on the dataspace, then the entire file dataspace, as defined by the current dimensions of the dataset, is selected by default.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace. If no selection is performed on the dataspace, then the entire memory dataspace is selected by default.

The number of elements selected in the memory dataspace must match the number of elements selected in the file dataspace.

xfer_plist_id can be the constant $Init::H5P_DEFAULT, in which case the default data transfer properties are used.

Writing to a dataset will fail if the HDF5 file was not opened with write access permissions.

Parameters:

	int dataset_id
	IN: Identifier of the dataset to write to.

	int mem_type_id
	IN: Identifier of the memory datatype.

	int mem_space_id
	IN: Identifier of the memory dataspace.

	int file_space_id
	IN: Identifier of the dataset's dataspace in the file.

	int xfer_plist_id
	IN: Identifier of a transfer property list for this I/O operation.

	array_reference buf
	IN: Reference to array with data to be written to the file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::[h5dread_double_p | h5dread_float_p | h5dread_int_p |

h5dread_int8_p | h5dread_string_p | h5dread_vlstring_p]

Signature:

array_reference HDFPerl::h5dread_datatype_p(int dataset_id,
int mem_space_id, int file_space_id, int xfer_plist_id)

where datatype in the name of the function should be replaced with double, float, int, int8, string, or vlstring as appropriate.

Purpose:

Reads raw data from a dataset into a buffer.

Description:

These APIs read a dataset, specified by its identifier dataset_id, from the file into a memory buffer. Data transfer properties are defined by the argument xfer_plist_id. The part of the dataset to read is defined by mem_space_id and file_space_id.

file_space_id is used to specify only the selection within the file dataset's dataspace. If no selection is performed on the dataspace, then the entire file dataspace, as defined by the current dimensions of the dataset, is selected by default.

mem_space_id is used to specify both the memory dataspace and the selection within that dataspace. If no selection is performed on the dataspace, then the entire memory dataspace is selected by default.

If raw data storage space has not been allocated for the dataset (as in the case of an empty dataset) and a fill value has been defined, the returned array reference points to a buffer filled with the fill value.

The number of elements selected in the memory dataspace must match the number of elements selected in the file dataspace.

xfer_plist_id can be the constant $Init::H5P_DEFAULT, in which case the default data transfer properties are used.

Writing to a dataset will fail if the HDF5 file was not opened with write access permissions.

Data is automatically converted from the file datatype and dataspace to the memory datatype and dataspace at the time of the read. See the Data Conversion section of The Data Type Interface (H5T) in the HDF5 User's Guide for a discussion of data conversion, including the range of conversions currently supported by the HDF5 libraries.

Parameters:

	int dataset_id
	IN: Identifier of the dataset read from.

	int mem_space_id
	IN: Identifier of the memory dataspace.

	int file_space_id
	IN: Identifier of the dataset's dataspace in the file.

	int xfer_plist_id
	IN: Identifier of a transfer property list for this I/O operation.

Returns:

Returns a reference to a memory array containing read data if successful; otherwise returns a negative value.

H5F: File Interface

These functions are designed to provide file-level access to HDF5 files.
Name: HDFPerl::h5fcreate_p
Signature:

int HDFPerl::h5fcreate_p(char string name, int flags, int create_id,
int access_id)

Purpose:

Creates HDF5 files.

Description:

HDFPerl::h5fcreate_p is the primary function for creating HDF5 files.
The flags parameter determines whether an existing file will be overwritten. All newly created files are opened for both reading and writing.

The more complex behaviors of file creation and access are controlled through the file-creation and file-access property lists. The value of $Init::H5P_DEFAULT for a property list value indicates that the library should use the default values for the appropriate property list.

The return value is a file identifier for the newly-created file; this file identifier should be closed by calling HDFPerl::h5fclose_p when it is no longer needed.

Applications should avoid calling HDFPerl::h5fcreate_p with an already opened file.

Parameters:

	char string name
	IN: Name of the file to access.

	int flags
	IN: File access flags. Allowable values are:

$Init::H5F_ACC_TRUNC

Truncate file, if it already exists, erasing all data previously stored in the file.

$Init::H5F_ACC_EXCL

Fail if file already exists.

	int create_id
	IN: File creation property list identifier, used when modifying default file meta-data. Use $Init::H5P_DEFAULT for default file creation properties.

	int access_id
	IN: File access property list identifier. Use $Init::H5P_DEFAULT for default file access properties.

Returns:

Returns a file identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5fopen_p

Signature:

int HDFPerl::h5fopen_p(char string name, int flags, int access_id)

Purpose:

Opens an existing file.

Description:

HDFPerl::h5fopen_p opens an existing file and is the primary function for accessing existing HDF5 files.

Note that HDFPerl::h5fopen_p does not create a file if it does not already exist. See HDFPerl::h5fcreate_p
The parameter access_id is a file access property list identifier or $Init::H5P_DEFAULT if the default I/O access parameters are to be used

The flags argument determines whether writing to an existing file will be allowed. The file is opened with read and write permission if flags is set to $Init::H5F_ACC_RDWR. All flags may be combined with the bit-wise OR operator (`|') to change the behavior of the file open call. More complex behaviors of file access are controlled through the file-access property list.

The return value is a file identifier for the open file; this file identifier should be closed by calling HDFPerl::h5fclose_p when it is no longer needed.

It is generally recommended that applications avoid multiple opens of the same file.

Parameters:

	char string name
	IN: Name of the file to access.

	int flags
	IN: File access flags. Allowable values are:

$Init::H5F_ACC_RDWR

Allow read and write access to file.

$Init::H5F_ACC_RDONLY

Allow read-only access to file.

	int access_id
	IN: Identifier for the file access properties list. Use $Init::H5P_DEFAULT for default file access properties.

Returns:

Returns a file identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5fclose_p
Signature:

int HDFPerl::h5fclose_p(int file_id)

Purpose:

Terminates access to an HDF5 file.

Description:

HDFPerl::h5fclose_p terminates access to an HDF5 file by flushing all data to storage and terminating access to the file through file_id.

If this is the last file identifier open for the file and no other access identifier is open (e.g., a dataset identifier, group identifier, or shared datatype identifier), the file will be fully closed and access will end.

Parameters:

	int file_id
	IN: Identifier of a file to terminate access to.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5P: Property List Interface
These functions manipulate property list objects to allow objects which require many different parameters to be easily manipulated.

Name: HDFPerl::h5pcreate_p

Signature:

int HDFPerl:h5pcreate_p(int cls_id)

Purpose:

Creates a new property list as an instance of a property list class.

Description:

HDFPerl::h5pcreate_p creates a new property list as an instance of some property list class. The new property list is initialized with default values for the specified class. The classes are:

$Init::H5P_FILE_CREATE
Properties for file creation. See Files in the HDF User's Guide for details about the file creation properties.
$Init::H5P_FILE_ACCESS
Properties for file access. See Files in the HDF User's Guide for details about the file access properties.
$Init::H5P_DATASET_CREATE
Properties for dataset creation. See Datasets in the HDF User's Guide for details about dataset creation properties.
$Init::H5P_DATASET_XFER
Properties for raw data transfer. See Datasets in the HDF User's Guide for details about raw data transfer properties.
$Init::H5P_MOUNT
Properties for file mounting. With this parameter, HDFPerl::h5pcreate_p creates and returns a new mount property list initialized with default values.

This property list must eventually be closed with HDFPerl::h5pclose_p; otherwise, errors are likely to occur.

Parameters:

	int cls_id
	IN: The class of the property list to create.

Returns:

Returns a property list identifier if successful; otherwise Fail (-1).

Name: HDFPerl::h5pset_chunk_p

Signature:

int HDFPerl::h5pset_chunk_p(int plist, int ndims, array_reference dim)

Purpose:

Sets the size of the chunks used to store a chunked layout dataset.

Description:

HDFPerl::h5pset_chunk_p sets the size of the chunks used to store a chunked layout dataset. This function is only valid for dataset creation property lists.

The ndims parameter currently must be the same size as the rank of the dataset.

The values of the array referenced by dim define the size of the chunks on each dimension to store the dataset's raw data. The unit of measure is dataset elements.

As a side-effect of this function, the layout of the dataset is changed to $Init::H5D_CHUNKED, if it is not already so set.

Note regarding fixed-size datasets:
Chunk size cannot exceed the size of a fixed-size dataset. For example, a dataset consisting of a 5×4 fixed-size array cannot be defined with 10×10 chunks.
Parameters:

	int plist
	IN: Dataset creation property list identifier.

	int ndims
	IN: The number of dimensions of each chunk.

	array_reference dim
	IN: A reference for an array defining the size, in dataset elements, of each chunk.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::h5pset_deflate_p

Signature:

int HDFPerl::h5pset_deflate_p(int plist, int level)

Purpose:

Sets compression method and compression level.

Description:

HDFPerl::h5pset_deflate_p sets the compression method for a dataset creation property list to $Init::H5D_COMPRESS_DEFLATE and the compression level to level, which should be a value from zero to nine, inclusive.

Lower compression levels are faster but result in less compression.

This is the same algorithm as used by the GNU gzip program.

Parameters:

	int plist
	IN: Identifier for the dataset creation property list.

	int level
	IN: Compression level.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::h5pclose_p

Signature:

int HDFPerl::h5pclose_p(int plist)

Purpose:

Terminates access to a property list.

Description:

HDFPerl::h5pclose_p terminates access to a property list. All property lists should be closed when the application is finished accessing them. This frees resources used by the property list.

Parameters:

	int plist
	IN: Identifier of the property list to terminate access to.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5S: Dataspace Interface

These functions create and manipulate the dataspace in which to store the elements of a dataset.
Name: HDFPerl::h5screate_p

Signature:

int HDFPerl::h5screate_p(int rank, array_reference dims)

Purpose:

Creates a new simple dataspace with fixed dimensions and opens it for access.

Description:

HDFPerl::h5screate_simple_p creates a new simple dataspace with fixed dimensions and opens it for access.

rank is the number of dimensions used in the dataspace.

dims is a reference for an array specifying the size of each dimension of the dataset.
The dataspace identifier returned from this function must be released with HDFPerl::h5sclose_p or resource leaks will occur.

Parameters:

	int rank
	Number of dimensions of dataspace.

	array_reference dims
	A reference for an array that specifies the size of each dimension.

Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5screate_simple_p

Signature:

int HDFPerl::h5screate_simple_p(int rank, array_reference dims,
array_reference maxdims)

Purpose:

Creates a new simple dataspace and opens it for access. Unlike HDFPerl::h5screate_p, it can be used to define datasets with extendible dimensions.
Description:

HDFPerl::h5screate_simple_p creates a new simple dataspace and opens it for access.

rank is the number of dimensions used in the dataspace.

dims is a reference for an array specifying the size of each dimension of the dataset while maxdims is a reference for an array specifying the upper limit on the size of each dimension.

If an element of the array referenced by maxdims is $Init::H5S_UNLIMITED, (-1), the maximum size of the corresponding dimension is unlimited. Otherwise, no array element of maxdims should be smaller than the corresponding array element of dims.

The dataspace identifier returned from this function must be released with HDFPerl::h5sclose_p or resource leaks will occur.

Parameters:

	int rank
	Number of dimensions of dataspace.

	array_reference dims
	A reference for an array that specifies the size of each dimension.

	array_reference maxdims
	A reference for an array that specifies the maximum size of each dimension.

Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5sclose_p

Signature:

int HDFPerl::h5sclose_p(int space_id)

Purpose:

Releases and terminates access to a dataspace.

Description:

HDFPerl::h5sclose_p releases a dataspace. Further access through the dataspace identifier is illegal. Failure to release a dataspace with this call will result in resource leaks.

Parameters:

	int space_id
	Identifier of dataspace to release.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::h5sselect_hyperslab_p
Signature:

int HDFPerl::h5sselect_hyperslab_p(int space_id, int op,
array_reference start, array_reference stride, array_reference count, array_reference block)

Purpose:

Selects a hyperslab region to add to the current selected region.

Description:

HDFPerl::h5sselect_hyperslab_p selects a hyperslab region to add to the current selected region for the dataspace specified by space_id.

Arrays referenced by start, stride, count, and block must be the same size as the rank of the dataspace.

The selection operator op determines how the new selection is to be combined with the already existing selection for the dataspace. The following operators are supported:

	$Init::H5S_SELECT_SET
	Replaces the existing selection with the parameters from this call. Overlapping blocks are not supported with this operator.

	$Init::H5S_SELECT_OR
	Adds the new selection to the existing selection. (Binary OR)

	$Init::H5S_SELECT_AND
	Retains only the overlapping portions of the new selection and the existing selection. (Binary AND)

	$Init::H5S_SELECT_XOR
	Retains only the elements that are members of the new selection or the existing selection, excluding elements that are members of both selections. (Binary exclusive-OR, XOR)

	$Init::H5S_SELECT_NOTB
	Retains only elements of the existing selection that are not in the new selection.

	$Init::H5S_SELECT_NOTA
	Retains only elements of the new selection that are not in the existing selection.

The array referenced by start determines the starting coordinates of the hyperslab to select.

The array referenced by stride chooses array locations from the dataspace with each value in the stride array determining how many elements to move in each dimension. Setting a value in the stride array to 1 moves to each element in that dimension of the dataspace; setting a value of 2 in alocation in the stride array moves to every other element in that dimension of the dataspace. In other words, the stride determines the number of elements to move from the start location in each dimension. Stride values of 0 are not allowed.

The array referenced by count determines how many blocks to select from the dataspace, in each dimension.

The array referenced by block determines the size of the element block used in the selection. This parameter is used in conjunction with the count parameter.
For example, in a 2-dimensional dataspace, setting start to [1,1], stride to [4,4], count to [3,7], and block to [2,2] selects 21 2×2 blocks of array elements starting with location (1,1) and selecting blocks at locations (1,1), (5,1), (9,1), (1,5), (5,5), etc.

Regions selected with this function call default to C order iteration when I/O is performed.

Parameters:

	int space_id
	IN: Identifier of dataspace to perform selection on

	int op
	IN: Operation to perform on current selection.

	array_reference start
	IN: Offset of start of hyperslab

	array_reference count
	IN: Number of blocks included in hyperslab.

	array_reference stride
	IN: Hyperslab stride.

	array_reference block
	IN: Size of block in hyperslab.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

H5T: Datatype Interface
These functions create and manipulate the datatype which describes elements of a dataset.

Name: HDFPerl::h5tget_size_p

Signature:

int HDFPerl::h5tget_size_p(int type_id)

Purpose:

Returns the size of a datatype.

Description:

HDFPerl::h5tget_size_p returns the size of a datatype in bytes.

Parameters:

	int type_id
	Identifier of datatype to query.

Returns:

Returns the size of the datatype in bytes if successful; otherwise 0.

Name: HDFPerl::h5tcreate_compound_p

Signature:

int HDFPerl::h5tcreate_compound_p(int size)

Purpose:

Creates a new compound datatype.

Description:

HDFPerl::h5tcreate_compound_p creates a new compound datatype with the specified number of bytes.

The datatype identifier returned from this function should be released with HDFPerl::h5tclose_p or resource leaks will result.

Parameters:

	int size
	The number of bytes in the datatype to create.

Returns:

Returns datatype identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5tinsert_p
Signature:

int HDFPerl::h5tinsert_p(int type_id, char string name, int offset, int field_id)

Purpose:

Adds a new member to a compound datatype.

Description:

HDFPerl::h5tinsert_p adds another member to the compound datatype type_id. The new member has a name which must be unique within the compound datatype. The offset argument defines the start of the member in an instance of the compound datatype, and field_id is the datatype identifier of the new member.

Note: Members of a compound datatype do not have to be atomic datatypes; a compound datatype can have a member which is a compound datatype.

Parameters:

	int type_id
	Identifier of compound datatype to modify.

	char string name
	Name of the field to insert.

	int offset
	Offset in memory structure where to insert the field.

	int field_id
	Datatype identifier of the field to insert.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HDFPerl::h5tcreate_string_p

Signature:

int HDFPerl::h5tcreate_string_p(int size)

Purpose:

Creates a new char string datatype.

Description:

HDFPerl::h5tcreate_string_p creates a new char string datatype with the specified number of bytes.

The datatype identifier returned from this function should be released with HDFPerl::h5tclose_p or resource leaks will result.

Parameters:

	int size
	The number of bytes in the datatype to create.

Returns:

Returns datatype identifier if successful; otherwise returns a negative value.

Name: HDFPerl::h5tclose_p

Signature:

int HDFPerl::h5tclose_p(int type_id)

Purpose:

Releases a datatype.

Description:

HDFPerl::h5tclose_p releases a datatype. Further access through the datatype identifier is illegal. Failure to release a datatype with this call will result in resource leaks.

Parameters:

	int type_id
	Identifier of datatype to release.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

PAGE
17

