
BioHDF_Perl, a High Level Perl Package for
Bioinformatics

User’s Guide

The HDF Group
February, 2008

Summary. An explosion in the generation of sequence data has led to a search for new
ways to handle that data. The HDF5 format, designed for managing scientific and
engineering data, offers one component of a solution. Because the Perl programming
language is heavily used in sequencing applications, a prototype Perl API called
BioHDF_Perl has been developed to demonstrate how HDF5 could be made readily
accessible to these applications.

This User’s Guide briefly describes HDF5 and BioHDF_Perl, and how it can be used for
storing DNA sequence data. It also describes how to install BioHDF_Perl, and gives an
example of its use with FASTA sequence and quality data.

A companion BioHDF_Perl Reference Manual is available with details about the API
reported here. For detailed information about HDF5 itself, see http://hdfgroup.org.

Introduction...2
Installation ..2
HDF5 Files and Datasets ...3
Storage of Genomic Sequence Data...4
Programming Example..6
Remarks .. 10

 2

Introduction

The large amount of data present in biological systems and the need for its efficient
processing and analysis have led to data intensive computing in the field of
bioinformatics. Among the several applications to which this applies, DNA sequencing is
of particular relevance.

For example, nucleic acid or peptide sequence data are currently typically stored and
managed in text files using the FASTA format. Although this allows for convenient
processing using scripting languages like Perl, as the number of sequences in a file
increases, tasks like searching for a particular sequence can have large latencies. Also, the
organization of complex data and metadata can be cumbersome when it must be stored
and accessed strictly sequentially within a text file. Advanced file formats such as HDF5
can resolve these issues and provide for more efficient data management.

HDF5 is a widely used portable file format and library for storing, retrieving, analyzing,
visualizing and exchanging data. HDF5 stores multidimensional arrays along with
metadata in a portable file format. It supports hierarchical and other organizing structures,
providing users with a high degree of flexibility for organizing and managing data. A
high level API Perl package, BioHDF_Perl, has been developed specifically to facilitate
the storage and management of genomic sequence data in HDF5 format.

BioHDF_Perl is a prototype designed to demonstrate and test the use of HDF5 for
sequence data. Users of BioHDF_Perl are encouraged to comment on the usefulness of
this prototype, as well as to suggest improvements and extensions.

This document describes the installation of BioHDF Perl, the structures generated in the
HDF5 file, and the storage and retrieval operations. A sample script is used to illustrate
the migration of sequence data from FASTA format into HDF5 files.

Installation

A prerequisite for installing BioHDF_Perl is the availability of binaries for the HDF5
1.6.5 library.

The Perl package can be installed using the following steps:

1. Modify Makefile.PL so that it points to the location of the HDF5 library.
2. perl Makefile.PL LIB=/install_path
3. make
4. make install

 3

To use the Perl package, each script should contain the following lines at the beginning:

#!/usr/bin/perl

load appropriate modules
use lib "/install_path";
use strict;
use Init;
use BioHDF_Perl;

initialize HDF5 constants
Init::initialize();

These lines load the appropriate modules and initialize HDF5 constants necessary to
create and access HDF5 files and datasets.

HDF5 Files and Datasets

The following is a brief introduction to HDF5. For more details, see the HDF5
documentation at http://www.hdfgroup.org/HDF5/doc/.

As suggested by the name Hierarchical Data Format, an HDF5 file can be hierarchically
structured. The HDF5 groups and datasets implement this hierarchy.

In the simple and most common case, the file structure is a tree structure as shown in
Figure 1; in the general case, the file structure may be a directed graph with a designated
entry point. The tree structure is very similar to the file system structures employed on
UNIX systems, directories and files, and on Apple Macintosh and Microsoft Windows
systems, folders and files. HDF5 groups are analogous to the directories and folders;
HDF5 datasets are analogous to the files. Thus, groups provide a way to organize objects
within an HDF5 file, while datasets contain the application data.

FileA.h5

Dataset1

/

GroupA

GroupB

Dataset2
Dataset3

root group

FileA.h5

Dataset1

/

GroupA

GroupB

Dataset2
Dataset3

root group

Figure 1 An HDF5 file with a strictly hierarchical group structure

 4

An HDF5 dataset is an object composed of a collection of data elements, or raw data, and
metadata that stores a description of the data elements, data layout, and all other
information necessary to write, read, and interpret the stored data. From the viewpoint of
the application the raw data is stored as a one-dimensional or multi-dimensional array of
elements (the raw data), those elements can be of any of several numerical or character
types, small arrays, or even compound types similar to database records.

A dataset may also include attributes, which are small metadata objects defined by
applications to describe the nature and/or intended use of the dataset.

Storage of Genomic Sequence Data

One of the most utilized file formats in bioinformatics is the FASTA format. FASTA is a
text-based file format used to describe nucleic acid or peptide sequences. A FASTA
sequence record from the National Center for Biotechnology Information (NCBI) has the
following form:

>gi|id1|gb|id2|id3 Comment about sequence
GATAATGGTA

A sequence record starts with a “>” followed by one or more identifiers for the particular
sequence. After the first blank space, the rest of the line is considered to be a comment or
description about the sequence. Actual sequence data starts in the next line and continues
for as many lines as necessary. A companion “quality values” file is very similar but
instead of bases, it contains quality values corresponding to the bases in the original file.
In general, a FASTA file contains numerous sequence records.

BioHDF_Perl organizes sequence record data in an HDF5 file using a sequence
collection structure, which consists of a group and four datasets: ids, comments,
sequences, and quals as shown in Figure 2. Several sequence collections can be created in
the same file.

Figure 2 HDF5 structure for an sequence collection

file.h5

ids sequences comments

quals

/

collection

 5

The sequences and quals datasets are arrays that store the sequence bases and quality
values, respectively. The ids and comments datasets are arrays of compound datatypes,
which resemble database tables with the following description:

Dataset Field Description
id identifier for a particular sequence ids
index location of the sequence information

in the comments dataset
comment description about the sequence
offset location of the sequence data in the

sequences and quals datasets

comments

length length of sequence data

The following FASTA records corresponding to a sample genomic sequence would be
stored in an HDF5 file as shown in Figure 3.

>gi|id1|gb|id2|id3 Comment about sequence
GATAA

>gi|id1|gb|id2|id3 Comment about sequence
15 17 19 19 16

IDS DATASET

COMMENTS DATASET

SEQUENCES DATASET QUALS DATASET

Figure 3 Sequence record data in HDF5 file

array
index id index

… … …
… id1 i
… id2 i
… id3 i

array
index comment offset length

… … … …
i Comment about sequence j 5
… … … …

array
index

data
element

… …
j G
j+1 A
j+2 T
j+3 A
j+4 A
… …

array
index

data
element

… …
j 15
j+1 17
j+2 19
j+3 19
j+4 16
… …

 6

The following steps are required to create an HDF5 file, a sequence collection, and to
perform access to it:

File creation
Specify the file name.
Create the file.

Collection creation
Obtain the file identifier where the collection is to be
created.
Specify the collection name and description.
Create the collection.

Adding a sequence record into the collection
Obtain the set of handles for the collection objects.
Specify the sequence identifiers.
Specify the sequence comment.
Specify the sequence of bases.
Specify the sequence of quality values.
Perform the desired operation on the collection.

Getting a sequence record from the collection
Obtain the set of handles for the collection objects.
Specify a sequence identifier.
Perform the desired operation on the collection.

Close the collection objects.

Close the file.

Programming Example

We will show the use of BioHDF_Perl APIs by means of a programming example. The
following Perl script reads two FASTA files (downloaded from iFinch) containing
sequence bases and quality values, respectively. An HDF5 file and a sequence collection
are created using BioHDF_Perl APIs. Data from the FASTA records is parsed and stored
in the HDF5 sequence collection. Sequence identifiers are sorted and a search is
performed for a particular sequence.

#!/usr/bin/perl

use lib "/install_path";
use HDFPerl;
use strict;
use BioHDF_Perl;
use Init;

initialize HDF5 environment
Init::initialize();

input and output files
my $seq_filename = "FACTORVIII_01.fsa";
my $qual_filename = "FACTORVIII_01.qual";
my $hdf_filename = "FACTORVIII_01.h5";

 7

working vars
my $i=0;
my $ref;
my @header=();
my @ids=();
my @pre_ids=();

create a new HDF File.
my $fid = BioHDF_Perl::create_sequence_file($hdf_filename);

create sequence collection
my $collection = BioHDF_Perl::create_sequence_collection($fid,

"collection1", "sequences from iFinch");

open FASTA files
open(QUAL, "< $qual_filename");
my $line_qual = <QUAL>;

open(SEQ, "< $seq_filename");
my $line_seq = <SEQ>;

chomp $line_qual;
chomp $line_seq;

iterate over every FASTA record
while ($line_qual){

 # sequence IDs is extracted from each sequence header line
 @header=split(/ /, $line_qual);
 @pre_ids=split(/>/, $header[0]);
 @ids=($pre_ids[1]);

 # rest of string is stored in $comments. We extract the comment
 # from the quality file because it is consistent with HDF5
 my $comment=join(' ',@header[1 .. $#header]);

 # working vars for iteration on each line of the current record
 # in both FASTA files (sequences and qualities)
 my $j=0;
 my @seq=();
 my @qual=();
 $qual[$j] = <QUAL>;
 $seq[$j] = <SEQ>;
 chomp $qual[$j];
 chomp $seq[$j];

 # iterate over every line of current FASTA record
 while (($qual[$j] !~ /^>/) && ($qual[$j])){
 $j++;
 $qual[$j] = <QUAL>;
 $seq[$j] = <SEQ>;
 chomp $qual[$j];
 chomp $seq[$j];
 }

 # quality data is arranged as an array of numbers

 8

 my $quality = join(' ',@qual[0 .. $#qual-1]);
 my @post_quality = split(/ /, $quality);

 # sequence data is arranged as an array of bases. Arrays containing
 # base and quality values must have the same length.
 my $sequence = join('',@seq[0 .. $#seq-1]);

 my @post_sequence = ("");
 if (length($sequence) != 0) {
 @post_sequence = split(//, $sequence);
 }

 # add sequence into the collection
 BioHDF_Perl::add_sequence($collection, \@ids, $comment,

\@post_sequence, \@post_quality);

 # settings for next iteration
 $i++;
 $line_qual=$qual[$#qual];
}
print "RECORDS READ\n$i\n\n";

sort the sequence prior searching
BioHDF_Perl::sort_sequence_collection($collection);

set ID of sequence to be found
my $key="FACTORVIII_01F_02.ab1";

search sequence in the collection
my $ref = BioHDF_Perl::get_sequence($collection, $key);
print "ID\n$key\n\n";

check whether sequence was found
if ($ref >= 0) {
 # dereference array
 my @seq=@{$ref};
 print "COMMENT\n$seq[0]\n\n";
 print "SEQUENCE\n@{$seq[1]}\n\n";
 print "QUALITIES\n@{$seq[2]}\n\n";
} else {
 print "$key not found \n\n";
}

display collection description
my $description = BioHDF_Perl::get_collection_description($collection);
print "COLLECTION DESCRIPTION\n$description\n";

close sequence collection and file
BioHDF_Perl::close_sequence_collection($collection);
BioHDF_Perl::close_sequence_file($fid);

List 1 Sample script showing basic HDF5 operations

The script starts with a few standard initial lines that set the environment, load the
appropriate modules, initialize HDF5 constants, and define file names and working

 9

variables. Then, the sequence file is created using the function
BioHDF_Perl::create_sequence_file. This function specifies a filename and returns a
file handle.
A sequence collection is created using the function
BioHDF_Perl::create_sequence_collection. This function specifies a file handle, a
collection name, and a description. It returns a reference for an array of handles for the
dataset objects in the collection. Although it is possible to use a particular handle in the
returned array, it is not necessary because the high level APIs use the reference for the
entire array as an argument.

A while loop iterates over each sequence record in the FASTA file set. Data like
identifiers and comments is parsed and stored in arrays and variables, respectively. A
nested while loop goes over the lines corresponding to bases and quality values, which
are placed into arrays of characters and integers.

Although the comments for the same genomic sequence are usually identical in a FASTA
file set, there are cases in which they are not. One example is when the base sequence is
empty but the quality sequence contains one value. The sequence length may be
described in the comment in the FASTA files causing them to be different from each
other. Since BioHDF_Perl makes sure that the arrays containing base and quality values
have the same length, the script performs the following:

• When a base sequence is empty, the respective array contains one element, the
null character, to match the length of the array containing the quality values.

• The sequence comment from the FASTA file containing the quality values is
selected in this case because it is consistent with how data is stored in HDF5

Each sequence record is added to the collection using the function
BioHDF_Perl::add_sequence. This function specifies a reference to the array of handles
of the collection, a reference to the array containing sequence identifiers, a comment, and
references to the arrays containing sequence bases and quality values.

Once the FASTA sequence records have been migrated into the HDF5 sequence
collection, we can perform some management and retrieval operations. Before searching
for a particular sequence in the collection using an identifier, it is recommended to sort
the collection using the function BioHDF_Perl::sort_sequence_collection. If the
number of records in the collection is very large, sorting the collection can improve the
access performance significantly.

A particular record in the HDF5 collection can be accessed using the function
BioHDF_Perl::get_sequence. This function specifies a reference to the array of handles
of the collection, and the identifier of the desired sequence. If the sequence is found, it
returns a reference to an array containing three elements: the sequence comment, a
reference to an array of bases, and a reference to an array of quality values. Otherwise, it
returns a negative value.

 10

Finally, the HDF5 sequence collection and file are closed using the functions
BioHDF_Perl::close_sequence_collection and
BioHDF_Perl::close_sequence_file, respectively.

Remarks

• BioHDF_Perl::create_sequence_file creates an HDF5 file and returns the file
identifier.

file_id HDFPerl::create_sequence_file(name)

o The name parameter specifies the name of the file to be created.
o This function returns the file identifier if successful, and a negative value

otherwise.

• When a file is no longer accessed by a program,
BioHDF_Perl::close_sequence_file must be called to release the resources
used by the file. This call is mandatory.

status BioHDF_Perl::close_sequence_file(file_id)

• The root group is automatically created when a file is created. Every file has a

root group and the path name of the root group is always /.

• BioHDF_Perl::create_sequence_collection creates the hierarchy shown in
Figure 2, consisting of a group and four datasets in order to store a collection of
sequences. It returns a reference to an array of handles for the objects in the
hierarchy.

collection_ref

BioHDF_Perl::create_sequence_collection(file_id,
name, description)

o The file_id parameter specifies the file where the collection is to be

created.
o The name parameter specifies the name of the collection.
o The description parameter specifies a description for the collection.
o This function returns a reference to an array of handles for the objects in

the collection if successful, and a negative value otherwise.

• When a collection is no longer accessed by a program,
BioHDF_Perl::close_sequence_collection must be called to release the
resources used by the collection. This call is mandatory.

status

BioHDF_Perl::close_sequence_collection(collection_ref)

 11

• BioHDF_Perl::get_collection_description finds the description for a
particular collection.

description BioHDF_Perl::get_collection_description(

collection_ref)

o The collection parameter is a reference to an array of handles for the
collection.

o The function returns the description for the collection if successful, and a
negative value otherwise.

• BioHDF_Perl::add_sequence writes a sequence record into a collection.

status BioHDF_Perl::add_sequence(collection_ref, ids,

comment,
bases, quals)

o The collection_ref parameter is a reference to an array of handles for the

objects in the collection.
o The ids parameter is a reference to an array containing one or more

identifiers for the sequence.
o The comment parameter specifies the description for the sequence.
o The bases parameter is a reference to an array containing the sequence

bases.
o The quals parameter is a reference to an array containing the sequence

quality values.
o The function returns a positive value if successful, and a negative value

otherwise.

• BioHDF_Perl::sort_sequence_collection sorts the identifiers of the
sequences in the collection.

status

BioHDF_Perl::sort_sequence_collection(collection_ref)

o The collection_ref parameter is a reference to an array of handles for the
objects in the collection.

o The function returns a positive value if successful, and a negative value
otherwise.

• BioHDF_Perl::get_sequence writes a sequence record into a collection.

sequence_ref BioHDF_Perl::get_sequence(collection_ref, id)

o The collection_ref parameter is a reference to an array of handles for the

objects in the collection.
o The id parameter is the identifier for the desired sequence.

 12

o If a sequence is found in the collection that corresponds to the given
identifier, the function returns a reference to an array containing the
following three elements:

 The sequence comment.
 A reference to an array containing the bases.
 A reference to an array containing the quality values.

o Otherwise, it returns a negative value.

