June 11, 2015 RFC THG 2015-04-29.v3

RFC: New Datatypes

Jerome Soumagne
Quincey Koziol / Elena Pourmal

The C99 standard introduced support for boolean and complex types. Boolean and complex
types are also supported in C++, Fortran, Java, Python. This RFC describes how support for these
types can be added within the HDF5 library.

1 Introduction

The HDF5 library defines already datatypes for all common types, i.e., char, short, int, long, etc,
as well as their specific encoded variation, for instance all standard types, as well as little/big
endian encoding, etc. However, new datatypes were requested by HDF5 users (ESDIS, LLNL, etc)
who work with scientific applications to support both boolean and complex types. Boolean types
should be seen as a distinct conceptual type, not as another integer type. An important aspect of
having a boolean datatype, despite the convenient mapping that it can provide between C/C++
codes that use boolean concepts, is to no longer require the use of integers for storing boolean data
and therefore reduce storage needs. Regarding complex types, they are already natively defined
by the C standard, therefore not only for convenience but also for performance reasons would it
makes sense for the HDF5 library to provide a native datatype so that users are no longer forced to
either use separate datasets or create a compound type (which would in this case be composed of
real /imaginary fields) in order to store and retrieve data. As these types were introduced by the
C99 standard, this set of datatypes can be defined as new HDF5 native types.

2 New Datatypes

The following types are considered: _Bool, float _Complex, double _Complex, long double
_Complex. Next sections are a reminder of the rules that the C standard [1] defines for these types.

2.1 _Bool

An object declared as type _Bool is large enough to store the values 0 and 1. While the number of
bits in a _Bool object is at least CHAR_BIT, the width (number of sign and value bits) of a _Bool
may be just 1 bit.

Conversion rules: When any scalar value is converted to _Bool, the result is 0 if the value compares
equal to 0; otherwise, the result is 1.

E Page 1 of 5

The HDF Group

June 11, 2015 RFC THG 2015-04-29.v3

2.2 _Complex

An object declared as type complex is composed of two parts: real and imaginary, the real
part is always before the imaginary part. Values of complex types are equal if and only if both
their real parts are equal and also their imaginary parts are equal. The integer constant 1,
__STDC_IEC_559_COMPLEX__, intended to indicate adherence to the IEC 60559 compatible complex
arithmetic specifications. The integer constant 1, __STDC_NO_COMPLEX__, intended to indicate that
the implementation does not support complex types or the <complex.h> header.

-

#include<stdio.h>
#include<complex.h>

i union Example

A
6 float f[2];
7 float complex c;

s ks

0 int main()

11 {

12 union Example example;

13 example.c = 1.0f + 0.0fx*I;

14 printf (”First element of float: /.4f\n”, example.f[0]);

15 printf (”Second element of float: /.4f\n”’, example.f[1]);

16 printf (”Real part of complez: J.4f\n”, __real__(example.c));

17 printf (”Imaginary part of complexz: [.4ft\n”, __imag__ (example.c));
18 return O;

9}

As mentioned in [2], on both big endian and little endian, the first element of f is 1.0000 and the
second element of f is 0.0000. The real part of the complex number c is 1.0000 and the imaginary
part is 0.0000i.

First element of float: 1.0000
Second element of float: 0.0000
Real part of complex: 1.0000
Imaginary part of complex: 0.0000i

The byte order of the elements of a floating-point and a complex number is different between big
endian and little endian, but the element order is the same.

Conversion rules: As summarized in Table 1, when a value of complex type is converted to another
complex type, both the real and imaginary parts follow the conversion rules for the corresponding
real types. When a value of real type is converted to a complex type, the real part of the complex
result value is determined by the rules of conversion to the corresponding real type and the imaginary
part of the complex result value is a positive zero or an unsigned zero. When a value of complex
type is converted to a real type, the imaginary part of the complex value is discarded and the value

E Page 2 of 5

The HDF Group

June 11, 2015 RFC THG 2015-04-29.v3

Table 1 Conversion to/from _Complex (a+b*i).

Types Complex Real Imaginary
Complex conv(a)+conv(b)*i conv(a) conv(b)*i
Real conv(a)+0*i - 0*i
Imaginary O+conv(b) *i 0 -

of the real part is converted according to the conversion rules for the corresponding real type. When
a value of imaginary type is converted to a real type other than _Bool, the result is a positive zero.
When a value of real type is converted to an imaginary type, the result is a positive imaginary zero.
When a value of imaginary type is converted to a complex type, the real part of the complex result
value is a positive zero and the imaginary part of the complex result value is determined by the
conversion rules for the corresponding real types. When a value of complex type is converted to an
imaginary type, the real part of the complex value is discarded and the value of the imaginary part
is converted according to the conversion rules for the corresponding real types.

3 HDF5 Implementation

Implementing these new types requires modifications of multiple HDF5 components: the core library,
the high-level library, the Fortran library, the C++ library, the tools. This implies modification of
the corresponding tests that support these components, as well as of the file format.

3.1 Core Library Support

As already described in [3], implementation within the HDF5 library of a new datatype requires the
following changes:

1. Detect the size of the new type in configure/CMake along with other native datatypes. After
the configuration, a new macro called H5_SIZEOF_XXX is defined as in H5pubconf.h in the
src/ directory under the build directory. If the compiler does not support this datatype, the
value of H5_SIZEOF_XXX would be 0.

2. Add the new type for detection in src/H5detect.c. After compiling Hsdetect.c and running
H5detect, the properties of the type is generated in H5Tinit.c.

Declare the variables related to the new type in the top of H5T.c.

Release the variable in H5T_term_interface of H5T.c.

Make the datatype ID public by defining a macro in H6Tpublic.h.

Declare the variables for alignments in H5Tpkg.h.

Add a printout for the new type in H5_trace of Hbtrace.c along with other types.

®© N> otk W

Add the prototypes of hard conversion functions for this new datatype in H5Tpkg.h. There
should be functions between the new datatype and all other native integer types and all native
floating-point number types.

E Page 3 of 5

The HDF Group

June 11, 2015 RFC THG 2015-04-29.v3

9. Add the definitions of the hard conversion functions for this new datatype in H5Tconv.c.
10. Add test cases for the new type in the test suite, especially the data conversion test dt_arith.c.

3.1.1 Boolean Type

H5T_NATIVE_BOOL will be detected and its size' defined accordingly. Adding support for the type
within the core library should be straightforward. Conversion routines will follow rules already
defined by the C standard.

HDF5 boolean type: It is also worth noting that HDF5 used to define a boolean type, referred to
as hbool_t. This boolean type is currently defined as an integer, therefore for consistency it will
now be defined as _Bool when possible.

3.1.2 Complex Types

H5T_NATIVE_FLOAT_COMPLEX, H5T_NATIVE_DOUBLE_COMPLEX, and H5T_NATIVE_LDOUBLE_COMPLEX
will be detected and their size defined accordingly. Adding support for this type may require some
more work as one may need to access real and imaginary parts within the functions that are already
defined. Conversion routines will follow rules already defined by the C standard.

3.2 High-level Support

The H5LT API makes minimal use of datatypes and support for these additional datatypes will be
added (straightforward). High-level read or write make use of datatypes, they will need to be tested
using these new types.

3.3 Fortran Support

ISO C bindings are used to provide us with a standard mechanism to pass data between Fortran and
C. Fortran LOGICAL can be mapped to the C _Bool type by using a special integer kind (C_BOOL).

Note. We will leave Fortran HL out for now.

3.4 C++ Support

C++ supports bool types, as well as complex numbers, which are available through the standard
library.

!By default, when compiling with GCC, sizeof (bool) is 4 when compiling for Darwin/PowerPC and 1 when compiling
for Darwin/x86.

E Page 4 of 5

The HDF Group

June 11, 2015 RFC THG 2015-04-29.v3

3.5 Python Support

Python supports boolean values True and False, as well as complex types. Therefore these new
datatypes make perfect sense for Python users.

3.6 Java Support

Java provides boolean types. Complex numbers are defined through classes.

3.7 Tools Support

The following list of tools must be adapted: h5dump, h51s, h6diff, hbimport, hbrepack, hbdebug.

4 Additional Questions

Revision History

April 29, 2015: Version 1 circulated for comment within The HDF Group.
June 10, 2015: Version 2 circulated for comment within The HDF Group.
June 11, 2015: Version 3 circulated for comment within The HDF Group.

References

[1] “C Standard Committee Draft,” April 2011. N1570 ISO/IEC 9899:201x available at http:
//www.open-std.org/jtcl/sc22/wgld/www/docs/n1570.pdf.

[2] N. Negherbon, R. Zurob, and N. Ivanovic, “Targeting your applications—what little endian and
big endian IBM XL C/C-++ compiler differences mean to you,” December 2014. Available at
http://www.ibm.com/developerWorks/.

[3] R. Lu, “A Maintainer’s Guide for the Datatype Module in HDF5 Library,” January 2012. Avail-
able at http://svn.hdfgroup.uiuc.edu/hdf5doc/trunk/library_maintenance/datatypes/
Maintainer_guide.docx.

E Page 5 of 5

The HDF Group

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
http://www.ibm.com/developerWorks/
http://svn.hdfgroup.uiuc.edu/hdf5doc/trunk/library_maintenance/datatypes/Maintainer_guide.docx
http://svn.hdfgroup.uiuc.edu/hdf5doc/trunk/library_maintenance/datatypes/Maintainer_guide.docx

	Introduction
	New Datatypes
	_Bool
	_Complex

	HDF5 Implementation
	Core Library Support
	Boolean Type
	Complex Types

	High-level Support
	Fortran Support
	C++ Support
	Python Support
	Java Support
	Tools Support

	Additional Questions

