August 10, 2010		RFC THG YYYY-MM-DD.v1
September 6January 3, 20132		RFC THG 2012-01-04.v43.01
RFC: Actual I/O Mode
Jacob Gruber
Christian Chilan
Jonathan Kim

Allow a user to determine which type of I/O was performed after the completion of a requested parallel I/O call. This is not necessarily the same as what was requested.

1. [bookmark: _Toc288212105]Introduction
Collective I/O, which is requested by the user via a data transfer property list (DXPL), can perform I/O according to several optimization schemes. The HDF5 library either chooses one based on a set of user-adjustable parameters, or a user can request an optimization directly.
These optimization schemes may not perform pure collective I/O. Some schemes analyze each chunk in a dataset individually, and may access some collectively and others independentindividually. Thus some independent I/O may still occur even when a collective operation is requested.
Additionally, until recently the HDF5 library was unable to perform certain optimizations under specific circumstances, such as the regularity of the dataset or the implementation of MPI[footnoteRef:1]. [1: Though these cases have been removed, I think they still deserve mention, in order to better understand the initial motivation for this feature. This paragraph may also be the only documentation of this behavior.]

Now the HDF5 library can perform operationIn these cases, but the library would either choose an alternate optimization or switch to independent I/O in such cases[footnoteRef:2]. [2:]

[bookmark: _Toc288212106]Currently, there is no way to check which optimization was chosen or whether collective or independent I/O was performed. This RFC proposes extensions to the HDF5 library allowing the user to determine the optimization and I/O mode(s) used by each process in an I/O operation, but not at the level of individual chunks. The extensions will also allow the user to determine what caused the HDF5 library to skipbreak collective I/O in the local process and among all processes, if that was the case.
Description
Description of Optimizations
At the inception of this project, the parallel I/O code was poorly documented, both internally and externally. Careful study of the code was required to understand implementation details and their motivations often remained opaque. While the internal documentation has improved significantly, there still is no external documentation. In light of this, some brief descriptions of the various optimizations available to the library as it performs parallel I/O are provided here.
As this section of HDF5 is being reworked, some of this discussion may soon be obsolete. However, while details may change, the general thrust should remain intact.
General Parallel I/O Concerns
Before we discuss specific optimizations, we should note that in certain circumstances, collective I/O will not be attempted at all, even if requested, and HDF5 will perform independent I/O collectively instead. The following conditions[footnoteRef:3] bring about this switch: [3: Some of these conditions are pretty opaque to me, and my descriptions are little more than educated guesses. The decision process is illustrated in a flowchart in Section 8. If you need more detail, look at H5Dmpio.c, specifically in H5D_mpio_opt_possible.]

· Datatype conversions need to be performed
· Data transforms need to be performed
· I/O is using the MPI POSIX driver
· One of the dataspaces is neither simple nor scalar
· There are point selections in one of the dataspaces[footnoteRef:4] [4: Allowing collective I/O on point selections is actively being worked on and should be supported soon.]

· The dataset is neither contiguous nor chunked
· Any filters need to be applied
If all of these checks pass, HDF5 chooses a collective I/O optimization scheme.
If the dataset is contiguous, collective I/O proceeds without further consideration and will never switch to independent I/O..

However Iif the dataset is chunked, a user can set one ofan three optimization scheme via ‘H5Pset_dxpl_mpio_chunk_opt()’ APIs will be chosen.
If the average number of processes addressing each chunk is above some threshold (the threshold defaults to 0, but can be set by the user), HDF5 performs “Link Chunk I/O”. If the threshold is not reached, HDF5 performs “Multi Chunk I/O”. In addition, the user can request either Link Chunk I/O or “Multi Chunk No Opt I/O”, a second version of Multi Chunk I/O that performs less optimization. ConsultRefer to the flowcharts “Optimizations for Chunk Collective I/O” at the end of this document for the details of this decision process.
Also refer to ‘H5Pset_dxpl_mpio_chunk_opt()’ entry in HDF5 reference manual[footnoteRef:5]. [5: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetDxplMpioChunkOpt]

Brief descriptions of the various optimizations follow:

Link Chunk I/O
In Link Chunk I/O, one MPI derived datatype is created that contains the selection of all chunks and one collective I/O operation is performed. Link chunk I/O will not switch to independent I/O.
Multi Chunk I/O
In Multi Chunk I/O, each chunk is evaluated separately. If the chunk’s elements are selected by at least a user-specified fraction of the processes, collective I/O is performed on the chunk. Otherwise independent I/O is performed. Using this scheme, a process can perform independent I/O, collective I/O or a mixture of the two, and since each process may have a different selection, they may perform different types of I/O.
Consider an application with two processes reading a dataset with two chunks. Process 0 selects both chunks and Process 1 selects only Chunk 0. Thus, Chunk 0 is selected by 100% of processes and Chunk 1 is selected by 50% of processes. If the fraction threshold is set to 60%, Chunk 0 will be read collectively by both processes and Chunk 1 will be read independently by Process 0 only. Here, Process 0 will perform both collective and independent I/O while process 1 will perform only collective I/O.
Multi Chunk I/O No Opt
In Multi Chunk I/O No Opt, each chunk is evaluated independently, but inter-process communication overhead is reduced by performing a simpler optimization. Let n be the minimum number of chunks in any one process's selection. If the index of the chunk in the current process’s selection is less than n, then collective I/O is performed. Otherwise, independent I/O is performed.
Like the previous optimization, it is possible to have processes disagree. In a two process application, if Process 0 selects 1 chunk and Process 1 selects two chunks, Process 0 will perform one collective I/O operation and Process 1 will perform one collective and one independent I/O operation.

Design of Properties
To track the type of I/O performed, two properties are proposed: actual_chunk_opt_mode, to track the optimization scheme chosen in chunked datasets and actual_io_mode, to track whether independent I/O, collective I/O or some mix of the twoboth took place.
[bookmark: _Toc288212107]Two properties are proposed instead of one composite property because, even though most optimization schemes are limited in what type of I/O they can perform, almost all optimizations have multiple values for the actual I/O mode and most of these modes are shared among several optimizations.
The two properties are described in more detail in the following Reference Manual entries.
New API Functions RM Entries

H5Pget_mpio_actual_chunk_opt_mode
Signature:
herr_t H5Pget_mpio_actual_chunk_opt_mode(hid_t dxpl_id, H5D_mpio_actual_chunk_opt_mode_t * actual_chunk_opt_mode)
Purpose:
Retrieves the type of chunk optimization that HDF5 actually performed on the last parallel I/O call. This is not necessarily the type of optimization requested.
Motivation:
A user can request collective I/O via a data transfer property list (DXPL) that has been suitably modified with H5Pset_dxpl_mpio. The operation can be optimized in several different ways, some of which also can be requested by the user. However, HDF5 may not be able to satisfy requests for specific optimizations and may choose a different optimization scheme. This property allows the user to track which optimization was actually used. Used in conjunction with H5Pget_mpio_actual_io_mode, this property allows the user to determine exactly what HDF5 did when attempting collective chunked I/O.
Description:
H5Pget_mpio_actual_chunk_opt_mode retrieves the type of chunk optimization performed when collective I/O was requested. This property is set by ‘H5Pset_dxpl_mpio_chunk_opt()’ before I/O takes place, and will be set even if I/O fails.
Valid values returned in actual_chunk_opt_mode:
H5D_MPIO_NO_CHUNK_OPTIMIZATION
No chunk optimization was performed. Either no collective I/O was attempted or the dataset wasn't chunked. (Default)
H5D_MPIO_LINK_CHUNK
Collective I/O is performed all at once for all chunks.
Pair with the ‘H5FD_MPIO_CHUNK_ONE_IO’ mode

H5D_MPIO_COLL_CHUNK_ATONCE
Each chunk is individually marked with collective or individual based on how many processes are assigned to that chunk. If the fraction is greater than the chunk-ratio-threshold, the chunk is marked as collective and collective I/O is performed all at once for all the collective marked chunks. The chunk-ratio-threshold can be set using H5Pset_dxpl_mpio_chunk_opt_ratio. The default value is 60%.
Pair with the ‘H5FD_MPIO_COLL_CHUNK_ATONCE_IO’ mode.
H5D_MPIO_MULTI_CHUNK
EachSame concept as the ‘H5D_MPIO_COLL_CHUNK_ATONCE’ case. Only difference is that collective I/O is performed per chunk which is marked as collective instead of all at once for all the collective chunks.
Pair with the ‘H5FD_MPIO_CHUNK_MULTI_IO’ mode.
H5D_MPIO_ALL_CHUNK_IND
Individual I/O (independent I/O collectively) is performed on all chunk each.
Pair with the ‘H5FD_MPIO_ALL_CHUNK_IND_IO’ mode. chunk was individually assigned collective or independent I/O based on what fraction of processes access the chunk. If the fraction is greater than the multi chunk ratio threshold, collective I/O is performed on that chunk. The multi chunk ratio threshold can be set using H5Pset_dxpl_mpio_chunk_opt_ratio. The default value is 60%.
H5D_MPIO_MULTI_CHUNK_NO_OPT
Each chunk is assigned collective or independent I/O based on how many chunks were accessed before it. Collective I/O is performed on the first chunk in each selection, then the second, and so on until one process finishes, then the remaining processes perform independent I/O on the rest of their selections.
H5D_MPIO_LINK_CHUNK
Collective I/O is performed on all chunks simultaneously.
Parameters:
hid_t dxpl_id
IN: Dataset transfer property list identifier
H5D_mpio_actual_chunk_opt_mode_t *actual_chunk_opt_mode
OUT: The type of chunk optimization performed by HDF5.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

H5Pget_mpio_actual_io_mode
Signature:
herr_t H5Pget_mpio_actual_io_mode(hid_t dxpl_id,
H5D_mpio_actual_io_mode_t * actual_io_mode)
Purpose:
Retrieves the type of I/O that HDF5 actually performed on the last parallel I/O call. This is not necessarily the type of I/O requested.
Motivation:
A user can request collective I/O via a data transfer property list (DXPL) that has been suitably modified with H5Pset_dxpl_mpio. However, HDF5 will sometimes ignore this request and perform independent I/O instead. This property allows the user to see what kind of I/O HDF5 actually performed. Used in conjunction with H5Pget_mpio_actual_chunk_opt_mode, this property allows the user to determine exactly HDF5 did when attempting collective I/O.
Description:
H5Pget_mpio_actual_io_mode retrieves the type of I/O performed on the selection of the current process. This property is set after all I/O is completed; if I/O fails, it will not be set.
Valid values returned in actual_io_mode:
H5D_MPIO_NO_COLLECTIVE_IO
No collective I/O was performed. Collective I/O was not requested or collective I/O isn't possible on this dataset. (Default)
H5D_MPIO_CHUNK_INDEPENDENT
HDF5 performed one the chunk collective optimization schemes and each chunk was accessed independently.
H5D_MPIO_CHUNK_COLLECTIVE
HDF5 performed one the chunk collective optimization schemes and each chunk was accessed collectively.
H5D_MPIO_CHUNK_MIXED
HDF5 performed one the chunk collective optimization schemes and some chunks were accessed independently, some collectively.
H5D_MPIO_CONTIGUOUS_COLLECTIVE
Collective I/O was performed on a contiguous dataset.
Note:
All processes need not return the same value. For example, if I/O is being performed using the multi chunk optimization scheme, one process's selection may include only chunks accessed collectively, while another may include only chunks accessed independently and a third may involve both types. In this case, the first process will report H5D_MPIO_CHUNK_COLLECTIVE while the second will report H5D_MPIO_CHUNK_INDEPENDENT and the third H5D_MPIO_CHUNK_MIXED.
Parameters:
hid_t dxpl_id
IN: Dataset transfer property list identifier
H5D_mpio_actual_io_mode_t * actual_io_mode
OUT: The type of I/O performed by this process.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
H5Pget_mpio_no_collective_cause
Signature:
herr_t H5Pget_mpio_no_collective_cause(hid_t dxpl_id,
uint32_t * local_no_collective_cause,
uint32_t * global_no_collective_cause)
Purpose:
Retrieves local and global causes that broke collective I/O on the last parallel I/O call.
Motivation:
A user can request collective I/O via a data transfer property list (DXPL) that has been suitably modified with H5Pset_dxpl_mpio. However, there are conditions that can cause HDF5 to forgo collective I/O and perform independent I/O. Such causes can be different across the processes of a parallel application. This function allows the user to determine what caused the HDF5 library to skip collective I/O locally, that is in the local process, and globally, across all processes.
Description:
H5Pget_mpio_no_collective_cause serves two purposes. It can be used to determine whether collective I/O was used for the last preceding parallel I/O call. If not, it retrieves the local and global causes that broke collective I/O on that parallel I/O call. The properties retrieved by this function are set before I/O takes place and are retained even when I/O fails.

Valid values returned on the property are as follows; the numbers on the right are bitmask values:
H5D_MPIO_COLLECTIVE = 00000000
Collective I/O was performed successfully. (Default)
H5D_MPIO_SET_INDEPENDENT = 00000001
Collective I/O was not performed because independent I/O was requested.
H5D_MPIO_DATATYPE_CONVERSION = 00000010
Collective I/O was not performed because datatype conversions were required.
H5D_MPIO_DATA_TRANSFORMS = 00000100
Collective I/O was not performed because data transforms needed to be applied.
H5D_MPIO_SET_MPIPOSIX = 00001000
Collective I/O was not performed because the selected file driver was MPI-POSIX.
H5D_MPIO_NOT_SIMPLE_OR_SCALAR_DATASPACES = 00010000
Collective I/O was not performed because one of the dataspaces was neither simple nor scalar.
H5D_MPIO_POINT_SELECTIONS = 00100000
Collective I/O was not performed because there were point selections in one of the dataspaces.
H5D_MPIO_NOT_CONTIGUOUS_OR_CHUNKED_DATASET = 01000000
Collective I/O was not performed because the dataset was neither contiguous nor chunked.
H5D_MPIO_FILTERS = 10000000
Collective I/O was not performed because filters needed to be applied.
The above name/value pairs are members of the H5D_mpio_no_collective_cause_t enumeration.

Note:
Section 8 illustrates the current decision process that determines whether collective I/O is possible. Each process determines whether it can perform collective I/O and broadcasts the result. Those results are combined to make a collective decision; collective I/O will be performed only if all processes can perform collective I/O.

If collective I/O was not used, the causes that prevented it are reported by individual process by means of an enumerated set. The causes may differ among processes, so H5Pget_mpio_no_collective_cause returns two property values. The first value is the one produced by the local process to report local causes. This local information is encoded in an enumeration, the H5D_mpio_no_collective_cause_t described above, with all individual causes combined into a single enumeration value by means of a bitwise OR operation. The second value reports global causes; this global value is the result of a bitwise-OR operation across the values returned by all the processes. [footnoteRef:6] [6: Note to developers: Section 8 of the RFC illustrates the current process for determining whether collective I/O is possible. Each process determines a bitmask value indicating whether the process can perform collective I/O and, if not, all the causes that prevent it. Each processes then broadcasts its binary value so that a consensus may be determined; collective I/O will be performed only if all the processes can perform collective operations.

The value determined by each process is encoded in an enumerated set. Since the causes may be different among processes, H5Pget_mpio_no_collective_cause returns two property values. The first value is the local value indicating the causes that prevent collective I/O in the local process. The second value is the result of an all-reduce bitwise-OR operation across the values returned by all of the processes. In this way, the second value consolidates the causes that prevented collective I/O globally across all processes.
]

Parameters:
hid_t dxpl_id
IN: Dataset transfer property list identifier
uint32_t * local_no_collective_cause
OUT: A enumerated set value indicating the causes that prevented collective I/O in the local process.
uint32_t * global_no_collective_cause
OUT: An enumerated set value indicating the causes across all processes that prevented collective I/O.
Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

[bookmark: _Toc288212113]Notes
[bookmark: _Toc288212115]The actual_chunk_opt_mode and actual_io_mode properties are not strictly independent and not all combinations of the properties are possible. In a collective operation, the values available to actual_io_mode() are dependent on the value of actual_chunk_opt_mode().
The actual_chunk_opt_mode() and actual_io_mode() properties are not strictly paired nor all combinations of the properties are possible.

The possible combinations between the two APIs are:
	
	actual_chunk_opt_mode()
	actual_io_mode()

	
	H5D_MPIO_NO_CHUNK_OPTIMIZATION
	H5D_MPIO_NO_COLLECTIVE_IO
H5D_MPIO_CONTIGUOUS_COLLECTIVE

	
	H5D_MPIO_LINK_CHUNK
	H5D_MPIO_CHUNK_COLLECTIVE

	
	H5D_MPIO_COLL_CHUNK_ATONCE
	H5D_MPIO_NO_COLLECTIVE
H5D_MPIO_CHUNK_INDEPENDENT
H5D_MPIO_CHUNK_COLLECTIVE
H5D_MPIO_CHUNK_MIXED

	
	H5D_MPIO_MULTI_CHUNK
	H5D_MPIO_NO_COLLECTIVE_IO
H5D_MPIO_CHUNK_INDEPENDENT
H5D_MPIO_CHUNK_COLLECTIVE
H5D_MPIO_CHUNK_MIXED

	
	H5D_MPIO_MULTI_CHUNK_NO_OPT
	H5D_MPIO_NO_COLLECTIVE_IO
H5D_MPIO_CHUNK_INDEPENDENT
H5D_MPIO_CHUNK_COLLECTIVE
H5D_MPIO_CHUNK_MIXED

	
	H5D_MPIO_ALL_CHUNK_IND H5D_MPIO_LINK_CHUNK
	H5D_MPIO_CHUNK_INDEPENDENT H5D_MPIO_CHUNK_COLLECTIVE

Also, at the present time, there is no way of telling whether a specific chunk was read collectively or independently.
Usage
If a user is experiencing difficulties with parallel I/O, support personnel could use these properties to get extra diagnostic information. Additionally, a user could use these functions to ensure that a specific optimization is chosen to prevent unexpected slowdown of parallel applications.
Example
The following pseudo code illustrates the use of the actual I/O mode properties in determining whether a process performed collective I/O, independent I/O or both in an application with three processes. In this example Process 0 will report collective I/O, Process 1 will report both collective and independent I/O and Process 2 will report independent I/O. This example is contrived, but it isn’t too hard to imagine that if the processes’ selections were determined by a computation or user input, a similar scenario might arise.

H5D_mpio_actual_chunk_opt_mode_t 	actual_chunk_opt_mode;
H5D_mpio_actual_io_mode_t 		actual_io_mode;

<set up mpi_rank and mpi_size>

<open file collectively>

<create space>

<create dataset with three chunks>

<create file and memory spaces>

if (mpi_rank == 0) {
	<select hyperslab in Chunk 0>
} else if (mpi_rank == 1) {
	<select hyperlab in Chunk 0 and Chunk 1>
} else if (mpi_rank == 2) {
	<select hyperslab in Chunk 2>
}

dxpl = H5Pcreate(H5P_DATASET_XFER);
H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);

/* Set the average number of processes per chunk required for Link
 * Chunk I/O (or, conversely, the upper limit for Multi Chunk I/O).
 * Here, Link Chunk I/O will only occur if the average number of
 * processes per chunk is twice mpi_size. This is, of course,
 * impossible, and effectively forces Multi Chunk I/O.
 */
H5Pset_dxpl_mpio_chunk_opt_num(dxpl, mpi_size*2);
/* Set chunk optimization mode that can utilize ratio threshold */
H5Pset_dxpl_mpio_chunk_opt(dxpl,H5FD_MPIO_COLL_CHUNK_ATONCE_IO);

/* Set the threshold fraction of processes per chunk for
 * collective I/O. Here, collective I/O will only occur
 * if a process is selected by at least 40% of processes.
 */
H5Pset_dxpl_mpio_chunk_opt_ratio(dxpl, 40);

H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer);

H5Pget_mpio_actual_io_mode(dxpl, &actual_io_mode);
H5Pget_mpio_actual_chunk_opt_mode(dxpl, &actual_chunk_opt_mode);

/* Check properties against expected values */
assert(actual_chunk_opt_mode == H5D_MPIO_MULTI_CHUNK);
if (mpi_rank == 0) {
	assert(actual_io_mode == H5D_MPIO_CHUNK_COLLECTIVE);
} else if (mpi_rank == 1) {
	assert(actual_io_mode == H5D_MPIO_CHUNK_MIXED);
} else if (mpi_rank == 2) {
	assert(actual_io_mode == H5D_MPIO_CHUNK_INDEPENDENT);
}

The next example illustrates the use of the no- collective- cause property in determining why collective I/O was interruptedskipped. In this case, a file is open using the MPI-POSIX driver and a collective write operation is requested. The returned property value indicates that collective I/O could not be performed because of the MPI-POSIX driver is in use.

H5D_mpi_no_collective_cause_t		local_no_collective_cause;
H5D_mpi_no_collective_cause_t		global_no_collective_cause;

<set up mpi_rank and mpi_size>

fapl = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpiposix(fapl, MPI_COMM_WORLD, 0);

<open file collectively>

<create space>

<create contiguous dataset>

<create file and memory spaces>

<hyperslab selection divides dataset equally among processes>

dxpl = H5Pcreate(H5P_DATASET_XFER);

H5Pset_dxpl_mpio(dxpl, H5FD_MPIO_COLLECTIVE);

H5Dwrite(dataset, data_type, mem_space, file_space, dxpl, buffer);

H5Pget_mpi_no_collective_cause(dxpl, &local_no_collective_cause, &global_no_collective_cause);

/* check property against expected value */
assert(local_no_collective_cause == H5D_MPIO_SET_MPIPOSIX);
assert(global_no_collective_cause == H5D_MPIO_SET_MPIPOSIX);
[bookmark: _Toc288212111]Recommendation
The HDF5 API extensions proposed in this RFC have been implemented, but the parallel I/O code is changing. Thus the details of this RFC and the associated code will probably need to be revisited.

Optimizations and I/O operations Flowcharts

Brief descriptions of the optimization modes for ‘H5Pset_dxpl_mpio_chunk_opt()’ follow:

	Optimization modes
	Description

	H5FD_MPIO_CHUNK_ONE_IO

	Do collective I/O all at once for all the selected chunks.
This mode will not switch to independent I/O.

	H5FD_MPIO_COLL_CHUNK_ATONCE_IO

	Do collective I/O all at once for all the selected chunks that marked as collective. Do individual I/O for the rest chunks.
Thus, this mode will switch between collective and independent I/O.

	H5FD_MPIO_CHUNK_MULTI_IO

	Do collective I/O per chunk for the selected chunks that marked as collective. Do individual I/O for the rest chunks.
Thus, this mode will switch between collective and independent I/O.

	H5FD_MPIO_ALL_CHUNK_IND_IO
	Do individual I/O (independent I/O collectively) for all the selected chunks.
This mode will not switch to collective I/O.

[image: C:\Users\jacob\Documents\Work\hdf5\Flowchart_Page_1.jpg][image: C:\Users\jacob\Documents\Work\hdf5\MultiChunkIO-combined.jpg]
[bookmark: _Toc288212112]

[image:]

RFC Revision History
	August 04, 2011
	Version 1 posted for public comment. Comments should be sent to gruber1@hdfgroup.org

	August 22, 2011
	Minor tweaks after comments from Quincey.

	September 6, 2012
	Minor update for H5Pget_mpio_no_collective_cause section. (Property name changes, local cause change.)

	November 6, 2012
	Update according to the removing of the broken ‘multi-chunk IO without opt’ feature.

	January 9, 2013
	Update for refracting framework and add an improved optimization mode ‘H5FD_MPIO_COLL_CHUNK_ATONCE_IO’ based on the ‘H5FD_MPIO_CHUNK_MULTI_IO’ mode.
Also added ‘H5FD_MPIO_ALL_CHUNK_IND_IO’ mode as opposite of ‘H5FD_MPIO_CHUNK_ONE_IO’.
[bookmark: _GoBack]The update is from HDFFV-8244 task.

Page 1 of 14
Page 20 of 20
oleObject1.bin

Optimization modes and decision process for I/O operation

Chunk Collective I/O

Which

opt mode?

A mode can be specified by ‘H5Pset_dxpl_mpio_chunk_opt()’

H5FD_MPIO_ALL_CHUNK_IND_IO

H5FD_MPIO_CHUNK_MULTI_IO

H5FD_MPIO_COLL_CHUNK_ATONCE_IO

H5FD_MPIO_CHUNK_ONE_IO

Default

Calculate fraction with # of assigned processes for this chunk

Is the fraction greater than threshold?

Independent I/O

Collective I/O

Yes

No

A user can set the threshold with ‘H5Pset_dxpl_mpio_chunk_opt_ratio()’

Default value is 60%.

NOTE: For the cases of ‘H5FD_MPIO_COLL_CHUNK_ATONCE_IO’ and ‘H5FD_MPIO_CHUNK_MULTI_IO’ , collective I/O is only worthwhile if the chunk is selected by relatively many processes, otherwise the overhead from creating MPI datatypes is greater than the cost of multiple independent I/O calls. Thus. We perform collective I/O only when the fraction of processes # assigned to each chunk is greater than the ratio- threshold. (default is 60%)

For example, consider an application with two processes reading a dataset with two chunks. Process 0 selects both chunks and Process 1 selects only Chunk 0. Thus, Chunk 0 is selected by 100% of processes and Chunk 1 is selected by 50% of processes. If the fraction threshold is set to 60%, Chunk 0 will be read collectively by both processes and Chunk 1 will be read independently by Process 0 only. Here, Process 0 will perform both collective and independent I/O while process 1 will perform only collective I/O.

image2.jpeg
Optimization process for Chunk
Collective I/0

This flow chart uses badges to indicate various levels of user control in the various decisons made.

[E] denotes a property that is dependent on the compile time configuration of the library.

denotes a decision that is based on the selection made in one or all of the processes.

denotes a property or threshold that can be defined by the user. The functions used to set these w hell appear in
notes either near the corresponding diamond or at the bottom of each page.

Chunk

Collective /O

No

Calculate the
average number
of chunks per
process.

5]

Is this number Yes

A user can request a type of optimization using
H5Pset_dxpl_mpio_chunk_opt

Has the user
specified
optimization?

Yes, Link Chunk

Yes, Multi Chunk

greater than
the threshold?

No

A user can set this threshold using
H5Pset_dxpl_mpio_chunk_opt_num
If not specified, the default value is 0.

Multi Chunk /O
with Optimization

Multi Chunk 11O

Linked:chunkl/o Wwithout Optimization

image3.jpeg
Multi Chunk I/O

Find the fraction
of processes with a
selection in this chunk.

El

Is this fraction
greater than the
threshold?

Independent Collective

Multi Chunk IO No Opt

Find the minimum
number of chunks
selected by any
single process.

Has this pracess
accessed at least that
many chunks?

Yes

Independent Collective

Chunk by Chunk Decision Process for Multi Chunk I/O

Collective I/O is only worthwhile if the chunk is selected by
many processes, otherwise the overhead from creating MPI
datatypes is greater than the cost of multiple independent I/O
calls. Thus, we preform collective I/O only when the fraction of
processes selecting the chunk is greater than some threshold

A user can manualy define this threshold
with H5Pset_dxpl_mpio_chunk_opt_ratio.
The default value is 60%.

Chunk by Chunk Decision Process for Multi Chunk I/O No Opt

image4.emf
Decision process to determine whether collective 1/0

can be performed
Collective 1/0

Is the transfer

(Independent I/0 ’

mode set to
{ndependent?

No

Are datatype
conversions
needed?

No

Are data
transforms to
e applied2

Is the file
driver
MPI-POSIX?

No
Yes
Are the
dataspaces
neither simple vé
nor scalar? S
Yés
Are there
point
selections? Yes
No
Yes
Is dataset
neither
contiguous nor Yes

hunked?2

No

Are filters to
be applied?

Yes

No

Broadcast that this
process cannot
erform collective |/

Broadcast that this
process can perform
+i

Can all processes
perform collective
110?

Collective I/0 Independent I/0

image1.emf
Optimization modes and decision process for I/O operation

Chunk

Collective I/O

Which

opt mode?

A mode can be specified by

‘H5Pset_dxpl_mpio_chunk_opt()’

H5FD_MPIO_ALL_

CHUNK_IND_IO

H5FD_MPIO_CHUNK_

MULTI_IO

H5FD_MPIO_COLL_

CHUNK_ATONCE_IO

H5FD_MPIO_CHUNK

_ONE_IO

Default

Calculate fraction

with # of assigned

processes for this

chunk

Is the fraction

greater than

threshold?

Independent I/O

Collective I/O

Yes No

A user can set the threshold with

‘H5Pset_dxpl_mpio_chunk_opt_ratio()’

Default value is 60%.

NOTE: For the cases of ‘H5FD_MPIO_COLL_CHUNK_ATONCE_IO’ and ‘H5FD_MPIO_CHUNK_MULTI_IO’ ,

collective I/O is only worthwhile if the chunk is selected by relatively many processes, otherwise the

overhead from creating MPI datatypes is greater than the cost of multiple independent I/O calls. Thus. We

perform collective I/O only when the fraction of processes # assigned to each chunk is greater than the

ratio- threshold. (default is 60%)

For example, consider an application with two processes reading a dataset with two chunks. Process 0

selects both chunks and Process 1 selects only Chunk 0. Thus, Chunk 0 is selected by 100% of processes and

Chunk 1 is selected by 50% of processes. If the fraction threshold is set to 60%, Chunk 0 will be read

collectively by both processes and Chunk 1 will be read independently by Process 0 only. Here, Process 0 will

perform both collective and independent I/O while process 1 will perform only collective I/O.

image5.jpeg
A

The HDF Group

