January 18, 2012		RFC THG 2011-11-19.v5
January 18, 2012		RFC THG 2011-11-19.v5
RFC: New public functions to handle comparison
[bookmark: _GoBack]Peter Cao
Neil Fortner
Quincey Koziol
Vailin Choi

This RFC principally describes a new public API function, H5Ocompare that compares two HDF5 objects. This is performed according to the set of rules for comparing two HDF5 files or two HDF5 objects specified in the “HDF5 File and Object Comparison Specification[footnoteRef:1]”, which provides details of how two objects should be compared and guidelines for how H5Ocompare should be implemented. [1: https://www.hdfgroup.uiuc.edu/RFC/HDF5/tools/h5diff/h5diff_spec.pdf]

This RFC also describes five new public functions: H5Fcompare_md, which compares two files’ file metadata, H5Pget/set_compare, which manipulate properties for the comparison, and H5Pset/get_compare_epsilon, which sets/gets the precision limit when comparing floating-point data values.

Introduction
An HDF5 file appears to the user as a directed graph with three higher-level objects that are exposed by the HDF5 APIs: groups, datasets, and committed datatypes. The HDF5 model provides great flexibility with regard to how a file can be structured. At the same time, it creates challenges in determining how to compare two files or two objects.
A command line tool, h5diff, was developed to compare two HDF5 files or objects and report the differences. The tool is one of the most used tools. However, four major issues cannot be easily resolved with the current implementation of h5diff:
· Performance: h5diff has poor performance in some cases. Although the performance has greatly improved over time, some issues cannot be resolved given the current implementation. For example, uncompressing data to compare dataset values is a major bottleneck for compressed datasets; it can take over 80% of h5diff’s total time when comparing large datasets. It would be far better to perform the comparison within the library, directly on the compressed data when possible.
· Reusability and Flexibility: The code for h5diff incorporates all the logic and control flow for comparing objects and files. Users have no way to reuse this functionality in applications they write. Moving the object and file comparison operations within the HDF5 library and providing API routines to access them will allow application developers to use this functionality in their own applications.
· Complexity: The code for h5diff is very complex. Features and options have been added to it in an ad hoc way making the code complex and prone to errors. Over the years, a great deal of effort has been spent fixing problems, but it is becoming increasingly difficult to maintain. Directly moving this object and file comparison code into the library would be a daunting and failure prone process.
· Completeness: h5diff was implemented with insufficient design and definition. When two objects are compared, h5diff does not provide sufficient details of what should be examined. For example, when two datasets are compared, creation properties such as storage layout are not compared. There is no clear definition of what should be compared and what should be not. One of the main goals of this document is to provide a clear and complete set of definitions for the H5Ocompare function on what to compare. Although these defects could be corrected in h5diff, the resulting changes would only add to the complexity of its implementation.

The purpose of the main routine to add, H5Ocompare, is to address the problems above. Other advantages of having an H5Ocompare function include the following:
· Any tool built on H5Ocompare should have less code to maintain since the main work will be done by the function. Applications built on the function should be simple and specific.
· H5Ocompare provides function callbacks to application code thus allowing application developers the flexibility to choose how to react to object and file differences.
· The function can be used in high-level languages such as Java, Fortran, C++, and Python.
We will also develop a new tool that is based on H5Ocompare. The new tool is not targeted to replace the current h5diff; it is intended to address the problems of the current h5diff. The new tool will not try to mimic the output format of the current h5diff; however, the new tool will adopt some useful elements of the h5diff output format. This tool will be described in a separate, forthcoming, RFC.
This RFC presents a number of options regarding how objects are compared. Although not all options will be implemented in the first stage, the design of the new function should allow options to be added incrementally.
This RFC also proposes five new auxiliary public functions as follows:
· H5Fcompare_md: This function compares file-level metadata. Separating the comparison of file metadata from the object comparison done by H5Ocompare provides a more coherent API to developers. This allows the root group of each file to be treated in the same way as other groups.
· H5Pset_compare: This function provides options that allow users to modify the default comparison done by H5Ocompare.
· H5Pget_compare: This function retrieves the user-modified properties set for the comparison.
· H5Pset_compare_epsilon: This function allows users to set the precision limit when comparing floating-point values.
· H5Pget_compare_epsilon: This function retrieves the precision limit used when comparing floating-point values.
Comparing Objects
This section describes how H5Ocompare will compare two objects. Options, such as excluding certain metadata, can be applied to the comparison by calling H5Pset_compare.
Groups
When two groups are compared, these items will form the basis of the comparison: group creation properties, attributes, and the links contained within the two groups.
What is Compared
The following is a list of the things to be compared for groups:
· Group creation properties, which include
· Link creation order
· Link storage layout (compact or dense)
· Attributes attached to the group (details in Attribute section)
· Links within the group (details in Link section)
Options
The following options can be set when comparing groups:
· Exclude comparing creation properties. By default, creation properties will be compared.
· Exclude comparing attributes. By default, attributes will be compared (see Attribute section below).
Links
A link is owned by a group and has a name, type, and value. The link’s value points to an existing object or a non-existing object (symbolic links only).
What is Compared
Link characteristics to be compared include:
· creation properties (link name character encoding and link creation order)
· link name
· link type (hard, soft, external, or user-defined)
· link value (for symbolic link only)
Options
Options for comparing links include the following:
· Compare links according to creation order. By default, links will be compared based on their name.
· Exclude comparing creation properties. By default, creation properties will be checked.
· Exclude comparing link type. By default, link types will be compared. Links of different types, e.g. one is an external link and the other is a soft link, will be reported as different.
· Exclude comparing link value (for symbolic links). By default link values will be compared for symbolic links.
· Exclude comparing links with same name or creation order. Links are determined to be the same based on the index currently used for the comparison: either by name or creation order.
· Exclude reporting unique links, i.e. links that exist in either one of the two groups. By default, unique links will be reported as different. Unique links are determined based on the index currently used for the comparison, either by name or creation order.
Datasets
When two datasets are compared, the datasets’ metadata and attributes, as well as the data values of the two datasets will be compared.
What is compared
Comparing datasets means comparing both the data values and metadata of the datasets, unless an option excluding a specific comparison is given. The following things will be compared:
· Data values (details in Data Values section)
· Dataset creation properties, which include:
· Layout of the raw data
· Size of chunks for the raw data of a chunked layout dataset
· Fill value if it is defined
· Filter(s) applied to the datasets (e.g. compression)
· Attributes attached to the dataset (details in Attribute section)
· Datatype (details in Datatypes section)
· Dataspace (details in Dataspace section)
Options
Options for comparing datasets are listed below. Options for comparing data values, datatypes and dataspaces are presented in separate sections.
· Exclude comparing creation properties. By default, creation properties will be compared.
· Exclude comparing attributes. By default, attributes will be compared (see Attributes section).
Attributes
An attribute is like a small dataset; it has a datatype, a dataspace, and data values. By default, attributes are matched by name, and comparing two attributes is the same as comparing two datasets except that attributes currently do not have creation and access properties. Unique attributes (attributes that exist only in one of the two objects) will be reported as different.
What is compared
Comparing attributes means comparing both the data values and metadata of the attributes, unless an option excluding a specific comparison is given. The following things will be compared:
· Data values (see Data Values section)
· Creation properties (attribute name character encoding and attribute creation order)
· Datatype (details in Datatypes section)
· Dataspace (details in Dataspace section)
Options
The following options can be set when comparing attributes:
· Compare attributes according to creation order. By default, attributes will be compared based on their name.
· Exclude comparing attributes with same name or creation order. Attributes are determined to be the same based on the index currently used for the comparison: either by name or creation order.
· Exclude reporting unique attributes, i.e. attributes that exist only in one of the two objects. By default, unique attributes will be reported as different. Unique attributes are determined based on the index currently used for the comparison, either by name or creation order.
Datatypes
A datatype can describe an atomic type like a fixed- or floating-point type, or more complex types like a C structure (compound datatype), array (array datatype), or C++ vector (variable-length datatype). A datatype is defined by its class and class-specific properties.
What is compared
The following datatype characteristics will be compared:
· Datatype class (e.g. integer (H5T_INTEGER), float (H5T_FLOAT), string (H5T_STRING), etc.)
· Class-specific properties (e.g. size, signed or unsigned, byte order, etc.)
· H5T_INTEGER – Size (bytes), precision (bits), offset (bits), padding, byte order, signed/unsigned
· H5T_FLOAT -- Size (bytes), precision (bits), offset (bits), padding, byte order, and field information
· H5T_TIME – Size (bytes), precision (bits), byte order
· H5T_STRING – Size (fixed or variable), character set, pad/no pad, pad character
· H5T_BITFIELD -- Size (bytes), precision (bits), offset (bits), padding, and byte order
· H5T_OPAQUE -- Size (bytes), tag
· H5T_COMPOUND – Size (bytes), number of members, member names, member datatypes, member offsets
· H5T_REFERENCE -- Reference type (object or region)
· H5T_ENUM -- Number of elements, element names, element values, base datatype
· H5T_VLEN -- Base datatype
· H5T_ARRAY -- Number of dimensions, dimension sizes, base datatype
· Attributes for committed datatypes (see Attributes section)
Note that when the datatype classes are not the same, H5Ocompare will report non-comparable via callback and will not continue comparison of class-specific properties.
Options
Options for comparing committed datatypes are listed below:
· Exclude comparing attributes. By default, attributes on committed datatypes will be compared (see Attributes section).
Dataspace
A dataspace describes the rank and the size of each dimension in the data object array.
What is compared
Dataspace characteristics to be compared include:
· rank (the number of dimensions)
· current dimension sizes
· maximum dimension sizes
Note that when the ranks are not the same, H5Ocompare will report non-comparable via callback and will not continue comparison of current and maximum dimension sizes.
Options
Options for comparing dataspace include:
· Exclude comparing maximum dimension sizes. By default, they will be compared.
Data Values
The comparison of data values depends on the datatypes and dataspaces of the datasets or attributes the values belong to. Which data values will be compared depends on the dataspace of the dataset or attribute and how the data values are compared depends on the datatype of the dataset or attribute.
Dataspace
The rank and dimensions of the dataspace for each of the objects being compared controls which data values are compared:
· If the ranks are not same, see description in Dataspace section.
· If the ranks are the same but the dataspaces’ dimension sizes are different, H5Ocompare will compare the overlapping regions starting from the origin. The shaded areas in the following examples are the compared regions. H5Ocompare will indicate the data values as different for the non-common regions and will report any differences found for the common regions via callback.
 Example1: space1[6x8]; space2[3x5]		Example2: space1[2x8]; space2[4x1]
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	

	

		

Datatype
The datatype class (integer, floating-point, compound, etc) and properties for each of the objects being compared control how data values are compared:
· If the datatype classes are not the same, see description in Datatype section.
· If the datatype classes are the same, H5Ocompare will try to compare the data values. If the datatypes within the datatype class are not the same, H5Ocompare will try to convert data values if needed before the comparison. For example, when comparing a signed 8-bit integer and an unsigned 16-bit integer, H5Ocompare will convert both datasets’ values to signed 32-bit integers before comparing. If the signed and unsigned integers have the same precision but are the maximum precision supported in HDF5 (64-bits, currently), H5Ocompare will not do any conversion and will report non-comparable via callback.
Note that when comparing non-atomic datatype classes that are the same:
· enum, array, variable-length: these rules will apply to the base datatypes.
· compound: these rules will apply recursively through the nested fields.
 Comparing Data Values
The comparison of data values will proceed when the dataspace ranks and datatype classes are the same as follows:
· If the datatypes within the datatype class are not the same:
· If conversion of the data values is not possible, H5Ocompare will report that the data values are non-uncomparable via callback; this will be the only callback made for the comparison of data values.
· If conversion of the data values is possible, H5Ocompare will convert the data values and then continue the comparison as described next for same datatypes.
· If the datatypes within the datatype class are the same:
· If the dimension sizes of the dataspaces are not the same, H5Ocompare will compare data values of the overlapping regions starting from the origin as described below and will report elements in non-common regions as different via callback.
· If the dimension sizes of the dataspaces are the same, H5Ocompare will compare all data values of the two regions as described below.
H5Ocompare will compare data values element by element with respect to the datatype class:
· Two integer (H5T_INTEGER) numbers of any precision and of the same type (signed/signed, unsigned/unsigned) can be directly compared. If the datatypes within the class are not the same, H5Ocompare will try to convert data values if needed before the comparison. See above rules described for datatypes.
· Comparing two float (H5T_FLOAT) numbers is more complicated. To determine whether two floating-point values, float1 and float2, are different, one cannot use the simple comparison of (float1 == float2). Two floating-point values can be the same while (float1 == float2) may appear to differ because of floating-point precision. In HDF5, the precision limit can be set when comparing floating-point values; for details, see the “Default EPSILON Values for Comparing Floating Point Data[footnoteRef:2]” RFC. We propose two new public functions to set and retrieve the EPSILON value when comparing floating-point data values (H5Pget/set_epsilon). Second, Not-a-Number (NaN) values need to be handled. By definition, two NaNs are always equal. A NaN and a regular number are always different. By default, H5Ocompare will check NaNs, however, checking for NaN is very expensive. If a user knows there are no NaNs in the datasets, they can skip checking NaN for better performance with an option. [2: https://www.hdfgroup.uiuc.edu/RFC/HDF5/tools/h5diff/RFC_h5diff_default_epsilon.pdf]

· Strings (H5T_STRING) data values are compared with the Standard C strcmp() function initially. When two strings are different, i.e. strcmp(str1, str2) is non-zero, the strings will be compared character by character and the differences will be reported.
· Data values with type class of H5T_BITFIELD, H5T_OPAQUE or H5T_TIME will be compared byte by byte.
· Compound (H5T_COMPOUND) data values will be compared by field according to the type of the field. For nested compound types, the comparison will recur through the nested fields. The comparison of the field values will follow the rules described above for datatypes.
· Currently HDF5 has two types of reference datatypes (H5T_REFERENCE): object references and dataset region references. The following comparison is performed when comparing references:
· Object reference: compare the names of the object pointed to by the reference
· Dataset region reference: compare the names of the objects pointed to by the references and the selection of the referenced regions

· An enumerated (H5T_ENUM) datatype is a set of [name, value] pairs with a base datatype. The comparison of the base datatype follows the same rules as described above for datatypes. The member names and their corresponding values are then compared.
· Each element of variable length datatype (H5T_VLEN) is a one-dimensional sequence of data values, of a particular base datatype. The comparison of the base datatype follows the same rules as described above for datatypes. If the lengths are the same, each data value in the sequences will be compared. If the lengths are different, data values will be compared up to the shortest one. Extra values of the longer array will be reported as different.
· Values of array datatypes (H5T_ARRAY) will be compared according to the above rules described for datatype. If the arrays’ ranks are the same but their dimension sizes are different, H5Ocompare will compare the overlapping regions common to both arrays and report the non-common regions as different. If the arrays’ ranks are not the same, H5Ocompare will report non-comparable via callback.
Options
· Enable the comparison of data values only if the dataspaces have the same rank and the same dimension sizes. By default, H5Ocompare will compare data values according to the rules described previously for dataspaces.
· Enable the comparison of data values only if the datatypes have the same class and the same datatypes within the class. By default, H5Ocompare will compare data values according to the rules described previously for datatypes.
· Skip checking Not-a-Number (NaN) floating-point values. By default, H5Ocompare will check NaNs.
Comparing File metadata
This section describes how the new public function, H5Fcompare_md, compares the file metadata of two HDF5 files. Each HDF5 file contains file metadata such as file creation properties. When comparing the metadata, file creation properties will be checked. This includes:
· version number of super block,
· size of user block,
· size of addresses,
· size of lengths,
· sizes used to control symbol tables (B-tree rank and node size),
· tree rank used to control B-trees for indexing chunked datasets,
· number of shared message indexes,
· configuration settings for a shared message index (type and minimum size of messages),
· threshold values for storing shared messages: maximum number of messages to store in a compact list, minimum number of messages to store in a B-tree).
The result is determined from comparing the above information.
File comparison
Each HDF5 file contains file metadata, a root group, and zero or more links to other objects. A hard link’s value points to an existing object such as a group, dataset or named datatype. A symbolic link’s value which might or might not point to an existing object.
To compare two files, applications can use H5Fcompare_md to compare the two files’ file metadata, then iterate through the links and objects in the two files, and compare each pair of objects via H5Ocompare.
The following special cases of file comparison are handled as described below:
A) A file is compared to itself. There should be no difference if a file is compared to itself. H5Fcompare_md and H5Ocompare should quickly confirm that it is the same file -- without going through the actual comparison.
B) Two identical files are compared. There should be no difference if two identical files are compared. This case is the same as (A) except that the two files are two separate physical files with exactly the same contents. Applications will need to use both H5compare_md and H5Ocompare to verify that the contents are exactly the same.
C) Two empty files are compared. A file is empty if its root group does not have any links or attributes. If two empty files are compared, applications can compare the file metadata via H5Fcompare_md and then compare the root group of the two files via H5Ocompare. If the file metadata and group’s creation properties are ignored, there should be no difference between two empty files. Otherwise, the result depends on the comparison of the file metadata and the root group’s creation properties.
D) An empty file is compared with a non-empty file. The result varies according to the comparison options. By default, an empty file and a non-empty file should be different. If file metadata, group creation properties and attributes, and unique objects are excluded, there will be no difference.
New public functions to handle comparison
This section describes the following six new public routines:
· H5Ocompare
· H5Fcompare_md
· H5Pset_compare, H5Pget_compare
· H5Pset_compare_epsilon, H5Pget_compare_epsilon
New public function for comparing objects
[bookmark: Link-Copy]Name:
H5Ocompare
Signature:
htri_t H5Ocompare(hid_t loc1_id, const char *name1, hid_t lapl1, hid_t loc2_id, const char *name2, hid_t lapl2, hid_t cmppl_id, H5O_cmp_cb_t *cb_info)
Purpose:
Compare two objects in the same or different files.
Description:
H5Ocompare compares the object specified by name1 in the file or group specified by loc1_id to the object specified by name2 in the file or group specified by loc2_id.

The parameters lapl1 and lapl2 are link access property lists associated with the links name1 and name2 respectively.

Several properties are available to govern the behavior of H5Ocompare. These properties are set in the comparison property list, cmppl_id with the new public function, H5Pset_compare.

Differences in the two objects are reported via function callbacks, which are grouped together in a structure H5O_cmp_cb_t as defined below. This structure is passed in as the cb_info parameter to this routine along with a pointer to user’s data:

typedef struct H5O_cmp_cb_t {
 H5O_cmp_link_cb_t		link;
 H5O_cmp_obj_md_cb_t		obj_md;
 H5O_cmp_attr_md_cb_t		attr_md;
 H5O_cmp_dset_data_cb_t	dset_data;
 		 H5O_cmp_attr_data_cb_t	attr_data;
 void				*udata;
} H5O_cmp_cb_t;

Details of these callbacks are described in the next sections.

On entry to H5Ocompare, the routine will try to resolve name1 with respect to loc1_id and name2 with respect to loc2_id to objects, using lapl1 and lapl2, respectively. If not successful, H5Ocompare will return an error and exit. If successful, H5Ocompare will compare the two specified objects as follows:
a) Compares the metadata of the two objects, and invokes obj_md callback for each difference found.
b) Compares the two objects’ common attributes, and reports any differences found in metadata via the attr_md callback or raw data via the data callback. Unique attributes (attributes that exist only in one of the two objects) will be reported via callback also.
c) Compares the two objects:
i. Datasets: H5Ocompare will compare the raw data and report all the differences found via the data callback.
ii. Named datatypes: H5Ocompare has already compared the class and properties of the datatypes in step (a) above.
iii. Groups: H5Ocompare will compare all the links in the two groups and report any differences found via the link callback. If recursive comparison is desired, applications will need to iterate links in the groups with another function and then perform object comparisons with further calls to H5Ocompare.
Parameters:
	hid_t loc1_id
	IN: Location identifier of the first object to be compared

	const char *name1
hid_t lapl1
	IN: Name of the first object to be compared
IN: Link access property list associated with the first object

	hid_t loc2_id
	IN: Location identifier of the second object to be compared

	const char *name2
hid_t lapl2
	IN: Name of the second object to be compared
IN: Link access property list associated with the second object

	hid_t cmppl_id
	IN: Comparison property list identifier

	H5O_cmp_cb_t *cb_info
	IN/OUT: A callback structure that contains a list of function callbacks and a pointer to user’s data for reporting the results of comparison.

Returns:
The return value indicates the result of the comparison:
· True (1) if the two objects are equivalent (strict or loose[footnoteRef:3]) [3: See the definition and description of equivalence (strict or loose) in the document
“HDF5 File and Object Comparison Specification” https://www.hdfgroup.uiuc.edu/RFC/HDF5/tools/h5diff/h5diff_spec.pdf
]

· False (0) if the two objects are not equivalent (strict or loose)
· Negative value if there is error

Note that two objects are strictly equivalent/not equivalent when default properties in the comparison property list are used when comparing; two objects are loosely equivalent/not equivalent when properties set in the comparison property list are used when comparing.
Function Callbacks
H5Ocompare will invoke function callback when encountering differences from comparing:
· links
· object metadata
· attribute’s metadata
· data values in datasets
· data values in attributes

The definitions of the five function callbacks—link, obj_md, attr_md, dset_data, attr_data—are described in the following sections. H5Ocompare may invoke the corresponding callback repeatedly for each type of difference found. The return values from each function callback can be:
· A zero value causes the callback to continue reporting the remaining differences found.
· A non-zero value causes the callback to discontinue reporting the remaining differences found.
Each callback uses the following data structure to indicate the comparison result:
typedef enum H5_cmp_status_t {
 H5_STATUS_DIFFERENT,
 H5_STATUS_EXIST_ONLY_O1,
 H5_STATUS_EXIST_ONLY_O2,
 H5_STATUS_UNCOMPARABLE
} H5_cmp_status_t;

· H5_STATUS_DIFFERENT
· when the two values are different
· H5_STATUS_EXIST_ONLY_O1
· when the value exists only in the first object
· H5_STATUS_EXIST_ONLY_O2
· when the value exists only in the second object
· H5_STATUS_UNCOMPARABLE
· when the ranks of the dataspaces are not the same
· when the datatypes are not the same class
· when the datatypes are the same class but conversion of the data values are not possible
· when the ranks of array datatypes are not the same
The function callback: link

herr_t (*H5O_cmp_link_cb_t)(H5O_cmp_index_t index, H5_cmp_status_t status, H5O_cmp_link_type_t type, H5O_cmp_link_values_t *values, void *udata)

The parameters have the following values or meanings:

index
· A union type, H5O_cmp_index_t is defined below.
· Indicates which link is being compared:
· When compared according to name, name is valid and is the link name
· When compared according to creation order, corder is valid and is the link’s creation order
status
· An enumerated type, H5_cmp_status_t is described previously.
· Reports the result of the comparison for type.
type
· An enumerated type, H5O_cmp_link_type_t is defined below.
· Reports the type of difference found.
values
· A union type, H5O_cmp_link_values_t is defined below.
· Reports the values of the difference found for type.
· A union of structures with each struct corresponding to each value defined for type. There are two fields of the same type in each structure. If status is H5_STATUS_EXIST_ONLY_O1, the value of the second field in the structure is undefined. Likewise, if status is H5_STATUS_EXIST_ONLY_O2, the value of the first field in the structure is undefined.
udata
· Equals to the udata field in the parameter cb_info that is passed to H5Ocompare.
· Used to share any application-defined data between the application and the callbacks.
H5O_cmp_index_t
typedef union H5O_cmp_index_t {
	const char *name;
int64_t corder;
} H5O_cmp_index_t;
H5O_cmp_link_type_t
	H5O_LINK_EXIST
	Used to indicate that the link only exists in one group. The object it exists in is indicated by the status parameter and the values parameter will be set to NULL for the callback. This will be the only callback made for this link.

	H5O_LINK_CSET

H5O_LINK_CORDER
H5O_LINK_TYPE H5O_LINK_NAME

H5O_LINK_VALUE
	Character set encoding of link name (set with H5Pset_char_encoding)
Creation order of link (set with H5Pset_link_creation_order)
Type of link (hard, soft, external or user-defined)
Difference found for link names when compared according to creation order.
Difference found for link values when comparing symbolic links (soft link or external link)

H5O_cmp_link_values_t
typedef union H5O_cmp_link_values_t {
 struct {
	H5T_cset_t val1;
	H5T_cset_t val2;
 } cset;
	 struct {
		int64_t val1;
		int64_t val2;
	 } corder;
	 struct {
		H5L_type_t val1;
		H5L_type_t val2;
	 } link_type;
 struct {
		const char *val1;
		const char *val2;
	 } link_name;
 struct {
		H5O_cmp_link_val_t1 val1;
		H5O_cmp_link_val_t val2;
	 } link_val;
} H5O_cmp_link_values_t;

1The structure H5O_cmp_link_val_t is defined below.
H5O_cmp_link_val_t
Typedef struct H5O_cmp_link_val_t {
		H5L_type_t ltype;
		union {
const char *soft_link;
			struct {	
				const char *filename;
				const char *obj_path;
			} ext_link;
		} lval;
} H5O_cmp_link_val_t;

The function callback: obj_md
herr_t (*H5O_cmp_obj_md_cb_t)(H5_cmp_status_t status, H5O_cmp_obj_md_type_t type, H5O_cmp_obj_md_values_t *values, void *udata)

The parameters have the following values or meanings:

status
· An enumerated type, H5_cmp_status_t is described previously.
· Reports the result of the comparison for type.
type
· An enumerated type, H5O_cmp_obj_md_type_t is defined below.
· Reports the type of difference found.
values
· A union type, H5O_cmp_obj_md_values_t is defined below.
· Reports the values of the difference found for type.
· A union of structures with each struct corresponding to a value defined for type. There are two fields of the same type in each structure. If status is H5_STATUS_EXIST_ONLY_O1, the value of the second field in the structure is undefined. Likewise, if status is H5_STATUS_EXIST_ONLY_O2, the value of the first field in the structure is undefined.
	udata
· Equals to the udata field in the parameter cb_info that is passed to H5Ocompare.
· Used to share any application-defined data between the application and the callbacks.

H5O_cmp_obj_md_type_t
	H5O_OBJ_MD_TYPE
	Type of object

	H5O_OBJ_MD_RC	
	Reference count of object

	H5O_OBJ_MD_ATIME
	Access time (set with H5Pset_obj_track_times)

	H5O_OBJ_MD_MTIME
	Modification time (set with H5Pset_obj_track_times)

	H5O_OBJ_MD_CTIME
	Change time (set with H5Pset_obj_track_times)

	H5O_OBJ_MD_BTIME
	Birth time (set with H5Pset_obj_track_times)

	H5O_OBJ_MD_NUM_ATTRS
	Number of attributes attached to object

	H5O_OBJ_MD_GRP_CRT_ORDER_FLAGS

H5O_OBJ_MD_GRP_MAX_COMPACT

H5O_OBJ_MD_GRP_MIN_DENSE
	Creation order flags for a group (set with H5Pset_link_creation_order). This comparison will be made only if both objects are groups
Maximum number of entries to store for a compact group (set with H5Pset_link_phase_change). This comparison will be made only if both objects are groups
Minimum number of entries to store in a dense group (set with H5Pset_link_phase_change). This comparison will be made only if both objects are groups

	H5O_OBJ_MD_ATTR_CRT_ORDER_FLAGS
	Creation order flags for attributes (set with H5Pset_attr_creation_order)

	H5_OBJ_MD_ATTR_MAX_COMPACT
	Maximum number of attributes to store in the object header (set with H5Pset_attr_phase_change)

	H5O_OBJ_MD_ATTR_MIN_DENSE
	Minimum number of attributes to store in dense storage (set with H5Pset_attr_phase_change)

	H5O_OBJ_MD_COMMENT
	Object comment (H5Oset_comment)

	H5O_OBJ_MD_DTYPE
	Datatype (for datasets and named datatypes). This comparison will not be made if one object is a group.

	H5O_OBJ_MD_FILTER_PIPELINE
	An object creation property list containing a copy of the object’s filter pipeline (for datasets and groups; set with H5Pset_filter, etc.).

	H5O_OBJ_MD_SPACE
	Dataspace (for datasets). This comparison will not be made if one object is not a dataset.

	H5O_OBJ_MD_LAYOUT
	Layout type (for datasets; set with H5Pset_layout). This comparison will not be made if one object is not a dataset.

	H5O_OBJ_MD_CHUNK
	Chunked layout information (for chunked datasets; set with H5Pset_chunk). This comparison will not be made if one object is not a chunked dataset.

	H5O_OBJ_MD_EXTERNAL

H5O_OBJ_MD_FILL_DTYPE

	External layout information (for external datasets; set with H5Pset_external). This comparison will not be made if one object is not an external dataset.
Datatype for fill value (for datasets; set with H5Pset_fill_value). This datatype may differ from that of the dataset, but the HDF5 library must be able to convert value to the dataset datatype when the dataset is created. This comparison will not be made if one object is not a dataset.

	H5O_OBJ_MD_FILL_VALUE

H5O_OBJ_MD_FILL_TIME
	Fill value (for datasets; set with H5Pset_fill_value). This comparison will not be made if one object is not a dataset.
Fill time (for datasets; set with H5Pset_fill_time). This comparison will not be made if one object is not a dataset.

	H5O_OBJ_MD_ALLOC_TIME
	Allocation time (for datasets; set with H5Pset_alloc_time). This comparison will not be made if one object is not a dataset.

H5O_cmp_obj_md_values_t
typedef union H5O_cmp_obj_md_values_t {
struct {
			H5O_type_t val1;
			H5O_type_t val2;
} type;
struct {
			unsigned val1;
			unsigned val2;
} rc;
struct {
 			time_t val1;
 			time_t val2;
} atime;
struct {
			time_t val1;
			time_t val2;
} mtime;
struct {
 			time_t val1;
			time_t val2;
} ctime;
struct {
			time_t val1;
			time_t val2;
} btime;
struct {
			unsigned val1;
			unsigned val2;
} num_attrs;
struct {
			unsigned val1;
			ussigned val2;
} grp_crt_order_flags;
struct {
 			unsigned val1;
			unsigned val2;
} grp_max_compact;
struct {
			unsigned val1;
			unsigned val2;
} grp_min_dense;
struct {
			unsigned val1;
			ussigned val2;
} attr_crt_order_flags;
struct {
 			unsigned val1;
			unsigned val2;
} attr_max_compact;
struct {
			unsigned val1;
			unsigned val2;
} attr_min_dense;
struct {
			const char *val1;
			const char *val2;
} comment;
struct {
			H5O_cmp_dtype_t1 val1;
			H5O_cmp_dtype_t val2;
} dtype;
struct {
			hid_t val1;
			hid_t val2;
} filter_pipeline;
struct {
			H5O_cmp_space_t2 val1;
			H5O_cmp_space_t val2;
} space;
struct {
			H5D_layout_t val1;
			H5D_layout_t val2;
} layout;
struct {
			struct {
int val1;
				int val2;
			} ndims;
			struct {
				const hsize_t *val1;
				const hsize_t *val2;
			} dim;
} chunk3;
struct {
 		struct {
				int val1;
				int val2;
 		} count;
 	 		struct {
				H5O_cmp_external_t4 val1;
				H5O_cmp_external_t val2;
 		} external;
} external5;
struct {
	hid_t val1;
	hid_t val2;
} fill_dtype;
struct {
			struct {
				hid_t val1;
				hid_t val2;
			} dtype;
			struct {
				const void *val1;
				const void *val2;
			} value;
} fill_value6;
struct {
			H5D_fill_time_t val1;
			H5D_fill_time_t val2;
		} fill_time;
		struct {
			H5D_alloc_time_t val1;
			H5D_alloc_time_t val2;
		} alloc_time;
 	} H5O_cmp_obj_md_values_t;

1The structure H5O_cmp_dtype_t is defined below.
2The structure H5O_cmp_space_t is defined below.
3chunk: values stored in the field chunk.ndims determine the length of the arrays pointed to by chunk.dim.
	4The structure H5O_cmp_external_t is defined below.
5external: the values stored in the field external.count determine the length of the arrays pointed to by external.external.
 6fill_value: the field fill_value.dtype contains the datatypes for the fill value, and therefore indicates how to interpret the data stored in fill_value.value, as well as the size of the data. The fill values are compared according to the same rules as data value comparison.
H5O_cmp_dtype_t
typedef struct H5O_cmp_dtype_t {
H5T_class_t tclass;
union {
struct atomic {
		H5T_order_t order;
		size_t prec;
		size_t offset;
		H5T_pad_t lsb_pad;
		H5T_pad_t msb_pad;
} atomic;
struct cmpd {
hid_t dtype;
unsigned nmembs;
} cmpd;
struct enumer {
		hid_t base_dtype;
unsigned nmembs;
} enumer;
struct vlen {
		hid_t base_dtype;
} vlen;
struct opaque {
		const char *tag;
} opaque;
struct array {
		hid_t base_dtype;
size_t nelem;
		unsigned ndims;
		size_t dim[H5S_MAX_RANK];
} array;
} type;
} H5O_cmp_dtype_t;
H5O_cmp_space_t
typedef struct H5O_cmp_space_t {
unsigned	rank;
hsize_t 	size[H5S_MAX_RANK];
hsize_t 	max[H5S_MAX_RANK];
} H5O_cmp_space_t;
H5O_cmp_external_t
typedef struct H5O_cmp_external_t {
const char *name;
off_t offset;
hsize_t size;
} H5O_cmp_external_t;
The function callback: attr_md
herr_t (*H5O_cmp_attr_md_cb_t)(H5O_cmp_index_t index, H5_cmp_status_t status, H5O_cmp_attr_md_type_t type, H5O_cmp_attr_md_values_t *values, void *udata)

The parameters have the following values or meanings:

index
· A union type, H5O_cmp_index_t is defined previously.
· Indicates which attribute is being compared:
· When compared according to name, name is valid and is the attribute name
· When compared according to creation order, corder is valid and is the attribute’s creation order
status
· An enumerated type, H5_cmp_status_t is described previously.
· Reports the result of the comparison for type.
type
· An enumerated type, H5O_cmp_attr_md_type_t is defined below.
· Reports the type of difference found.
values
· A union type, H5O_cmp_attr_md_values_t is defined below.
· Reports the values of the difference found for type.
· A union of structures with each struct corresponding to each value defined for type. There are two fields of the same type in each structure. If status is H5_STATUS_EXIST_ONLY_O1, the value of the second field in the structure is undefined. Likewise, if status is H5_STATUS_EXIST_ONLY_O2, the value of the first field in the structure is undefined.
udata
· Equals to the udata field in the parameter cb_info that is passed to H5Ocompare.
· Used to share any application-defined data between the application and the callbacks.

H5O_cmp_attr_md_type_t
	H5O_ATTR_EXIST

H5O_ATTR_CSET

H5O_ATTR_CORDER

H5O_ATTR_NAME

H5O_ATTR_DTYPE	
	Used to indicate that the attribute only exists on one object. The object it exists in is indicated by the status parameter and the values parameter will be set to NULL for the callback. This will be the only callback made for this attribute.
Character set encoding of attribute name (set with H5Pset_char_encoding)
Creation order of attributes (set with H5Pset_attr_creation_order)
The difference found in names of attributes when compared according to creation order.
Datatype of attribute

	H5O_ATTR_SPACE
	Dataspace of attribute

H5O_cmp_attr_md_values_t
typedef union H5O_cmp_attr_md_values_t {
struct {
		H5T_cset_t val1;
		H5T_cset_t val2;
 	} cset;
	 	struct {
			H5O_msg_crt_idx_t val1;
			H5O_msg_crt_idx_t val2;
	 	} corder;
 	struct {
			const char *val1;
			const char *val2;
	 	} name;
 	struct {
H5O_cmp_dtype_t1 val1;
H5O_cmp_dtype_t val2;
 	} dtype;
 	struct {
H5O_cmp_space_t2 val1;
		H5O_cmp_space_t val2;
 	} space;
} H5O_cmp_attr_md_values_t;

1The structure H5O_cmp_dtype_t is defined previously.
2The structure H5O_cmp_space_t is defined previously.
The function callback: dset_data
herr_t (*H5O_cmp_dset_data_cb_t)(H5_cmp_status_t status, H5O_cmp_data_values_t *values, void *udata)

The parameters have the following values or meanings:

status
· An enumerated type, H5_cmp_status_t is described previously.
· Reports the result of the comparison.
values
· A structure, H5O_cmp_data_values_t is defined below.
· Reports the differences found for the raw data values.
udata
· Equals to the udata field in the parameter cb_info that is passed to H5Ocompare.
· Used to share any application-defined data between the application and the callbacks.

H5O_cmp_data_values_t
typedef struct H5O_cmp_data_values_t {	
 		unsigned ndiffs;
		unsigned rank;
		struct {
			hid_t val1;
			hid_t val2;
		} dtype;
		struct {
			const H5O_cmp_value_diff_t *diff1;
			const H5O_cmp_value_diff_t *diff2;
		} diffs;
} H5O_cmp_data_values_t;

The four fields in H5O_cmp_data_values_t are described as follows:

ndiffs
· Contains the number of differences reported by this call which may be less than the total number of differences.
· Indicates the length of the arrays pointed to by diffs.diff1, diffs.diff2.

rank
· The number of dimension sizes for the dataspaces

dtype
· The datatype IDs of the two objects or attributes

diffs
· A structure of two fields with the same type H5O_cmp_value_diff_t as defined below.
· Points to two arrays of matched elements that are different between the two objects.
· For example, diff1[0] is matched against diff2[0], and its inclusion in this list implies that the data stored in diff1[0].value is different from that in diff2[0].value. The offset field denotes the logical offset of the element within the dataset—diff1[x].offset will always be equal to diff2[x].offset. The length of offset is determined by the number of dimensions in the dataspace of the dataset or attribute.
H5O_cmp_value_diff_t
typedef struct H5O_cmp_value_diff_t {
hsize_t *offset;
void *value;
} H5O_cmp_value_diff_t;
The Function callback: attr_data
herr_t (*H5O_cmp_attr_data_cb_t)(H5O_cmp_index_t index, H5_cmp_status_t status, H5O_cmp_data_values_t *values, void *udata)

The parameters have the following values or meanings:

index
· A union type, H5O_cmp_index_t is defined previously.
· Indicates which attribute’s data is being compared:
· When compared according to names, name is valid and is the attribute’s name.
· When compared according to creation order, corder is valid and is the attribute’s creation order.
status
· An enumerated type, H5_cmp_status_t is described previously.
· Reports the result of the comparison.
values
· A structure, H5O_cmp_data_values_t is described previously.
· Reports the differences found for the raw data values.
udata
· Equals to the udata field in the parameter cb_info that is passed to H5Ocompare.
· Used to share any application-defined data between the application and the callbacks.
New public function for comparing file metadata
Name:
H5Fcompare_md
Signature:
htri_t H5Fcompare_md (hid_t loc1_id, hid_t loc2_id, hid_t cmppl_id, H5F_cmp_file_md_cb_t *file_md, void *udata)
Purpose:
Compare file metadata of two files.
Description:
H5Fcompare_md compares file metadata of the file specified by loc1_id with the file metadata of the file specified by loc2_id. File metadata is information the library uses to describe the HDF5 file and to identify its associated objects.

The parameter cmppl_id is the comparison property list (and is currently unused).

Differences in the metadata are reported via the callback function, file_md. This is passed in as a parameter to this routine and is described below. The parameter udata points to user data and is passed as a parameter to the callback function.

Parameters:
	hid_t loc1_id
hid_t loc2_id
hid_t cmppl_id
H5F_cmp_file_md_cb_t *file_md
void *udata
	IN: Location identifier of the first file to be compared
IN: Location identifier of the second file to be compared
IN: The comparison property list
IN/OUT: A callback function
IN/OUT: Pointer to user data

	
	

Returns:
The return value indicates the result of the comparison:
· True (1) if all the metadata of the two files are equivalent (strict or loose)
· False (0) if one or more of the metadata are not equivalent (strict or loose)
· Negative value if there is error
Callback function: file_md
herr_t (*H5F_cmp_file_md_cb_t)(H5_cmp_status_t status, H5F_cmp_file_md_type_t type, H5F_cmp_file_md_values_t *values, void *udata)

The callback function is called repeatedly for each difference found while comparing the two file’s metadata. The return values from the callback are the same as described previously in H5Ocompare.
The parameters of this callback function have the following values or meanings:

status
· An enumerated type, H5_cmp_status_t is described previously in H5Ocompare.
· Reports the result of the comparison for type.
type
· An enumerated type, H5F_cmp_file_md_type_t is defined below.
· Reports the type of difference found.
values
· A union type, H5F_cmp_file_md_values_t is defined below.
· Reports the values of the difference found for type.
· A union of structures with each struct corresponds to each value defined for type. There are two fields of the same datatype in each structure. If status is H5_STATUS_EXIST_ONLY_O1, the value of the second field in the structure is undefined. Likewise, if status is H5_STATUS_EXIST_ONLY_O2, the value of the first field in the structure is undefined.
udata
· Equals to the udata field in the parameter cb_info that is passed to H5Fcompare_md.
· Used to share any application-defined data between the application and the callbacks.
H5F_cmp_file_md_type_t
	H5F_FILE_MD_USERBLOCK_SIZE
	Size of the user block (set with H5Pset_userblock)

	H5F_FILE_MD_SIZEOF_ADDR	
	Size of addresses stored in the file (H5Pset_sizes)

	H5F_FILE_MD_SIZEOF_SIZE
	Size of lengths stored in the file (H5Pset_sizes)

	H5F_FILE_MD_SYM_IK
	“K” value of group B-tree internal nodes (H5Pset_sym_k)

	H5F_FILE_MD_SYM_LK
	“K” value of group B-tree leaf nodes (set with H5Pset_sym_k)

	H5F_FILE_MD_ISTORE_K
	“K” value of data chunk B-trees (H5Pset_istore_k)

	H5F_FILE_MD_SHARED_MESG_INDEXES
	Number and type of shared message indexes (set with H5Pset_shared_mesg_nindexes, H5Pset_shared_mesg_index)

	H5F_FILE_MD_SHARED_MESG_MAX_LIST
	Maximum number of shared messages to store in a list (set with H5Pset_shared_mesg_phase_change)

	H5F_FILE_MD_SHARED_MESG_MIN_BTREE
	Minimum number of shared messages to store in a B-tree (set with H5Pset_shared_mesg_phase_change)

H5F_cmp_file_md_values_t
typedef union H5F_cmp_file_md_values_t {
		struct {
			haddr_t val1;
			haddr_t val2;
		} userblock_size;
		struct {
			unsigned val1;
			unsigned val2;
		} sizeof_addr;
		struct {
			unsigned val1;
			unsigned val2;
		} sizeof_size;
		struct {
			unsigned val1;
			unsigned val2;
		} sym_ik;
		struct {
			unsigned val1;
			unsigned val2;
		} sym_lk;
		struct {
			unsigned val1;
			unsigned val2;
		} istore_k;
 		struct {
			struct {
				unsigned val1;
				unsigned val2;
			} nindexes;
			struct {
				H5F_cmp_shared_mesg_index_t1 val1;
				H5F_cmp_shared_mesg_index_t val2;
			} indexes;
		} shared_mesg_indexes2;
		struct {
			unsigned val1;
			unsigned val2;
		} shared_mesg_max_list;
		struct {
			unsigned val1;
			unsigned val2;
		} shared_mesg_min_btree;
} H5F_cmp_file_md_values_t;

1The structure H5F_cmp_shared_mesg_index_t is defined below.
2The values stored in the field shared_mesg_indexes.nindexes determine the length of the arrays pointed to by shared_mesg_indexes.indexes.
H5F_cmp_shared_mesg_index_t
typedef struct H5F_cmp_shared_mesg_index_t {
 		unsigned mesg_type_flags;
 		unsigned min_mesg_size;
} H5F_cmp_shared_mesg_index_t;
New public functions for handling comparison properties
There will be a new property list class (H5P_OBJ_COMPARE) for comparing objects. Two new public functions are available to set and get the properties in the comparison property list when comparing objects.
H5Pset_compare
Name:
H5Pset_compare
Signature:
herr_t H5Pset_compare (hid_t cmppl_id, H5_flags_t compare_options)
Purpose:
Set properties to be used when comparing two objects.
Description:
H5Pset_compare sets properties in the comparison property list cmppl_id that will be invoked when comparing two objects.

cmppl_id is the comparison property list and specifies the properties governing the comparison of two objects.

The parameter compare_options is of type H5_flags_t, which is defined as:
 		typedef uint32_t H5_flags_t

The following flags are available for inclusion in the comparison property list and they can be set in compare_options:

When comparing objects or links:

H5O_COMPARE_SKIP_CRT_PROP
Do not compare creation properties of groups, datasets, attributes or links
H5O_COMPARE_SKIP_ATTRS
Do not compare attributes attached to objects (groups, datasets, named datatypes)

When comparing links in groups:

H5O_COMPARE_SKIP_UNIQUE_LINKS
Do not report unique links (links that exist only in one of the groups)
H5O_COMPARE_SKIP_COMMON_LINKS
Do not compare links with names or creation order common in both groups
H5O_COMPARE_LINKS_CRT_ORDER
Compare links according to creation order
H5O_COMPARE_SKIP_LINK_TYPE
Do not compare link type
H5O_COMPARE_SKIP_LINK_VALUE
Do not compare link value for symbolic links

When comparing attributes attached to objects (groups, datasets, named datatypes):

H5O_COMPARE_SKIP_UNIQUE_ATTRS
Do not report unique attributes (attributes that exist only in one of the objects)
H5O_COMPARE_SKIP_COMMON_ATTRS
Do not compare common attributes (attributes with names common in both objects)
H5O_COMPARE_ATTRS_CRT_ORDER
Compare attributes according to creation order

When comparing data values:

H5O_COMPARE_VALUES_SAME_DTYPES
Compare data values only if the datatypes are the same class and same types within the class
H5O_COMPARE_VALUES_SAME_DSPACES
Compare data values only if the datatypes and dataspaces are the same
H5O_COMPARE_SKIP_NAN
Do not compare Not-a-Number

When comparing dataspaces:

H5O_COMPARE_SKIP_DSPACE_MAX_DIM
Do not compare the maximum dimension sizes of dataspaces

Parameters:
	hid_t loc1_id
H5_flags_t compare_options
	IN: Location identifier of the first file to be compared
IN: Flag(s) to be set for comparison

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
H5Pget_compare
Name:
H5Pget_compare
Signature:
herr_t H5Pget_compare (hid_t cmppl_id, H5_flags_t *compare_options)
Purpose:
Retrieves properties to be used when comparing two objects.
Description:
H5Pget_compare retrieves the properties currently specified in the comparison property list cmppl_id, which will be invoked when comparing two objects.

compare_options is a bit map indicating the flags or properties governing the comparison of two objects that are set in the comparison property list cmppl_id.
Parameters:
	hid_t loc1_id
H5_flags_t *compare_options
	IN: Location identifier of the first file to be compared
OUT: Flag(s) set in the comparison property list

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.

New public functions for handling floating-point epsilon value
Two new public routines are available to set and get the epsilon value (precision limit) in the comparison property list when comparing floating-point data values. The default to use will be the epsilon values defined by the system, FLT_EPSILON, DBL_EPSILON, and LDBL_EPSILON. If the system epsilon values are not defined, use constants that are close to most epsilon values as:
#define FLT_EPSILON 1.19209E-07
#define DBL_EPSILON 2.22045E-16
#define LDBL_EPSILON 1.0842E-19
H5Pset_compare_epsilon
Name:
H5Pset_compare_epsilon
Signature:
herr_t H5Pset_compare_epsilon (hid_t cmppl_id, H5_cmp_epsilon_t epsilon)
Purpose:
Set the epsilon value to be used when comparing two objects’ floating-point data values.
Description:
H5Pset_compare_epsilon sets the precision limits, epsilon, in the comparison property list cmppl_id that will be used when comparing floating-point data values.
Parameters:
	hid_t loc1_id
H5_cmp_epsilon_t epsilon
	IN: Location identifier of the first file to be compared
IN: The epsilon value to be set

H5_cmp_epsilon_t is defined as:

typedef union H5_cmp_epsilon_t {
 float f_epsilon; /* float */
 double d_epsilon; /* double */
 long double l_epsilon; /* long double */
} H5_cmp_epsilon_t;

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
H5Pget_compare_epsilon
Name:
H5Pget_compare_epsilon
Signature:
herr_t H5Pget_compare_epsilon (hid_t cmppl_id, H5_cmp_epsilon_t *epsilon)
Purpose:
Retrieves the epsilon value used when comparing two objects’ floating-point data values.
Description:
H5Pget_compare_epsilon retrieves the epsilon values currently specified in the comparison property list cmppl_id when comparing two objects’ floating-point data values.
Parameters:
	hid_t loc1_id
H5_cmp_epsilon_t *epsilon
	IN: Location identifier of the first file to be compared
OUT: The epsilon that is set in the comparison property list

Returns:
Returns a non-negative value if successful; otherwise returns a negative value.
Examples
This section presents a few examples to help you understand how the H5Ocompare() function can be used for different purposes.

NOTE: These examples are out of date and will be revised to reflect API above – please ignore them for now!

Example 1: Check File Metadata
In this example, we will compare the differences in the file metadata for two files and print the results to the standard output stream, stdout.
Step 1: implement the callback function for reporting results, H5O_cmp_file_md_cb_t,
 (
herr_t

compare_file_superblock_cb (H5O_cmp_file_md_type_t type, H5O_cmp_status_t status, const H5O_cmp_file_md_info_t *cmp_info, UNUSED void *udata)
{
 if (status == H5O_STATUS_UNEQUAL && cmp_info)
 {
 printf("\n");
 switch (type) {
 case H5O_FILE_MD_SUPERBLOCK_VERSION:
 printf("Superblock version (file1, file2): \t%d\t\%d\n",
 cmp_info->superblock_version.o1, cmp_info->superblock_version.o2);
 break;
 case H5O_FILE_MD_SIZEOF_ADDR:
 printf("Size of addresses(file1, file2):: \t%d\t%d\n",
 cmp_info->sizeof_addr.o1, cmp_info->sizeof_addr.o2);
 break;
 case H5O_FILE_MD_SIZEOF_SIZE:
 printf("Size of lengths(file1, file2): \t%d\t%d\n",
 cmp_info->sizeof_size.o1, cmp_info->sizeof_size.o2);
 break;
 case H5O_FILE_MD_ISTORE_K:
 printf("\"K\" value of data chunk b-trees in file one: \t%d\t%d\n",
 cmp_info->istore_k.o1, cmp_info->istore_ke.o2);
 break;
 case H5O_FILE_MD_SYM_IK:
 printf(""\"K\" value of group b-tree internal nodes (file1, file2): \t%d\t%d\n",
 cmp_info->sym_ik.o1, cmp_info->sym_ik.o2);
 break;
 case H5O_FILE_MD_SYM_LK:
 printf("\"K\" value of group b-tree leaf nodes (file1, file2): \t%d\t%d\n",
 cmp_info->sym_ik.o1, cmp_info->sym_ik.o2);
 break;
 case H5O_FILE_MD_USERBLOCK_SIZE:
 printf("Size of the user block(file1, file2): \t%d\t%d\n",
 cmp_info->userblock_size.o1, cmp_info->userblock_size.o2);
 break;
)
 (
 case H5O_FILE_MD_SHARED_MESG_INDEXES:
 printf("Number of shared messages(file1, file2): \t%d\t%d\n",
 cmp_info->shared_mesg_indexes.nindexes.o1, cmp_info->shared_mesg_indexes.nindexes.o2);
 printf("Shared message indexes in file1 (mesg type, mesg size): ");
 for (i=0; i<cmp_info->shared_mesg_indexes.nindexes.o1; i++)
 prinft("(%d, %d), ", cmp_info->shared_mesg_indexes.indexes[i].o1.mesg_type_flags,
 cmp_info->shared_mesg_indexes.indexes[i].o1.min_mesg_size);

 printf("Shared message indexes in file2 (mesg type, mesg size): ");
 for (i=0; i<cmp_info->shared_mesg_indexes.nindexes.o2; i++)
 prinft("(%d, %d), ", cmp_info->shared_mesg_indexes.indexes[i].o2.mesg_type_flags,
 cmp_info->shared_mesg_indexes.indexes[i].o2.min_mesg_size);
 break;
 case H5O_FILE_MD_SHARED_MESG_MAX_LIST:
 printf("Maximum number of shared messages to store in a list(file1, file2): \t%d\t%d\n",
 cmp_info->shared_mesg_max_list.o1, cmp_info->shared_mesg_max_list.o2);
 break;
 case H5O_FILE_MD_SHARED_MESG_MIN_BTREE:
 printf("Minimum number of shared messages to store in a b-tree(file1, file2): \t%d\t%d\n",
 cmp_info->shared_mesg_min_btree.o1, cmp_info->shared_mesg_min_btree.o2);
 break;

}

}
 return SUCCEED;
}
)
Step2: call H5Compare() to check the file metadata
 (
#include "hdf5.h"
/* usage: PROG_NAME src_file src_obj dst_file */
int main(int argc, char *argv[]) {
 hid_t file1=-1, file2=-1;
 H5O_cmp_cb_t cb_info;
 if (argc < 3) {
 puts("USAGE: PROG_NAME file1 file2\n");
 return 1;
 }
 file1 = H5Fopen(argv[1], H5F_ACC_RDONLY, H5P_DEFAULT);
 file2 = H5Fopen(argv[2], H5F_ACC_RDONLY, H5P_DEFAULT);;
 memset(&cb_info, 0, sizeof(
H5O_cmp_cb_t
);
 file_md.file_md =
compare_file_superblock_cb
;
 H5Ocompare(fil
e
1, ".", file2, ".", H5P_DEFAULT, &cb_info)
 H5Fclose(file1);
 H5Fclose(file2);
 return 0;
}
)

Example 2: Check Data Values of Two Datasets
This example shows how to compare the values of two datasets. Instead of printing the results, the callback function returns the differences of the dataset values to the caller.

Step 1: implement the callback function
 (
typedef struct compare_dset_cb_info_t {

size_t
 buf_size[2]; /* buf_size[0]=original buf size, buf_size[1]=actual buf size */
 hsize_t *offset_dset1; /* OUT */
 void

 value_dset1; / OUT */
 hsize_t *offset_dset2; /* OUT */
 void

 value_dset2; / OUT */
} compare_dset_cb_info_t;
herr_t compare_dset_data_cb (char *name, H5O_cmp_status_t status,
 const H5O_cmp_dset_data_info_t *cmp_info, void *udata)
{
 compare_dset_cb_info_t *info = (compare_dset_cb_info_t *)udata;

 if (status == H5O_STATUS_UNEQUAL && cmp_info)
 {
 info->buf_size[1] = cmp_info->ndiffs;
 if (info->buf_size[0]<cmp_info->ndiffs) {
 offset_dset1 = (hsize_t*) realloc (offset_dset1, cmp_info->ndiffs * sizeof(hsize_t));
 offset_dset2 = (hsize_t*) realloc (offset_dset2, cmp_info->ndiffs * sizeof(hsize_t));
 value_dset1 = realloc (value_dset1, cmp_info->ndiffs * H5Tget_size(cmp_info->dtype.o1));
 value_dset2 = realloc (value_dset2, cmp_info->ndiffs * H5Tget_size(cmp_info->dtype.o2));
 }
 memcpy(offset_dset1, info->diff->o1.offset, cmp_info->ndiffs * sizeof(hsize_t));
 memcpy(offset_dset2, info->diff->o2.offset, cmp_info->ndiffs * sizeof(hsize_t));
 memcpy(value_dset1, info->diff->o1.value, cmp_info->ndiffs * H5Tget_size(cmp_info->dtype.o1));
 memcpy(value_dset2, info->diff->o2.value, cmp_info->ndiffs * H5Tget_size(cmp_info->dtype.o2));
 }
 return
SUCCEED
;
}
;
)

Step2: call the H5Ocompare() to get the differences of the values
 (
#include "hdf5.h"
/* usage: PROG_NAME src_file dst_file src_obj
dst_obj
*/
int main(int argc, char *argv[]) {
 hid_t file1=-1, file2=-1, did=-1;
 H5O_cmp_cb_t cb_info;
 compare_dset_cb_info_t udata;
 if (argc < 5) {
 puts("USAGE: PROG_NAME file1 file2 dset1 dset2\n");
 return -1;
 }
 file1 = H5Fopen(argv[1], H5F_ACC_RDONLY, H5P_DEFAULT);
 file2 = H5Fopen(argv[2], H5F_ACC_RDONLY, H5P_DEFAULT);
 /* set up the user data that is passed to the callback */
 udata.buf_size[0] = 10;
 offset_dset1 = (hsize_t *)calloc(udata.buf_size[0], sizeof(hsize_t));
 offset_dset2 = (hsize_t *)calloc(udata.buf_size[0], sizeof(hsize_t));
 did = H5Dopen2(file1, argv[3], H5P_DEFAULT);
 tid = H5Dget_type(did);
 value_dset1 = calloc(udata.buf_size[0], H5Tget_size(tid)));
 H5Tclose(tid);
 H5Dclose(did);

did = H5Dopen2(file1, argv[4], H5P_DEFAULT);
 tid = H5Dget_type(did);
 value_dset2 = calloc(udata.buf_size[0], H5Tget_size(tid)));
 H5Tclose(tid);
 H5Dclose(did);

 memset(&cb_info, 0, sizeof(H5O_cmp_cb_t);
 cb_info.dset_data = compare_dset_data_cb;
 cb_info.udata = &udata;
 /* call H5Ocompare() to check the data values */
 H5Ocompare(fil1, argv[3], file2, argv[4], H5P_DEFAULT, &cb_info)
 H5Fclose(file1);
 H5Fclose(file2);
 if (udata.buf_size[1] == 0)
 puts("No difference in data values.");
 else {
 /* do something with the results */
 }
….
 return 0;
}
)

Revision History
	January 12, 2011:
	Version 1 circulated for comment within The HDF Group.

	January 20, 2011:
	Version 2 revised with Quincey’s and Neil’s feedback.

	February 4, 2011:
	Version 3 added more details on how to compare objects.

	March 16, 2011:
	Version 4 added details for H5Ocompare() function and examples.

	January 18, 2012:
	Version 5 completely revised, removing recursive operation and revamping interface.

	Future Extensions
	

· Allow user to specify the maximum number of differences reported per dataset when comparing its data values. By default, all the differences will be reported.
· Allow user to specify the maximum number of differences reported per callback.
· Options may be added in the future to strengthen compatibility requirements for datatypes (for example to require all fields in a compound be present in both datatypes) or relax compatibility requirements for dataspaces (for example to allow comparison as long as the total number of elements is the same).
· Public routines H5Tcompare and H5Scompare for users to compare datatypes and dataspaces.

Page 1 of 1
Page 25 of 25
image1.jpeg
A

The HDF Group

