September 29, 2009		RFC THG 2009-09-01.v3
September 29, 2009		RFC THG 2009-09-01.v3
Support HDF5 1.8 in the HDF-Java Products
Peter Cao
xcao@hdfgroup.org
The HDF Group

HDF5 1.8 includes a number of new features that offer many users of HDF5 substantial performance improvements and expanded capabilities. Many of these features can only be accessed via revised API calls. To support these new APIs and new features in the HDF-Java products, we need make changes to the current the HDF-Java products. The changes may affect applications that use the HDF-Java products, especially the HDF5 Java wrapper.
This document discusses what work is needed to support HDF5 1.8 in the HDF-Java products and how the work is done. This document includes the following sections:
· Changes and updates to the HDF5 JNI.
· Stages of supporting HF5 1.8 in all the HDF-Java products.
The main work discussed in the RFC is the changes and updates to JHI5 for supporting the new APIs added HDF5 1.8 library. Changes will also be made to the package names and class structure. Although the changes of the package names and structure are not related to supporting HDF5 1.8 features, they will affect applications that use the HDF-Java products. We are looking for your input. Please send your concerns and suggestions to Peter Cao at xcao@hdfgroup.org.

Table of Contents
1	Introduction	3
2	Java HDF5 Interface (JHI5)	3
2.1	Work for fully supporting HDF5 1.8 in JHI5	4
2.2	API compatibility between HDF5 1.6 and HDF5 1.8	5
2.3	Change of package names	7
2.3.1	The changes	7
2.3.2	The impact	7
2.3.3	The solution	8
2.4	Package and class structure for HDF5 JNI	8
2.4.1	Stay with the current class structure	8
2.4.2	Use a new class structure	8
3	Stages of development for supporting HDF5 1.8 in the HDF-Java	9
3.1	Stage one: support of HDF5 1.8 with HDF5 1.6 compatibility flag	10
3.2	Stage two: implement and test HDF5 1.8 JNI APIs	10
3.3	Stage three: using new APIs in the object package	11
3.4	Stage four: support new features in HDFView	11
Revision History	12
Appendix A – Prioritized List of new APIs	13

[bookmark: _Toc243218041]Introduction
HDF5 1.8 represents a major update to the HDF5 Library, utilities, and file format. The changes introduced in HDF5 1.8 provide new capabilities and improve performance.
The current HDF-Java does not support the new APIs (150+) added to the HDF5 1.8 library. Since the first release of HDF5 1.8 (version 1.8.0) in February 2008, HDF5 1.8 has been adopted by many users because of its new features. There is great demand for full support of HDF5 1.8 in the HDF-Java products. This RFC presents the approaches and the work for supporting HDF5 1.8 in HDF-Java.
There are three distinct HDF5 Java Products:
· Java HDF5 Interface (JHI5): the Java Native Interface to the standard HDF5 library.
· Java HDF Object Package: a Java package that implements HDF data objects in an object-oriented form.
· HDFView: a visual tool for browsing and editing HDF4 and HDF5 files.
HDFView is built on the Java HDF Object Package, which in turn is built on the Java HDF5 Interface. Modifications will be needed in all three products to support HDF5 1.8 features. The necessary changes are well understood for JHI5, as it most closely reflects the public HDF5 C library API. This RFC will mainly focus on the update of JHI5.
The Object Package and HDFView, which also work with HDF4, require more careful design and consideration. The design for supporting HDF5 1.8 with these products has not yet been done, and therefore it is impossible to estimate the level of effort to fully support HDF5 1.8 features at this time. The agile development approach will be more efficient for supporting HDF5 1.8 features in the Java HDF Object Package and HDFView.
[bookmark: _Toc243218042]Java HDF5 Interface (JHI5)
The HDF5 JNI (Java Native Interface) includes two parts: the Java code and the native code.
· The Java code or the Java wrapper class (H5.java) is a list of Java native methods that are one-to-one mapping to the HDF5 APIs. For example, H5.H5Dopen() is the Java method to call the HDF5 library API, H5Dopen(hid_t loc_id, const char *name). The “native” is a Java keyword to mark that this method is implemented in a language other than Java, in JHI5, it is C. Below is an example of Java wrapper methods.
 (
public class H5 {
…
 public static
native
 int H5Dopen(int loc_id, String name)
 throws HDF5LibraryException, NullPointerException;
…
}
)
· The native code is the C implementation for the Java wrapper method. For example, the C native implementation for H5.H5Open() looks like the following:
 (
JNIEXPORT jint JNICALL Java_ncsa_hdf_hdf5lib_H5_H5Dopen
 (JNIEnv *env, jclass clss, jint loc_id, jstring name)
{
 ...
 status = H5Dopen((hid_t)loc_id, file);
...
}
)
The C native implementation is invisible to Java applications and should not be directly used. Java applications must use the Java wrapper to call HDF5 library.
Changes in the HDF5 JNI will include:
· Changes for some of the HDF5 Java wrapper methods for the compatibility between HDF5 1.6 and HDF5 1.8.
· New APIs added to JHI5 to support HDF5 1.8 library.
· Changes of the package names.
· Changes of the class structure of the HDF5 JNI.
Changing package names and class structures is not related to supporting new features of HDF5 1.8. It should not hold back the work for JHI5.
[bookmark: _Toc243218043]Work for fully supporting HDF5 1.8 in JHI5
The current release of JHI5, based on HDF5 1.6, implements 237 functions. There are 64 functions in the public HDF5 1.6 C library API that are not available in the current JHI5. Among the 64 function, some have function pointers or complex C data structure, which cannot be supported from Java directly. Some of the functions are not important to general users, such as certain functions of property list. In HDF5 1.8, there are 19 API compatibility macros with associated renamed and new Functions. Eleven of those functions are available in the current JHI5, and would need to be updated. One hundred and sixty nine additional functions were introduced in the HDF5 1.8 C library API.

Table 1 -- Status and priorities of JHI5
	
	HDF5 1.6 C API
Public functions
	JHI5 API
Implemented
	HDF5 1.8 C API
 Renamed functions
	HDF5 1.8 C API
new functions

	No. of APIs
	304
	237
	19
	169

	Priority
	Low priority for the 64 functions that are currently not implemented in JHI5.
	Continue to support.
	Highest priority to all the 11 implemented functions.
	See the table below.

	Testing
	N/A
	Stay as they are. Add unit tests in the future.
	Unit tests for all the 11 implemented functions.
	Unit tests for the functions added to JHI5.

There are 169 new APIs added to HDF5 1.8. The new APIs are not equally important. We recommend a staged approach to make the HDF5 1.8 features available in JHI5. For details of the changes of APIs, please visit http://www.hdfgroup.org/HDF5/doc/ADGuide/Changes.html.
Table 2 shows the priorities of the new APIs. Appendix A presents a detailed list. The priority in the table is our first assessment and subject to change based on input. The priorities are defined as follow:
· High priority: 	new features or improvements, which are critical to general users. These APIs will be added to JHI5 and fully tested first.
· Medium priority: new features or improvements, which are useful but not critical to general users. These APIs will be implemented after we complete all the APIs with higher priority.
· Low priority:	These APIs have function pointer or complex data structure or they are not important to general users. These APIs will be added to JHI5 one by one as requested.
The complexity of each API is different. The effort for implementing and testing is different. Based on our first estimation, the average time for implementing and testing an API is about 3 hours.
Table 2 -- New APIs with proposed priorities
	Package
	Priority

	
	High
	Medium
	Low

	Attribute
	8
	3
	3

	Dataset
	5
	0
	0

	Dataspace
	0
	0
	3

	Datatype
	2
	2
	3

	Error
	0
	0
	18

	File
	2
	0
	5

	Group
	7
	0
	0

	Identifier
	2
	0
	11

	Link
	13
	3
	5

	Object
	8
	9
	0

	Property
	4
	29
	23

	Reference
	1
	0
	0

	Total no. of APIs
	52
	46
	71

	Total no. of hours
	153
	138
	213

[bookmark: _Toc243218044]API compatibility between HDF5 1.6 and HDF5 1.8
As part of HDF5 1.8.x release, twenty-three functions that existed in previous versions of the library were updated with new calling parameters and given new names. The updated versions of the functions have a "2" at the end of the original function name. The original versions of these functions were retained and renamed to have a "1" at the end of the original function name. For example,
· The 1.6 version: H5Dopen1(hid_t loc_id, const char *name)
· The 1.8 version: H5Dopen2(hid_t loc_id, const char *name, hid_t dapl_id)
To make the APIs compatible, the HDF5 1.8 library uses “API Compatibility Macros”, with the same names as the original function names. For information on “API Compatibility Macros”, see “API Compatibility Macros in HDF5“at http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html.
The issue of maintaining the two versions of the same functions exists in the HDF5 Java wrapper. Since Java supports overloading and variable arity, the problem can be easily handled..
The versions of APIs with different arguments be easily handled with a function overloading in Java. For example, H5Dopen1(…) and H5Dopen2(…) can be handled in a single function name.
· C functions:
· hid_t H5Dopen1(hid_t loc_id, const char *name)
· hid_t H5Dopen2(hid_t loc_id, const char *name, hid_t dapl_id)
· Java function:
· int H5Dopen(int loc_id, String name);
· int H5Dopen(int loc_id, String name, int dapl_id);
The implementation will include three functions:
· Two public function, used by applications.
· A private native function that calls the HDF5 1.8 API. This private function is used internally by the wrapper. The native function for HDF5 1.6 API is not needed since the 1.8 API always exists in the 1.8 library and includes all the functionality of the 1.6 library API.
The following code shows the implementation of H5Dopen(…) as an example. The private native function H5Dopen2(…) is linked to the 1.8 version API and called by the public function H5Dopen(…).
 (
public static int H5Dopen(int loc_id, String name)
 throws HDF5LibraryException, NullPointerException
 {
 return H5Dopen2(loc_id, name, H5Pconstant.H5P_DEFAULT);
 }
public static int H5Dopen(int loc_id, String name, int dapl_id)
 throws HDF5LibraryException, NullPointerException
 {
 return H5Dopen2(loc_id, name, dapl_id);
 }
// private function for internal use only.
private synchronized static native int H5Dopen2(int loc_id, String name, int dapl_id)
 throws HDF5LibraryException, NullPointerException;
)
Java applications do not need to know which version of the library APIs are used. The public functions will work for HDF5 1.6 API and 1.8 API. For example, current applications that use the 1.6 API, e.g. H5Dopen(loc_id, “/dset1”), will work under the new implementation. Applications that use the 1.8 APIs, e.g. H5Dopen(loc_id, “/dset1”, dapl_id) will also work under the new implementation. Both H5Dopen(loc_id, “/dset1”) and H5Dopen(loc_id, “/dset1”, dapl_id) are valid function calls for the Java wrapper.
[bookmark: _Toc243218045]Change of package names
Currently all package names start with “ncsa.hdf”. “ncsa” will be removed from the new package names. The package name “ncsa.hdf” was used because the HDF-Java products were initially developed at NCSA. The HDF-Java products are now owned and developed by The HDF Group. To avoid confusion, “ncsa” will be removed from the package names.
This change is not directly related to support of HDF5 1.8 features and is not limited to HDF5 Java products. The same name change will be applied to HDF4 Java products. Although this change is one related to any feature, it would be a reasonable time to update the package names with the changes required to support HDF5 1.8 features.
[bookmark: _Toc243218046]The changes
We propose three options for the package names:
· Option 1: no change, keep the current package names.
· Option 2: remove “ncsa” to use shorter package names.
· Option 3: use Sun’s Java naming conventions, which will be “org.hdfgroup.hdf”.
Table 3 shows the current package names and the proposed package names. The change will be applied to all of the HDF-Java products: the HDF4 Java wrapper, and the HDF5 Java wrapper, the HDF-Java object package, and HDFView.
Table 3 -- the HDF-Java product package names
	Option 1
	Option 2
	Option 3

	ncsa.hdf.hdf5lib
ncsa.hdf.hdf5lib.exceptions
ncsa.hdf.hdflib
ncsa.hdf.object
ncsa.hdf.object.h4
ncsa.hdf.object.h5
ncsa.hdf.view
	hdf.hdf5lib
hdf.hdf5lib.exceptions
hdf.hdflib
hdf.object
hdf.object.h4
hdf.object.h5
hdf.view
	org.hdfgroup.hdf5lib
org.hdfgroup.hdf5lib.exceptions
org.hdfgroup.hdflib
org.hdfgroup.object
org.hdfgroup.object.h4
org.hdfgroup.object.h5
org.hdfgroup.view

[bookmark: _Toc243218047]The impact
If we change the package names, the change will affect all applications that use the HDF-Java products, including,
· Applications that use HDF5 Java wrappers (H5.java).
· Applications that are built on the HDF-Java object package.
· HDFView plugins that are implementing the plugin interfaces.
The new name will cause compile errors, and possible runtime errors, to existing applications depending on how the HDF-Java classes are used.
· Compile errors: errors will be caught at compile time for any direct use of the HDF-Java classes, such as “import ncsa.hdf.object.*”.
· Runtime errors: errors will occur at runtime for dynamic loading that uses the HDF-Java classes. For example, Class.forName("ncsa.hdf.view.ViewManager”) will throw a ClassNotFoundException at run time.
[bookmark: _Toc243218048]The solution
Fixing the problem is straightforward, just changing the package names; however, it can be tedious. The HDF Group will provide scripts that go through application source code to change package names as listed in Table 3.
[bookmark: _Toc243218049]Package and class structure for HDF5 JNI
HDF5 1.8 added over 150 new functions (total over 400). To be able to use these new functions in HDF-Java, we need to add them to the HDF5 Java wrapper. We propose two options for packing the APIs: keep the current class structure or break it into smaller packages.
[bookmark: _Toc243218050]Stay with the current class structure
There are two main classes in the current HDF5 JNI package:
· hdf.hdf5lib.H5 -- This class contains all the HDF5 APIs.
· hdf.hdf5lib.HDF5Constants -- This class contains all HDF5 constants and enumerated types.
We will add the new APIs to the wrapper class, hdf.hdf5lib.H5, and the new constants to the constant class, hdf.hdf5lib.HDF5Constants. No additional classes will be created.
Pros: applications do not need any change except the package names as listed in Table 3.
Cons: maintaining all 400+ APIs in one class (hdf.hdf5lib.H5) can be a challenge.
[bookmark: _Toc243218051]Use a new class structure
Basically we divide the wrapper and constants into separate classes based on the C interface structure.
The wrapper package, hdf.h5, will include the following classes:
· hdf.h5.H5.java 	 -- Library Functions
· hdf.h5.H5A.java 	 -- Attribute Interface
· hdf.h5.H5D.java 	 -- Dataset Interface
· hdf.h5.H5E.java 	 -- Error Interface
· hdf.h5.H5F.java 	 -- File Interface
· hdf.h5.H5G.java 	 -- Group Interface
· hdf.h5.H5I.java 	 -- Identifier Interface
· hdf.h5.H5L.java 	 -- Link Interface
· hdf.h5.H5O.java 	 -- Object Interface
· hdf.h5.H5P.java 	 -- Property List Interface
· hdf.h5.H5R.java 	 -- Reference Interface
· hdf.h5.H5S.java 	 -- Dataspace Interface
· hdf.h5.H5T.java 	 -- Datatype Interface
· hdf.h5.H5Z.java 	 -- Compression Interface
The constants package, hdf.h5.constants, has a similar list of classes. The enums will be treated as constants.
· hdf.h5.constants.H5constants.java 	 -- Library constants
· hdf.h5.constants.H5Aconstants.java 	 -- Attribute constants
· hdf.h5.constants.H5Dconstants.java 	 -- Dataset constants
· hdf.h5.constants.H5Econstants.java 	 -- Error constants
· hdf.h5.constants.H5Fconstants.java 	 -- File constants
· hdf.h5.constants.H5Gconstants.java 	 -- Group constants
· hdf.h5.constants.H5Iconstants.java 	 -- Identifier constants
· hdf.h5.constants.H5Lconstants.java 	 -- Link constants
· hdf.h5.constants.H5Oconstants.java 	 -- Object constants
· hdf.h5.constants.H5Pconstants.java 	 -- Property List constants
· hdf.h5.constants.H5Rconstants.java 	 -- Reference constants
· hdf.h5.constants.H5Sconstants.java 	 -- Dataspace constants
· hdf.h5.constants.H5Tconstants.java 	 -- Datatype constants
· hdf.h5.constants.H5Zconstants.java 	 -- Compression constants
 In this new package structure, the C package name in the function name will be removed to avoid redundancy. For example, H5D.open(…) will be used instead of H5D.H5Dopen(…).
Pros: easier to maintain as APIs are divided into packages according to the library API structure.
Cons: all applications have to change to the new class names. For example, H5.H5Dopen(..) will be changed to H5D. open(…) since H5Dopen(..) will be moved to H5D class as H5D.open(…).
[bookmark: _Toc243218052]Stages of development for supporting HDF5 1.8 in the HDF-Java
There are four stages in order to fully support HF5 1.8 in the HDF-Java products:
· Support HDF5 1.8 with the HDF5 1.6 compatibility flag -- completed in the HDF-Java 2.5 release (February 2009).
· Implement HDF5 1.8 JNI APIs – the major work to be completed next.
· Use HDF5 1.8 APIs and features in the HDF-Java object package – needs more investigation.
· Support HDF5 1.8 features in HDFView – this needs more investigation.
[bookmark: _Toc243218053]Stage one: support of HDF5 1.8 with HDF5 1.6 compatibility flag
Stage one is to make the HDF-Java work on HDF5 1.8 library with HDF5 1.6 compatibility flag. This was done in the HDF-Java 2.5 release (February 2009).
Values of some constant variables are fixed at HDF5 1.6 but they are dynamically determined at HDF5 1.8 such as H5E_DATASET. This change does not affect C applications but it causes compile errors for the Java compiler. Some minor changes in the HDF5 JNI fixed the problem.
The HDF-Java version 2.5 takes advantage of many of the improvements introduced in HDF5 Release 1.8.0. However, since it relies on the 1.6 APIs, this version does not include the 150+ new APIs, and cannot use features that are only accessible via those APIs.
HDF5 files created with HDF5 1.8.x APIs can be opened, but some objects that use new file format features, such as external links, are accessible with the HDF-Java products. All files and objects written by version 2.5 of the HDF-Java products will be readable by applications linked with 1.6.x or 1.8.x versions of the HDF5 library. Please refer to the related HDF5 documentation for details:
· API Compatibility Macros in HDF5 (http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html)
[bookmark: _Toc243218054]Stage two: implement and test HDF5 1.8 JNI APIs
This task includes reorganizing the package structure, adding the 150+ new APIs to the Java wrapper, and implementing and testing the C JNI functions. The work will depend on the class structures as discussed in section 2.4.
· Option 1: stay with the current class structure.
· Option 2: use new class structure.
Table 4 -- Work for implementing HDF5 1.8 JNI APIs
	Task
	Option 1
	Option 2
	Status

	[bookmark: _Hlk239735281]Design and documentation
	Yes
	Yes
	Need feedback and revision

	Reorganizing the package
	No
	Yes
	

	Revise configuration file
	No
	Yes
	

	Revise make files
	No
	Yes
	

	Java wrapper
	Yes
	Yes
	Most of the work is done. Need revision based on the design.

	C JNI implementation
	Yes
	Yes
	 Some prototype work and research.

	Testing
	Yes
	Yes
	 Some prototype work and research.

Test driven development (TDD) will be used for implementing the new HDF5 1.8 JNI APIs. The implementation of each new APIs will follow the development circle below. Details will be discussed in a separate document, “Development Steps for Implementing HDF5 JNI”.
· Write tests for the API to be implemented.
· Check if all tests fail (all tests should fail).
· Write production code.
· Run all tests (all tests should succeed).
· Clean up and check in code.
Current HDF5 JNI APIs are not tested. We will not test all the current APIs at this stage for two reasons. First, testing all the current APIs is a lot of work and will delay the work for HDF5 1.8 support. Second, the current APIs have been used for many years and proved to be stable. However, we will all tests for all the APIs in the future.
[bookmark: _Toc243218055]Stage three: using new APIs in the object package
Some of the new functions in HDF5 1.8 can increase the performance of HDF-Java. For example, the new H5Ocopy() function in the HDF5 library has better performance than the current Java copy() function. Another example is to support external links. Further investigation is needed for what is needed to be done and the time estimation.
[bookmark: _Toc243218056]Stage four: support new features in HDFView
Below are some examples of the new features that may be added to HDFView. For details of the new features of HDF5 1.8, please refer to the related HDF5 documents at
· [bookmark: OLE_LINK4][bookmark: OLE_LINK5]What's New in HDF5 1.8.0 (http://www.hdfgroup.org/HDF5/doc/ADGuide/WhatsNew180.html)
· API Compatibility Macros in HDF5 (http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html)
· New Features in HDF5 Release 1.8.0 and Format Compatibility Considerations (http://www.hdfgroup.org/HDF5/doc/ADGuide/CompatFormat180.html)

Table 5 – Work for adding new features in HDFView
	Related Objects
	New Features

	
	Use latest format

	File
	Creation order

	Group
	External link

	
	Compact or indexed link

	
	NULL dataspace

	Dataset
	Faster access

	Attribute
	Creation order

	
	Shared

	
	Large attribute

[bookmark: _Toc243218057]Revision History
	September 01, 2009:
	Version 1 combined the original documents regarding HDF51.8 support in HDF-Java.

	September22 , 2009:
	Version 2 reorganized the structure and included editorial changes.

	September29 , 2009:
	Version 3 included changes based on feedback and input from the staff of The HDF Group.

	
	

	
	

	[bookmark: _Toc243218058]Appendix A – Prioritized List of new APIs
The table below shows a list of new APIs added to HDF5 1.8. The priority given in the table is our first assessment and is subject to change based on input.
The priorities are defined as follow:
· High priority: 	new features or improvements, which are critical to general users. These APIs will be added to JHI5 and fully tested first.
· Medium priority: new features or improvements, which are useful but not critical to general users. These APIs will be implemented after we complete all the APIs with higher priority.
· Low priority:	These APIs have function pointer or complex data structure or they are not important to general users. These APIs will be added to JHI5 one by one as requested.
For details of the APIs, please see the “HDF5: API Specification Reference Manual” at http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html.

	

	High
	Medium
	Low

	H5Acreate2
	H5Adelete_by_idx
	H5Aget_create_plist

	H5Aget_info
	H5Adelete_by_name
	H5Aiterate_by_name

	H5Aget_info_by_idx
	H5Aget_storage_size
	H5Aiterate2

	H5Aget_info_by_name
	H5Lcreate_ud
	H5Eauto_is_v2

	H5Aget_name_by_idx
	H5Lvisit
	H5Eclear2

	H5Aopen
	H5Lvisit_by_name
	H5Eclose_msg

	H5Aopen_by_idx
	H5Odecr_refcount
	H5Eclose_stack

	H5Arename_by_name
	H5Oget_comment
	H5Ecreate_msg

	H5Dcreate_anon
	H5Oget_comment_by_name
	H5Eget_auto2

	H5Dcreate2
	H5Oincr_refcount
	H5Eget_class_name

	H5Dget_access_plist
	H5Oopen_by_addr
	H5Eget_current_stack

	H5Dopen2
	H5Oset_comment
	H5Eget_msg

	H5Dset_extent
	H5Oset_comment_by_name
	H5Eget_num

	H5Fget_info
	H5Ovisit
	H5Epop

	H5Fget_intent
	H5Ovisit_by_name
	H5Eprint2

	H5Gcreate_anon
	H5Pget_attr_creation_order
	H5Epush2

	H5Gcreate2
	H5Pget_attr_phase_change
	H5Eregister_class

	H5Gget_create_plist
	H5Pget_copy_object
	H5Eset_auto2

	H5Gget_info
	H5Pget_create_intermediate_group
	H5Eset_current_stack

	H5Gget_info_by_idx
	H5Pget_data_transform
	H5Eunregister_class

	H5Gget_info_by_name
	H5Pget_elink_acc_flags
	H5Ewalk2

	H5Gopen2
	H5Pget_link_creation_order
	H5Fget_mdc_config

	H5Iget_type_ref
	H5Pget_link_phase_change
	H5Fget_mdc_hit_rate

	H5Inmembers
	H5Pget_local_heap_size_hint
	H5Fget_mdc_size

	H5Lcopy
	H5Pget_shared_mesg_index
	H5Freset_mdc_hit_rate_stats

	H5Lcreate_external
	H5Pget_shared_mesg_nindexes
	H5Fset_mdc_config

	H5Lcreate_hard
	H5Pget_shared_mesg_phase_change
	H5Iclear_type

	H5Lcreate_soft
	H5Pset_copy_object
	H5Idec_type_ref

	H5Ldelete
	H5Pset_create_intermediate_group
	H5Idestroy_type

	H5Ldelete_by_idx
	H5Pset_data_transform
	H5Iinc_type_ref

	H5Lexists
	H5Pset_elink_acc_flags
	H5Iis_valid

	H5Lget_info
	H5Pset_elink_cb
	H5Iobject_verify

	H5Lget_info_by_idx
	H5Pset_elink_fapl
	H5Iregister

	H5Lget_name_by_idx
	H5Pset_elink_prefix
	H5Iregister_type

	H5Lget_val
	H5Pset_est_link_info
	H5Iremove_verify

	H5Lget_val_by_idx
	H5Pset_fapl_direct
	H5Isearch

	H5Lmove
	H5Pset_link_phase_change
	H5Itype_exists

	H5Oclose
	H5Pset_local_heap_size_hint
	H5Lis_registered

	H5Ocopy
	H5Pset_nbit
	H5Literate

	H5Oget_info
	H5Pset_nlinks
	H5Lregister

	H5Oget_info_by_idx
	H5Pset_scaleoffset
	H5Lunpack_elink_val

	H5Oget_info_by_name
	H5Pset_shared_mesg_index
	H5Lunregister

	H5Olink
	H5Pset_shared_mesg_nindexes
	H5Pget_char_encoding

	H5Oopen
	H5Pset_shared_mesg_phase_change
	H5Pget_chunk_cache

	H5Oopen_by_idx
	H5Tcommit_anon
	H5Pget_elink_cb

	H5Pget_libver_bounds
	H5Tget_create_plist
	H5Pget_elink_fapl

	H5Pget_nlinks
	
	H5Pget_elink_prefix

	H5Pset_libver_bounds
	
	H5Pget_est_link_info

	H5Pset_link_creation_order
	
	H5Pget_fapl_direct

	H5Rget_name
	
	H5Pget_filter_by_id2

	H5Tcommit2
	
	H5Pget_filter2

	H5Topen2
	
	H5Pget_mdc_config

	
	
	H5Pget_type_conv_cb

	
	
	H5Pinsert2

	
	
	H5Pregister2

	
	
	H5Pset_attr_creation_order

	
	
	H5Pset_attr_phase_change

	
	
	H5Pset_char_encoding

	
	
	H5Pset_chunk_cache

	
	
	H5Pset_dxpl_mpio_chunk_opt

	
	
	H5Pset_dxpl_mpio_chunk_opt_num

	
	
	H5Pset_dxpl_mpio_chunk_opt_ratio

	
	
	H5Pset_dxpl_mpio_collective_opt

	
	
	H5Pset_mdc_config

	
	
	H5Pset_type_conv_cb

	
	
	H5Sdecode

	
	
	H5Sencode

	
	
	H5Sextent_equal

	
	
	H5Tcompiler_conv

	
	
	H5Tdecode

	
	
	H5Tencode

Page 1 of 15
Page 2 of 15
image1.jpeg
A

The HDF Group

