December 17, 2010

RFC THG 2010-08-4.v3

RFC: Automated Testing for HDFView

Peter Cao

Allen Byrne

This document recommends a GUI testing framework, FEST Swing, for automated testing for HDFView. This document summaries the study we have done for the automated testing and estimates the work that needs to be done.

1 Introduction

The HDF libraries have a large collection of unit tests that assure confidence in their use. HDFJava libraries also have a large collection of unit tests that test the JNI interface and object libraries. These unit tests can be automatically executed during daily test jobs, and the results verified as correct.

However the HDFView program has only used a manual checklist (Appendix A: HDFView Test Checklist) to perform an acceptance test, usually before a release. There are tools which can automate not only the acceptance test, but also provide unit testing of HDFView's visual components and interactions.

A search of active open source gui unit testing frameworks indicated that the FEST framework would be well suited to test the HDFView program because of the current use of the JUnit4 framework in the JNI unit tests. Article references to the FEST framework has been found at a number of reputable sites (e.g. IBM Developer Works, IEEE Explore). It is actively being developed and expanded. There were a few others considered, which further research indicated they did not have the same level of active support. For details, visit the FEST site: http://fest.easytesting.org/swing/wiki/pmwiki.php (see Publications link) and IBM DW site: http://www.ibm.com/developerworks/java/library/j-swingtest/.

The FEST framework looks promising for our purpose. We have tested it with a simple case, checking the “HDF4” and “HDF5” library versions and more complicated cases, creating a new file and a new dataset. The framework does not require comprehensive changes to the current code. As the result of our initial study on FEST, we are presenting this RFC for more inputs before we go for the full implementation of the automated testing.

2 GUI Testing Approaches

There are two methods for testing a JAVA visual program, record/playback tools and unit testing frameworks. The record/playback tools are typically classified as "black box" testing. Record/playback tools record a user performing actions following a checklist of acceptance tests. The unit testing frameworks are "white box" testing because they require knowledge of how the visual components are constructed.

Both methods are useful test techniques and are usually complementary tools. The record/playback tools are best used by a person performing acceptance testing, while unit testing is better suited to unattended automated testing.

2.1 Record/playback

Acceptance tests, using the record/playback technique, allow a tester to execute a number of prerecorded scripts that exercise the program under test and verify that the expected results occur. A developer would record the scripts by starting the application and performing a sequence of steps that correspond to a previously developed scenario. The developer should document the expected states of each scenario, such that the testers can verify that the results they see match what is expected.

The typical record/playback tool is dependent upon the positioning of the screen elements being constant. If a button or dialog box is moved or replaced, the playback script would fail and require that this script and possibly others be rerecorded.

2.2 Unit testing

Swing is one of the more powerful GUI toolkits available; it's extensible, configurable, and cross-platform. But Swing's flexibility is both its major strength and a great weakness. With Swing, you can construct the same UI in many different ways. For example, you can use insets, empty borders, or fillers to put space between GUI components. Given Swing's extensive stock of options, understanding an existing GUI can be as daunting a task as writing a new one, and mapping its visual appearance to the underlying code is far from trivial.

As a developer, you explore the internals of the code while writing the tests. As a valuable side effect, you end up with a test suite that can help prevent the introduction of regressions when you maintain the code.

A good start is to write functional tests to understand how the GUI behaves in response to user input. Writing tests for GUIs is more complex than writing tests for non-visual code, because:

· Ideally, tests must be automated, but GUIs are designed for humans — not computer programs — to use.

· Conventional unit testing, involving tests of isolated classes, is unsuitable for GUI components. In GUI terms, a "unit" involves cooperation of more than one GUI component, which can itself consist of more than one class.

· GUIs respond to user-generated events. To test GUIs, you need a way to simulate user input, wait until the generated events have been broadcast to all listeners, and then check the result as the GUI would appear to the user. Writing code that simulates user interaction with GUIs can be tedious and error-prone.

· Changes in the GUI's layout should not affect robust functional tests.

· An additional issue is that you must already know the structure and behavior of the GUI you want to test, otherwise you don't know which components the automated test should use and what needs to be verified. In general, to write a GUI test you must know:

· The components that are present in the GUI to test

· How you can uniquely identify such components in your tests

· The expected state (or properties) of the components in a particular use case

3 Testing HDFView with FEST

The FEST test framework is supplied as a compressed archive, which includes the jar files needed. Other extensions for different types of testing are available also. Exposure to the JUnit4 framework made FEST easy to integrate and create a quick test of the main window and buttons of HDFView. The first execution of the tests exposed a common error of SWING programming; SWING interaction must be performed in the Event Dispatch Thread, which HDFView failed. The proper fix was implemented as follows:

ORIGINAL

	HDFView frame = new HDFView(rootDir, flist, W, H, X, Y);

frame.setVisible(true);

CORRECTED

	final Vector the_flist = flist;

final String the_rootDir = rootDir;

final int the_X=X, the_Y=Y, the_W=W, the_H=H;

//Schedule a job for the event-dispatching thread:

//creating and showing this application's GUI.

javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 HDFView frame = new HDFView(the_rootDir, the_flist, the_W, the_H, the_X, the_Y);

 frame.setVisible(true);

 }

});

The next test run uncovered a requirement of gui unit testing that was not supplied by HDFView; components which are targeted for testing must be uniquely identifiable to the test framework. A JAVA Swing program is usually built with a few components (Panel, Frame, Pane, etc ...) combined in multiple ways to get a visual result. The uniquely identifiable requirement is usually accomplished by assigning the components an internal name at creation time. A quick fix of the components involved (Toolbar buttons) with the initial test suite allowed the test to run and complete successfully.

ORIGINAL

	// open file button

JButton button = new JButton(ViewProperties.getFileopenIcon());

tbar.add(button);

button.setToolTipText("Open");

button.addActionListener(this);

button.setActionCommand("Open file");

	// close file button

button = new JButton(ViewProperties.getFilecloseIcon());

tbar.add(button);

button.setToolTipText("Close");

button.addActionListener(this);

button.setActionCommand("Close file");

CORRECTED

	// open file button

JButton button = new JButton(ViewProperties.getFileopenIcon());

tbar.add(button);

button.setName("Open");

button.setToolTipText("Open");

button.addActionListener(this);

button.setActionCommand("Open file");

	// close file button

button = new JButton(ViewProperties.getFilecloseIcon());

tbar.add(button);

button.setName("Close");

button.setToolTipText("Close");

button.addActionListener(this);

button.setActionCommand("Close file");

The seven tests verified that the five toolbar buttons were enabled and the 'HDF4 Library' and 'HDF5 Library' buttons were activated and the test verified that correct message dialog appeared.

A more involved test to open a HDF file and interrogate a dataset will be developed and all the components involved will be updated to provide the needed identification. A test plan will be developed to identify the most critical functionality that should be tested. Then the HDFView source should be updated to provide the needed identification for the components involved. Once that is implemented and running during daily tests, less critical but necessary functionality can be added to the test suite. Future development should be required to use the FEST framework in a test driven development process.

4 Testing HDFView with JACARETO

In addition to the implementation of the unit testing framework, an acceptance testing plan, based on the existing test guide, will be developed and executed on a regular basis. Most likely the acceptance tests should be used after the implementation of a significant functionality and before any release. While an acceptance test can be automated with a record/playback tool, it will require a human to monitor and interpret the results.

The JACARETO record/playback test tool is a suitable tool for record/playback testing and is supplied as a compressed archive, which includes the jar files needed. The creation of a test script, based on the hdfview script, is the preferred solution to execute this tool. This script would set up the correct classpaths and parameters needed for both the test tool and hdfview. Once the test scripts are recorded and tested, these scripts can be included within a compressed archive that can be used by testers. We will need to identify the record/playback scripts from the existing test document (see Appendix A). We will need to identify by name which scripts should be executed and the expected results.

The creation of these record/playback scripts should take about 5X the normal time for a tester to perform just the test. This estimate assumes that the script must be recorded, playbacked on the target test machines, and documented. This does not take into account exceptions and debugging that might happen.

JACARETO was chosen because it is being actively developed, is usable on Windows, Linux and Mac machines, and is open source. Other tools can be considered in the future, once we have enough experience with this technique to properly evaluate a tool's capabilities.

5 Implementation Steps
Appendix A is a list of GUI components/actions for manual testing. There are over 250 items in the list. The list is not complete but it covers all the major features in HDFView. Each item should be reviewed for record/playback suitability. Our finial goal is to implement GUI unit tests for all the items in the list. To accomplish this goal, we will take four steps:

A. Learning and researching: identifying tools for automatic GUI testing and testing feasibility of the tools on HDFView. The result will be reported in a RFC (this RFC)
B. Prototype implementation: completing GUI test for creating new HDF5 datasets (section 10.7 in the test list). The prototype will provide better estimation on the total work of the automatic GUI testing
C. Implementing items with high priorities: completing items with high priorities
D. Full implementation
a. Completing all the items in the GUI unit tests
b. Adding record/playback scripts

6 Project Plan for Prototype Implementation

The prototype implementation will focus on creating new HDF5 datasets. The goals of the prototype include having a more comprehensive understanding of the FEST test framework, providing details on how tests can be implemented, and giving a better estimation of the total work of the whole work.
The record/playback is not included in the prototype.
	Task (details may vary as needed)
	Work (hours)
	Who
	Start
	Finish
	Deliverable

	Check and review deliverable
	6
	Peter
	3/1/11
	3/31/11
	Status report

	Modifying source for creating a file
	4
	Allen
	3/1/11
	3/2/11
	Code

	Creating a test file
	4
	Allen
	3/3/11
	3/4/11
	Code

	Modifying source for creating dataset
	4
	Allen
	3/7/11
	3/8/11
	Code

	Test case: int8, LE, 1D of 1000
	4
	Allen
	3/9/11
	3/10/11
	Code

	Test case: uint8, BE, 2D of 500x20
	2
	Allen
	3/11/11
	3/11/11
	Code

	Test case: int32, LE, 2D chunks of 50x20
	2
	Allen
	3/14/11
	3/14/11
	Code

	Test case: uint32, BE, level 5 gzip compression
	2
	Allen
	3/15/11
	3/15/11
	Code

	Test case: int64, LE, 2D chunks of 500x20
	2
	Allen
	3/16/11
	3/16/11
	Code

	Test case: float32, compressed 1D of 1000
	2
	Allen
	3/17/11
	3/17/11
	Code

	Test case: float64, 2D of 8000x8000
	2
	Allen
	3/18/11
	3/18/11
	Code

	Test case: 1D strings of length 80
	2
	Allen
	3/21/11
	3/21/11
	Code

	Test case: compressed 2D strings of length 80
	2
	Allen
	3/22/11
	3/22/11
	Code

	Test case: 1D references of size 2
	4
	Allen
	3/23/11
	3/24/11
	Code

	Test case: 30x20 2D enum of RGB colors
	4
	Allen
	3/25/11
	3/28/11
	Code

	Integrating to daily test
	4
	Allen
	3/29/11
	3/30/11
	Code

	Reporting and time estimation
	6
	Peter
	3/30/11
	3/31/11
	Final report

	Total (Peter 12, Allen 40)
	56
	
	
	
	

Revision History

	 July 27, 2010:
	Version 1, first draft, circulated for comment within The HDF Group.

	August 31, 2010
	Version 2, added gui functional testing information.

	December 17, 2010
	Version 3, added record/playback information.

	
	

	
	

	
	

Appendix A: HDFView Test Checklist

	Task #
	Priority
	Task
	What to check

	1.
	
	Installation
	

	1.1.
	High
	Installing JRE version
	

	1.2.
	High
	Installing non-JRE version
	

	2.
	
	Starting HDFView
	

	2.1.
	Medium
	from defaults
	

	2.2.
	Medium
	using –g 1200x800+100+200
	The window size and offset

	2.3.
	Medium
	with multiple files
	If all the files show in the Tree

	3.
	
	HDFView Tool Bar
	

	3.1.
	High
	Open file icon
	If the file popup window starts at default working Directory

	3.2.
	High
	Close file icon
	

	3.3.
	High
	Help icon
	If it points to the correct UG

	3.4.
	High
	H4 version icon
	If the HDF4 library if correct

	3.5.
	High
	H5 version icon
	If the HDF5 library if correct

	3.6.
	High
	File/URL
	Open file from a list of current files

	4.
	
	HDFView Tabs
	

	4.1.
	High
	Log Info
	The bottom of the HDFView. General info.

	4.2.
	High
	Metadata
	Single click on datasets/groups to see if attributes and other metadata show here

	5.
	
	HDFView File Menu
	Test HDF5 file

	5.1.
	High
	Open
	With Read/Write permission by default

	5.2.
	High
	Open Read-Only
	No modification to the file

	5.3.
	High
	Close
	Close single file

	5.4.
	High
	Close All
	Close all files

	5.5.
	High
	Save
	Save to the same file

	5.6.
	High
	Save As
	Save to a new file. Open the new file

	5.7.
	High
	NewHDF4
	Create an empty HDF4 file

	5.8.
	High
	NewHDF5
	Create an empty HDF5 file

	6.
	
	HDFView Window Menu
	

	6.1.
	Medium
	Cascade
	Open a few datasets/images

	6.2.
	Medium
	Tile
	before test these menus

	6.3.
	Medium
	Close
	Close current table/image window

	6.4.
	Medium
	Close All
	Close all open tables/images

	7.
	
	HDFView Tools Menu
	

	7.1.
	Medium
	Convert JPEGHDF4
	If the HDF4 image is correct

	7.2.
	Medium
	Convert JPEGHDF5
	If the HDF5 image is correct

	7.3.
	Medium
	Register File Format
	If a new file is in the supported list, e.g., FITS:ncsa.hdf.object.fits.FitsFile:fits

	7.4.
	Medium
	Un-register File Format
	If a file format is removed from the list

	8.
	
	HDFView User Options
	

	8.1.
	Medium
	Default WD to CWD
	Restart HDFView to see if “file open “ popup starts at the CWD

	8.2.
	Medium
	Default WD to other
	Restart HDFView to see if “file open “ popup starts at that directory, e.g. G:\temp

	8.3.
	Medium
	User’s Guide path
	Test online and local copy

	8.4.
	Medium
	Set font
	Font size and type. Restart to see if the font change is saved

	8.5.
	Medium
	Data delimiter
	Test all five cases with read/write operations

	8.6.
	Medium
	Max number to load
	Set to 5 to see if it works. Set is back to 10,000 after testing is done. Try files with 20,000+ objs.

	9.
	
	HDFView Help Menu
	

	9.1.
	High
	User’s Guide
	

	9.2.
	High
	H4 version icon
	If the HDF4 library if correct

	9.3.
	High
	H5 version icon
	If the HDF5 library if correct

	9.4.
	High
	Java Version
	

	9.5.
	High
	Supported File Formats
	

	9.6.
	High
	About…
	If the HDFView version if correct

	10.
	
	TreeView Popup Menu
	(right-mouse click on dataset/group)

	10.1.
	High
	Double click on dataset/image or “Open” from Popup
	If the content of dataset/image shows

	10.2.
	High
	“Open As” on an image
	

	10.2.1.
	High
	Mouse Drag preview image to select a subset
	If the content is correct

	10.2.2.
	High
	Test different combinations of start/stride/count
	If the content is correct

	10.2.3.
	High
	Change dimension orders
	If the content id correct

	10.2.4.
	High
	Test different palettes
	If the image is correct

	10.2.5.
	High
	Display as Spreadsheet
	If the content is correct

	10.2.6.
	High
	Default display type
	1.‘Open as’ on a image

2. Switch ‘display as’ between ‘Spreadsheet’ and ‘Image’

If the previous ‘display as’ choice is remembered , when ‘Open as’ again

	10.2.7.
	High
	Large image
	If it works for 8kx8k image. How long to load it.

	10.2.8.
	High
	Move a large image
	Mouse drag to move a large image

	10.2.9.
	High
	Select part of image
	(Shift+Mouse_drag) to select part of image.

Can select an area as red box appears?

	10.3.
	High
	“Open As” on a dataset
	

	10.3.1.
	High
	Drag preview image to select a subset
	If the content is correct

	10.3.2.
	High
	Test different combinations of start/stride/count
	If the content is correct

	10.3.3.
	High
	Change dimension orders
	If the content id correct

	10.3.4.
	High
	Display an integer dataset as image, try autogain/non
	If the content is correct

	10.3.5.
	High
	Display a float dataset as image, try autogain/non
	If the content is correct

	10.3.6.
	High
	Default display type
	If the previous display type is remembered

	10.3.7.
	High
	Large dataset
	If it works for 8kx8k dataset. How long to load it.

	10.4.
	High
	“Open As” on Compound
	

	10.4.1.
	High
	Test different combinations of start/stride/count
	If the content is correct

	10.4.2.
	High
	Change dimension orders
	If the content id correct

	10.4.3.
	High
	Select a single member
	If the content is correct

	10.4.4.
	High
	Select odd-members
	If the content is correct

	10.4.5.
	High
	Large dataset
	If it works for 1M rows x 20 columns table. How long to load it.

	10.5.
	High
	“Open As” on Text
	

	10.5.1.
	High
	Test different combinations of start/stride/count
	If the content is correct

	10.6.
	High
	“New””Group”
	

	10.6.1.
	High
	New group at the root
	Close file; re-open file. Open group. Are members correct? Is group metadata correct?

	10.6.2.
	High
	New group at other groups
	Same as above

	10.7.
	High
	“New””Dataset”
	

	10.7.1.
	High
	Different datatype class
	Close file; re-open file. Open dataset as spreadsheet. Are values correct? Are datatypes correct?

	10.7.2.
	High
	Different datatype size
	Same idea as 10.7.1.

	10.7.3.
	High
	Different datatype order
	Etc.

	10.7.4.
	High
	Different datatype sign
	

	10.7.5.
	High
	Different rank
	

	10.7.6.
	High
	Different dimension sizes
	

	10.7.7.
	High
	Different max sizes
	

	10.7.8.
	High
	Different chunking sizes
	

	10.7.9.
	High
	Different compression levels
	

	10.7.10.
	High
	Large dataset
	8kx8k

	10.8.
	High
	“New””Image”
	Need to close/reopen file after image is created

	10.8.1.
	High
	Different image size
	

	10.8.2.
	High
	Indexed image
	

	10.8.3.
	High
	24-bit true color
	

	10.8.4.
	High
	Pixel interlace
	

	10.8.5.
	High
	Plane interlace
	

	10.9.
	High
	“New””Table”
	

	10.9.1.
	High
	Different table size
	

	10.9.2.
	High
	Different chunking sizes
	

	10.9.3.
	High
	Different compression levels
	

	10.9.4.
	High
	Different types of members
	

	10.9.5.
	High
	Import member types
	

	10.10.
	High
	“New””Datatype”
	

	10.10.1.
	High
	Different datatype class
	

	10.10.2.
	High
	Different datatype size
	

	10.10.3.
	High
	Different datatype order
	

	10.10.4.
	High
	Different datatype sign
	

	10.11.
	High
	“New””Link”
	

	10.11.1.
	High
	Link to dataset
	

	10.11.2.
	High
	Link to group
	

	10.12.
	High
	Copy/Paste datasets in the same file
	Re-open the destination file to see if the objects are copied. Are their attributes and other characteristics the same? Is content the same? Can I view them as image and spreadsheet?

	10.13.
	High
	Copy/Paste datasets cross files
	Re-open the destination file to see if the objects are copied. Ditto, etc.

	10.14.
	High
	Copt/Paste group in the same file
	Re-open the destination file to see if the objects are copied.

	10.15.
	High
	Copy/Paste group cross files
	Re-open the destination file to see if the objects are copied.

	10.16.
	High
	Delete datasets
	Re-open the destination file to see if the objects are removed

	10.17.
	High
	Delete groups
	Re-open the destination file to see if the objects are removed

	10.18.
	High
	“Save To” on dataset
	If the object is saved to a new file

	10.19.
	High
	“Save To” on image
	If the object is saved to a new file

	10.20.
	High
	“Save To” on group
	If the object is saved to a new file

	10.21.
	High
	“Rename” on dataset
	Re-open the file to see if the object is renamed

	10.22.
	High
	“Rename” on image
	Re-open the file to see if the object is renamed

	10.23.
	High
	“Rename” on group
	Re-open the file to see if the object is renamed

	10.24.
	High
	“Show Properties” on groups
	Check both attributes and general information

	10.25.
	High
	“Show Properties” on datasets
	Check both attributes and general information

	10.26.
	High
	“Close File”
	Close the file and all the open objects associated to the file

	11.
	
	TableView
	

	11.1.
	High
	Open different datasets (floats, integers, compound)
	If the content is correct

	11.2.
	Medium
	Line plot
	“Line Plot” icon or “Table””Show Lineplot”

Exist?

	11.2.1.
	Medium
	Line plot by rows
	1)Select adjacent rows. 2)Select first and last rows. 3) Select non-adjacent rows in the middle. (use ctrl or shift key)

Are all of the plots correct? (Check X and Y axis labels. Check shape of plot, Colors, number.)

	11.2.2.
	Medium
	Line plot by columns
	Same idea as above with columns.

	11.2.3.
	Medium
	Line plot with different X-values
	Same idea.

	11.3.
	Medium
	Export Data to text File
	‘Table -> Export Data to File’ and save to a file.

Check the content of the text file

	11.4.
	Medium
	Import Data from text File
	1) Modify the above exported text file.

2) ‘Table -> Import Data from File’ and open the modified text file

Check if the modification is correct, also unmodified values are correct?

	11.5.
	Medium
	Import (?) Fixed Data Length
	Set different fixed length and import data from text file

	11.6.
	Medium
	Copy&Paste data values
	1) Perform copy and paste in the same dataset

Check if it worked?

2)Perform copy and paste to a dataset in different file. (make a copy of the file and test)

If the destination file has the new data?

	11.7.
	Medium
	Copy to new Dataset
	Copy selected data to an new dataset in the same file. re-open the file the verify the new dataset is created in file

	11.8.
	Medium
	Update file
	1) modify any value. 2) ‘Table -> Update File’ 3) close the file 4) Re-open the file

Check if the modification is correct?

	11.9.
	Medium
	Select All
	‘Table -> Select All’

Check to see all cells are high-lighted

	11.10.
	Medium
	Show Statistics
	‘Table -> Show Statistics’

Verify the values of min, max, mean and std.

	11.11.
	Medium
	Math Conversion
	‘Table->Math Conversion’

Verify that all math conversions are correct

	11.12.
	Medium
	Scientific Notation
	Show data in "0.0###E0#"

	11.13.
	Medium
	Frame selection
	3D datasets

	11.13.1.
	Medium
	“Next”
	

	11.13.2.
	Medium
	“Previous”
	

	11.13.3.
	Medium
	“First”
	

	11.13.4.
	Medium
	“Last”
	

	11.13.5.
	Medium
	Enter frame number
	

	11.14.
	Medium
	Close table
	

	11.15.
	Medium
	TableView for a Compound dataset
	Test for a compound dataset

Open ‘samples/TestH5Object.h5’ , there is ‘comp_dataset’ object to test with.

	11.15.1.
	Medium
	Line plot by rows
	1)Select adjacent rows. 2)Select first and last rows. 3) Select non-adjacent rows in the middle. (use ctrl or shift key)

Are all of the plots correct? (Check X and Y axis labels. Check shape of plot, Colors, number.)

	11.15.2.
	Medium
	Line plot by columns
	Same idea as above with columns.

	11.15.3.
	Medium
	Line plot with different X-values
	Same idea

	11.16.
	Medium
	Export Data to text File
	‘Table -> Export Data to File’ and save to a file.

Check the content of the text file

	11.17.
	Medium
	Import Data from text File
	1) Modify the above exported text file.

2) ‘Table -> Import Data from File’ and open the modified text file

Check if the modification is correct, also unmodified values are correct?

	11.18.
	Medium
	Copy&Paste data values
	1) Perform copy and paste in the same dataset

Check if it worked?

2)Perform copy and paste to a dataset in different file. (make a copy of the file and test)

If the destination file has the new data?

	11.19.
	Medium
	Update file
	1) modify any value. 2) ‘Table -> Update File’ 3) close the file 4) Re-open the file

Check if the modification is correct?

	11.20.
	Medium
	Select All
	‘Table -> Select All’

Check to see all cells are high-lighted

	11.21.
	Medium
	Show Statistics
	‘Table -> Show Statistics’

Verify the values of min, max, mean and std.

	11.22.
	Medium
	Math Conversion
	‘Table->Math Conversion’

Verify that all math conversions are correct

	12.
	
	ImageView
	

	12.1.
	High
	Open a test file
	‘Open’ ‘samples/hdf5_test.h5’ file under hdf-java dir.

Open without fail?

	12.2.
	High
	Drag mouse across an image
	Open ‘images/hst_lagoon_detail.jpg’ object.

Make the view window small so the image cannot fit.

 Drag the mouse on the image to see different part of the image.

Do the correct image appear along dragging?

	12.3.
	High
	Select an image area

	Open ‘images/iceberg’ image.

(SHIFT + mouse_drag) to select part of an open image

Selected with red rectangle?

	12.4.
	Medium
	Show Histogram
	Click on “Histogram” icon or ImageShow Histogram.

Select different part and see if Histogram reacts to it.

	12.5.
	Medium
	Show Palette
	Click “Palette” icon or ImageChange Palette

See pop-up window ‘image Palette for – xxx’?

	12.5.1.
	Medium
	Change RED, GREEN, BLUE color line
	

	12.5.2.
	Medium
	Select different palette
	Image color changes accordingly?

	12.5.3.
	Medium
	Change palette value from “Show Value” table
	Change 10 and 17 values to R:255 G:0 B:0 and OK.

Do you see red dots on the image?

(Zoom In to see better)

	12.6.
	Medium
	Change Brightness/Contrast
	Click on ‘Briteness’ icon or Image -> Brightness/Contrast.

Check best Brightness/Contrast and extreme Brightness/Contrast

Does the image change accordingly?

	12.7.
	Medium
	Zoom in/out image
	Clink on Zoom In or Zoom Out button. (Image -> Zoon In/Zoon Out)

Zoom in and out Correctly?

	12.8.
	Medium
	Save Image As JPEG
	Image -> Save Image As -> JPEG

Verify the jpeg file?

	12.9.
	Medium
	Write Selection to Image
	Select part of image and write it to a new image in the same file. Re-open the file to verify if the new image is written to file

	12.10.
	Medium
	Set Value Range
	Click Image-> Set Value Range.

Change some value and see if the image changes accordingly? Expect to see color of the image changes.

	12.11.
	Medium
	Horizontal Flip
	Click Image->Flip->Horizontal

	12.12.
	Medium
	Vertical Flip
	Click Image->FlipVertical

	12.13.
	Medium
	Rotate 90 CW
	Click Image->Rotate->90 CW

	12.14.
	Medium
	Rotate 90 CCW
	Click Image->Rotate->90 CCW

	12.15.
	Medium
	Contour
	Try different contour levels

	12.16.
	Medium
	Show Value
	Check “Image->Show Value” and move the mouse on the image. At the bottom, x,y,value are showing.

‘Open As’ the same image and select ‘Spreadsheet’ and OK.

Zoom-In the image to each pixel can be pointed. Compare some outline pixels with Spreadsheet number.

Verify the image data values are correct

	12.17.
	Medium
	Show Statistics
	Click Image-> Show Statistics

Verify the min, max, mean and std.

	12.18.
	Medium
	Select all image
	Click Image-> Select All

Select the all area of the image?

	12.19.
	Medium
	Frame selection
	3D images

Open ‘images/3D THG’ image.

	12.19.1.
	Medium
	Traverse forward
	Click Next arrow button

	12.19.2.
	Medium
	Traverse backward
	Click Previous arrow button

	12.19.3.
	Medium
	View first image
	Click First arrow butoon

	12.19.4.
	Medium
	View last image
	Click Last arrow button

	12.19.5.
	Medium
	View a certain frame
	Put frame number and hit enter key

	12.20.
	Medium
	Animation
	Click “Animation” icon for 3D images

	12.21.
	Medium
	Animation speed
	Image->Animation(fremas/second)

Verify different speed.

	12.22.
	Medium
	Close ImageView
	

	12.23.
	Medium
	Image on True Color image
	Verify all above on 24-bit true color image

	13.
	
	TextView
	

	13.1.
	Medium
	Save data to text file
	Create dataset with ‘STRING’ type, any length, 2dim, 10x5 -> OK.

Open the dataset just created.

Enter any string contents.

Click ‘Text -> Save To Text File’ and save.

Verify the content of the text file

	13.2.
	Medium
	Modify and save text
	Re-open the text dataset and modify contents.

Click ‘Text->Save Changes’

Close and reopen the dataset.

Verify the contents.

Close entire file and reopen.

verify the changes are saved in file

	13.3.
	Medium
	Close TextView
	Click ‘Text->Close’.

Can close?

	14.
	
	Test HDF4 file
	Test all above for HDF4 file. Some of the features may not apply to HDF4

	14.1.
	Medium
	TreeView
	

	14.2.
	Medium
	TableView
	

	14.3.
	Medium
	ImageView
	

	14.4.
	Medium
	TextView
	

	15.
	Medium
	Test for Copy objects
	

	15.1.
	Medium
	Copy a large dataset with contiguous layout,e.g. 3GB
	

	 15.1.1
	Medium
	Without allocation
	

	 15.1.2
	Medium
	With allocation, if data is written
	

	15.2.
	Medium
	Copy a chunked dataset
	

	 15.2.1
	Medium
	Where storage in file is not allocated
	

	 15.2.2
	Medium
	Where storage in file is partially allocated
	

	16.
	Medium
	Test for data in 4Dimension Dataset
	

	16.1.
	Medium
	Open a 4 dimension dataset with natural dimension order. Set start, end and stride.
	

	 16.1.1
	Medium
	Check the value at a specific location [w] [x] [y] [z] in dataset
	

	
	Medium
	
	

	16.2.
	Medium
	Open the dataset with the dimension order changed. Set start, end and stride values to what was set earlier, respective to the dimension order.
	

	 16.2.1
	Medium
	Check the value at location [w] [x] [y] [z]
	 It should be the same as value obtained in 16.1.1

	 16.2.2
	Medium
	Open the dataset. Set start to a different value.
	

	 16.2.3
	Medium
	Check the value at location [w] [x] [y] [z]
	It should be the same as value obtained in 16.1.1

	17.
	
	Plug-in modules
	

	17.1.
	
	HDF-EOS modules
	(download EOS modules)

	17.1.1.
	Medium
	Register file format
	

	17.1.2.
	Medium
	Un-register file format
	

	17.1.3.
	Medium
	Test TreeView
	

	17.1.4.
	Medium
	Test MetadataView
	

	17.1.5.
	Medium
	Test TableView
	

	17.1.6.
	Medium
	Test ImageView
	

	17.1.7.
	Medium
	Set default module
	

	17.1.8.
	Medium
	Set back default module
	

	17.2.
	
	NetCDF file format
	

	17.2.1.
	low
	Register file format
	

	17.2.2.
	low
	Un-register file format
	

	17.2.3.
	low
	Test TreeView
	

	17.2.4.
	low
	Test MetadataView
	

	17.2.5.
	low
	Test TableView
	

	17.2.6.
	low
	Test ImageView
	

	17.2.7.
	low
	Set default module
	

	17.2.8.
	low
	Set back default module
	

	
	
	
	

