
March 22, 2011 RFC THG 2011-01-05.v2

Page 1 of 14

Unsupported/Desirable Work for HDF-Java

Peter Cao

The HDF Group

This document describes the unsupported features and desirable work in HDF5 Java

products and different levels of support for HDF-Java products.

March 22, 2011 RFC THG 2011-01-05.v2

Page 2 of 14

Contents

1 Introduction .. 4

2 JHI5.. 4

2.1 Untested JNI functions ... 4

2.2 Unsupported functions .. 4

3 Java HDF5 Object Package .. 4

3.1 Unsupported features .. 4

3.2 Examples .. 5

4 HDFView ... 5

5 Other Java-related issues .. 5

5.1 Unsigned Integers .. 6

5.2 Function Pointers ... 6

5.3 JNI Memory Debugger ... 6

5.4 Library memory leak .. 6

5.5 JVM memory limit .. 6

5.6 Poor performance on multiple dimensional arrays ... 7

6 Other desirable future work ... 7

6.1 Public Widget ... 7

6.2 Better Movie Play ... 7

6.3 Reduce Response Time when Showing Images ... 7

6.4 Writing Variable Length Data ... 8

6.5 Writing Compound Data .. 8

6.6 Using Buffered Array to Handle Large Dataset .. 8

6.7 Automated Testing for HDFView ... 8

6.8 HDFView Graphical Design ... 8

7 Levels of HDF Java Product Support ... 8

8 HDF4 related work .. 10

Revision History .. 11

Appendix A: a list of untested functions (143) ... 12

Appendix B: a list of unsupported HDF5 functions in HDF5 Java (93) .. 13

March 22, 2011 RFC THG 2011-01-05.v2

Page 3 of 14

March 22, 2011 RFC THG 2011-01-05.v2

Page 4 of 14

1 Introduction

Some of the features are not supported in HDF5 Java products due to a variety of technical reasons.

This document attempts to describe these features and give a list of what is supported currently and

what is desirable to have in the future.

There are three distinct HDF5 Java Products:

• Java HDF5 Interface (JHI5): the Java Native Interface to the standard HDF5 library.

• Java HDF Object Package: a Java package that implements HDF data objects in an object-

oriented form.

• HDFView: a visual tool for browsing and editing HDF4 and HDF5 files.

HDFView is built on the Java HDF Object Package, which in turn is built on the Java HDF5 Interface.

Because of the dependence among the HDF-Java products, features that are not supported in the JNI

level will not be supported in the object level and HDFView.

2 JHI5

2.1 Untested JNI functions

Among the 462 HDF5 C API functions, 369 functions have been implemented in the HDF5 Java

wrapper. All the new functions added to support HDF5 1.8 features and some of the HDF5 1.6

functions in HDF5 JNI are tested. About 140 functions are not tested in the JNI unit test (see the

complete list at Appendix A). It is very important to add unit tests for all the JNI functions. The work

has been scheduled. Based our experience, the work will take about 70 hours to complete (0.5

hour/per test). Our goal is to complete all the HDF5 JNI tests before next release (V2.8).

2.2 Unsupported functions

There are around 460 functions in the HDF5 library (version 1.8). Ninety three of the functions are not

supported in JHI5. Most of the unsupported functions have C function pointers, which is not currently

implemented in JHI5. Appendix B is a complete list of unsupported functions.

3 Java HDF5 Object Package

While the Java HDF5 Interface (JHI5) gives the user the full power of the underlying HDF5 functions,

the object package is designed for simplicity. The tradeoff is that the object package loses some

capabilities that the JHI5 offers.

3.1 Unsupported features

The following are some examples of what is not supported in the object layer:

• Any feature related to unsupported JHI5 functions is not supported in the object layer

• Very limited properties can be passed in the object layer. While the HDF5 library (version 1.8)

provides more than 60 functions for handling properties, the HDF5 object layer only uses the

March 22, 2011 RFC THG 2011-01-05.v2

Page 5 of 14

default properties in most cases when creating or accessing a file or objects. Below is a list of

examples that users can pass different properties in the object layer:

o H5File.open(int plist), allows users to pass access properties when opening a file

o H5File. getAttribute(int objID,int idx_type, int order), allows users to retrieve attributes

in different indexing type and order.

o H5Group. getMetadata(int ...attrPropList), allows users to pass different indexing type

and order when retrieving attributes. Same for H5ScalrDS and H5Compound.

• No advanced hyperslab selections. Only simple rectangle subsetting is allowed.

3.2 Examples

We have very limited examples for using the hdf-java objects. Users have asked examples and we

need to add more examples.

4 HDFView

The capabilities of HDFView are limited by both the Java HDF5 Interface and by the object package.

Some examples of limitations in HDFView are listed here.

• Any feature related to unsupported JHI5 functions or unsupported operations in the Java

Object Package is not supported in HDFView.

• Writing compound data is limited to simple cases, e.g. the base compound fields have

primitive types such as integers, floats, characters, etc. HDFView does not write complex

compound data, e.g. the type of a compound field is a datadet region reference.

• Writing variable length data is not supported except for datasets where each data point is a

single variable length string.

5 Other Java-related issues

The Java language offers many features that benefit the HDF Java Products, including:

• Object-oriented language

• Easy to program, with a rich set of ready-to-use packages for GUI, I/O, Database, etc.

• Automatic memory management eliminates the problems of corrupted pointers and code-

level memory leaks

• Platform independence

However, there are some issues related to Java that inhibit the ability of the HDF Java products to

support all of HDF5’s features with good performance. These issues are listed in the following

sections.

March 22, 2011 RFC THG 2011-01-05.v2

Page 6 of 14

5.1 Unsigned Integers

There is no unsigned integer type in the Java primitive types. This causes problems between the Java

layer and the C library for unsigned integers. For example, the value of 200, a valid number for

unsigned 8-bit integer in C, cannot be presented correctly in the Java “byte” primitive type.

Our current solution is to convert the unsigned integer type to a larger size integer. For example, an

unsigned 8-bit integer in C will be converted to the 16-bit short integer in Java. This approach has

some shortcomings:

• There is no primitive type in Java to use with an unsigned 64-bit integer. The conversion

affects the I/O performance since reading data from and writing data to a file requires the

data conversion between unsigned C integers and signed Java integers.

Possible solutions: there isn’t any other better solution other than convert a unsigned integer to a

larger size integer.

5.2 Function Pointers

C-type function pointers are not supported in Java.

Currently, the C functions (or the library APIs) with function pointers are not implemented in the HDF

Java wrapper.

Possible solutions: we either have to hard-code the function name in the JNI code, or tell the JNI

code somehow what the name of the function is. More research is needed to find out how this can be

done and the effort of the work.

5.3 JNI Memory Debugger

There is no tool or any easy way to debug memory leaks in the JNI C code. A C debug tool will not be

able to trace memory leaks for programs starting in JVM. Java debug tools cannot trace memory leaks

in C function calls.

Our goal is to prevent this type of memory leak from the implementation stage of the JNI C:

• Making sure that all memory allocated in the JNI C level is freed after use

• Checking the physical memory use at the OS level to ensure there is no memory increase by

running the testing program in loops

5.4 Library memory leak

There is no direct way to check resources held by open objects from library calls. For example, leaving

datatype and dataspace open in memory causes memory leak. HDF5 Java provides two functions,

H5.getOpenIDCount() and H5. getOpenID(), for applications to check this type of memory leak.

5.5 JVM memory limit

Opening a large dataset, e.g. 2GB, may cause Java “OutOfMemoryError” even though there is enough

physical memory in your machine since the memory of an Java application is limited by the JVM.

March 22, 2011 RFC THG 2011-01-05.v2

Page 7 of 14

5.6 Poor performance on multiple dimensional arrays

HDF-Java has poor performance on directly handling multiple dimensional arrays. A 1D array

allocated in Java is directly used in the JNI C. There is very little overhead between Java and C. For

example, when you allocate a float array in C, float a = new float[1000], the same memory of array

“a” will be used in C. For multi-dimensional array, there is no directly memory match between Java

and C. For example, there is no match between Java int[][] and C int[][]. In Java, int[][] means multiple

arrays, i.e. each int[i] is an object. In C int[][] is just an array (1D array in disk) and each int[i] is part of

the contiguous memory block. HDF Java allows you to pass an multiple array to C, e.g int[][] ;

however, there are a lot of data conversions from C int[][] to Java int[][], which also requires a lot of

memory for the conversion too. Not a good idea for both memory use and CPU time. For this reason,

we always use 1D Java array to deal with data (in file storage, it is 1D anyway) in the HDF Java object

layer. We leave it to the applications to map the 1D array to multiple dimensions. We can improve

our currently implementation in the HDF Java wrapper by using the 1D array between Java and C and

converting the data to multi-dimension array in Java.

6 Other desirable future work

6.1 Public Widget

Some GUI components in HDFView can be taken out and used to create general-purpose widgets. For

example, the code that creating image from raw data can be separated from its main class and used

for other applications. Some advantages of the public widgets include:

• Reusable code – the general code can be used by other applications.

• Maintainable code – the code will be easier to maintain.

• Testable code – the code will be much easier to test.

The purpose of work is to investigate the classes in the HDFView package, ncsa.hdf.view, and remove

common codes from the main classes to create public widgets.

6.2 Better Movie Play

The goal is able to spatially and temporally subsample images to speed up movie play and add a zoom

button for animation. Integrating the movie play into the current image view will only work for small

images or low resolution of large images. It will not work for large images. Since movie play requires

that all the images should be loaded into memory, loading many frames of large images into memory

will cause two problems: a) loading/creating images takes a long time; b) The Java virtual machine

will not be able to handle the large memory size.

6.3 Reduce Response Time when Showing Images

HDFView takes a long time to load large images, e.g. images of 8k x 8k. The request is to show the

images quickly. We suggest three solutions:

• Incrementally show image while reading data from file instead of waiting a long time to load

and display a large image

March 22, 2011 RFC THG 2011-01-05.v2

Page 8 of 14

• Initially show image in low resolution while loading the image with full resolution. For

example, we can set the stride to 10 or larger so that HDFView only reads one pixel for every

10 or more pixels.

• Store a low resolution image along with the full resolution image in the file. The low resolution

image can be an attribute or another dataset

6.4 Writing Variable Length Data

The Java interface does not work on vlen except of vlen of strings. In order to support vlen (other

than strings) we need to map the vlen_t data structure between C and Java, which is not

implemented. Many users have requested the support of general variable length.

6.5 Writing Compound Data

Writing compound data is limited to simple cases, e.g. the base compound fields have primitive types

such as integers, floats, characters, etc. HDFView does not write complex compound data, e.g. the

type of a compound field is a datadet region reference.

6.6 Using Buffered Array to Handle Large Dataset

Opening a large dataset, e.g. 2GB, may cause Java “OutOfMemoryError” even though there is enough

physical memory in your machine since the memory of a Java application is limited by the JVM. One

solution is to use a memory buffer that dynamically loads data in the view area.

6.7 Automated Testing for HDFView

HDFView has only used a manual checklist to perform an acceptance test, usually before a release.

Manual checking is very time consuming and is error prone since the checklist is very long and some

tests are very complex. There are tools which can automate not only the acceptance test, but also

provide unit testing of HDFView's visual components and interactions.

6.8 HDFView Graphical Design

The current GUI components in HDFView were designed by developers. It would be very helpful if

those components can be reviewed by professionals in graphical design so that HDFView will have

professional looking.

7 Levels of HDF Java Product Support

The HDF Java support is divided into two levels: what we currently have now and what we desire for.

The activities of the two levels of support are summarized the in the following tables.

Table 1 Activities of currently supported

Activity Description

User support
Providing help for forum discussions

Assisting help desk

March 22, 2011 RFC THG 2011-01-05.v2

Page 9 of 14

Identifying and analyzing bugs/problems/features

reported from users

General Maintenance

Tracking the daily test failure and identifying what test

failed

Prioritizing tasks and fixing critical bugs for releases

Releasing products (major, minor, beta, and patch)

Maintaining web pages

Making the current products work with the latest

version of the library

Support platforms Major platforms (32-bit and 64-bit Windows, Linux,

Solaris, and Mac Intel)

Features from the libraries

Implementing all 1.6 functions in JNI

Implementing 1.8 functions of high priorities in JNI

Implementing all 1.8 functions in JNI

Table 2 Activities of desirable future work

Activity Description

Support platforms All platforms that are supported by HDF4 and HDF5

libraries and JVM

Features from the libraries

Adding unit tests for all implemented JNI functions

Implementing all library functions in JNI

Adding basic features in object layer and HDFView to

support HDF5 1.8 features, such as handling external

links, using H5Ocopy() for better performance

Adding other features from HDF5 1.8 and above in the

object layer and HDFView

Other advanced features

Improving performance on multiple dimensional arrays

Writing dataset of complex types, e.g. variable length

arrays and nested compound datatypes

Using buffered array to handle large dataset

Converting HDF4 objects to HDF5 objects in HDFView

Importing/exporting XML for HDF5

Importing/exporting GeoTIFF for HDF5

Using drag/drop in HDFView

Providing public GUI widgets

Using automatic GUI testing

March 22, 2011 RFC THG 2011-01-05.v2

Page 10 of 14

8 HDF4 related work

Most of the work mentioned so far is about HDF5 Java. There are a lot of more things needed to be

done for HDF4 Java. The most urgent one is to add unit test for HDF4 JNI and HDF4 objects.

March 22, 2011 RFC THG 2011-01-05.v2

Page 11 of 14

Revision History

January 05, 2011: Version 1 Moved from HDF-Java products support document.

March 22, 2011: Version 2 Added section for untested JNI.

March 22, 2011 RFC THG 2011-01-05.v2

Page 12 of 14

Appendix A: a list of untested functions (143)

H5Aget_num_attrs

H5Aopen_idx

H5Aopen_name

H5Arename

H5check_version

H5close

H5Dextend

H5Dfill

H5Dget_storage_size

H5Fget_obj_ids

H5Funmount

H5Gget_comment

H5Gget_linkval

H5Gget_num_objs

H5Gget_objname_by_idx

H5Gget_objtype_by_idx

H5Glink

H5Glink2

H5Gmove

H5Gmove2

H5Gset_comment

H5Pall_filters_avail

H5Pclose_class

H5Pcopy

H5Pcopy_prop

H5Pexist

H5Pfill_value_defined

H5Pget

H5Pget_alignment

H5Pget_alloc_time

H5Pget_btree_ratios

H5Pget_buffer

H5Pget_cache

H5Pget_chunk

H5Pget_class

H5Pget_class_name

H5Pget_class_parent

H5Pget_edc_check

H5Pget_external

H5Pget_external_count

H5Pget_family_offset

H5Pget_fapl_core

H5Pget_fapl_direct

H5Pget_fapl_family

H5Pget_fclose_degree

H5Pget_fill_time

H5Pget_fill_value

H5Pget_filter_by_id1

H5Pget_filter1

H5Pget_filter2

H5Pget_gc_references

H5Pget_hyper_vector_size

H5Pget_istore_k

H5Pget_layout

H5Pget_nfilters

H5Pget_nprops

H5Pget_preserve

H5Pget_size

H5Pget_sizes

H5Pget_small_data_block_size

H5Pget_sym_k

H5Pget_userblock

H5Pget_version

H5Pisa_class

H5Pmodify_filter

H5Premove

H5Premove_filter

H5Pset

H5Pset_alignment

H5Pset_alloc_time

H5Pset_btree_ratios

H5Pset_buffer

H5Pset_cache

H5Pset_deflate

H5Pset_edc_check

H5Pset_external

H5Pset_family_offset

H5Pset_fapl_core

H5Pset_fapl_family

H5Pset_fapl_log

H5Pset_fclose_degree

H5Pset_fill_time

H5Pset_fill_value

H5Pset_filter

H5Pset_fletcher32

H5Pset_gc_references

H5Pset_hyper_vector_size

H5Pset_istore_k

H5Pset_layout

H5Pset_preserve

H5Pset_shuffle

H5Pset_sizes

H5Pset_small_data_block_size

H5Pset_sym_k

H5Pset_szip

H5Pset_userblock

H5Punregister

H5Sget_select_bounds

H5Sget_select_elem_pointlist

H5Sget_select_hyper_blocklist

H5Sget_select_hyper_nblocks

H5Sget_select_npoints

H5Sget_simple_extent_npoints

H5Soffset_simple

H5Sselect_all

H5Sselect_elements

H5Sselect_hyperslab

H5Sselect_none

H5Sselect_valid

H5Sset_extent_none

H5Sset_extent_simple

H5Tcommit_anon

H5Tcommit1

H5Tcommit2

H5Tcommitted

H5Tcompiler_conv

H5Tdecode

H5Tdetect_class

H5Tencode

H5Tget_array_dims1

H5Tget_array_dims2

H5Tget_create_plist

H5Tinsert

H5Tis_variable_str

H5Tlock

H5Topen1

H5Topen2

H5Tpack

H5Tset_cset

H5Tset_ebias

H5Tset_fields

H5Tset_inpad

H5Tset_norm

H5Tset_offset

H5Tset_order

H5Tset_pad

H5Tset_precision

H5Tset_sign

H5Tset_strpad

H5Tvlen_create

H5Zfilter_avail

H5Zget_filter_info

H5Zunregister

March 22, 2011 RFC THG 2011-01-05.v2

Page 13 of 14

Appendix B: a list of unsupported HDF5 functions in HDF5 Java (93)

H5Aget_create_plist **

H5Aiterate_by_name *

H5Aiterate1 *

H5Aiterate2 *

H5Ddebug **

H5Diterate *

H5Eget_auto1 *

H5Eget_auto2 *

H5Epush1 *

H5Epush2 *

H5Eset_auto1 *

H5Eset_auto2 *

H5Ewalk1 *

H5Ewalk2 *

H5FDalloc *

H5FDclose *

H5FDcmp *

H5FDflush *

H5FDfree *

H5FDget_eoa *

H5FDget_eof *

H5FDget_vfd_handle *

H5FDquery *

H5FDread *

H5FDregister *

H5FDset_eoa *

H5FDtruncate *

H5FDunregister *

H5FDwrite *

H5Fget_info *

H5Fget_mdc_config *

H5Fget_vfd_handle *

H5Fset_mdc_config *

H5Giterate *

H5Iclear_type **

H5Idec_type_ref **

H5Idestroy_type **

H5Iinc_type_ref **

H5Iis_valid **

H5Iregister *

H5Iregister_type *

H5Itype_exists **

H5Lcreate_ud *

H5Lis_registered *

H5Lregister *

H5Lunpack_elink_val *

H5Lunregister *

H5Odecr_refcount **

H5Oincr_refcount **

H5Oopen_by_addr **

H5Oopen_by_idx **

H5Pcreate_class *

H5Pget_char_encoding *

H5Pget_chunk_cache **

H5Pget_driver *

H5Pget_elink_cb *

H5Pget_filter_by_id2 **

H5Pget_mdc_config **

H5Pget_meta_block_size **

H5Pget_multi_type **

H5Pget_obj_track_times **

H5Pget_sieve_buf_size **

H5Pget_type_conv_cb *

H5Pget_vlen_mem_manager *

H5Pinsert1 *

H5Pinsert2 *

H5Piterate *

H5Pregister1 *

H5Pregister2 *

H5Pset_attr_phase_change **

H5Pset_char_encoding *

H5Pset_chunk_cache *

H5Pset_driver *

H5Pset_dxpl_mpio_chunk_opt *

H5Pset_dxpl_mpio_chunk_opt_num *

H5Pset_dxpl_mpio_chunk_opt_ratio *

H5Pset_dxpl_mpio_collective_opt *

H5Pset_elink_cb *

H5Pset_filter_callback *

H5Pset_mdc_config *

H5Pset_meta_block_size *

H5Pset_multi_type **

H5Pset_obj_track_times **

H5Pset_sieve_buf_size **

H5Pset_type_conv_cb *

H5Pset_vlen_mem_manager *

H5Scombine_hyperslab **

H5Scombine_select **

H5Sget_select_type **

H5Tfind *

H5Tregister *

H5Tunregister *

H5Zregister *

* -- C function pointer, ** -- low priorities

March 22, 2011 RFC THG 2011-01-05.v2

Page 14 of 14

