HDFJava GUI Testing

The HDF libraries have a large collection of unit tests that assure confidence in their use. HDFJava libraries also have a large collection of unit tests that test the JNI interface and object libraries. These unit tests can be automatically executed during daily test jobs, and the results verified as correct.

However the HDFView program has only used a manual checklist to perform an acceptance test, usually before a release. There are tools which can automate not only the acceptance test, but also provide unit testing of HDFView's visual components and interactions.

There are two methods for testing a JAVA visual program, record/playback tools and unit testing frameworks. The record/playback tools are typically classified as "black box" testing. Record/playback tools record a user performing actions following a checklist of acceptance tests. The unit testing frameworks are "white box" testing because they require knowledge of how the visual components are constructed.

Both methods are useful test techniques and are usually complementary tools. The record/playback tools are best used by a person performing acceptance testing, while unit testing is better suited to unattended automated testing.

A search of active open source gui unit testing frameworks indicated that the FEST framework would be well suited to test the HDFView program because of the current use of the JUnit4 framework in the JNI unit tests. Article references to the FEST framework has been found at a number of reputable sites (e.g. IBM Developer Works, IEEE Explore). It is actively being developed and expanded. There were a few others considered, which further research indicated they did not have the same level of active support.

FEST site: http://fest.easytesting.org/swing/wiki/pmwiki.php (see Publications link)

IBM DW site: http://www.ibm.com/developerworks/java/library/j-swingtest/

Testing HDFView

The FEST test framework is supplied as a compressed archive, which includes the jar files needed. Other extensions for different types of testing are available also. Exposure to the JUnit4 framework made FEST easy to integrate and create a quick test of the main window and buttons of HDFView. The first execution of the tests exposed a common error of SWING programming; SWING interaction must be performed in the Event Dispatch Thread, which HDFView failed. The proper fix was implemented as follows:

ORIGINAL

 HDFView frame = new HDFView(rootDir, flist, W, H, X, Y);

 frame.setVisible(true);

CORRECTED

 final Vector the_flist = flist;

 final String the_rootDir = rootDir;

 final int the_X=X, the_Y=Y, the_W=W, the_H=H;

 //Schedule a job for the event-dispatching thread:

 //creating and showing this application's GUI.

 javax.swing.SwingUtilities.invokeLater(new Runnable() {

 public void run() {

 HDFView frame = new HDFView(the_rootDir, the_flist, the_W, the_H, the_X, the_Y);

 frame.setVisible(true);

 }

 });

The next test run uncovered a requirement of gui unit testing that was not supplied by HDFView; components which are targeted for testing must be uniquely identifiable to the test framework. A JAVA Swing program is usually built with a few components (Panel, Frame, Pane,..) combined in multiple ways to get a visual result. The uniquely identifiable requirement is usually accomplished by assigning the components an internal name at creation time. A quick fix of the components involved (Toolbar buttons) with the initial test suite allowed the test to run and complete successfully.

ORIGINAL

 // close file button

 button = new JButton(ViewProperties.getFilecloseIcon());

 tbar.add(button);

 button.setToolTipText("Close");

 button.addActionListener(this);

 button.setActionCommand("Close file");

CORRECTED

 // close file button

 button = new JButton(ViewProperties.getFilecloseIcon());

 tbar.add(button);

 button.setName("Close");

 button.setToolTipText("Close");

 button.addActionListener(this);

 button.setActionCommand("Close file");

The seven tests verified that the five toolbar buttons were enabled and the 'HDF4 Library' and 'HDF5 Library' buttons were activated and the test verified that correct message dialog appeared.

A more involved test to open a HDF file and interrogate a dataset will be developed and all the components involved will be updated to provide the needed identification. A test plan will be developed to identify the most critical functionality that should be tested. Then the HDFView source should be updated to provide the needed identification for the components involved. Once that is implemented and running during daily tests, less critical but necessary functionality can be added to the test suite. Future development should be required to use the FEST framework in a test driven development process.

In addition to the implementation of the unit testing framework, an acceptance testing plan, based on the existing test guide, will be developed and executed on a regular basis. Most likely the acceptance tests should be used after the implementation of a significant functionality and before any release. A suitable tool for record/playback testing will be determined and an initial sequence will target functions considered to be critical. While an acceptance test can be automated with a record/playback tool, it will require a human to monitor and interpret the results.

