
PERFORMANCE COMPARISON OF COLLECTIVE I/O
AND INDEPENDENT I/O WITH DERIVED DATATYPES.

Christian M. Chilan
Kent Yang
2006-6-23

In the current version of HDF5, I/O operations can be carried out in independent or
collective mode. These modes correspond to the access types provided by MPI-IO.

In independent I/O access, the requests of each processor are handled individually. On
the other hand, collective I/O access combines many requests in a single contiguous I/O
operation minimizing the contribution of latency.

For non-interleaved patterns, collective I/O operations should not provide a significant
improvement in performance with respect to independent operations. However, when
non-interleaved selections contain holes, collective I/O access performs better than
independent I/O access in the current version of HDF5. By providing information about
the access pattern in the form of derived datatypes, collective access enable a MPI-IO
optimization known as data sieving which consists of performing large I/O operations
including holes in the selection, instead of many small I/O operations skipping the holes.
It is clear that data sieving minimizes the contribution of latency improving the
performance significantly.

Since collective I/O mode incurs in some overhead, we believe that independent I/O
access can yield better performance provided that it also uses derived datatypes to enable
data sieving in collectively way. In order to verify this hypothesis, we perform testing
with non-interleaved selections in Bluesky, the NCAR IBM Power4 SP cluster, using
two categories.

The first category models the common case in which all the processors of the
communicator participate in the I/O operation. In the second category, we want to
determine the effect in performance of using only a subset of processors out of 64
processors in the communicator.

Testing with full processor participation

In these tests, we compare the performance of collective I/O and independent I/O access
with derived datatypes for the common case in which all the processors participate in the
I/O operations. The configuration and geometry are shown in the following Table 1 and
Figure 1. The type of each element is a char.

Test Processors Buffer_dim Dset_dim
16p, 1Kx1K 16 1K 16K
16p, 2Kx2K 16 2K 32K
32p, 1Kx1K 32 1K 32K

Table 1 Test parameters

 m

Figure1 Geometry of the

The shaded area in Figure 1 represen
operation. During the subsequent ope
covers the entire area of the dataset.

The results of our testing are shown i
I/O access with derived datatypes is a
operations. However, we see that this
larger than the processor selection pe
Dset di
 Buffer dim
Buffer dim

 selection per processor per I/O operation

ts the processor selection during the first I/O
rations, the shaded area shifts to right so that it

n Figure 2. Note that benefit of using independent
n improvement in performance in READ
 advantage decreases as the holes become much
r I/O operation.

0

2

4

6

8

10

12

14

16

18

20

16p,(1Kx1K) 16p,(2Kx2K) 32p,(1Kx1K)

Test

RD coll
WR coll
RD ind-dd
WR ind-dd

Figure 2 Performance of tests with full processor participation

Testing with subset of processors

In these tests, we wanted to determine the performance impact of using only a small
subset of processors to execute I/O operations. The total number of processors is 64 but
the actual number of processors that perform I/O is varied.

The geometry of the selection per processor is shown in Figure 3. The type of each
element is an integer.

2K cols

2K rows

 1K cols

Figure 3 Geometry of the selection per processor

The results of our testing are shown in Figures 4 and 5. As we see, independent access
with derived datatypes always provides better performance than collective access. This is
more evident when the subset of processors is much smaller than the total number of
processors in the communicator.

Read performance

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

I/O processors

coll
ind-dd

Figure 4 Read performance using a subset of processors for I/O

Write performance

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70

I/O processors

coll
ind-dd

Figure 5 Write performance using a subset of processors for I/O

Conclusions

Since we did not find a case in which independent I/O access with derived datatypes
reduces the performance significantly with respect to collective I/O operations, we
believe that it is a valid option to include in HDF5. The condition to use independent I/O
access with derived datatypes inside HDF5 is the same as the condition to use collective
I/O inside HDF5.

The magnitude of the performance improvement of independent access with derived
datatypes depends on the size of the selection and the holes per I/O operation.

Appendix:

The new API for doing independent IO with DDT
Name: H5Pset_dxpl_mpio_collective_opt
Signature:
herr_t H5Pset_dxpl_mpio_collective_opt

(hid_t dxpl_id, H5FD_mpio_collective_opt_t opt_mode)

Purpose:
Applications that set data transfer property list to H5FD_MPIO_COLLECTIVE can set
a flag in this API to use MPI-IO independent I/O functions inside HDF5. This
API allows controlling the low-level type of I/O while maintaining the same
collective interface at the application level.

Description:

This API is an optional API. It should only be used when

 H5FD_MPIO_COLLECTIVE is set through data transfer API H5Pset_dxpl_mpio.
 When the application sets the flag to H5FD_MPIO_INDIVIDUAL_IO, the library
 will use low-level MPI independent I/O functions. Otherwise,
collective I/O functions are used. The library will do collective I/O
if this API is not called.

Valid flags are as follows:

H5FD_MPIO_COLLECTIVE_IO
Use collective I/O access(default)

H5FD_MPIO_INDIVIDUAL_IO
 Use independent I/O access

Parameters:

hid_t dxpl_id in: Data transfer property list identifier
 H5FD_mpio_collective_opt_t opt_mode

in: The flag to determine the usage of collective I/O or independent I/O.
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value.

	PERFORMANCE COMPARISON OF COLLECTIVE I/O AND INDEPENDENT I/O
	Testing with full processor participation
	Testing with subset of processors
	Conclusions

