
A Developer’s Guide for the HDF5 Virtual

Object Layer

Mohamad Chaarawi

23rd September 2014

1



Contents

1 Introduction 1

2 New VOL Code 1

3 The VOL Property in the File Access Property List 1

4 Changes in API Routines Implementation 2

5 Object Identifiers 3

6 Using H5I object(), H5I object verify(), and H5I iterate() 4

7 Native Plugin Implementation 5

8 The Named Datatype Pickle 6

9 Adding New Features to the Library 7

I



1 Introduction

The Virtual Object Layer (VOL) is an abstraction layer in the HDF5 library
that intercepts all API calls that could potentially access objects in an HDF5
container and forwards those calls to plugin ”object drivers”. The plugins could
store the objects in variety of ways. A plugin could, for example, have objects
be distributed remotely over different platforms, provide a raw mapping of the
model to the file system, or even store the data in other file formats (like native
netCDF or HDF4 format). The user still gets the same data model where
access is done to a single HDF5 “container”; however the plugin object driver
translates from what the user sees to how the data is actually stored. Having this
abstraction layer maintains the object model of HDF5 and would allow HDF5
developers or users to write their own plugins for accessing HDF5 data.

This guide is for HDF5 library developers responsible for maintaining the HDF5
C library. It details the changes made to the library to implement the VOL, and
the necessary requirements for adding new features to the library to work with
the Virtual object layer. Readers of this document are expected to be quite
familiar with the VOL high level architecture presented in [1] and the VOL
user’s guide[2].

2 New VOL Code

The VOL captures all API routines that could potentially access the HDF5 file
and routes them through the VOL intermediate layer which in-turn calls the
plugin callback that implements the API function.

The VOL code additions have been added to the library similar to any new
interface introduced. The library’s acronym to all VOL related variables and
functions is H5VL. The public VOL definitions including the VOL class and call-
backs are in H5VLpublic.h. Private routines are in H5VLprivate.h. The actual
implementation for public and private routines are in H5VL.c and H5VLint.c

respectively.

3 The VOL Property in the File Access Prop-
erty List

A new property is added for file access property lists (FAPL) that indicates
what VOL plugin should be used when accessing a file with the given FAPL.
The property H5F ACS VOL ID NAME maps to the plugin identifier to use. If the
plugin selected requires information to be passed down from the application,
another property is used, H5F ACS VOL INFO NAME, which translates to a void

pointer to the information needed by specific the VOL plugin. The property
setting are analogous to the Virtual File Driver properties for selecting and using
file drivers with the native HDF5 library. For more information on selecting
VOL plugins refer to the VOL user guide.

1



The default settings for the FAPL properties for the plugin identifier is the
global identifier for the native plugin. Since the native plugin does not require
any extra information from the application, the info property is set to NULL by
default. The global identifier for the native plugin is initialized when the HDF5
library is initialized by registering a global identifier with the native plugin
structure.

Whenever a plugin is set to be used with a FAPL or when copying a FAPL, the
library calls:

herr_t H5VL_fapl_open(H5P_genplist_t *plist, hid_t vol_id, const void

*vol_info);

which increments the reference count on the plugin, calls the plugin specific
info copy callback if the vol info parameter is not NULL, and sets the VOL
properties for the VOL identifier and info that are described above.

When a FAPL is closed, the library calls:

herr_t H5VL_fapl_close(hid_t vol_id, void *vol_info)

which calls the info free callback of the VOL plugin with the info if vol info

is not NULL, and decrements the reference count on the VOL identifier.

4 Changes in API Routines Implementation

The VOL is implemented as an abstraction layer in the HDF5 C library. All
API calls have been modified to call into the intermediate VOL layer instead
of executing the operation directly with the HDF5 native implementation. For
example, the function H5Fcreate() was implemented as:

/* Check arguments */

...

/*

* Create a new file or truncate an existing file.

*/

if(NULL == (new_file = H5F_open(filename, flags, fcpl_id, fapl_id,

H5AC_dxpl_id)))

HGOTO_ERROR(H5E_FILE, H5E_CANTOPENFILE, FAIL, "unable to create

file")

where H5F open() is an internal HDF5 function that creates/opens a native
HDF5 file. With the VOL changes introduced, the implementation will change
to:

/* Check arguments */

...

/* create a new file or truncate an existing file through the VOL */

if(NULL == (file = H5VL_file_create(vol_cls, filename, flags,

fcpl_id, fapl_id, H5AC_dxpl_id, H5_REQUEST_NULL)))

2



HGOTO_ERROR(H5E_FILE, H5E_CANTOPENFILE, FAIL, "unable to create

file")

where H5VL file create() is a private function defined in the intermediate
VOL layer that calls the the create callback in the file class of the VOL plugin
selected in the file access property list.

This change is introduced for all such API routines that could potentially access
the file. Multiple API routines could map to the same VOL callback. For ex-
ample H5Acreate(), H5Acreate by name(), and H5Acreate by idx() all map
to the attribute create intermediate routine which calls the attribute create
callback in the VOL class. For an exact mapping of API routines to VOL in-
termediate functions and callbacks, please refer to the VOL user guide or the
VOL header file in src/H5VLpublic.h. All the intermediate routines are im-
plemented in H5VLint.c.

5 Object Identifiers

All functions that create or open objects in an HDF5 file return an identifier
of type hid t for that object. This identifier could used by the application
to access other objects or operate on the object itself. Internally the HDF5
library maintains a mapping of that identifier to the private data structure of
the object that it represents. For example, H5Fcreate() returns an identifier
that internally maps to the private H5F t structure of that file; H5Dcreate()
returns an identifier that maps to the H5D t private structure of the dataset,
etc...

With the introduction of the VOL, the current mapping between the identifiers
and the private structures is not possible anymore for two main reasons. The
first being that the private structures that the identifiers point to now are specific
to the native HDF5 implementation. Other plugins will have different structures
that they implement. Thus at the API and VOL intermediate layer, those
objects are accessible only through a void pointer with an unknown structure
type to cast it to. The second reason is that the internal structures (H5F t,

H5D t, H5G t, etc ...) do not contain a pointer to the plugin class used
to create the object. This is problematic because subsequent access on those
object through the identifiers would not allow us to determine the VOL class to
forward the call to.

To get around the two issues explained above, we introduce a private object
structure for all File, Attribute, Dataset, Group, and Named Datatype objects.
Those set of objects are the ones currently stored in the HDF5 file. Other
object types (dataspace, property lists, etc...) are memory space objects that
are not stored or accessed through an HDF5 file. All the API routines that
create/open objects will create this “wrapper” object around the object pointer
returned from the intermediate VOL function. The new object is defined in
H5VLprivate.h as:

/* The internal vol object structure returned to the API */

3



typedef struct H5VL_object_t {

void *vol_obj; /* pointer to object created by

plugin */

H5VL_t *vol_info; /* pointer to VOL info struct */

} H5VL_object_t;

where vol obj is a pointer to the plugin created object. In the native plugin
this would be a pointer to the private structures of that object (H5F t, H5D t,

H5G t, etc ...). The vol info contains the information about the plugin
that created the object and is defined as:

/* Internal struct to track VOL information with objects */

typedef struct H5VL_t {

const H5VL_class_t *vol_cls; /* constant plugin class info */

int nrefs; /* number of references by objects

using this struct */

hid_t vol_id; /* identifier for the VOL class */

} H5VL_t;

vol cls is a pointer to the plugin class. nrefs indicates how many object cur-
rently point to the H5VL t structure. vol id is the global identifier for the VOL
plugin used. Usually this structure is created in H5Fcreate() or H5Fopen()

with nrefs = 1, then nrefs is incremented by 1 on any subsequent object cre-
ation that stored a copy of that pointer and decremented when the object is
closed. When nrefs becomes zero, the structure is freed.

As a convenience, a new private routines is provided to create the wrapper
object for the underlying plugin specific object pointer, manage the VOL info
structure, and register an identifier to be returned to the user:

H5VL_register_id(H5I_type_t type, void *object, H5VL_t *vol_plugin,

hbool_t app_ref);

This routine is implemented in H5VLint.c.Instead of calling H5I register()

to create an identifier, developers should now use the above routine to get back
an hid t for objects stored in HDF5 files.

6 Using H5I object(), H5I object verify(), and

H5I iterate()

The change in the mapping of identifiers to the corresponding object pointer and
introducing the new wrapper H5VL object t structure, means that any usage
in the library of H5I object(), H5I object verify(), and H5I iterate()

expecting to get back a pointer to the native structure of the object is broken,
since those routines return a pointer to the object without unwrapping it from
the H5VL object t structure. To fix the above problem, we introduced two
private convenience functions:

4



void *H5VL_object(hid_t id);

void *H5VL_object_verify(hid_t id, H5I_type_t obj_type);

which do the same thing as their H5I counterpart but return a pointer to
the actual VOL specific object (vol obj) instead of the unwrapped object
pointer that the identifier points to. The objects identifiers must be either
files, datasets, attributes, named datatypes, or groups; otherwise the function
will return NULL for erroneous usage. We replaced all usage of H5I object()

and H5I object verify() in the library as appropriate for the above listed ob-
ject types. Developers should use the H5VL functions above in the native library
and tests when expecting to get back the plugin specific objects.

As for H5I iterate(), we update the implementation of this function inter-
nally to unwrap the object being iterated over if it is a file, dataset, group,
attribute, or named datatype, and return the plugin specific object to the iter-
ate callback. We saw this as a better approach than requiring a change in all
the iteration callbacks to check for the object type and unwrap it accordingly.
With the current solution, no code changes are required in the internal usage of
H5I iterate().

7 Native Plugin Implementation

The native HDF5 plugin implements the VOL callbacks with the native HDF5
file format. This is basically all what the library currently does when implement-
ing HDF5 features. The native VOL plugin is implemented in H5VLnative.c.
The callbacks of the VOL class are implemented here similarly to how the API
routines were mapped directly to the internal HDF5 implementation before the
VOL was introduced. However, since there isn’t a one to one mapping from
every API routine to a VOL callback, there is an additional level of process-
ing parameters passed in from the VOL intermediate layer. The protocol for
parameter processing is explained in detail in the VOL user guide.

There are places in the library where we need to register an identifier to pass di-
rectly to the application (for example, creating a group identifier and calling the
user defined link iteration callback). To do that, we need to create the high level
object wrapper and attach the native plugin information before registering that
ID. This can be done by calling this private and native specific routine:

hid_t H5VL_native_register(H5I_type_t type, void *obj, hbool_t app_ref);

which does all the steps required for creating an identifier for the native object.
That identifier has to be freed with:

herr_t H5VL_native_unregister(hid_t obj_id);

5



8 The Named Datatype Pickle

Datatypes in HDF5 exist in two states, transient and committed. When a user
creates an HDF5 datatype, it is in the transient state, i.e. in memory space. It
does not exist in the file; in fact, an HDF5 program could work with datatypes
without even opening or accessing any HDF5 file. HDF5 provides a way for
users to write (or commit) a datatype to the HDF5 file. When a user calls
H5Tcommit() on a transient type, that datatype is written to the HDF5 file
under the location specified in the commit call. The datatype then becomes a
named/committed datatype. Since the datatype is not stored in the file, the
use can open that datatype from the file later to retrieve it and work with it in
a similar way like other objects that are stored in the file (groups, datasets, and
attributes).

There are a large set of routines that operate on datatypes in general. For
a complete list, look at the reference manual for the H5T interface. As far as
the user is concerned, it does not matter whether the datatype is committed
or not. Those routines work the same way for transient or named datatypes.
With the addition of the VOL, a datatype class is added to handle committing
and opening a named datatype, in addition to retrieving some metadata stored
with the named datatype. However other operations that work with datatypes
in both its transient or committed state do not pass through the VOL, since
they do not access the datatype in the container. At that point the datatype
should already by open and loaded into memory space for those operations to
work. We chose not to handle those operations through the VOL even if that
datatype is committed, to relieve VOL plugin developers from implementing a
large set of datatype routines that is already available in the HDF5 library and
is likely to be the same across all VOL plugins.

The design decision above does have some implications on the internal handling
of named datatypes with the VOL changes. The higher level datatype APIs
expect that the identifier for dataypes (named and transient) to map to the
private H5T t structure. However; as we explained earlier in this document, the
object that we get back from the VOL plugins when committing a datatype
to the file is a void pointer that the library just needs to keep track. For the
native plugin we do know that the pointer is actually pointing to the internal
H5T t structure for the name datatype, but we can not make that assumption
for other plugins that will return a pointer to their own implementation of
named datatypes. Furthermore we need to wrap whatever object returned from
the plugin when creating/committing a named datatype with the higher level
object structure that contains the VOL plugin information used for creating the
datatype. This mismatch between what the VOL expects and what the H5T

API functions expect will require us to do some special handling for committing
and opening named datatypes:

• Committing a transient datatype: At this point the identifier for the
datatype exists and points to the private transient H5T t structure. The
difference between other objects and named datatypes is that the identi-
fier for the named datatype should always dereference to the private H5T t

structure, so instead of updating the identifier’s underlying object after
committing the datatype to the newly created H5VL object t structure

6



for the VOL object of the named datatype, we store that object pointer
in a newly added field to the private H5T t structure and use that field to
determine if that datatype is committed or not. At this point we satisfied
the requirement for the public H5T functions that do not care about the
state of the datatype and can continue to work with the datatype iden-
tifier since it still dereferences to the same H5T t structure, but with an
additional field. The additional field contains the VOL object that should
be used instead of the H5T t structure when operating on that datatype
through the VOL.

• Opening a named datatype: The open operation for a named datatype
is forwarded to the VOL that returns the VOL specific pointer to the
datatype that is opened. The open operation for datatypes should return
an identifier that dereferences to an H5T t structure for the reasons we
stated earlier. However at this point we do not have the H5T t structure
for that datatype. For this reason we require all VOL plugins that support
named datatypes to store a serialized copy of the HDF5 datatype some-
where in the underlying container when committing a named datatype.
After opening the datatype through the VOL, we ask the VOL plugin to
return the serialized form of the datatype which we can call H5T decode()

on to create the private H5T t structure which is a transient form of the
datatype. Then we store the object created from the open operation in
the new vol obj field of the H5T t structure we just created and atomize
it to return to the user.

HDF5 datatypes proved to be quite a challenge with the VOL due to the two
states that they exist in unlike any other HDF5 object. However we believe the
design decisions we made and explained above are a compromise to ease the work
for plugin developers and HDF5 library maintainers at the same time.

9 Adding New Features to the Library

It is expected that new features and routines will be added to the HDF5 library
after the VOL has been introduced. New functionality added that accesses data
in the file has to go through the VOL the same way that any other function
does. There are several ways to handle extensions to the VOL.

• Adding a new VOL class for the new feature. This usually means that a
new object type is added to the HDF5 library or a new service is introduced
that is expected to be general in the sense that most plugins should be
implemented. For example, consider the case when a new HDF5 object
is added to the library that allows users to create and use a KV store in
the HDF5 container. Adding a new class means that all existing plugins
have to be modified to cope with the change in the VOL public structure.
Changing the VOL public structure should be done only in major HDF5
releases, and not in maintenance releases.

• Adding a new callback to a VOL class. This is done when a new API func-
tion is added to a particular class of operations (Files, Datasets, Groups,
etc...) and is quite important that it can’t be “hidden” in the specific

7



callback of that class. This change in the public VOL class also requires
all existing plugins to be updated and should be done in major releases
only.

• Adding a new operation type to the get, specific or optional callbacks
of a sub-class in the VOL public structure. When a new operation type to
retrieve data from a particular object or to execute some new operation on
that object, whether that operation is general among all plugins or plugin
specific, adding a new type to the enum of types for the three callbacks
present in every sub-class should be enough to support the new operation.
For more information on how this works, please consult with the VOL
user guide.

• Adding a new operation type to the optional callback in the VOL public
class for services. New HDF5 functionality that is added specifically for
certain plugins and would not make sense to promote to an actual class
since it isn’t general enough to be implemented by most plugins or would
not be used a lot by applications should follow this option.

References

[1] M. Chaarawi and Q. Koziol, “RFC: Virtual Object Layer,” 2014, available
at http://svn.hdfgroup.uiuc.edu/hdf5doc/trunk/RFCs/HDF5/VOL/RFC/.

[2] M. Chaarawi, “User Guide for Developing a Vir-
tual Object Layer Plugin,” 2014, available at
http://svn.hdfgroup.uiuc.edu/hdf5doc/trunk/RFCs/HDF5/VOL/user guide/.

8


