A Maintainer’s Guide
for the Datatype Module in HDF5 Library
Raymond Lu
This document explains the design, architecture, organization, and algorithms of the datatype module in the HDF5 library.

Introduction
The purpose of this document is to explain the basic design of the datatype module in the HDF5 library – its architecture, organization, and algorithms. For the maintainers of the library, this document should give them enough knowledge to understand, adjust, or fix the library if any problem arises. For the users of the library, the existing documents such as the User’s Guide, the Reference Manual, and the File Format Specification should give them sufficient knowledge to use the library. But if any power user wants to find out how the library is designed, this document can be helpful to some extent. This document is written based on the HDF5 release 1.8.8.
The Way That the Library Defines Data Types
Integers
Integers generally have simple bit patterns. Using the twos-complement notation, a signed integer of n bits in size will have a range from -2n-1 to 2n-1 – 1. The high-order bit is the sign bit. There are n-1 data bits. For unsigned integers, the high-order bit becomes a data bit. All the n bits are data bits. So an unsigned integer of n bit in size has a range from 0 to 2n–1. An example bit sequence of (signed) char of 1 byte long is like 10010111. The high-order (leftmost) bit is set to 1, meaning the value is negative. If the same bit sequence represents an unsigned char, the high-order bit becomes a data bit, making the value be 151.

In the HDF5 library, each integer data type, predefined or user-defined, has the following properties:

	Order				The byte order – big or little endian
	Sign				Signed or unsigned
	Size				The size of the entire integer data type
	Precision			The size of the actual data part of
the integer
	Offset			The start of the actual data in the data
type	
	Lsb padding			The padding bit in the least significant
side
	Msb padding			The padding bit in the most significant
side

These properties help the library define or identify each integer type. For example, the following properties define a four-byte little-endian signed integer:

	Order				little-endian
	Sign				signed
	Size				4 bytes
	Precision			32 bits
	Offset			0
	Lsb padding			0
	Msb padding			0

The library provides API functions to query or adjust these properties, such as H5Tset(get)_size, H5Tset(get)_order, H5Tset(get)_precision, H5Tset(get)_offset, H5Tset(get)_sign, and H5Tset(get)_pad. These functions also work for other atomic data types, i.e. floating-point numbers.
Floating-Point Numbers
The floating-point number representation is more complicated. A more thorough description of IEEE standard floating-point numbers can be found in the IEEE Standard 754 document. For IEEE standard floating-point numbers, there are three components for a floating-point number - the sign, the exponent, and the mantissa. The diagram below shows the layouts of IEEE float and double types.

	Type
	Sign
	Exponent
	Mantissa
	Bias

	Float
	1[31]
	8[30-23]
	23[22-00]
	127

	Double
	1[63]
	11[62-52]
	52[51-00]
	1023

In the table, the numbers are the size of each component. The bit index is in the square brackets. To calculate the true exponent value, the bias has to be subtracted from the value represented by the bits of exponent. The mantissa represents the precision bits. The leading bit has been implied. When the true precision is calculated, this implicit bit will be restored. Consider this bit sequence for float in little-endian order,

		Byte 3	byte 2	byte 1	byte 0
 11000011	11110000	00000000	00000000

The high-order (leftmost) bit is the sign bit. It is set to indicate the number is negative. The eight bits after the sign bit, 10000111 in byte 3 and 2, is the exponent. The value of these eight bits is 135. After subtracting the bias 127, the true exponent is 8. The 23 bits after the exponent 1110000 00000000 00000000 in byte 2, 1, 0, is the mantissa. After restoring the implicit leading bit and adding the radix, the mantissa becomes 1.1110000 00000000 00000000. The value of this float number is 1.111 x 28 = 111100000.0 in binary. Adding the sign bit, that value is -480.0 in decimal.

There are a few special values for floating-point numbers,
Denormalized – when exponent bits are all 0s but mantissa bits are non-zero. There will be no implicit bit for the mantissa.
Zero – when exponent and mantissa bits are all set to 0s. There can be both +0 and -0.
Infinity – when exponent bits are all 1s and mantissa bits are all 0s. There can be both positive and negative infinities.
NaN(Not a Number) – when exponent bits are all 1s and mantissa bits are not all 0s. NaN can be either positive or negative.
For other predefined or used-defined types, they should be similar to IEEE standard. There should be the sign, exponent, mantissa, and bias. The bits of exponent or mantissa should be contiguous. The floating-point numbers for VAX are different from IEEE standard. Their byte order is a mixture of little-endian and big-endian. But that is the only difference from IEEE standard. So we will not discuss it in detail here.

The properties of floating-point number datatypes are more complicated than integer types. Each floating-point datatype, predefined or user-defined, has the following properties:

	Order				The byte order – big endian, little
endian, or VAX
	Size				The size of the entire data type
	Precision			The size of the actual data part of the
data type
	Offset			The start of the actual data in the data
type	
	Lsb padding			The padding bit in the least significant
side
	Msb padding			The padding bit in the most significant
side
	Sign				The position of the sign bit
	Exponent position		The position of the start of exponent
bits
	Exponent size		The number of the exponent bits
	Exponent bias		The value of exponent bias
Mantissa position		The position of the start of mantissa
bits
	Mantissa size		The number of the mantissa bits
	Norm				The flag for normalized floating number
	Padding			The padding bit

For example, an IEEE standard little-endian single floating-point number is four bytes in size and thirty-two bits in precision. Its sign bit is at the thirty-first bit. The exponent is eight bits long and starts at the twenty-third bits. The mantissa is twenty-three bits long and starts at the beginning bit. We can use the following diagram to illustrate this floating number:

 byte 3 byte 2 byte 1 byte 0
 SEEEEEEE EMMMMMMM MMMMMMMM MMMMMMMM

So it has the following properties:

	Order				little-endian
	Size				4 bytes
	Precision			32 bits
	Offset			0	
	Lsb padding			0
	Msb padding			0
	Sign				31
	Exponent position		23
	Exponent size		8
	Exponent bias		127
	Mantissa position		0
	Mantissa size		23
	Norm				Implied
	Padding			0
Besides the API functions for atomic datatypes, the library provides several functions for floating numbers specifically. These functions are H5Tset(get)_fields, H5Tset(get)_ebias, H5Tset(get)_norm, and H5Tset(get)_inpad.
2.3 Predefined Numerical Datatypes
2.3.1 Integers
The integer datatypes include all the library’s predefined integers and any user-defined integers. The library’s predefined integers include standard, Unix-specific, Intel-specific, Alpha-specific, MIPS-specific, ANSI C9x-specific, and native data types. The HDF5 Predefined Datatypes section in the HDF5 Reference Manual lists all these predefined data types.
2.3.2 Floating-Point Numbers
The floating-point datatypes include all the library’s predefined floating numbers and any user-defined floating numbers. The library’s predefined floating numbers include IEEE standard and C native datatypes. The HDF5 Predefined Datatypes section in the HDF5 Reference Manual lists all these predefined datatypes.
2.4 User-Defined Numeric Datatypes
Users can define their own datatypes based on the default datatypes in the library. By adjusting the properties of the existent data types through some API functions for data types, users can create new datatypes. These API functions are listed under the Atomic Datatype Properties category of H5T Datatype Interface. After defining the properties, users should call H5Tcommit to register the datatype into the file.
For example, a user defines a two-byte big-endian unsigned integer. But its precision is only ten bits long. The offset is four bits. The padding is one. We can represent this integer as

		Byte 0	byte 1
1111XXXX XXXXXX11

where X stands for the data part and 1 stands for the padding. This integer should have the following properties:
	Order				big-endian
	Sign				unsigned
	Size				2 bytes
	Precision			10 bits
	Offset			4 bits
	Lsb padding			1
	Msb padding			1

Another example is a user-defined three bytes big-endian floating number. Its precision is eighteen bits. The offset is four bits. The other properties are displayed below:

	Order				big-endian
	Size				3 bytes
	Precision			18 bits
	Offset			4 bits	
	Lsb padding			0
	Msb padding			0
	Sign				19
	Exponent position		13
	Exponent size		6
	Exponent bias		31
	Mantissa position		2
	Mantissa size		11
	Norm				Implied
	Padding			0

We can use the following diagram to illustrate this floating number:

 byte 0	byte 1	byte 2
 0000SEEE EEEMMMMM MMMMMM00
2.5 Non-Numerical Datatypes
The datatypes (integers and floating-point numbers) we discussed above are numerical. There are non-numerical datatypes in the library. Some of them are derived from the numerical datatypes, such as enum and array types. The library does not have default data types for these non-numerical types. Users must define them. It is necessary to define a few terms that we normally use to describe the kinds of data types in the library. Please see the Terminology for the definitions of these terms.
2.5.1 String Datatypes
The string types are atomic datatypes. They have the following properties:
	Cset				ASCII or Unicode character set
	Pad				space or null padding for extra bytes
The functions that the library provides to query or adjust these properties are H5Tset(get)_cset and H5Tset(get)_strpad.
2.5.2 Reference Datatypes
The reference types are another kind of atomic datatypes. A reference datatype only has one property:
	Rytpe				object or region reference
The functions for reference datatypes are under the H5R interface, such as H5Rcreate, H5Rdereference, and H5Rget_obj_type.
2.5.3 Compound Datatypes
A HDF5 compound datatype can contain any HDF5 data type as its member. All the properties for compound datatypes are related to its members, such as:

	Nmembs			The number of member types
	Sorted			How the members are sorted
	Packed			whether the members packed together
	Members			information about each member

Besides its own properties as a HDF5 datatype, each member has the following individual properties:
	
	Name				the name of this member
	Size				the size of this data type
	Offset			the offset from the beginning of the C
struct
The functions that the library provides to query or adjust these properties are H5Tinsert, H5Tpack, H5Tget_nmembers, H5Tget_member_class, H5Tget_member_name, H5Tget_member_index, H5Tget_member_offset, and H5Tget_member_type.
2.5.4 Enumerate Datatypes
Enumerate datatypes are derived from integers. They have the following properties:

	Nmembs			number of members
	Sorted			how the members are sorted
	Names				member names
	Values			member values
The library provides these API functions to create enumerate datatypes or query their properties: H5Tenum_create, H5Tenum_insert, H5Tenum_nameof, H5Tenum_valueof, H5Tget_member_value, H5Tget_nmembers, H5Tget_member_name, and H5Tget_member_index.
2.5.5 Variable-length Datatypes
The variable-length datatype is a derived datatype. It has the following properties:
	Type				string or sequence of other type
	Cset				character type for VL string
	Pad				space or null padding for extra bytes for
					VL string
The API functions that the library provides to create and query variable-length datatypes are H5Tvlen_create and H5Tis_variable_str.
2.5.6 Array Datatypes
The array data type is a derived data type. Its base type can be any HDF5 data type. The array datatype has the following properties:
	Nelem				total number of elements in the array
	Ndims				number of dimensions
	Dim[]			sizes of dimensions
The API functions that the library provides to create or query array datatypes are H5Tarray_create, H5Tget_array_ndims, and H5Tget_array_dims.
2.5.7 Opaque Datatype
The opaque datatype only has one property:
	Tag				short description string
The library provides these two API functions, H5Tset(get)_tag, to query or adjust the property of opaque datatypes.
Library’s Internal Design for Datatypes
The Architecture of Datatype Module
The following diagram illustrates the basic design of the data type module in the library. The left side of the figure focuses on how the library creates data types and the conversion table. The right side of the figure focuses on the relationship of the conversion table with the IO flow. We will explain the detail of the library’s internal design using this diagram.
January 20, 2012		THG 2012-1-20.v1
January 20, 2012		THG 2012-1-20.v1

Page 9 of 23
Page 8 of 23

Predefined (native) datatypes
H5T_NATIVE_CHAR H5T_NATIVE_INT
H5T_NATIVE_FLOAT
:

Conversion
table
H5T.c
Predefined (standard) datatypes
H5T_STD_I8BE
H5T_STD_U16LE
H5T_IEEE_F32BE
H5T_IEEE_F64LE
:

User-defined datatypes

H5Tconv.c
H5detect.c
H5Tinit.c
Application
data in
memory
No conversion
H5Dwrite H5Dread
H5T API
functions
H5I_register
Filter pipeline
Data in file
Application
H5T_init_interface
H5T_path_find
H5T_convert
H5Tregister / H5T_register

	
[bookmark: _GoBack]
Source File That Contains Datatype Properties
Inside the library, all the properties of the data types are contained in the structures. These structures are defined in H5Tpkg.h and used in memory by the library. The diagram below shows the relationship among these structures. The library developers may want to look at them for the information of the data type properties. The HDF5 File Format Specification describes how a HDF5 file stores the data type properties.

How H5detect.c Works
When a user builds the HDF5 library with Makefile or CMake, the first source file to be built and run is H5detect.c under the library source directory. Running the executable of H5detect.c generates another source file called H5Tinit.c under the user’s build directory. The function H5TN_init_interface in H5Tinit.c contains all the property information for the library’s predefined native data types (integers and floating numbers). Then H5Tinit.c is compiled with other source files to build the library. The program H5detect.c detects the properties of all the predefined native data types, such as H5T_NATIVE_INT, H5T_NATIVE_FLOAT, H5T_NATIVE_UINT64, H5T_NATIVE_INT_LEAST64, and H5T_NATIVE_INT_FAST32.
Integers
In H5detect.c, the macro DETECT_I is used to detect the properties of native integers. It has the following signature:
		DETECT_I (TYPE, VAR, INFO)
In the macro’s signature, TYPE is the native type in C such as int or long. VAR is the type name used to construct the identifier of the predefined data type. For example, if VAR is INT, the identifier for int is H5T_NATIVE_INT. Please see Part 2.3.1 for the list of some predefined native types. The INFO is a C struct containing properties for both integer and floating number. The information of these properties will be printed out into H5Tinit.c.
Byte order
In the definition of the macro DETECT_I, it first tries to figure out the byte order of the data type (e.g. int) by this algorithm:
		int v;
		unsigned char *x;
		for(i=sizeof(int), v=0; i>0; --i)
			v = (v << 8) + i;
		for(i = 0; x = &v; i < sizeof(int); i++) {
			j = (*x++) -1;
			d_g[nd_g].perm[i] = j;
		}
If the machine is little-endian, the first loop fills each byte with sequential numbers
		byte 3	byte 2	byte 1	byte 0
 	4		3		2		1
The second loop fills the array perm[] with the following numbers
		perm[0]	perm[1]	perm[2]	perm[3]
 0		1		2		3	
When the program H5detect.c prints the results into H5Tinit.c, this sequence of value is considered as little-endian. The reversed order is considered as big-endian.
Offset
H5detect.c also uses the permutation perm[] to decide the precision and offset of the native integer types. The function precision() checks whether the beginning or ending of perm[] is -1. If the beginning or ending bytes are value -1, they are padding, assuming the offset is always in whole byte. The precision is the size of the type subtracting the offset.
Alignment restriction
H5detect.c also tries to detect the alignment restriction of a data type. “Some computers allow data objects to reside in storage at any address regardless of the data’s type. Others impose alignment restrictions on certain data types, requiring that objects of those types occupy only certain addresses. It is not unusual for a byte-addressed computer, for example, to require that 32-bit integers be located on addresses that are a multiple of four. In this case, we say that the ‘alignment modulus’ of those integers is four.”[footnoteRef:1] [1: Harbison and Steele, C: A Reference Manual, 6.1.3 Alignment Restrictions.]

The macro ALIGNMENT(TYPE,INFO) in H5detect.c detects the information of alignment restriction for integers and floating numbers. Again, TYPE is the native type in C such as int or long. The INFO is a C struct containing properties for both integer and floating number. The basic algorithm can be expressed in the following semi-pseudo code:
		align_value[]={1,2,4,8,16};
		char *buf;
		TYPE value2, type_value = 1;

		if (setjmp(jmp_buf)) align_num++;
		if(little_endian)
/* Copy the type_value to the point of the buffer where
 * the assumed alignment is added */
			memcpy(buf+align_value[align_num], &type_value, sizeof(int));
		else /* big-endian */
			/* Skipped */

		/* Cast the value in the buffer to another variable */
		value2 = *(TYPE*)(buf+align_value[align_num];
		if(type_value != value2)
			/* Alignment isn’t found. Go back to setjmp.
 * Increment alignment value and try again. */
			longjmp(jmp_buf, 1);
		/* We have found the alignment */
		INFO.align = align_value[align_num];
In the algorithm, the code between setjmp and longjmp is equivalent to a loop. setjmp saves the current environment into jmp_buf. jmp_buf is used by longjmp to restore the program state. Just imagine that longjmp makes the program jump back to the point where setjmp saves the environment.
Alignment in structure
The alignment of a data type as a C structure member refers to the value expressed in the following pseudo code:
		struct {
			Char c;
			TYPE x;
		} s;

		COMP_ALIGN = (CHAR*)(&(s.x)) – (char*)(&s);
This piece of code is actually the definition of the macro COMP_ALIGNMENT(TYPE,COMP_ALIGN) in the H5detect.c program. A C structure normally has it own alignment restriction. It must terminate on the same alignment boundary on which it starts. If it starts on an even byte boundary, it must also end on an even byte boundary. If the first member of the structure is a one-byte character, the space between this character and next member is the alignment of the next member type as a structure member. For example, if the TYPE in the code above is int and the storage of the structure is as below:
 (

x
) (
 (
space
)
) (

c
)

	Bytes	 1		 3				4
The alignment of int as a structure member is 4 bytes.

Floating-Point Numbers
In H5detect.c, the macro DETECT_F is used to detect the properties of native floating numbers. It has the following signature:
		DETECT_F(TYPE,VAR,INFO)
In the macro’s signature, TYPE is the native type in C such as float or double. VAR is the type name used to construct the identifier of the predefined data type. For example, if VAR is INT, the identifier for float is H5T_NATIVE_FLOAT. Please see Part 2.3.2 for the list of some predefined native types. The INFO is a C struct containing properties for both integer and floating number. The information of these properties will be printed out into H5Tinit.c.
Byte order
In the definition of the macro DETECT_F, it first tries to figure out the byte order of floating number type (e.g. float) by this algorithm:
 int i, j, k, first_mbyte = -1, last_mbyte = -1;
 float value1, value2, value3;
 unsigned char buf1[sizeof(float)], buf3[sizeof(float)];
 int perm[32];

 for(i = 0, value1 = 0.0, value2 = 1.0; i < (int)sizeof(float); i++) {
 value3 = value1;
 value1 += value2;
 value2 /= 256.0;

 memcpy(buf1, (const void *)&value1, sizeof(float));
 memcpy(buf3, (const void *)&value3, sizeof(float));

 /* Found out the first different byte */
 j = byte_cmp(sizeof(float), &buf3, &buf1);

 /* Record the first different byte in permutation */
 if(j >= 0) {
 if(0 == i || perm[i - 1] != j) {
 perm[i] = j;
 last_mbyte = i;
 if(first_mbyte < 0)
 first_mbyte = i;
 }
 }
 }
In this code, we only want to find out the byte order of the mantissa part of the data type, assuming the exponent part has the same byte order as the mantissa. The byte_cmp function simply finds the first different byte between two buffers. If no difference found, it returns -1. We can use the little-endian 4-byte float as the example to explain how the algorithm works. The following diagram shows the properties of the example data type:
 (
 SEEEEEEEE
) (
 MMMMMMMM
) (
 MMMMMMMM
) (
 EMMMMMMM
)		Byte 3			byte 2			byte 1 			byte 0
	

During iteration 1:
	i = 0	value1 = 1.0	value2 = 1/256 = 1/28	value3 = 0.0
	buf1[]= {0x00, 0x00, 0x80, 0x3f} or in binary format:
		buf1[3]		buf1[2]		buf1[1]		buf1[0]
00111111		10000000		00000000		00000000
	buf3[] = {0x00, 0x00, 0x00, 0x00} or in binary format:
		buf3[3]		buf3[2]		buf3[1]		buf3[0]
		00000000		00000000		00000000		00000000
	j = 2	perm[0] = 2	last_mbyte = 2		first_mbyte = -1
During iteration 2:
	i = 1	value1 = 1.0 + 1/28	value2 = 1/216		value3 = 1.0
	buf1[] = {0x00, 0x80, 0x80, 0x3f} or in binary format:
		buf1[3]		buf1[2]		buf1[1]		buf1[0]
00111111		10000000		10000000		00000000
	buf3[] = {0x00, 0x00, 0x80, 0x3f} or in binary format:
		buf3[3]		buf3[2]		buf3[1]		buf3[0]
		00111111		10000000		00000000		00000000
	j = 1	perm[1] = 1	last_mbyte = 2		first_mbyte = 1
During iteration 3:
	i = 2	value1 = 1.0 + 1/28 + 1/216	value2 = 1/224	value3 = 1.0 + 1/28
	buf1[] = {0x80, 0x80, 0x80, 0x3f} or in binary format:
		buf1[3]		buf1[2]		buf1[1]		buf1[0]
00111111		10000000		10000000		10000000
	buf3[] = {0x00, 0x80, 0x80, 0x3f} or in binary format:
		buf3[3]		buf3[2]		buf3[1]		buf3[0]
		00111111		10000000		10000000		00000000
	j = 0	perm[2] = 0	last_mbyte = 2		first_mbyte = 0
During iteration 4:
	i = 3	value1 = 1.0 + 1/28 + 1/216 + 1/224	value2 = 1/232	value3 = 1.0 + 1/28 + 1/216
	buf1[] = {0x80, 0x80, 0x80, 0x3f} or in binary format:
		buf1[3]		buf1[2]		buf1[1]		buf1[0]
00111111		10000000		10000000		10000000
	buf3[] = {0x80, 0x80, 0x80, 0x3f} or in binary format:
		buf3[3]		buf3[2]		buf3[1]		buf3[0]
		00111111		10000000		10000000		10000000
	j = -1	perm[3] = -1	last_mbyte = 2		first_mbyte = 0
After the loop, the permutation array has the values perm[] = {2, 1, 0}. Then DETECT_F calls the function fix_order to adjust the permutation to the byte order of little-endian. The permutation becomes perm[] = {0, 1, 2}, which is the same as the mantissa part of the diagram above. This byte order detection handles little-endian, big-endian, and VAX.
Implied mantissa bit
Next, DETECT_F tries to figure out whether the mantissa has an implied bit in the function called imp_bit. Some floating-point formats discard the most significant bit of the mantissa after normalizing since it will always be one except for the special value 0.0. In DETECT_F, it calls imp_bit in this way:
 _v1 = 0.5;
 _v2 = 1.0;
 INFO.imp = imp_bit (sizeof(TYPE), INFO.perm, &_v1, &_v2);

imp_bit is defined as below:
int imp_bit(int n, int *perm, void *_a, void *_b)
{
 unsigned char *a = _a;
 unsigned char *b = _b;
 int changed, byte_index, bit_index;
 int msmb; /*most significant mantissa bit */

 /*
 * Look for the least significant bit that has changed between
 * A and B. This is the least significant bit of the exponent.
 */
 changed = bit_cmp(n, perm, a, b);

 /*
 * The bit to the right (less significant) of the changed bit should
 * be the most significant bit of the mantissa. If it is non-zero
 * then the format does not remove the leading `1' of the mantissa.
 */
 msmb = changed - 1;
 byte_index = msmb / 8;
 bit_index = msmb % 8;

 return (a[perm[major]] >> minor) & 0x01 ? 0 : 1;
}
The function bit_cmp (explained later) compares two bit vectors and returns the index for the first bit that differs between the two vectors. For example, if float is four-bytes little-endian with the most significant mantissa bit implied, the bit sequence for the value of 0.5 represented by *a in imp_bit is:
	a[3]		a[2]		a[1]		a[0]
00011111	00000000	00000000	00000000
The bit sequence for the value of 1.0 represented by *b in imp_bit is:
	b[3]		b[2]		b[1]		b[0]
00011111	10000000	00000000	00000000
The value of changed return from bit_cmp is 23. The value of the most significant mantissa bit (msmb) is 22. The value of the byte index where the msmb falls into is 2. The value of the bit index where the msmb falls into the byte is 6. The final step for the returned value is
perm[2] = 2
a[2] = 0x00
(a[2] >> 6) & 0x01 = 0
	return 1
which is interpreted as implied in print_results.
Sign bit
To figure out the location of the sign bit is relatively simple:
 	_v1 = 1.0;
 	_v2 = -1.0;
 	INFO.sign = bit_cmp (sizeof(TYPE), INFO.perm, &_v1, &_v2);
Now we can explain how bit_cmp works:
int bit_cmp(int nbytes, int *perm, void *_a, void *_b)
{
 		int i, j;
 		unsigned char *a = (unsigned char *) _a;
 		unsigned char *b = (unsigned char *) _b;
 		unsigned char aa, bb;

 		for (i = 0; i < nbytes; i++) {
			/* Find out where the different byte is */
 		if ((aa = a[perm[i]]) != (bb = b[perm[i]])) {
/* Find out where the different least-significant bit
 * by right-shifting the variables 1-bit at a time.
 */
 		for (j = 0; j < 8; j++, aa >>= 1, bb >>= 1) {
					/* If the least-significant bit is different,
					 * return the bit index. */
 			if ((aa & 1) != (bb & 1))
return i * 8 + j;
 		}
 		}
 		}
 		return -1;
}
Size of mantissa
DETECT_F checks the difference between the values of 1.0 and 1.5 to find out the size of mantissa. The values of 1.0 and 1.5 differ at the first bit of mantissa if the machine has implied mantissa bit, or at the second bit if the machine imply the first mantissa bit. The starting bit of mantissa is assumed to be the first bit of the data type.
Exponent
 DETECT_F assumes the exponent is between the sign bit and the mantissa. So finding the position and size of exponent becomes very simple.
Bias
 When a floating number has the value 1.0, the value of its exponent is its bias. After normalization, the value 1.0 is represented by 1.0 x 20. Whatever the value of the exponent is is the bias for the floating number type.
Precision, alignment, and alignment in structure
Finding the precision, alignment restriction, and alignment in structure is the same as integers.
Others
H5detect.c also detects the alignments in structure for several other things, such as pointers, hvl_t, hobj_ref_t, and hdset_reg_ref_t.
H5Tinit.c
The print_results in H5detect.c prints all the properties of predefined data types of integers and floating numbers into H5Tinit.c. We mentioned earlier that H5Tinit.c is located under the build directory if it is different from the directory of the library’s source code. After each property is assigned, the data type is registered by calling H5I_register. An identification is attained.
Other Predefined (Standard) Data Types
The other predefined (standard) data types are defined in H5T_init_interface in H5T.c using some complicated macros. The one that does the major work is H5T_INIT_TYPE. We will use H5T_INIT_TYPE(SINTBE,H5T_STD_I32BE_g,COPY,native_int,SET,4) as an example. It registers data types in four steps:
a. Gets the data type structure of the base type. The example will call H5T_INIT_TYPE_COPY_CREATE(native_int) in this step.
b. Adjusts the size and precision for the new type. The example will call H5T_INIT_TYPE_SET_SIZE(4) in this step.
c. Adjusts other properties for the new type. The example calls H5T_INIT_TYPE_SINTBE_CORE, which calls H5T_INIT_TYPE_SINT_COMMON(H5T_ORDER_BE) in turn, which calls H5T_INIT_TYPE_NUM_COMMON(H5T_ORDER_BE) in turn.
d. Registers the new type.
Data Conversion
Hard vs. Soft Conversion
Internally, the library has hard and soft conversion functions for data types. A hard conversion is basically a casting done by a compiler. A soft conversion is done by the library’s own conversion function. The library maintains a conversion table. It contains both hard and soft conversion functions. A hard conversion function is for a pair of source and destination data types. A soft conversion function is for a pair of source and destination data type classes. The library’s default conversion between predefined data types is hard conversion.
Registering Functions in the Conversion Table
The library registers its default conversion functions, either hard or soft, into the conversion table in the initialization stage (currently in the function H5T_init_interface in H5T.c). It registers soft conversion functions first, which is more general. The hard conversion functions are the next, which is more specific. When the library tries to convert data, it always picks the more specific conversion function first. When hard conversion function is not available, it goes with the more general soft conversion function. The table below lists most of the soft conversion functions in the library.
	Source data type
	Destination data type
	Conversion function
	Function type

	Integer
	Integer
	H5T_conv_i_i
	Soft

	Integer
	Floating number
	H5T_conv_i_f
	Soft

	Floating number
	Floating number
	H5T_conv_f_f
	Soft

	Floating number
	Integer
	H5T_conv_f_i
	Soft

	String
	String
	H5T_conv_s_s
	Soft

	Bitfield
	Bitfield
	H5T_conv_b_b
	Soft

	One byte order
	Another byte order
	H5T_conv_order
	Soft

	Compound
	Compound
	H5T_conv_struct
	Soft

	Enum
	Enum
	H5T_conv_enum
	Soft

	Variable-length
	Variable-length
	H5T_conv_vlen
	Soft

	Array
	Array
	H5T_conv_array
	Soft

The following table shows some examples of hard conversion functions between floating number types.
	Source data type
	Destination data type
	Conversion function
	Function type

	Float
	Double
	H5T_conv_float_double
	Hard

	Double
	Float
	H5T_conv_double_float
	Hard

	Float
	Long double
	H5T_conv_float_ldouble
	Hard

	Double
	Long double
	H5T_conv_double_ldouble
	Hard

	Long double
	Float
	H5T_conv_ldouble_float
	Hard

	Long double
	Double
	H5T_conv_ldouble_double
	Hard

Both of the soft and hard conversion functions are defined in H5Tconv.c.
If users want to register their own conversion function, whether soft or hard function, they can use the API function H5Tregister. This function will replace the library’s default conversion function. Users can also use H5Tunregister to unregister a conversion function.

Converting Data
When a user application tries to read or write data and the source and destination data types are different, or when it tries to call H5Tconvert to convert data, data conversion happens. The first thing that the library does is to search for the right conversion function of the source and destination data types (This is done through the H5T_path_find function in H5T.c). Then it calls H5T_convert to use the conversion path to convert the data. This process is clearly shown in the definition of the API function H5Tconvert in H5T.c. The same process happens when a program is trying to read or write data.
The Test dt_arith.c
We need to explain the basic method of testing the data conversion in dt_arith.c. In each test, it initializes a data buffer of the source data type. If the data is integer, the macro INIT_INTEGER fills the data buffer with bit sequences like
00000001, 00000010, 00000100, 00001000, 00010000, 00100000, 01000000, 10000000,
00000000, 00000011, 00000111, 00001111, 00011111, 00111111, 01111111, 11111111,
11111111, 11111110, 11111100, 11111000, 11110000, 11100000, 11000000, 10000000
It tries to cover most of bit sequence and avoid any casting, assignment, and comparison at the same time because it is testing some hard conversion functions that involve these operations.
If the data is floating number, the macro INIT_FP_NORM fills the data buffer with values between the minimal and maximal. Each value is the previous value times a multiplication factor (value *= multiplication factor). The macros INIT_FP_DENORM and INIT_FP_SPECIAL fill the buffer with some special values.
Adding Support for New Predefined Data Types
To add support for new predefined native integer types or floating-point number types, simply follow the procedure in H5detect.c using the macros DETECT_I (explained in 3.3.1) or DETECT_F (explained in 3.3.2). To add support for new predefined standard integer or floating-point number type, follow the procedure explained in 3.4.

Revision History
	January 20, 2012:
	First draft circulated for comments to Elena, Quincey, Mike M., and Frank.

	

Appendix:

Terminology
	numerical data type
	The HDF5 data type that deals with number, including integer and floating-point number.

	non-numerical data type
atomic data type
derived data type
	The HDF5 data type other than numerical data type.

The HDF5 data type that is not composed of other data type, including integer, floating number, string, and reference type.
The HDF5 data type that is composed of other data type, including compound, enum, array, variable-length, and opaque type.

	
	

References
1. The HDF Group. “HDF5 Documentation,” http://www.hdfgroup.org/HDF5/doc/doc-info.html.
1. Data Conversion of Arithmetic Data Types.
1. Hollasch, Steve. 2003. IEEE Standard 754 Floating Point Numbers.
1. Harbison and Steele, C: A Reference Manual

Atomic

byte order
precision
offset
LSB padding
MSB padding

Integer

signed or unsigned

Floating number

sign bit position
exponent position
exponent size
exponent bias
mantissa position
mantissa size
normalization
padding

Compound

number of members
total member size
packed

Member of compound

name
offset in struct
size
data type

Enum

number of members
values of members
names of members

Array

element number
number of dimensions
dimension sizes

HDF5 datatype

type class

Variable-length

VL type
character set for VL string
padding for VL string

Opaque

tag

String

character set
padding

Reference

type
location

image1.jpeg
A

The HDF Group

