Implicit Shared Object Headers in HDF5
James Laird, Quincey Koziol
version 1.1

10/11/05
Object Header Messages
Datasets, committed datatypes, groups, and attributes store metadata in their object headers as Object Header Messages. Often, there will be many objects in a file with similar metadata, corresponding to identical Object Header Messages written as parts of different objects.
There is provision in HDF5 to have "Shared Object Header Messages," but this functionality is currently used only for named datatypes. This paper proposes a method of using shared object header messages to avoid duplication of these messages on disk.
Overview of Implicit Shared Object Header Messages
To support sharing object header messages, we will create an index for each type of message to be shared. The superblock points to a table with the location of each index. The indices will be either unsorted lists or B-trees (or B+trees, etc.) and will point to the actual object header messages in a local heap.
The indices will change from lists to B-trees and back again depending on how many messages are being stored; when more than a certain number are in the index, it becomes a B-tree, and messages are deleted to bring to total number of messages below another number, the index reverts to an unsorted list. Users will be able to tune these "cutoff" numbers for each message type.
How many local heaps should be created is an open issue. Creating one heap for each type of message could help caching. When searching through the shared datatype B-tree, only the heap containing shared datatype messages would need to be paged into the cache, rather than a much larger heap containing all shared object header messages. Alternatively, placing all shared object header messages into a single larger heap would reduce memory fragmentation.

When a new object--a dataset, for instance--is created, its metadata is not written in the dataset's object header. Instead, the metadata is inserted into the corresponding shared object header message heap and index and a shared object header message is written to the dataset's header pointing to the new shared message.

If a message is to be inserted into an index where an identical message already exists, the reference count of existing message is incremented and the dataset's object header points to the existing message without needing to write a new one. Likewise, when a dataset is deleted, the reference count on its shared datatype is decremented and the datatype message is removed when its reference count reaches zero.

The types of object header messages that should be shared include:

Dataspace

Datatype

Fill Value

Filter Pipeline

Attributes
Some of these types of metadata could be very small: the fill value and filter pipeline, for instance. Using a separate shared object header message may not be worth the effort in these cases, especially given the overhead of maintaining a metadata heap. Perhaps only messages greater than a certain size should be considered for insertion in the metadata heaps.
Advantages and Disadvantages
It is difficult to estimate the advantages of shared object headers because each HDF5 file is different. In the extreme case, all object header messages might be different and any alterations to the current system would hurt performance and waste space. On the other hand, for one file with only two datatypes sharing datatype and fill value messages alone could save 46 MB out of 55 MB used for object headers.
For users in some "average" case, we could expect that some space would be saved at the cost of performance during dataset creations, opens, and deletions. Metadata for a single dataset would no longer be located sequentially on disk, but would be stored in metadata heaps. A user with a large cache (or a small amount of metadata) might benefit from this as all of the file's metadata would be paged into the cache at once, but most users would see multiple reads needed where only one had been necessary before. Shared object headers could be disabled on a per-message-type or perhaps even a per-message basis, but casual users with very little repeated metadata would see poorer performance and increased space usage.

Some changes could be made to offset this performance loss. Very small pieces of metadata could be ignored (since the payoff for sharing them would be small). HDF5 could try to detect when shared object messages would benefit the user by tracking how often a given object header message was repeated. This would incur its own overhead, however.
Implementation Details
The following implementation assumes that a single local heap will be created for all shared object header messages; this is still an open question.

When the file is first created, a"shared object header message" table is created and its address is stored in the superblock. This table has an entry for each kind of message to be shared as specified in the File Creation Property List. For each type, this table records the number of messages curently stored (zero), the B-tree high and low cutoff numbers (again, specified via the FCPL), whether the index is a list or a B-tree, and a pointer to the index (which starts uninitialized until space for the index is allocated.

When a shared message needs to be written, the index for that message is created if it does not yet exist, and a shared object header message heap is created if it does not yet exist. The message is then inserted into the index as a "shared object header message"; essentially, the message is written with a reference count. The number of messages of that type is updated in the master table.

If there are more messages than the higher "cutoff" value, the index must change from a list to a B-tree. The location of each message will remain the same in the heap, but the index pointing to them will change. If enough messages are deleted so that the number of messages is fewer than the lower "cutoff" value, the index changes back into a list.
When the metadata heap switches from a list to a B-tree (or vice versa), the locations of the object header messages cannot be changed, since they are referred to by address by the shared object messages. Instead, B-tree nodes are created elsewhere in the heap and pointed to by the master table.
Changes will need to be made in the creation calls of various object header messages so that they add messages to the metadata heaps rather than directly to the object header. The managing code for the metadata heaps will need to be created. Comparison functions may need to be written for some kinds of object header messages (datatypes have such a function, but filter pipelines may not).
APIs should be created to twiddle the B-tree cutoff values and which types of messages are being shared (via the FCPL). Also perhaps to check the number of metadata messages currently stored.

Shared message object header messages already exist and are used in the library (for named datatypes), so in theory the library should support them. The library needs to be adapted to recognized shared versions of other types of object header messages.
File Format Changes
The superblock needs a pointer to the "master table" of shared message indices.
This master table needs to be added to the file format, given a version number, etc. The table will need to store the number of messages it contains, and each entry will store a version number, the two B-tree cutoff values, the number of messages currently in the index, whether or not the index is a B-tree or a list, and a pointer to the index. This table may well be implemented as an object header itself, in which case these entries would be new object header messages.
Each index can exist as either a list or as a B-tree, so these need to be specified in the file format. It remains to be seen how much of this work can re-use structures already present in HDF5.

The heap or heaps storing the messages themselves will be HDF5 Local Heaps.
Shared object headers to store object header messages in the global heap currently exist in the file format. These should be removed and replaced with (nearly identical) messages to store shared messages in this framework.

