
Report on HDF Browser Plug-in Project
Peter Cao

Robert E. McGrath
National Center for Supercomputing Applications

University of Illinois, Urbana-Champaign
July, 2004

 This paper discusses investigations of how to implement a Web browser plug-in

that can browse Hierarchical Data Format (HDF) files.

The HDFView browser [1] and other tools provide stand-alone tools for accessing

HDF files. The main goal of the HDF browser plug-in is to provide a similar ability to

browse HDF using standard Web browsers. The plug-in would enable users to click-and-

view HDF files remotely and locally from popular web browsers. Users do not have to

install and reinstall a separate tool. The plug-in would be automatically updated when

new release comes out.

We investigated current browser plug-in technology. This note summarizes the

most promising technology. We conclude that there is no single solution that will work

for all browsers and all platforms of interest. The best single option appears to be to work

on IE and Windows. A plug-in for this browser would cover 85+% of computer users,

although it may not be 85% of HDF users.

The purpose of this report is to seek direction of where we should go from here.

1. Overview

The NCSA HDF team provides a Java application, HDFview, that implements a

graphical browse and editor, which works with HDF4, HDF5 and has optional plug-ins

for HDF-EOS, FITS, and netCDF3 [1]. In other work, we investigated Client-Server

approaches, include Java Remote Method Invocation, CORBA, and Web Services [2].

Similar products are available from third parties, such as the HDF Explorer browser [3]

and the Intel Array Visualizer [4].

The purpose of this project is to attempt to provide similar services in a Web

Browser. The idea would be to handle HDF similar to popular multimedia formats. Once

installed in the browser, the user would be able to click on an HDF file, and automatically

launch a browse window.

A second requirement is to reuse as much of the Java HDFView as possible. We

do not want to duplicate the work that went into the HDFView, and we do not want to

support two or more separate code bases. Ideally, the plug-in would wrap Java classes

from the HDFView.

We have investigated current technology for implementing Web browser plug-ins,

as well as similar services. We have limited the investigation to two major browsers,

Microsoft Internet Explorer (IE) and Mozilla (including netscape, mozilla, firefox), and

four platforms, Microsoft Windows, Linux, Apple MacOsX and Sun Microsystems

Solaris. We would like to create a single plug-in for all these cases, ideally, using the

HDFView code.

Our investigation showed that, at this time, plug-ins are browser specific and may

be platform specific as well. There is no single implementation will fit into all the cases:

it is not possible to create a single plug-in that will work for all the browsers and

platforms listed. Furthermore, it is not clear that Java can be used in a Web browser plug-

in, or that a combined Java and C implementation (such as the HDFView) could be

plugged in to any Web browser.

In addition to Web browser plug-ins, several other technologies might provide a

simple point-and-click browser for HDF. The following approaches are discussed below:

1. A browser plug-in, written in C++ (native binary for a given platform).

2. A Mozilla “pluglet”

3. A Java Applet

4. Java Web Start

5. Add web browsing to HDFView

Each of these approaches was investigated. We summarize the technology, advantages

and disadvantages, and present our conclusions.

2. Native C++ Implementation

The conventional technology for providing Web Browser plug-ins is supported by

C++ APIs for the browser. There are two sets of plug-in APIs, Netscape Plug-in APIs and

Microsoft ActiveX controls. Since Microsoft has removed support for Netscape plug-ins

from IE 5.5 SP 2 and beyond, plug-ins developed in ActiveX control will not work on

Mozilla, and Mozilla does not support ActiveX controls. This means that it is not possible

to create a single plug-in that works with IE and Mozilla, you must implement at least

two different versions of the “plug” code: Active X for IE on Windows, and Mozilla for

other browsers and platforms.

The following is a list of the pros and cons of using ActiveX control.

Pros:

a) The plug-in is all in native C/C++. It will have the best performance in speed

and memory management when loading files and open dataset.

b) It is compiled into one module, for easy installation. No additional software

required, so the package will be smaller.

c) It will work best for IE. Although other browsers like Mozilla will not display

the plug-in, the plug-in will be launched as a standalone application from

other browsers on Windows

d) MFC (Microsoft Foundation Classes) provides a rich set of GUI components.

The HDF plug-in will use a lot of such GUI components. The implementation

will be easy and quick.

Cons:

a) This plug-in will work only for IE and Windows.

b) This would be a completely different product from HDFView. We will have

to support two products.

Conclusions:

The ActiveX control is a good solution, because of the popularity of the IE browser. The

two disadvantages are that it is limited to Windows and IE, and that it cannot reuse our

existing Java code.

3. Mozilla Pluglet

There is no plug-in package in the JDK because browser plug-ins is browser and

platform dependent. In order to support a plug-in package, it would be necessary for Java

has to implement the native APIs to bridge the browser and Java Virtual Machine. Such

APIs do not exist in the core Java package and Sun has no intention to do so.

Mozilla’s Blackwood project has developed a set of Java APIs for plug-in called

“pluglet” to fill the gap [5]. A Pluglet is a Plug-in that is written in the Java programming

language. At the mozilla web site, it says “Writing a Plug-in in Java instantly makes it

available on all platforms on which a Java Virtual Machine is available.”

Figure 1 illustrates how pluglets work. We would need to write a little code to use

the “Pluglet” API (top box). The reset would be handled by the pluglet package. This

approach appears to be ideal for our goals.

We downloaded the source, installed cygwin, and tried to compile it on Windows

2000. We also tried to install on Linux. The package is so complex and configuration is

very confusing, and we could not make it compile.

We downloaded and installed the precompiled binaries. The package comes with

examples to run sample pluglets within the Mozilla. None of the examples work, and

inquiries to the Mozilla forum did not give answers.

Here is a summary of what we learned about the pluglet.

Pros:

a) It is 100% Java. It will work with Mozilla on all major platforms including

Windows and Linux.

b) Pluglets may also work on IE as the pluglet project described although we

couldn’t make that work.

c) We could reuse all the major components in the HDFView. Although we have

two products, we basically maintain a single product.

Cons:

a) The biggest problem is that pluglets don’t seem to work, or atleast are difficult

to make work. Pluglets do not seem to be a viable technology at this time.

b) It is uncertain whether pluglets will work with C libraries through Java Native

Interface. This needs to be confirmed by experiment, and we don’t know at

this point.

c) Installation of the pluglet would complicated. There many individual pieces

such as the JRE dlls, JRE bins, pluglet jar files, pluglet Java Native Interface

dlls, pluglet native C++ dll, HDF Java plugin jar file and HDF Java Native

Interface dlls. These pieces have to put into different sub-directories under the

Mozilla browser directory. The path and classpath have to be set correctly.

All this will require complex installation scripts, which could be difficult to

develop and maintain.The performance might be a problem. Any actions on

Pluglet

ActiveX

JVM

Pluglet Engine
(Java)

Pluglet Engine
(C++)

IENetscape/mozilla

Plug-in API
(ns api)

Figure 1. Sketch of the pluglet approach.

an HDF file such as open file or dataset, it will go through the following steps:

Native browser API (activeX or NS plug-in APIs) pluglet C++ engine

JVM pluglet Java engine HDF plugin Java components HDF Java

Native Interface HDF library, and all the way back to the browser again.

Since we can’t get pluglets to work, it is impossible to determine whether

performance would be a practical issue.

d) Some users may have security or other policy issues about using Java in IE.

Pluglets (or any Java extension) requires the JRE (Java Runtime

Environment). Although Java plug-in technology can automatically install the

JRE, some browsers such IE disable Java for security reasons.

Again, since we couldn’t get it to work, it is difficult ot assess these problems.

e) Signing and registering a pluglet is very complicated.

Conclusions:

The pluglet technology is the right idea. Unfortunately, it does not seem to be

working yet, and it is certainly not as solid as we would like for a real product.

If we discover how to make pluglets work, it would be a good idea to investigate

them in more detail.

4. Java Applet

An applet is a program written in the Java programming language that can be

included in an HTML page, much in the same way an image is included. When you use a

Java-enabled browser to view a page that contains an applet, the applet's code is

transferred to your system and executed by the browser's Java Virtual Machine (JVM).

This technology might be used to provide a way to browse HDF files, at least from a Web

server.

Here are the pros and cons of Java applet.

Pros:

a) With a little work, we probably could make the current HDFView into an

applet, or make a version that would work as an applet.

b) We would have to maintain only one product. The HDFview will be both a

standalone application and an applet

Cons:

a) The <applet> tag has to put into an html file in order to launch the applet.

There is no way to launch the applet by file extension or MIME types. This

does not meet the goal of a click-and-view for a local HDF file.

b) It is not clear that an applet can use the Java Native Interface (it probably

can’t). This could mean that the HDFView must be split, with the data access

on the server, and the GUI in the browser (e.g., see an earlier study [6].) This

is definitely much more work, and does not meet the goals of this project.

c) Applets are downloaded at each invocation. The HDFView is a large package,

it would probably be unacceptably slow to download it every time users hit a

page. The alternative is to use a signed applet, which does not need to be

downloaded every time.

Conclusions:

Java Applets do not meet the basic goal of this project. There are several technical

issues that would need to be resolved, as well.

5. Java Web Start

Java Web Start is a Java technology to deploy standalone Java software

applications with a single click over the network [7]. When a user clicks a link in the

browser, pointing to a special JNLP (Java Network Launching Protocol) executing file

with a Java application, it launches Java Web Start, which in turn automatically

downloads application files from Web server; the user caches some of them and launches

the described Java application. In certain circumstances, we could use Java Web Start to

launch the HDFView.

Here are the pros and cons for Java Web Start.

Pros:

a) No need to write new software

Cons:

a) Because Java Web Start's work is based on using the JNLP protocol, the

configuration is carried on both the client and server sides. On the client side, is is

necessary to configure Java Web Start (Application Manager) and Web browser

to work together. On the server side, it is necessary to register JNLP file extension

for the server to be able to launch the right application.

b) All application resources, such as images, configuration files, and libraries (DLL,

SO) must be included into JAR files. It is not clear whether it is possible to load

the HDF JNI from JAR file, it may well not be possible.

c) It is not clear that this meets the goals of this project.

Conclusions:

Web Start is an interesting technology for certain circumstances. It does not seem

to meet the requirements for this project. There are some open technical questions.

7. HDFView as Browser

 In principle, we could add new features into the HDFView so that the HDFView

will act like the Web browser, i.e., users can browse remote/local HTML and other files

in the HDFView.

The HDFView could provide all the basic functions such as display HTML files

and following links on a Web page. However, it would be difficult for the HDFView to

implement all the advanced browsing features of Mozilla and IE. Users would have to

install the HDFView and use it as their Web browser, which doesn’t seem to meet the

goals of this project.

Pros:

a) We would maintain one software base, which is compatible with the Web and

provides HDF viewing.

b) This would work for all currently supported platforms

Cons:

a) This does not meet the requirements of the project.

b) It is questionable whether users would use a different, less featureful Web

browser.

References
1. HDF Java Information, http:ncsa.uiuc.edu/java-hdf-html.

2. “Experiments on JSP, XML, CORBA, and HDF,”

http://hdf.ncsa.uiuc.edu/HDF5/XML/JSPExperiments/index.html

3. http://www.space-research.pt/

4. http://intel.com/software/products/ compilers/fwin/array_vis.htm

5. http://www.mozilla.org/projects/blackwood/java-plug-ins/

6. Kun Yan and Robert E. McGrath, "Experiments with JSP, XML, CORBA, and HDF"

(August, 2002) http://hdf.ncsa.uiuc.edu/HDF5/XML/JSPExperiments/Java-JSP-

CORBA-HDF5.pdf

7. http://java.sun.com/products/javawebstart/

	Report on HDF Browser Plug-in Project
	Overview
	2. Native C++ Implementation
	Conclusions:

	3. Mozilla Pluglet
	4. Java Applet
	5. Java Web Start
	7. HDFView as Browser
	References

