
RFC: Bug Fix for SDstart for protected file
Date: January 27, 2005

Expires: January 31, 2005

Problem (see Bug 315):

If SDstart() is called with DFACC_CREATE and the name of an existing file, but
without write permission to the file and with write permission to the directory, SDstart
will fail and the file will be deleted. (from Bug 315)

Analysis:

This bug is confirmed.

Proposed Fix:

The easiest fix is to check the file, and exit from SDstart before calling ncreate. Figure 1
shows the basic change in SDstart (in mfsd.c). Figure 2 shows proposed code to check the
protection on the file.

 if(HDFmode & DFACC_CREATE)
 { /* create file */
+ if(!can_clobber(name))
+ HGOTO_ERROR(DFE_DENIED, FAIL);
 cdfid = nccreate(name, NC_CLOBBER);
 }
 else

Figure 1

+ int can_clobber(const char *name)
+ {
+ int res;
+ struct stat buf;
+
+ res = stat(name, &buf);
+
+ if (res < 0) {
+ return(1);
+ }
+
+ if ((buf.st_mode & (S_IWUSR | S_IWGRP | S_IWOTH)) == 0) {
+ return(0);
+ }
+ return 1;
+ }

Figure 2

 - 1 -

 - 2 -

A test for this case is shown in Figure 3. This test case illustrates the problem. In the current
library, this test will fail. The second SDstart will return –1, but the second fopen will fail
because the file is deleted.

#define FILE_NAME "sdtest.hdf" /* data file to test ID types */

extern int
test_sd()
{
 int32 fid;
 intn status;
 mode_t mode;
 FILE *ff;
 intn num_errs = 0; /* number of errors so far */

 /* delete the file just to be sure */
 unlink(FILE_NAME);

 /* Create a file */
 fid = SDstart(FILE_NAME, DFACC_CREATE);
 CHECK(fid, FAIL, "SDstart");

 /* Close the file */
 status = SDend(fid);
 CHECK(status, FAIL, "SDend");

 mode = S_IRUSR;
 status = chmod(FILE_NAME, mode);

 /* Create a protected file */
 fid = SDstart(FILE_NAME, DFACC_CREATE);
 VERIFY(fid, FAIL, "second SDstart");

 ff = fopen(FILE_NAME, "r");
 CHECK(ff, NULL, "fopen");

 if (ff != NULL) {
 fclose(ff);
 }

 /* Return the number of errors that's been kept track of so far */
 return num_errs;
}

Figure 3

Summary and Requested Action

This fix appears to be a simple and effective response to Bug 315. It does not address similar
problems that might exist in other parts of the library. Please review this proposal and raise
issues as soon as possible.

All the calls used are POSIX, so they should work on windows. I have not tested windows,
though.

	Summary and Requested Action

