HSTest Users Guide.

HSTest is a test suite developed for testing hyperslab reading code in HDF5 library. The test suite functions as follows.

· It generates a dataset that can easily be tested. The idea is that the value of the data stored is related to its indices, and hence once we know the indices we can test for the validity of the data item.

· It then generates a series of random complex selections.

· These selections are then read from the file and tested for correctness.

· A timer is also added to the program in case performance testing is being done. This timer generates the time it takes to read all the selections that are present in the test.

Compilation:

The compilation instructions are present in the INSTALL file with the source distribution.

Input Parameters:

HSTest is invoked with the following command line parameters.

· HSTest –I <parameter file> [program trace file] [error trace file]

The parameter file is an xml file that contains the parameters of the test. This file can be manually generated or generated using the HSTestWidget tool. The program trace file is the file where the log of the running program would go. This log shows how many of the tests have been run and whether or not any of the tests have failed. The error trace file contains the error log of the program. It records which of the tests have failed and on which data item. Both the traces are written in the traces directory. By default the program traces would be recorded in the traces directory with the name ProgramTrace<num>, where num is the test number. Similarly the error traces would be stored in the error directory with the files being labeled ErrorTrace<num>.

Parameter File:

The parameter file is an xml file, which contains the values for the various parameters required by the test suite. Parameters along with their corresponding xml tags are show in

	Parameter
	XML tag
	Required

	Rank
	<Rank>2</Rank>
	Yes

	Dimensions: This parameter requires sizes of each dimension; hence the XML tags are nested.
	<DataDims>

 <0>1000</0>

 <1>1000</1>

</DataDims>
	Yes

	Maximum number of hyperplanes. This is the measure of the complexity of the selection
	<MaxHPlanes>2</MaxHPlanes>
	Yes

	Number of Tests
	<NoTests>100</NoTests>
	Yes

	Verbose: Decides how much of the error needs to be output.
	<Verbose>Yes</Verbose>
	No. If not present defaults to No

	Modify: If this is set to yes, then after the first round of reading the dataset is modified and rechecked for correctness
	<Modify>Yes</Modify>
	No. If not present it just defaults to No.

	Block Size: Determines the block size in a hyperslab
	<MaxBlockSize>100</MaxBlockSize>
	No. Uses no blocking by default.

	Stride: Determines the stride in a hyperslab
	<MaxStride>2</MaxStride>
	No. Uses no striding by default.

	Generating Hyperslab: When this parameter is set to one then new hyperslabs would be generated. Else the hyperslabs in the data directory would be used.
	<GenHSlab>1</GenHSlab>
	Yes.

	Verbose: Determines the amount of output to be produced.
	<Verbose>1</Verbose>
	No. Defaults to non-verbose.

	Extend: If this parameter is set to 1 then the test would complete read once, then extend the dimensions of the dataset and do reads again.
	<Extend>1</Extend>
	No. Defaults to no extension.

	Extended Dimensions: This parameter requires sizes of each dimension; hence the XML tags are nested.
	<EDataDims>

 <0>1000</0>

 <1>1000</1>

</EDataDims>
	Yes, if the extend flag is set. Otherwise it should not be present.

	Chunk Dimensions: This parameter defines the size of the chunks that are to be stored
	<ChunkDims>

 <0>1000</0>

 <1>1000</1>

</ChunkDims>
	No. Defaults to no chunking.

	File Parameters: This requires 2 fields. File name which is the HDF file containing the data. File type, if set to input doesn’t create new file but reads the HDF file specified by the file name. If the type is set to output, the file is actually created.
	<File>

 <Name>Data.h5</Name>

 <Type>Output</Type>

</File>
	Yes

	Filter: This set of parameters defines the filters to be used in the test. Multiple filters could be used, with the ordering of the filters being determined by the order in the file. The type parameter determines the type of the filter. The flag parameter determines if the flag is mandatory. The values of the other parameters are filter dependent. The gzip filter requires only one more parameter which determines the compression level. Szip requires 2 parameters for pixels per block and options mask.
	<Filter>

 <Type>Szip</Type>

 <Flag>1</Flag>

 <0>32</0>

 <1>1</1>

</Filter>
	No. Defaults to no filters.

Table 1. Various Input parameters.

Using the HSTestWidget: As the number of parameters required for the test grew, the complexity of the parameters file also grew. A need was felt to make the generation of the parameter file easier. Thus the HSTestWidget, a Java Application was developed to make the task of parameters file generation easier. The Widget is an easy to use, self-contained Java application that can be downloaded along with the HSTest source code.

Modes of running:

· Creating new dataset and hyperslabs: In this mode of running each test would create a new dataset and set of hyperslabs (the number of hyperslabs would be determined by the NoTests parameter.). To run a test in this mode the following configuration should be used. The value of GenHSlab should be 1, <Type> parameter of the <File> should be output.

· Creating only new dataset, but using old hyperslabs. This mode can be achieved by setting the GenHSlab parameter to 0, and the value of <Type> parameter in <File> to output. This mode is not really recommended as currently there is just one algorithm for dataset generation. So as long as the rank and dimensions remain same the file generated would be the same, achieving no real advantage. If the user wants to implement a new algorithm changes need to be made in datagen.c to write new type of dataset to the file, and the hslabtest.c to provide the test pattern to the testing algorithm.

· Creating new hyperslabs but using the same datasets: For this purpose parameter <Type> of <File> should be set to input, and <GenHSlab> parameter to 1. This mode is recommended for use as long as the rank and dimensions have not changed. This saves a lot of time used for generating the file.

· Using both old dataset and hyperslabs: This format is recommended for repeating the same test. To do this the <Type> parameter in <File> should be set to input and the <GenHSlab> parameter should be set to 0.

· Reading from a user provided file: This is not completely supported here yet. Though the system can read from a user provided file if the parameter <Name> in <File> is set to the given file, and the <Type> is set to input, the problems would arise in the hslabtest.c module. The code for testing the hyperslab would not work since the data distribution in the file is not known. If the user wants to check for correctness, the user would need to change the corr_entry method in the module. If the user doesn’t want to check for correct data, then the user needs to recompile the code with NO_CHECK flag on.

Format of the Intermediate Hyperslab files:

The hyperslabs created during the tests are saved in an intermediate format so that they could later be used for repeating the same tests, also a user could define specific tests trough these files. An example hyperslab files is given below.

<Params>

<Rank>2</Rank>
// Number of dimensions of the hyperslab

<Count>

// Number of hyperplanes in each dimension

<0>2</0>

<1>2</0>

</Count>

<Planes>

// The actual hyperplanes

<0:0>9</0:0>

<0:1>10</0:1>

<1:0>4</1:0>

<1:1>5</1:1>

</Planes>

<NoSelections>3</NoSelections> // This is the number of possible rectangular

 // hyperslabs present in the final selection

<Selections>
// The selected hyperslabs. The counting is done in an

// odometer fashion.

<0>0</0>
// Coordinates [0][0]

<1>1</1>
// Coordinates [0][1]

<2>3</2>
// Coordinates [1][1]

</Selections>

</Params>

The Trace Files:

The trace files show the running of the program.

The program trace files consist of the following for each test that is performed.

Test Number = n // n is the test number

Start[i][j] = x, Count[i][j] = y // i is the dimension number, j is the test number; x and y

// are the values for the parameters. These are repeated for // all i,j.

Reading Hyperslab

Hyperslab read.

Iterating through the hyperslab read.

Total Data Checked a, No of Errors b // a is the total no of points in the hyperslab, b is the

 // number of erroneous data points

PASS/FAIL

// Depending upon if there was an error.

Total Failures
= c

// c is the number of points in the hyperslab that

// were incorrectly read

In case of an error generated somewhere the error trace file consists of the following:

Test Number = n
// The test number being performed.

Actual Data d, Calculated data cd, for COORD[x] y // This line completely describes the

// error present, and every error is

// thus reported

Total Failures = f
// The number of points of failure.

