HSTest Developers Guide.

HSTest is a test suite developed for testing hyperslab reading code in HDF5 library. The test suite functions as follows.

· It generates a dataset that can easily be tested. The idea is that the value of the data stored is related to its indices, and hence once we know the indices we can test for the validity of the data item.

· It then generates a series of random complex selections.

· These selections are then read from the file and tested for correctness.

· A timer is also added to the program in case performance testing is being done. This timer generates the time it takes to read all the selections that are present in the test.

Logical Modules:

1. Parsing the input in the parameters files: Parameters are passed to the program through an XML file, and this module parses that file and creates a data structure that can be used by the other modules to check correctness. The data structure used for this purpose is.
typedef struct test_params {

filter *filters;

char *file, *ptrace_file, *etrace_file;

char *dtype;

int filter_count;

int gen_file;

int gen_hslab;

int rank;

int no_tests;

int verbose;

int modify;

int to_modify;

int ext, to_ext;

int max_hplanes;

hsize_t *data_dims, *chunk_dims, *ext_data_dims, *extend;

int max_block_size, max_stride;

} params;

typedef struct compression {

H5Z_filter_t type;

unsigned int flag;

size_t no_params;

unsigned int *params;

} filter;

These variables in this data structure correspond to the parameters in the XML input file. The description of the various parameters can be found in the users guide.

The constraint with the currently implemented parser is that it cannot parse any file having more than 2 levels of nesting. This was because initially there was no need felt for that and it kept the logic and flow a lot cleaner and simpler. This module is implemented in the input_parser.c file. The various methods present in the file are documented inside the file. The main method maintaining the mapping between the parameters in the file and the variables in the data structure is the construct_data() method, so when adding new parameters this is the only method that needs to be modified. As of now it is a fairly large method with nested if else statements, which may need to refractorized later.

It is recommended that the new variables added be also initialized in the initialize_test_params method and freed in the delete_test_params method if it is a variable that needs to be allocated on the heap. Also it may be added to the print_params method for debugging purposes.

2. Generating the file and the dataset: This is the second logical function that the HSTest code performs. In this part of the code, a new file is created and one dataset created and written in the file. This dataset is generated in accordance to the parameters stored in the test_params data structure. The parameters pertaining to this module are Rank, Dimensions, Datatype, Filters, Chunking dimensions, striding and blocking. The create_file method simply creates a new file, where as the create_dataset creates a new dataset, and initializes its properties to those that are found in the parameters. These properties include rank, dimensions, striding, blocking, datatype, chunking, and filters. The dataset is written according to a set algorithm so that the value can be checked for later. The basic idea behind this is that the value should be dependent upon the coordinates of that point. This allows us to check for the validity of the data upon read. The algorithm used here is
value = 0;

for (i = rank-1; i >= 0; i--) {

value = dim[i] * val + coordinate[i];

}

value %= CONSTANT;

where dim[i] is the size of the ith dimension and the coordinate[i] is the coordinate in the ith dimension. The value of the constant is determined by the datatype. The larger the max value of the datatype the larger the CONSTANT. This is so as to reduce the probability that the data values would match accidentally.

3. Generating random hyperslabs based on the parameters specified in the parameters file: Once a dataset is generated we need to generate random hyperslabs to test the correctness of various libraries. This is the next logical module in the system and is implemented in the generator.c file. The main parameter passed to this module is the max_hplanes parameter. This parameter determines how many hyperlanes are to be formed in each dimension. The other important parameters here are rank and dimensions.
The main algorithm in this section is

· Generating hyperplanes: In this part of the algorithm, first a random number of hyperplanes is generated in each dimension. This random number is bounded by the max_hplanes parameter.

· Converting hyperplanes into a complex selection: The various hyperplanes intersect and form a vast array of connected hyperslabs. We walk through these hyperslabs in a canonical order (in our case we start with the iterating through the highest dimension and move to the lower dimensions). For every hyperslab we make it a part of the eventual selection with a probability .5. This factor can be altered to form various different types of selections.

For more details on this algorithm please look into the presentation.

4. Reading and testing the hyperslab for correctness:

Once the possible selectios are generated, they are then read and tested. This is implemented in hslabtest.c. Since the datasets are generated according to an algorithm which relates the data values to the indexes, we can easily test the dataset, by using the H5Diterate method which passes the indexes to its callback method.

