
 1/19

Mapping HDF4 Objects to HDF5 Objects
Mike Folk, Robert E. McGrath, Kent Yang

National Center for Supercomputing Applications, University of Illinois
February, 2000

Revised: October, 2000; July, 2002

Note to reader: We present here some guidelines on how to represent HDF4 objects in HDF5 and how to interpret
HDF5 objects as HDF4 objects. It is meant to help in implementing software that has to deal with both formats in
some consistent way, such as converting HDF4 files to HDF5, or adapting HDF4 tools to HDF5. Please send
comments and corrections to hdfhelp@ncsa.uiuc.edu.

1 Introduction
All versions of NCSA HDF from HDF1 through HDF4 are essentially the same. The HDF4 format and library are
backward compatible with all earlier versions of HDF. HDF5 is different. Although it shares many features with
earlier versions of HDF and is intended for essentially the same uses, HDF5 is a completely new file format, and the
NCSA HDF5 API and library are also new and entirely different.

Many applications have been written for accessing, visualizing, and otherwise dealing with HDF4 objects and files.
Few have as yet been written for HDF5. A great deal of development time and expense could be saved if some
HDF4 applications could be adapted for dealing with HDF5 objects. The purpose of this paper is to facilitate such
adaptations by establishing standard ways to (a) represent HDF4 objects in HDF5, and (b) interpret HDF5 objects as
HDF4 objects.

Case (a) assumes that an application writes an HDF5 object intending for the object to be understood as a particular
HDF4 object. It may add extra attributes to the object to make it conform as fully as possible to the corresponding
HDF4 data model. Case (b) assumes that the HDF5 object was not created with HDF4 in mind, but nevertheless
conforms to one or more HDF4 objects. (In the context of this paper, the term "conform" means that the
characteristics of the HDF5 object are such that it would be meaningful and useful to an HDF4 application. It does
not mean that the HDF5 object is exactly the same as a corresponding HDF4 object would be.)

It is not our intention to map all possible HDF4 objects into HDF5, and vice versa. In section 2 we identify those
HDF4 and HDF5 objects that will be mapped.

It is also not our intention to cover all possible cases for mapping HDF4 to HDF5. This is a specification of
recommended default mappings only. If a different mapping is more appropriate for a particular application, then it
should be used.

Section 2 describes the types of HDF4 and HDF5 objects that can be mapped, and identifies those for which
mappings are not recommended.

Sections 3-5 cover case (a), how to convert HDF4 files to HDF5. Section 3 recommends ways to explicitly
represent HDF4 objects in HDF5. It describes the basic mappings that are recommended, and presents a set of rules
to instantiate the mappings, including metadata attributes that make an object conform as fully as possible to the
corresponding HDF4 data model.

Section 4 covers issues related to overall file organization, including how to map the organization and name
structure of an HDF4 file into HDF5.

Section 5 covers other considerations, such as how to deal the HDF4 reference numbers and file-level information.

Section 6 deals with case (b), how to interpret HDF5 objects as if they were HDF4 objects when there is no explicit
metadata.

 2/19

This document relies on a number of documents, which the reader may need to refer to for background concerning
HDF4 and HDF5 datatypes. This includes the HDF4 User’s Guide, the HDF4 Specification and the HDF5
documentation cited in the reference section at the end of this document [2][3]. Also cited in the Reference section
is the “HDF Configuration Record” specification [1], which provides a rigorous definition of all HDF4 objects.

2 HDF4 objects and HDF5 objects
The HDF4 format and library support the following eight basic objects:

• Scientific dataset (SDS), a multidimensional array with dimension scales
• 8-bit raster image (RIS8), a 2-dimensional array of 8-bit pixels
• 24-bit raster image (RIS24), a 2-dimensional array of 24-bit pixels
• General raster image (GR), a 2-dimensional array of multi-component pixels
• 8-bit color lookup table (palette), a 256 by 3 array of 8-bit integers
• Table (Vdata), a sequence of records
• Annotation, a stream of text that can be attached to any object
• Group, a structure for grouping objects

The HDF4 format also includes "primitive" objects that are used to construct these basic objects within an HDF4
file. These primitive objects are identified by "tags" within an HDF4 file. Since most HDF4 primitive objects have
no counterpart in HDF5, nor are they accessed directly by most HDF4 users or applications, they will not be
considered here. Exceptions to this are the HDF4 palette and annotation, which will be considered.

HDF5 includes two primary objects:

• Dataset, a multidimensional array of records
• Group, a structure for grouping objects

HDF5 objects can have “attributes", which are (usually) small, named datasets that are associated with groups or
datasets. HDF5 includes other objects, such as named datatypes, but these have no counterparts in HDF4 and hence
will not be considered here.

Classes of objects can be defined as special cases of the basic HDF5 Dataset. To date, specifications have been
created for raster images [4] and tables similar to HDF4 Vdata objects [5]. These specifications define conventions
for storing a raster image, palette, and one-dimensional table in HDF5 datasets. The specifications give conventions
for using specific HDF5 attributes to describe the objects. These conventions should be used when converting HDF4
objects to HDF5

3 Representing HDF4 objects in HDF5
In this section we provide detailed rules for representing HDF4 objects in HDF5. All eight basic HDF4 objects can
be represented in HDF5. Usually such representations require restrictions or extra metadata. In Table 1, a mapping is
shown from HDF4 objects to their HDF5 counterparts.

 3/19

Table 1. Representing HDF4 objects in HDF5.

HDF4
object

Corres-
ponding
HDF5
object

Restrictions

SDS Dataset HDF4 DIMENSIONLIST becomes an HDF5 attribute, if it exists. HDF4 dimension
scales become HDF5 datasets. Only the first dimension can be unlimited. Not all
HDF4 storage properties are supported.

Image Dataset The HDF5 dataset must be 2-dimensional. If the number of pixel components is 1, an
HDF5 scalar datatype is used, otherwise a compound type is used. If a palette is
present, HDF5 attributes are used to indicate this. Not all HDF4 storage properties
are supported.

The HDF5 object should conform to the HDF5 Image specification [4].

Palette Dataset The HDF5 dataset must be a 256 by 3 array of 8-bit integers. HDF5 attributes
describe this dataset as a standard 8-bit palette.

The HDF5 object should conform to the HDF5 Palette specification [4].

Vdata
(table)

Dataset The HDF5 dataset must be 1-dimensonal, with a compound datatype equivalent to
corresponding HDF4 field and record structure. Non-interleaved fields are not
permitted in HDF5. (This last restriction could be lifted if a structure is created to
store fields as separate datasets.)

The HDF5 object should conform to the HDF5 Table specification [5].

Annotation Attribute HDF4 file annotations are attributes of the HDF5 root group. HDF4 object
annotations are attributes of the corresponding HDF5 object. Only annotations on the
HDF4 objects listed here are supported.

Vgroup Group

As indicated in Table 1, in all cases except Vgroups and annotations HDF4 objects are mapped to HDF5 datasets
with simple dataspaces. Vgroups are mapped to HDF5 groups, and annotations are mapped to HDF5 attributes. In
the tables that follow we identify all components of an HDF4 object that an application is likely to use, and map it to
a corresponding HDF5 component. This mapping includes only persistent objects and components. Items that are
available only when accessing HDF4 files (e.g. file id and object index) are omitted.

All of the HDF5 objects except annotations have the following two optional attributes: HDF4_OBJECT_TYPE and
HDF4_REF_NUM. HDF4_OBJECT_TYPE can be used to tell applications that the object is compatible with an
HDF4 object. HDF4_REF_NUM is available for those applications that use reference numbers as identifiers for
HDF4 objects.

The mapping tables. In the following sub-sections, each of the six mappings from table 1 is described in detail with
a table containing five columns:

• Column 1: a flag indicating whether the object is required ("R”) in HDF5 in order for the object to conform
to the corresponding HDF4 object. "O" (optional) means that it is not required.

• Column 2: components from HDF4 that are to be mapped to HDF5. Items with HDF4 names are in bold
caps. Items in parentheses refer to information that is needed in the HDF5 version but do not have an
HDF4 counterpart.

• Column 3: the HDF5 object that is mapped to.
• Column 4: information about the datatype, value, etc. of the HDF5 object.
• Column 5: additional information on how to perform the mapping.

The HCR definition of HDF4 was used to identify the HDF4 items that are to be mapped [1]. In the tables, we have
tried to used the HCR terminology whenever possible. For instance, in column 2, DATATYPE refers to an HDF4
datatype. Non-terminals are shown in angle brackets (e.g. <name>). Most non-terminals are defined in the HCR
documentation. Others that are used are:

 4/19

• <string>: any legal quoted string
• <name>: any valid name
• <value>: any valid scalar value
• <HDF4 datatype>: any valid HDF4 datatype.
• <uint16>: a value of type DFNT_UINT16

3.1 SDS
The SDS mapping requires two types of HDF5 dataset, one for the SDS array and one for dimension scales. For
each dimension, the creator of the HDF5 "SDS" must create a corresponding dimension dataset with a unique name.
In the HDF5 "SDS" an attribute "DIMENSIONLIST" is created consisting of pointers to each of the respective
dimension datasets. NOTE: The HDF5 design and specification for Dimension Scales is under development. This
specification will be revised to use the official HDF specification when it becomes available. This will probably
require substantial changes to the mapping specification.

Table 2. SDS mapping

 HDF4 object HDF5
object or
component

Datatype, value, etc. Notes

R <SDSArray> Dataset Objects with unlimited dimensions are
stored using chunked storage.

O <SDS Dimension with
Name>

Dataset (See note 2)

O (HDF4 object type) Attr HDF4_OBJECT_TYPE =
"SDS"

 <SDSArray>

R NAME Attr HDF4_OBJECT_NAME =
<SDSArrayName>

See Section 4 for details on how NAME
is used as a link in HDF5.

R DATATYPE Datatype <HDF4 datatype>

R DIMENSIONRANK &
DIMENSIONSIZE

Dataspace Dimension sizes are also part of
dimension information.

R DIMENSIONLIST Attr DIMENSIONLIST =
{object__ref1,
object__ref2, …
object__refn}

An array of object references that refer
to the corresponding. dimension
datasets. See note 2.

R DIMENSION_NAMELIST Attr DIMENSION_NAMELIST
= {<DimName1,
<DimName2>,
…,<DimNameN>}

The absolute paths of dimensions are
stored. Dimension names are defined in
the HCR specification. See note 2.

R (Data) Data See section 5.5 for details on how to
handle datatypes.

O <User-defined
attribute >

Attr rank = 1; size is fixed. Global attributes:
see note 3.

O <SDS pre-defined
attribute >

Attr

O (Reference number) Attr HDF4_REF_NUM =
<uint16>

O (Storage properties)

O Compression property Storage prop Use if supported in HDF5.

O Chunk property Storage prop Use if supported in HDF5.

O External storage Storage prop Use if supported in HDF5.

 5/19

O <User-defined
attribute >

Attr rank = 1; size is fixed. Global attributes
are covered below.

R NAME Attr name <AttributeName>

R DATATYPE Datatype <AttributeType>

R N_VALUES Num-values <AttributeCount>

R DATA Data <AttributeData>

O <SDS pre-defined
attribute >

 Same names, datatypes, etc., as the hdf4
counterpart

O LONGNAME Attr .

O UNIT Attr

O FORMAT Attr

O COORDINATE_SYSTEM Attr

O RANGE Attr

O FILL_VALUE Attr See note 1.

O SCALE_FACTOR Attr

O SCALE_FACTOR_ERROR Attr

O ADD_OFFSET Attr

O ADD_OFFSET_ERROR Attr

O CALIBRATED_NT Attr

 <SDS Dimension with
Name> (See Note 2)

Dataset

R NAME Name <name> See note 2.

R SIZE Dataspace rank=1. Only the first dimension can be
unlimited.

R DATATYPE Datatype <HDF4 datatype>

R DATA Data <value>*

O <Dimension pre-defined
attribute>

 These are dimensions of an <SDS
dimension with Name> dataset, not an
SDS dataset

O LONGNAME Attr

O UNIT Attr

O FORMAT Attr

O <User-defined
attribute>

Attr Defined above.

Note 1. The Fill-Value, if not explicitly defined, has default values. There are plans to support the Fill-Value feature
as an HDF5 storage property, but it is not yet been fully defined.

 6/19

Note 2. NOTE: The HDF5 design and specification for Dimension Scales is under development. This specification
will be revised to use the official HDF specification when it becomes available. This will probably require
substantial changes to the mapping specification. Dimension scales are to be stored in HDF5 as separate datasets.
Hence, all of the information in this category is stored as part of the corresponding HDF5 dimension scale dataset.
Dimension scales are unique to the HDF4 file—no two dimension scales can have the same name in HDF4. In
HDF5, all of the dimension scales are stored in the group called “/HDF4_DIMGROUP”. Dimension names are
<DimName1>, <DimName2>, …,<DimNameN> as defined in HCR. Dimension scale datasets are identified in the
HDF5 SDS dataset in two ways: by the attribute DIMENSIONLIST, and by the attribute
DIMENSION_NAMELIST. The attribute DIMENSIONLIST is an array of object references to the dimension scale
datasets DIMENSION_NAMELIST is an array containing the names of the dimension scale datasets. Figure 1
illustrates this structure. In the figure there are two 2-d datasets, sd1 and sd2, each of which has two dimension
scales. The datasets share the dimension scale dimB.

Figure 1. How HDF4 Dimension Scales should be stored in HDF5. (See Note 2.)

HDF5

/(root)

HDF4_DIMGROUP

dimA

dimB

dimC

DIMENSIONLIST = { , }

DIMENSION_NAMELIST =
 {/HDF4_DIMGROUP/dimA,
 /HDF4_DIMGROUP/dimB }

sd1

DIMENSIONLIST = { , }

DIMENSION_NAMELIST =
 {/HDF4_DIMGROUP/dimA,
 /HDF4_DIMGROUP/dimB }

sd1

Note 3. Global SDS attributes should be stored as attributes to the HDF5 root group.

SDS global attributes

A special case is the SDS global attribute, which is an attribute that applies to all of the SDS in a file. An SDS
global attribute is to be stored in HDF5 as an attribute on the root group with the suffix “GLO_SDS.” Other than
these differences, an SDS global attribute is treated the same as a normal SDS attribute.

Table 3. SDS global attribute mapping

 7/19

 <SDS global attribute> Attribute assigned to the root group.

R NAME Attr name <AttributeName>_GLO_SDS

R DATATYPE Datatype <Attributetype>

R N_VALUES Num-values <AttributeCount>

R DATA Data <AttributeData>

3.2 Vdata
Vdatas are mapped to 1 dimensional extendable HDF5 datasets of compound datatype. The HDF5 dataset should
conform to the HDF5 Table Specification [5]. All attributes required by the specification should be included, even if
not specified here.

Table 4. Vdata mapping

 Vdata HDF5 object or
component

Datatype, value, etc. Notes

R NAME Attr HDF4_OBJECT_NAME =
<string>

TITLE=<string>

<string> is the same as the
corresponding Vdata name.

TITLE is defined in the HDF5 Table
Specification [5].

 (Class) Attr CLASS= “TABLE” The HDF5 CLASS must be “TABLE”.

R CLASS Attr HDF4_VDATA_CLASS =
<string>

O INTERLACEMODE NA Full interlace always used in HDF5
version.

R (Number of records) Dataspace Rank=1, curr_size = the number of
records.

R (Record) Compound
datatype

R (Field) Member Compound datatype member

R NAME Field name FIELD_(N)_NAME=<nam
e>

See the HDF5 Table Specification [5].

R DATATYPE Field datatype <HDF4 datatype>

R ORDER Num-values

O <User-defined
attribute>

Attr <FieldName>:<name> =
<value>

<FieldName> is value of NAME for the
field.

R (Data) Data

O <User-defined
attribute >

Attr <name> = <value> rank = 1; size is fixed;

O (HDF4 object type) Attr HDF4_OBJECT_TYPE =
"Vdata"

O (Reference number) Attr HDF4_REF_NUM =
<uint16>

O (External storage) Storage prop

3.3 Vgroup
Vgroups are mapped individually to HDF5 groups. See section 4 for details on how to deal with the graph structures
defined by the collection of Vgroups within an HDF4 file.

 8/19

Table 5. Vgroup mapping.

 Vgroup HDF5 object or
component

Datatype, value, etc. Notes

R NAME Attr HDF4_OBJECT_NAME =
<string>

<string> is the same as a normal Vgroup
name

O CLASS Attr HDF4_VGROUP_CLASS
= <string>

R <Vgroup member> Group member HDF5 hard link

O (HDF4 object type) Attr HDF4_OBJECT_TYPE="
Vgroup"

O <User-defined
attribute>

Attr <name> = <value> rank = 1; size is fixed;

O (Reference number) Attr REF_NUM = <uint16>

Note: HCR defines three additional items: MEMBERTYPE, MEMBERNAME, and PALETTEINDEX. It would be
awkward to represent these in HDF5 groups, and hence they have been omitted. If it is found that they are needed,
they will be added later.

3.4 Raster images
Raster images (8-bit, 24-bit, and general raster (GR)) are mapped to HDF5 datasets with simple 2D dataspaces.
Each element of the dataset is a one-dimensional array of pixel components. The HDF5 Image should conform to
the HDF5 Image and Palette Specification [4]. All attributes required by the specification should be included, even
if not specified here. Notice that the HDF5 image conventions support additional information that is not supported
in HDF4, such as image transparency and color models other than RGB. The general rule is that the HDF5 Image
should describe the image as correctly as possible, even if this specification does not explicitly define the particular
case

GR global attributes

A special case is the GR global attribute, which is an attribute that applies to all of the GR in a file. A GR global
attribute is to be stored in HDF5 as an attribute on the root group with the suffix “GLO_GR.” Other than these
differences, an GR global attribute is treated the same as a normal GR attribute.

 9/19

Table 6. Raster image mapping.

 Image HDF5 object
or
component

Datatype, value, etc. Notes

R NAME Attr HDF4_OBJECT_NAME =
<string>

<name> is the same as a GR name

R (Pixel type) Datatype If N_COMPS=1, use atomic, else
HDF5 Array datatype.

R N_COMPS Num values order of Array datatype, if
N_COMPS > 1

R COMP_TYPE Atomic type <HDF4 datatype>

R DIMENSIONSIZE Dataspace rank=2

R (image array) data

O <User-defined
attribute>

Attr <name> = <value> rank = 1; size is fixed;

R (Class) Attr CLASS = "IMAGE" Required by HDF5 image spec.

O (HDF4 object type) Attr HDF4_OBJECT_TYPE =
"raster8", "raster24" or "GR"

O (Reference number) Attr HDF4_REF_NUM = <uint16>

R2 <Image palette> PALETTE =
{object__ref1, object__ref2, …
object__refn}

PALETTE is an array of object
references that refers to the
corresponding palettes. See notes 1
and 2.

R2 (palette namelist) Attr PALETTE_NAMELIST =
{palette_name1,
palette_name2, …}

R2 (Image subclass) Attr IMAGE_SUBCLASS =
"IMAGE_INDEXED" or
“IMAGE_TRUECOLOR”

If N_COMPS == 1,
“IMAGE_INDEXED”

If N_COMPS == 3,
“IMAGE_TRUE_COLOR”.

Any other image is undefined in this
specification.

R2,3 (Color model) Attr IMAGE_COLORMODEL=
“RGB”

The IMAGE_COLORMODEL
should be the same as the
PALETTE_COLORMODEL of its
palettes. See note 3.

R INTERLACEMODE Attr INTERLACE_MODE=
”INTERLACE_PIXEL” or
“INTERLACE_PLANE”

The HDF5 dataset should use the
same interlace mode as the HDF4
image. If the HDF4 image used
“MFGR_INTERLACE_LINE”,
the HDF5 Image should use
PIXEL_INTERLACE.

O (Storage properties)

O Compression Storage prop If supported in HDF5. JPEG and
RLE are not supported in HDF5.

O Chunking Storage prop

O External storage Storage prop

Note 1. In HDF5 there can be more than one palette in PALETTELIST, but in a translation from HDF4 to HDF5
there will be only one palette. In HDF5, palettes are stored in a special group called “/HDF4_PALGROUP”. Figure
2 illustrates this structure. In the figure there are two images, image1 and image2, each of which has an attached
palette.

 10/19

Note 2. These are required if there is a palette associated with the image.

Note 3. In principle, an HDF4 image could have any number of components and use any color model, but the HDF4
standard only defines 8-bit and 24-bit RGB images. With no other information, the HDF5 image is assumed to use
an RGB color model. The general rule is to convert the HDF4 image into an HDF5 image that stores its properties.
Therefore, if the color model of the HDF4 image is known, the HDF5 image should be defined to use that color
model, whatever it may be.

Figure 2. How HDF4 palettes should be stored in HDF5 and referenced by images.

HDF5

/(root)

PaletteA

PaletteB

HDF4_PALGROUP

PALETTELIST = { }

PALETTE_NAMELIST =
 { /HDF4_PALGROUP/paletteA }

image1

PALETTELIST = { }

PALETTE_NAMELIST =
 { /HDF4_PALGROUP/paletteB }

image2

.

3.5 Palette
Palettes are mapped to HDF5 datasets that are 2-D arrays of bytes with dimensions 256 x 3. The HDF5 Palette
should conform to the HDF5 Image and Palette Specification [4]. All attributes required by the Palette Specification
should be included, even if not specified here. Notice that the HDF5 palette conventions support additional
information that is not supported in HDF4, such as color model and range index. In the event that the HDF4 file
contains an object that is not an HDF4 palette but should be an HDF5 Palette (e.g., a table that represents an range
index color table), it should be stored as an HDF5 Palette if possible.

 11/19

As indicated in the “Image” section, it is recommended that in HDF5 all palette objects from an HDF4 file be stored
in the group “/HDF4_PALGROUP/<palette_name>.” The HDF5 link <palette_name> can be given any name, but
if no name is available <palette_name> should be assigned according to the guidelines in section 4.

Table 7. Palette mapping.

 Palette HDF5 object
or
component

Datatype, value, etc. Notes

R (Datatype) Atomic
datatype

<uint8>

R (Data) Data

R (Rank & dimension sizes) Dataspace rank=2, dimension size = 256x3 (See
note 1.)

O (HDF4 object type) Attr HDF4_OBJECT_TYPE="
palette"

O <User-defined
attribute>

Attr <name> = <value> rank = 1; size is fixed;

O (Reference number) Attr HDF4_REF_NUM =
<uint16>

R (Class) Attr CLASS = "PALETTE"

R (Palette type) Attr PAL_TYPE =
"STANDARD8"

R (Color model) Attr PAL_COLORMODEL =
“RGB”

Note 1: The HDF5 palette specification requires that a palette dataset have dimensions (nentries by
ncomponents), where ’nentries’ is the number of colors (in this case 256) and ’ncomponents’ is the number
of values per color (in this case 3).

3.6 Annotation
Annotations are mapped to HDF5 attributes. There are four kinds of HDF4 annotations: file labels and descriptions,
and object labels and descriptions. File annotations will be attributes of the root group. Although object annotations
can be associated with any tag/ref supported by HDF4, this specification supports only object annotations that are
associated with HDF4 SDS, Vgroups, Vdatas, images, and palettes. Annotations will have the following HDF5
attribute names: FILE_LABEL<n>, FILE_DESCRIPTION<n>, OBJECT_LABEL<n>,
OBJECT_DESCRIPTION<n>, where <n> is an integer used to distinguish one annotation from another. For
instance, if an object had two object labels, the corresponding attribute names would be OBJECT_LABEL1 and
OBJECT_LABEL2. Table 8 summarizes these guidelines.

Table 8. Annotation mapping.

 Annotation HDF5 object
or
component

Datatype, value, etc. Notes

R (File label) Attr FILE_LABEL<n>
= <string>

Root group attribute.

R (File description) Attr FILE_DESCRIPTION<n>
= <string>

Root group attribute.

R (Object label) Attr OBJECT_LABEL<n>
= <string>

Attribute for corresponding HDF5 object.
(See note 1.)

R (Object description) Attr OBJECT_DESCRIPTION<n>
= <string>

Attribute for corresponding HDF5 object.
(See note 1.)

 12/19

Note 1. Although any HDF4 object that can be represented by a tag can have associated object labels and
descriptions, this specification only requires that annotations be converted for the following tags:

1. SDS-related tags DFTAG_SD,DFTAG_SDG,DFTAG_NDG

2. Image-related tags DFTAG_RI,DFTAG_RI8,DFTAG_RIG

3. Vgroup tag DFTAG_VG

4. Vdata-related tags DFTAG_VH, DFTAG_VS

5. Palette tag DFTAG_LUT

4 HDF4 and HDF5 File Organization

In addition to mapping individual objects, it is necessary to map the organization and name structure of the HDF4
file to the HDF5 file. The following guidelines are covered in this section:

1. Object names should be translated in a standard way. Objects that have no name in HDF4 (such as
palettes) must be assigned a default name in the HDF5 file. If two or more HDF4 objects have the same
name, they must be assigned unique names in HDF5.

2. The hierarchical structure of the HDF4 file should be accurately reproduced in the HDF5 file, but objects
used internally by the HDF4 library (e.g., “CDF0.0”) should not be represented in the HDF5 file.

3. Shared objects (such as Named Dimensions) should be stored once and shared in the HDF5 file.

4.1 Object Names
The treatment of object names in HDF 4 (and earlier versions) varies depending on the type of object. The HDF4
User’s Guide provides details on naming HDF objects. In summary:

• Palettes and annotations do not have names.
• Vgroup and Vdata names are optional.
• Images may or may not be assigned names, depending on the version of the library, and in any case are

optional.
• SDS objects are treated differently by different versions of the library. Early versions of the HDF library

(before HDF 3.2) did not require an SDS to have a name, and they allowed two or more SDSs to have the
same name. In later versions every SDS was required to have a unique name, and in addition it was
possible to assign a second name, called LONGNAME that did not have to be unique.

Hence, in HDF4, names may occur in a variety of ways:

• An HDF4 object may have a unique name
• An HDF4 object may have no name
• More than one HDF4 object may have the same name

For the purposes of this paper, we can think of the name of an object in HDF4 (if one exists) as a kind of object
attribute. It may not be stored specifically as an attribute, but it nevertheless plays a similar role. We refer to this as
NAME in this paper.

In HDF5, the name of an object is the final component of its path within the file. For instance, if an HDF5 object
has the path /foo/bar, its HDF5 name is “bar.”

 13/19

4.1.1 Objects with unique names
In general, if the an HDF4 object has a unique NAME attribute, the corresponding HDF5 object’s path should use
that name. In addition, as the tables in Section 3 indicate, that same name can be stored as an attribute of the HDF5
object with the name “HDF4_OBJECT_NAME.”

4.1.2 Objects with no name
When an HDF4 object with no name must be stored in HDF5, it can be assigned either a default name, or a name
provided by an application. A default name should be constructed from a default string with the object’s reference
number concatenated on the end. For instance, an unnamed Vgroup whose reference number is 2 would be named
HDF4_VGROUP_2. Table 9 shows templates for the default HDF5 names for HDF4 objects.

Table 9. Default HDF5 names for HDF4 objects.

HDF4 Object Type HDF5 Object Name

Vgroup HDF4_VGROUP_<ref>

Vdata HDF4_VDATA_<ref>

SDS HDF4_SDS_<ref>

Image HDF4_IMAGE_<ref>

Palette HDF4_PALETTE_<ref>

4.1.3 Name Collisions
When two HDF4 objects have the same name and will be written to the same HDF5 group, it is necessary to change
the pathname of one or both of the objects. For instance, suppose two HDF4 SDSs have the name “mouse”, and
both belong to the top-level Vgroup “cat.” Using the rule suggested in section 4.1.1, these would both be stored as
HDF5 datasets with the path “/cat/mouse.” Since no two objects in HDF5 can have the same path, it is necessary to
change the pathname of one or both of these datasets. The following rules are used for dealing with this situation.

When there is a name collision, applications are free to change the names to anything they like. If no name is
assigned, then all but one of the colliding objects in the HDF5 file should be given a default name, using the
templates in Table 9.

Notice that the original non-unique HDF4 name can still be stored in the attribute HDF_OBJECT_NAME associated
with the corresponding HDF5 object.

4.2 Organization of the HDF4 and HDF5 Files
The grouping structure of an HDF4 file should be represented in the corresponding HDF5 file, but with some
exceptions, as described here.

In general, a user-defined HDF4 Vgroup should be mapped to an HDF5 Group with a corresponding path
name. Lone Vgroups should be children of the HDF5 root group.

HDF4 grouping structures.
An HDF4 file can consist of a set of individual objects, but it may also be organized as a directed graph, with
Vgroups as nodes and any HDF4 objects as nodes. Any HDF4 object may be a child of no Vgroup, one Vgroup, or
more than one Vgroup. Since HDF5 can also be organized as a directed graph (using the HDF5 group structure), a
mapping from HDF4 to HDF5 should replicate the graph structure as much as possible. Hence, as a general rule,
HDF4 objects that are members of a Vgroup are stored as children of a corresponding HDF5 Group.

One difference between HDF4 and HDF5 is that there is always at least one group in HDF5, the root group, and all
objects must be descendants of the root group. For purposes of the HDF4-to-HDF5 mapping, the root group in

 14/19

HDF5 can be thought of as the same as an HDF4 file. Hence, HDF4 objects that are not members of a Vgroup
should be stored as children of the root group in the HDF5 file.

A special case of the HDF4 grouping structure that requires attention is a cyclic structure, where the links between
groups form a cycle. In this case there is no “top” group, and hence no obvious rule for which group should be
assigned to the HDF5 root group. The rule proposed for handling this situation is to arbitrarily choose any vgroup in
the ring and place it under root group. That is, when Vgroups form a cycle, the cycle of groups should be converted
into HDF5 by arbitrarily choosing any vgroup in the cycle and placing it under the root group.

Although the grouping structure of an HDF5 file reflects that intended by an application, an HDF4 file that contains
SDS or GR objects is likely to contain extra Vgroups that were not defined by the application. These are special
Vgroups and other structures used by the HDF library to organize the SDS and GR objects. These extra objects are
hidden from the SDS and GR API, and are used only to help describe the internal organization of the HDF4 file.
For example, Vgroups of class “CDF0.0” and “RI0.0” contain all of the SDSs and GRs in an HDF file, together with
global SDS attributes and global GR attributes, respectively. Since these internal objects are not needed to describe
HDF4 objects in HDF5, they should be ignored in the conversion process.

Figure 3 provides examples of how some of these structures occur in an HDF4 file:

• The normal Vgroups VgroupA and VGBa2 both contain the dataset SDS1. That relationship is replicated
in the HDF5 file.

• The Vgroups CDF0.0 and RI0.0 are written by the HDF4 library, as a way of organizing the HDF4 file. If
an application accesses the file using the SD or GR interfaces, the application never sees these two groups,
and consequently they should be ignored in any conversion to HDF5.

• In the figure there is a Vgroup cycle between VgroupB and VGBa. When converting to HDF5, one of the
groups in the cycle is attached to the root, in this case Vgroup B.

Figure 3. HDF4 example, showing special internal groups (CDF0.0 and RI0.0), and cyclic grouping structure

HDF4

CDF0.0 RI0.0VgroupA VgroupB

VGBa

VGBa2

Vdata3

Vgroup Other HDF4 objects

SDS1 SDS2 IMG2 IMG1

Fig. 4 shows how the file in Fig. 3 would look in HDF5 using these conventions.

 15/19

Figure 4. Illustrative Example of HDF5 Structure

HDF5

/ (root)

VgroupA VgroupB

VGBa

VGBa2

Vdata3

group Other HDF5 objects

SDS1

SDS2 IMG2IMG1

4.3 Shared HDF4 objects: dimensions and palettes
Dimension scales (coordinate variables) and palettes can be shared in HDF4. The following rules apply to storing
these objects in HDF5.

• Two extra Groups are added to the HDF5 root group: “HDF4_DIMGROUP” and “HDF4_PALGROUP”.
These groups are used to store the HDF5 datasets constructed for HDF4 Named Dimension Scales and
Palettes, respectively. These objects are globally unique to the HDF4 file, so one copy of each object is
stored in the respective group. (NOTE: The HDF5 design and specification for Dimension Scales is under
development. This specification will be revised to use the official HDF specification when it becomes
available. This will probably require substantial changes to the mapping specification)

• Attributes that are global attributes of the SDS and GR interfaces are stored as attributes of the HDF5 root
group.

5 Other considerations
Most applications that deal with HDF4 files deal with the eight basic objects, but there is other information that
sometimes must be considered.

5.1 Dealing with HDF4 reference numbers
Reference numbers should not, in general, be used by applications as identifiers for HDF4 objects. Nevertheless,
since some applications use reference numbers in this way, it would be useful to have an unambiguous way to store
equivalent identifiers with HDF5 objects. Hence, if an application must use a reference number in connection with
an HDF5 object we propose using an attribute "REF_NUM" whose type is unsigned 16-bit integer to indicate that the
corresponding object is to be interpreted as having the given reference number. It is the responsibility of the
application to provide a method of assigning valid values for such reference numbers.

 16/19

5.2 File-level information
HDF4 and HDF5 both have certain file-level information. This includes information that is stored in the file, such
as version number, and information about the file, such as its size. It is recommended that the following types of file
characteristics be treated as indicated:

• Version number: the library version number of the HDF5 file should be ignored.
• File size: HDF5 files that are larger than 2^31-1 cannot be fully represented in HDF4. It is the

responsibility of the application to decide how to deal with HDF5 files that are larger than 2^31-1.
• HDF5 user-defined header: to be treated as an HDF4 file description.
• HDF5 offset datatype and other datatypes: should be ignored.

5.3 Storage properties
When translating an HDF4 object to HDF5, it may be possible to determine certain storage properties used for
storing the HDF4 object. For example, valid storage properties for an SDS are compression, chunking, and external
storage. If special storage properties are used in HDF4, and if those storage properties are available in HDF5, then
they should be used to store the corresponding HDF5 object. For instance, if an HDF4 SDS is chunked, then the
corresponding HDF5 datasets should be chunked in the same way. If it is not possible to determine an HDF4
storage property, then the HDF5 dataset can be stored without applying that property.

5.4 Dataspaces
The HDF5 “dataspace” concept generalizes and formalizes the ideas of dimensionality that are implicit in HDF4
objects. Determining the appropriate dataspace of the HDF5 object is straightforward. This mapping was given for
each object in Section 2, and is summarized in Table 10.

Table 10. Summary of HDF5 dataspaces for HDF4 objects.

HDF4 Object HDF5 Dataset Notes

SDS: rank, dimensions Simple dataspace, rank, dimensions.
maxdims[0] = H5S_UNLIMITED or
maxdims[0] = dimsizes[0]

The first dimension of the HDF4
SDS may be UNLIMITED. In this
case, the first dimension of the
HDF5 dataspace would then have
maxdims = H5S_UNLIMITED

GR, RI8, RI24 Simple dataspace, rank = 2,
dimensions = dimsizes

Palette Simple dataspace, rank = 2,
dimensions= {256, 3}

Vdata Simple dataspace, rank = 1,
dimension = H5S_UNLIMITED or
dimension = <maximum records>

Datatype is compound.

5.5 Datatypes
When converting SDSs, Vdatas, and images from HDF4 files to HDF5 files, the HDF4 data elements need to be
converted to appropriate corresponding HDF5 data types. The following rules describe how HDF4 datatypes should
be converted to HDF5:

1) “Standard” numeric datatypes. HDF4 standard integer and floating point datatypes should be converted to
corresponding HDF5 datatypes. The size, type (integer vs. float), “endianness,” etc., should be maintained.

Table 11 describes the correspondence between standard HDF4 type definitions and HDF5 type definitions.

 17/19

Table 11. Correspondence between standard numeric datatypes.

HDF4 type Corresponding HDF5 type

DFNT_INT8 H5T_STD_I8BE

DFNT_UINT8 H5T_STD_U8BE

DFNT_LINT8 H5T_STD_I8LE

DFNT_LUINT8 H5T_STD_U8LE

DFNT_INT16 H5T_STD_I16BE

DFNT_UINT16 H5T_STD_U16BE

DFNT_LINT16 H5T_STD_I16LE

DFNT_LUINT16 H5T_STD_U16LE

DFNT_INT32 H5T_STD_I32BE

DFNT_UINT32 H5T_STD_U32BE

DFNT_LINT32 H5T_STD_I32LE

DFNT_LUINT32 H5T_STD_U32LE

DFNT_FLOAT32 H5T_IEEE_F32BE

DFNT_LFLOAT32 H5T_IEEE_F32LE

DFNT_FLOAT64 H5T_IEEE_F64BE

DFNT_LFLOAT64 H5T_IEEE_F64LE

2) “Native” datatypes (e.g. DFNT_NINT16). Because HDF4 files contain no information about the actual
architecture that a native type was written from, it may not be possible for an application to decipher the value of an
HDF4 native type for conversion. Therefore, HDF4 native format types should be treated with caution. If a
converter can determine the value of a native type, it should choose a corresponding HDF5 type and perform the
conversion. If it can not, the proper strategy is left to the discretion of the application.

3) Character datatype. For the HDF4 datatypes DFNT_CHAR8 and DFNT_UCHAR8, there is no corresponding
datatype in HDF5. If the values in an HDF4 SDS, raster image, palette or dimensional scale data of an SDS are of
one of these two types, it is recommended that they be converted to H5T_STD_I8BE or H5T_STD_U8BE. If the
values of a Vdata field or attribute are of one of these types, it is recommended that those values be interpreted as
constituting a string, and that they be converted to H5T_STRING.

6 Interpreting HDF5 files as HDF4 files when there is no explicit
metadata

Sections 3-5 deal with how to represent HDF4 objects in HDF5. If these guidelines are followed in creating HDF5
files, it should be possible for an “HDF4 application” to make reasonable use of data stored in HDF5. But what
happens if an HDF4 application encounters an HDF5 file that does not contain the extra information specified in
these guidelines? This section provides guidelines on how an HDF4 application can interpret a “raw” HDF5 file.

If an HDF4-based application encounters and object in an HDF5 file that does not contain the metadata described in
the previous sections, three possible outcomes can occur:

 18/19

1. No HDF4 counterpart exists to the HDF5 object

2. There are more than one possible HDF4 counterparts to the HDF5 object (the ambiguous case)

3. The HDF5 object has an unambiguous corresponding HDF4 counterpart

6.1 Case 1: No HDF4 counterpart
Only HDF5 datasets, attributes and groups can have HDF5 counterparts. All other HDF5 objects should be assumed
to have no HDF4 counterpart. For instance, the HDF5 "named datatype" object has no HDF4 counterpart.

Certain HDF5 datasets, attributes and groups also have no HDF4 counterpart. These include

• Any HDF5 dataset or attribute whose datatype is not equivalent to an HDF4 datatype. HDF4 datatypes
include unsigned and signed 8-, 16-, 32- and 64-bit integers, and 32- and 64-bit IEEE floats.

• Datasets with datatypes of multiplicity greater than 1, unless they map to Vdatas.
• Any HDF5 object whose size is greater than 2^31-1.
• Any HDF5 attribute that is associated with an HDF5 dataset whose HDF4 counterpart is a palette.
• Any HDF5 soft link that does not point to a corresponding HDF4-compatible object.

6.2 Case 2: The ambiguous case
There are a number of cases where an HDF5 object could be interpreted as any of a number of HDF4 objects. Here
are some such cases.

6.2.1 HDF5 "datasets"
According to Table 1 HDF5 datasets can represent SDS, images, palettes, and Vdatas. This can lead to certain
ambiguities. For example, a 2-D HDF5 dataset of some HDF4-compatible datatype could be converted either to an
HDF4 SDS, GR raster, or Vdata. We propose the following convention to resolve this ambiguous case:

Unless there is metadata to indicate otherwise, an HDF5 datasets with
an HDF4-compatible scalar datatype is assumed to be an HDF4 SDS.

6.2.2 The root group
Another ambiguous case is the HDF5 root group, which has no precise counterpart in HDF4. The HDF5 root group
could always be mapped to a corresponding HDF4 Vgroup, with all HDF4 objects descending from that group, but
this might in some cases create a view that was unnatural for a particular application. It might be more natural, for
instance, to ignore the root group and to treat all of its attributes as HDF4 file annotations. Therefore, with respect
to the root group, we propose the convention:

An application can treat an HDF5 root group in whatever way best fits with its view of HDF4 files.

6.2.3 Strings
Since strings are not explicitly supported in HDF4, it is recommended that any HDF5 string be mapped into an array
of characters in HDF4. Thus, for example, an HDF5 one-dimensional array of H5T_STRING should be translated
to an HDF4 two-dimensional array of type ‘char.’

HDF5 strings may be null-terminated, or may have padding (0-padding or space-padding.) In general, a
corresponding HDF4 array should be terminated or padded in the equivalent fashion, if the HDF4 application can
handle it. Otherwise, the treatment of an HDF5 string is left to the application.

6.3 Case 3: The mapping is unambiguous
Any HDF5 dataset that is not covered in case 1 or case 2 should map to and HDF4 SDS or Vdata. HDF5 groups
map to Vgroups, with the exception of the root group, covered above.

 19/19

Any HDF5 dataset or group attribute becomes an attribute to the corresponding HDF4 object, if the object supports
attributes. Otherwise it is interpreted as an HDF4 annotation for the corresponding HDF4 object.

7 References
1. HCR (HDF Configuration Record) Specification.

ftp://ftp.ncsa.uiuc.edu/HDF/pub/HCR/Doc/HCR-Definitions/

2. HDF4 Documentation. http://hdf.ncsa.uiuc.edu/doc.html

3. HDF5 Documentation. http://hdf.ncsa.uiuc.edu/HDF5/doc/

4. HDF5 Image and Palette Specification. http://hdf.ncsa.uiuc.edu/HDF5/doc/ImageSpec.html

5. HDF5 Table Specification, http://hdf.ncsa.uiuc.edu/HDF5/hdf5_hl/doc/RM_hdf5tb_spec.html

