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Abstract 

The volume, complexity, variability and accessibility of geospatial of digital geospatial 
data pose formidable challenges for the National Archives.  Scientific and engineering 
communities faces many of the same challenges in managing large, complex digital data 
collections.  This study examines gridded and vector geospatial data through the prism of 
scientific data management, with particular emphasis to scientific data formats and 
software.  Geospatial data is characterized in terms of  data types, size and storage 
requirements.  Scientific data formats are described, including some of the benefits of 
using scientific data formats and software.  Sample geospatial data types are mapped to 
corresponding scientific data structures, in particular those supported by HDF5 and HDF-
EOS 5.  The paper concludes with a report on experiments that are underway to assess 
storage and access implications of using HDF5 and HDF-EOS 5 for sample geospatial 
data types that are of particular interest to NARA. 
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1 Introduction 
The preservation of federal geospatial data presents daunting challenges for the many 
federal agencies, the National Archives in particular.  The volume of federally-collected 
geospatial data is already virtually unmanageable, and promises to grow almost without 
bound in the future.  The variety of geospatial data is very broad, ranging from remote-
sensing to mapping to  surveying.  Its sources range over virtually all federal agencies, its 
uses cover nearly every aspect of government and every discipline, and new uses are 
being discovered every day.  Furthermore, the technologies that produce geospatial data 
change constantly.  Media, applications, formats, software – all are changing constantly. 

The stewards of geospatial data are not alone in facing these challenges.  Scientific 
communities must addresses many of the same issues and concerns, sometimes with the 
very same data.  Problems such as the explosive growth of data archives, the need to 
access and process enormous volumes of data, the need to access distributed, 
heterogeneous collections efficiently, and the need to preserve meaning over time 
command a great deal of attention across virtually all scientific disciplines. 

Particular areas of focus include learning to achieve high performance access to data on 
massively parallel computing systems, developing scientific data packaging formats and 
software that are robust to changes in computing systems and storage technologies, and 
finding ways to package and distribute large, complex collections of scientific data to 
broad, interdisciplinary communities. 

The purpose of this study is to investigate how our experiences with scientific data 
management can help address the challenges of preserving federal geospatial collections 
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in ways that make the data as accessible and usable as possible for current and future 
generations. 

In section 2 we characterize geospatial data in terms of data types, size and storage 
requirements.  In section 3, we describe scientific data formats, and show how the 
geospatial data might map to scientific formats, in particular HDF5 and HDF-EOS 5.  
Section 4 reports on experiments that are underway assess storage and access 
implications of using HDF5 and HDF-EOS 5 for sample geospatial data types that are of 
particular interest to NARA. 

2 Geospatial data 
Federal geospatial data covers a wide variety of themes of importance to federal agencies, 
their constituencies and collaborators in the private and public sectors, and ultimately to 
the National Archives. 

2.1 Types 
Although the number of different kinds of geospatial data is enormous, these types of 
data fall into a fairly small number of categories.  In this study we consider the following 
categories of geospatial data.   

2.1.1 Grid types 
We define grid types as those whose primary data contents map to an orthogonal grid, 
usually defined by a Cartesian coordinate system. Gridded data typically describes, at 
some resolution, a region of space characterized by some property (color, altitude, 
vegetation). The data points contains value at discrete points in the field, hence the data 
fields for these types can be represented by simple arrays of two or more dimensions.  
Geographic map projections are simple examples of this type.  The key feature of these 
types is that the geographic location (e.g. latitude, longitude, depth) of any element can 
be described as an array coordinate. 1 

With grid types, one or two of the dimensions correspond to geologic location (e.g. 
latitude and longitude).  Other dimensions may represent altitude, depth, or time, or they 
may correspond to nominal scales, such as spectral bands or geologic layers.  Grid types 
can have any number of dimensions, but for the purposes of this study, we subdivide grid 

                                                 
1 Much more needs to be said if we are to pin down the fundamental differences between gridded and non-
gridded types.  For instance, gridded types use a set of discrete points conceptually organized on a discrete 
grid (and linearized on disk), and yet that is a representation of a continuous field.  Each dimension is 
potentially continuous, but we can’t, or don’t need to, represent all points.  There are efforts (SAF, etc.) to 
describe these continuous spaces in data structures by storing more extensive topological information, for 
example interpolation functions at each point in discrete space that are sufficient to compute the behavious 
of the space within a neighborhood.  For most practical purposes, this is not needed, but it could be useful 
in some cases.  As for vector types, they also often represent continuous entities.  How important all this is 
for persistent storage I don’t know. 
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types into four categories: 2D grid, multi-layer 2D grid, and 3D volumetric grid, and 
swath.2 

2.1.1.1 2D grid   
This category includes data that can be described primarily as an array of simple 
homogeneous geographic elements, accompanied by attributes that help interpret the 
meaning and geographic position of the elements.  

Examples of 2D grids are the digital elevation model (DEM), the Digital Orthophoto 
Quadrangle (DOQ), raster images, and the myriad datasets that are represented as 2D 
earth projections.  

2.1.1.2 Multi-layer 2D grid 
This includes datasets in which several 2D layers are present and all layers are mapped to 
a standard 2D earth projection.   

Examples include a multi-layer dataset in which each layer is a different theme, but all 
layers use the same projection.  For instance, a dataset consisting of a DOQ and a DEM 
that cover the same are, have the same spatial resolution, and the same projection.  Other 
examples include multi-spectral and hyper-spectral datasets, and time series’ of 2D grids. 

2.1.1.3 3D volumetric grids 
3D volumes are the 3-dimensional extension of 2D grids – they are arrays in which the 
geographic position of the elements (voxels) are computable.   

Particularly common examples are volumes in which each voxel provides geologic 
information, such as soil composition.  In some cases a 3D volume could also be used to 
instantiate the same type of data as a multi-layer 2D grid. 

2.1.1.4 Swath 
In all of the preceding structured types, a formula can be used to find location in an array 
of an item of interest, and hence only the data fields are stored in arrays.  A swath is 
different in that one or more geolocation fields are required to tie the swath to particular 
points on the Earth’s surface.   The HDF-EOS swath exemplifies this type of structure.  
As defined in [5] the Swath interface requires the presence of at least a time field (or 
a latitude/longitude field pair. 

The swath is designed to support time-ordered data such as a satellite image consisting a 
time-ordered series of scanlines. 

2.1.2 Non-grid types 
We refer to unstructured types as those in which the location of the primary data contents 
are described explicitly, rather than being mapped to a single structure, such as Cartesian 

                                                 
2 The paper “Storing and Manipulating Gridded Data in Databases” by Barrodale Computing Services Ltd., 
describes a broad range of uses of gridded data, and also describes a database approach to accessing 
gridded data.  See [2]. 
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array.  An unstructured types may also explicitly describe topological relationships 
among its elements.   

In this study, we encounter only one category of unstructured types, which we refer to as 
vector types.  There are, however a number of other important unstructured types that 
will need to be considered in future studies, such as tabular data, unstructured mesh 
types, tree-structured types and multi-resolution types. 

2.1.2.1 Vector types 
A USGS glossary defines vector data as follows: 

Vector data, when used in the context of spatial or map information, refers to a 
format where all map data is stored as points, lines, and areas rather than as an 
image or continuous tone picture. These vector data have location and attribute 
information associated with them. 3 

In other words, vector types explicitly describe the location of all points, and, where there 
are lines and areas, the points that constitute these are also explicitly described.   

The range of geospatial data types that are best represented as vector types is very broad.  
Examples of vector data occur in datasets that store features such as lakes and rivers, 
political boundaries, and topographic contours.  

The attributes referred to in the definition commonly represent many kinds of metadata, 
such as information about the object that a point, line or area describes, as well as 
topological information.   

 

                                                 
3 http://edcsgs9.cr.usgs.gov/glis/hyper/glossary/index 
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Figure 1. Some geospatial object types, with examples of each type. 

Geospatial object Characteristics Geologic examples 

2D grid Simple homogeneous 
elements.  Single theme. 

DOQ, DEM, map 

Multi-layer 
2D grid 

Collection of multiple 2D 
grids, possibly with different 
themes. 

Geologic DEMs, one DEM for 
each of several geologic species. 

Multi- and hyper-spectral images 

3D volume Simple homogeneous 
elements.  Single theme.   

Geologic volume models with 
thematic information, such as soil 
composition 

G
rid

 

Swath One or more layers, each layer 
a different theme.   

Location fields required for 
geo-referencing. 

Satellite images such as Landsat, 
consisting of time-ordered scan-
lines 

N
on

-g
rid

  Vector Primitive types are points, 
lines, arcs, certain closed 
shapes, and areas.4  
Topological information often 
explicit. 

Street maps, topographic maps, 
contoured surface, geologic well 
log 

 

2.2 Size and storage requirements 

2.2.1 Grid types 
Since gridded data is commonly collected by an instrument (camera, satellite instrument, 
etc.), the amount of data to be collected depends on the resolution of the instrument.  
Because of enormous advances in instrumentation, the resulting volumes can be a very 
large.  The instruments on the EOS Terra satellite, for instance, collect about a terabyte of 
data per day.  Clearly, it is important to find ways to store structured data efficiently, 
particularly archived data. 

The potentially enormous volume of grid types is counterbalanced somewhat by the fact 
that location and topology are implicit in grid types, saving a great deal of storage space.  
For instance, it is not necessary to describe explicitly what the neighbors are of a 
particular feature, as that is implicit in the grid structure.   

In addition, a number of techniques are available for improving the storage for grid types.  
In general they involve some kind of redundancy-reduction, or data compression.  Data 

                                                 
4 What about volumes? 
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compression methods can be lossless or lossy.  Lossy techniques can often achieve much 
better compression ratios, but of course at the expense of lost information.5  

2.2.2 Vector types 
Vector data tends to be less voluminous than gridded data.  There are a number of 
reasons for this.  The collection of vector data is often less efficient than that of structured 
data, as it more frequently requires direct human involvement.  Vector objects are 
frequently one-dimensional (a boundary, a road, a point).  And even for the same object, 
vector data can often represent that object more efficiently than gridded data.   

At the same time, because of the need for more explicit geolocation information for each 
object, the storage space needed for each point (e.g. latitude and longitude) of vector 
types can be much greater than that required for grid types.  Also, since vector data 
collections often contain many quite different types of objects, the associated attributes 
can also vary greatly. Thus, in comparison with grid metadata, which typically applies to 
an entire grid and not to the objects within the grid, the storage space needed for vector 
metadata can be comparatively large. 

As with gridded data, compression techniques can be used to reduce redundancy with 
vector data.  However, the nature of the two types of data are quite different, so the 
techniques that work well for one will not necessarily work well with the other. 

2.3 Access requirements 
One of the most daunting challenges in thinking about how to archive geospatial data is 
to anticipate how the data will be accessed.  Patterns of access vary enormously, and it is 
impossible to know how future generations will want to access the data that we archive 
today.  The best we can do is to make some educated guesses.  The importance of 
guessing correctly, or at least reasonably correctly, comes from the fact that what we 
store today, and how we store it, can have a huge influence on the usability and 
accessibility of that data at a future time. 

Sequential and random access.  Access can be divided into two broad categories: 
sequential and random.  Sequential access occurs when we read a collection of records in 
the order in which they are stored, usually beginning with the first record.  When 
sequential access is required, we can access a given record only by first reading through 
all of the records that precede it in the sequence.   Random access (or “direct access”) 
occurs when we read one or more records directly without having to access the records 
that precede it. 

Sequential access is fast and simple as long as you need to access all information in the 
same order, but it can be very inefficient if only a small subset of the data is needed.  For 
instance, suppose you have a vector dataset with 20,000 features.  If you wish to read all 

                                                 
5 We are not aware of the extent to which NARA and others have investigated issues of “lossy” storage 
technologies.  In many scientific applications, some loss of information is quite acceptable.  See for 
instance, the paper “Multi-Resolution Modeling of Large Scale Scientific Simulation Data” [1], in which it 
is argued that a wavelet compression technique can capture the important physical characteristics of the 
target scientific data.  This may be another interesting area of research for NARA. 
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of the features into memory to display them, sequential access is the best.  However, if 
you need to access only a small number of features, sequential access can be intolerably 
slow. 

Gridded data is also accessed both sequentially and randomly.  A very common type of 
random access of gridded data is subsetting, where some subset of the elements in an 
array are read or written.  In the geospatial world, subsetting can take many forms.  For 
instance, we may be interested in a small rectangular geographic region of a large image, 
the same region from several different layers in a multi-layered grid, or a 3D region from 
a geologic volume.  The region of interest may be specified by an irregular shape, such as 
a city boundary.   Another type of subsetting is to retrieve those parts of a dataset that 
satisfy certain criteria. 

Parallel access.  An increasing number of high end systems can I/O in parallel, and have 
parallel file systems, and it is important that data is organized in a way that facilitates 
parallel I/O.  In many instance, it is possible to divide a large geospatial dataset into 
regions that can be processed in parallel, and in such cases it is important that the 
corresponding file structures and I/O software facilitate this by allowing random parallel 
access to data.  Indeed, as the sizes of datasets increase over time, it may well become 
essential that parallel I/O be possible. 

Distributed access.  In the past, when a particular dataset or collection was needed, it has 
been common to move the entire dataset or collection to the place where it was to be 
used.  We are already at a point where this is not reasonable, and in some cases may not 
even be possible.  Rather, data grids are emerging as a way to provide access to data that 
is stored somewhere else.  One important capability of data grids is the ability to provide 
partial random access, access not just to whole files, but to objects within files, and 
portions of objects.  File structures and I/O software that facilitate this kind of access will 
be increasingly important. 

3 Scientific formats, geospatial data preservation and 
HDF5 

In this section we describe common characteristics of scientific data formats that have 
potential benefit for the geospatial community.  This is followed by a description of 
HDF5 and HDF-EOS 5, the formats that have been investigated in this work. 

3.1 Characteristics and features of interest for geospatial data 
preservation 

General purpose scientific formats typically have many features of potential value for 
archival storage.  In this section we identify some of those features and how the 
contribute to effective long-term digital preservation. 

3.1.1 Open documentation and code 
When we use the term “open” scientific formats, we refer to formats designed for 
scientific applications whose structure is in the public domain.  Most scientific formats 
are also open in the sense that the formats can be used with little or no licensing 
restrictions, and free software is available for reading and writing data in the format.  
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Open documentation of digital formats is particularly important for long-term digital 
preservation.  Without open documentation there can be no way to understand, therefore 
access, the information. 

3.1.2 Widely used for geospatial data 
Many open scientific formats, such as netCDF [9], HDF4 [6], HDF5 [7], and FITS [4], 
are already widely used with certain types of geospatial data, particularly that data that 
arises from the communities that employ these formats.  Because much of this data, and 
the software that accompanies it, is useful beyond just the originating communities, there 
is a natural desire to make these formats work well with geospatial applications. 

In particular, as we have worked with HDF4 and HDF5 applications in several geospatial 
communities, most notably the Earth Observing System, we have noted very strong 
conceptual ties between HDF applications and those of the broader geospatial 
community.  In addition, through HDF5, HDF has evolved a comprehensive set of 
features that address many of the most critical challenges of long-term preservation for 
science and engineering data. 

3.1.3 Basic data types and structures.   
Most general purpose scientific formats include data structures such as arrays for 
supporting large structures, a variety of datatypes (integers, floating point numbers, 
strings) for supporting varied of information types, and ways to accommodate metadata.  
These building blocks of digital information are critical to long-term preservation of 
scientific digital information, including geospatial data. We examine file structures and 
data structures in more detail below. 

3.1.4 Self-description.   
Some scientific formats are also “self-describing” in the sense that they incorporate, 
within the file itself, enough information that available software can know whatever it 
needs to in order to effectively access and use objects in the format.  Of course, in the 
context of long-term preservation, this feature requires the evolution of I/O software.  
Nevertheless it can be an effective way to preserve the full meaning of data long after the 
producers of the data have disappeared. 

3.1.5 Portability.   
Many scientific formats are portable in two senses.  (1) They usually can store data in 
such a way that it can be move from one computer architecture to another, optionally 
without any loss of information content.  This is very important for long-term archiving, 
because it increases the likelihood that future technologies will find collections 
accessible.  (2) Their access software is designed to move easily among many different 
computing platforms – different programming languages, operating systems, and 
computing architectures.  This is also important for long-term archiving because it 
increases the likelihood that access software can evolve into the future. 

 - 9 - 1/8/2004 



Scientific formats for geodata preservation  NCSA/NARA Technical Report 

3.1.6 Scalability.   
Some formats also provided features to enhance scalability, both in terms of data volume 
and in terms of data movement.  The ability to store very large granules and large 
numbers of individual objects efficiently and safely is increasingly important to 
preservation activities, particularly those that organizations such as NARA face.   

3.1.7 Random and partial access.   
Equally important is the ability efficiently to write, read, and find objects, as well as the 
ability to perform random access to individual objects or records in a collection, and 
partial access to aggregate objects.  In some cases, the I/O software for scientific formats 
is tuned for operating in high performance environments, such as massively parallel 
computing systems.  Such systems are rare today in preservation environments, but as the 
digital revolution proceeds, they may well provide the only means with which to deal 
with the enormous volumes of data that digital archives must manage. 

3.1.8 Collection heterogeneity.   
Some formats also provide the ability to organize meaningful collections of 
heterogeneous objects, which can be very important for archival data management of 
complex combinations of data objects such as we find increasingly in applications 
involving geospatial data. 

3.2 File structures and data structures 
Computer scientists have worked hard to develop data structures and techniques that 
facilitate efficient access of structured and unstructured types.  These techniques can 
differ significantly, depending on whether the data is structured or unstructured, and also 
depending upon the types of access that at expected. It is important to understand what 
the most likely patterns are for a given collection, so that the most suitable storage 
structures and access software may be used.  

Storage efficiency versus access efficiency.  Access requirements can have a major 
effect on storage requirements.  It is generally the case that faster or more flexible access 
requires extra storage.  For example, extra index structures can be built, at a cost of extra 
storage, to speed up access to individual records in a collection.  Also, there are special 
data structures that simultaneously permit efficient sequential and random access to data, 
and not surprisingly such data structures require extra storage space. 

Lazy versus eager processing.  It is also generally the case that extra pre-processing is 
required to create structures to facilitate finding and accessing records.  Building an index 
takes extra computing time as well as extra storage space.  If random access is frequent 
and needs to be fast, this extra time and storage can be well worth the time and space to 
build needed data structures at the time the data is brought into an archive.  This is 
sometimes referred to as eager processing.  But if such access is rare, it may be better to 
save the time and space until the search is needed (lazy processing). 

Since in many cases it will be impossible to predict how today’s data will be accessed 
decades and centuries from now, we must always to insure that it can be converted to a 
form that will support the kinds of access that will be required. 
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Some useful structures.  Although the types of data structures that are available to 
support efficient access are too varied to cover in this paper,6 general purpose scientific 
data formats provide some useful structures for improving storage and access to 
geospatial data.  Two good examples are data compression and chunking.   

Compression is a well-understood and heavily used method of decreasing storage by 
reducing redundancy in data.  Some general formats, such TIFF and HDF, support 
compression of individual objects, or even parts of objects.  Compression not only 
improves storage, but can also improve I/O because there are fewer bytes to move 
between one location and another.  For example, a recent experiment with the HDF5 
format demonstrated that compression can improve access time particularly well when 
data is stored distributed on a network. 

Chunking occurs when a large multi-dimensional array is organized as a collection of 
independently stored sub-arrays.  The 2D version of chunking is called tiling, and results 
when an array or image is stored as a set of individual tiles.  Chunking can local the 
storage of geographically local pixels in an image, or voxels in a volume, and as a result 
can improve performance of partial access.  Chunking can also be used to create array 
structures that can grow dynamically in any direction, a capability that may prove useful 
for time-series data. 

When chunking and compression are combined, a partial I/O operation requires only that 
the chunks containing the region of interest be loaded and uncompressed.  For very large 
images, the resulting improvements in I/O efficiency can be enormous. 

Geospatial vector data is different.  Scientific formats generally are designed for data 
with a great deal of structural repetition, such as a large raster image, a geologic volume 
or a triangle mesh.  Datasets containing many records (images, etc.) generally contain 
fixed length records.  In contrast, geospatial vector data typically contains variable-length 
records – that is, objects in a single collection that can vary enormously in size.  A large 
shape file can contain shapes ranging for one point in size to many thousands of points.  
Because of this, there is no simple one-size-fits-all data structure that can provide good 
storage efficiency and good I/O performance.  

3.3 Format generality versus specialization 
General purpose scientific formats are typically designed for a range of uses, and as a 
result may not provide optimum performance for many specialized applications.  As a 
result, a format designed with a particular application and data in mind may outperform a 
more general format in important ways.  This advantage of a specialized format must be 
weighed against the cost of developing and maintaining the two types of format.   

A general purpose format such as TIFF, netCDF and HDF5 is likely to have a broad 
constituency, so that the cost of developing and maintaining it can be amortized across a 
broader funding base than perhaps a specialized format.  Furthermore it may incorporate 
                                                 
6 It would be a good idea to survey the range of available data structures in a future study.  In particular 
geospatial structures designed to provide good partial access, such as R-trees and oct-trees.  It may be 
possible to formalize and standardize some of these to the extent that they could be used for long-term 
preservation.   
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features the a special-purpose format does not have, that may prove to be valuable, and 
perhaps even necessary, as applications evolve.  We have seen this, for example, in the 
evolution of computing systems from single processor (with sequential file systems) to 
cluster computing with parallel file systems.  The HDF5 format and software work well 
on many parallel systems because a small part of the initial HDF5 user community 
needed this kind of access.  Similarly, the cost of supporting features such as chunking 
data compression may be more feasible with a general-purpose format. 

Another way to view the differences between general purpose and specialize formats is 
that with general purpose formats, object specialization is accomplished by restricting the 
semantics and methods of more general objects.  For example an array (very general) is 
interpreted as an image (specialized) with certain semantics and method.   In object 
terms, a more specialized object can inherit the semantics and methods of the more 
general objects.  This inheritance can have enormous advantages in terms of software 
engineering, because it may permit the higher levels to re-use methods at the lower 
levels. 

Of course, just as a stock car will never win the Indy 500,  a general purpose format will 
never be as perfect for an application as a specialized format (and I/O software) for which 
all necessary resources are available to make it do everything that is required.  And if the 
specialized application is important enough, the special format should be supported. 

3.4 What is HDF5? 
HDF5 [7] is a general purpose format designed particularly for scientific and engineering 
data, together with a portable I/O library designed to facilitate high performance data 
access.  The HDF5 format has only a few primitive objects, but these objects can be used 
to represent images, multidimensional arrays and tables, as well as more complex 
structures.  

The HDF5 format and software are open and free for any use, both commercial and non-
commercial.  There is currently just one HDF5 I/O library implementation, developed 
and licensed (free for all uses) by the University of Illinois.  

Since HDF5 is a very general format, it is possible to use it in many ways for a given type 
of data.  For this reason there is an emphasis within the community on standardizing the 
way HDF5 files are organized.  This is done typically in two ways: (1) by publishing 
standards on the meaning and organization of objects vis a vis a particular application 
area, and (2) by providing a reference API and library implementation that facilitates and 
enforces the standards. 

HDF5 is of particular interest for this study because it contains all of the capabilities 
described above in some useful form.  HDF itself grew out of a need to store and share 
heterogeneous scientific data among many computing platforms, and to access, visualize 
and analyze scientific data easily and efficiently.  HDF5 was designed to provide all of 
the capabilities of HDF, but in a way that could scalable to meet future demands of 
collection size and high end computing. 

HDF5 file.  An HDF5 file is a container for storing  scientific data.  At the simplest level, 
an HDF5 file can contain two primary objects, groups and datasets.   
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A group is similar to a UNIX directory or folder – it is a way to group other objects 
within an HDF5 file.  The grouping structure in an HDF5 file is very general (e.g. groups 
can share objects), and hence makes it possible to organize the objects in an HDF5 file in 
complex ways. 

A dataset is a data array with metadata.  By “data array”, we mean an ordered collection 
of identically typed data elements distinguished by their indices.  HDF5 supports a very 
general range of data element types (datatypes), including the usual integer and floating 
point numeric type, string types, compound (record-structured) types, and user-defined 
types.  

Datasets can also contain attributes, which are user-defined metadata.  The type of an 
attribute can be as complex as a dataset array. 

Datasets also have associated special storage options, which give an HDF5 application 
flexibility in determining how to store the HDF5 data array.  Storage options include 
compression, tiling (chunking), and extensibility.  These options are designed to promote 
storage and I/O efficiency. 

Another useful feature of HDF5 is a user block, which is a block stored at the beginning 
of an HDF5 file that can hold any data that a user wishes.  The user block was included in 
the design of HDF5 precisely for applications such as archiving, so that extra information 
could be provided to help future users decipher and interpret the contents of the 
accompanying file. 

HDF5 software.   illustrates the software environment in which HDF5 is 
typically used.  As with many general purpose scientific data formats, there is an I/O 
library that reads and writes data in the format.  A typical application invokes this library.  
The application may be a visualization tool with a graphical user interface, it may be a 
utility that performs some analysis on the file, or it could be an application that accesses 
one or more of the objects in the file.  Some applications, such as HDF-EOS, are just 
other libraries that themselves provide APIs but in the process impose a specific view of 
the objects in the file. 

Figure 2

The key to HDF5 software is the HDF5 I/O library, which is designed to support scalable 
scientific data management in a variety of computing environments, ranging from 
personal workstations to high end computers.  Naturally, the library mirrors the format, 
and as such provides the ability to create complex information structures, to access data 
efficiently and flexibly (including complex subsetting), to store data efficiently, and to 
perform I/O effectively and flexibly.  The HDF5 library supports key language models by 
providing application programming interfaces (API) for several languages, including C, 
Fortran, Java and C++.   
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Figure 2. HDF5 software environment.    
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3.5 HDF-EOS for digital preservation 
HDF is also of interest because of it’s use in the geospatial arena.  An HDF-based NASA 
standard called HDF-EOS is used to manage very large (and growing) collections of 
geospatially referenced data generated by NASA’s Earth Observing System.  HDF-EOS 
specifies standard ways to organize HDF files that map well to the many data types that 
result from NASA’s Earth Observing System (EOS) missions.  This passage from the 
“HDF-EOS Primer”[8] describes HDF-EOS. 

To bridge the gap between the needs of EOS data products and the capabilities of 
HDF, the ECS Project has developed extensions of HDF, which standardize the 
conventions for writing HDF files, and are called HDF-EOS. These extensions 
facilitate the creation of Grid, Point and Swath data structures. These structures 
are composed of native HDF objects and are therefore objects themselves. In the 
text below, Grid, Point and Swath structures are described in more detail.  

The software interface for the HDF-EOS implementation is very similar to the 
HDF interface. The HDF-EOS interface is used to access the Grid, Point and 
Swath data structures created by the HDF-EOS library. The plain HDF interface 
is not used to access Grid, Point and Swath structures. See HDF-EOS Users 
Guide for the ECS Project and references.  

The Point interface is designed to support data that has associated geolocation 
information, but is not organized in any well-defined spatial or temporal way. The 
Swath interface is tailored to support time-ordered data such as satellite swaths 
(which consist of a time-ordered series of scanlines), or profilers (which consist of 
a time-ordered series of profiles). The Grid interface is designed to support data 
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that has been organized in a rectilinear array, based on a well defined and 
explicitly supported projection. 7 

Many current EOS users find themselves dealing not only with geospatial data in HDF-
EOS, but also with many other kinds of geospatial data.  Because HDF-EOS combines 
the features of HDF with geolocation information, other earth science metadata, and 
standardized geographical subsetting, it seems to be a particularly well-suited scientific 
format for our study of scientific formats for long-term preservation of digital geospatial 
data.  HDF-EOS 5 is attractive for several additional reasons: 

a. HDF-EOS is a widely used, NASA-supported data model and library.   

b. The HDF-EOS grid datatype in particular is attractive, as it supports a 
number of USGS standard map projections, and hence has a high 
likelihood of mapping well to projection-gridded geospatial data.   

c. The HDF-EOS format has the ability to define additional dimensions, thus 
supporting the vertical dimension needed for some geologic datasets. 

d. HDF-EOS 5 is scalable, having been implemented using the HDF5 format. 

e. HDF-EOS provides access methods and tools to facilitate meaningful 
access to geospatial grids.  For instance, the HDF-EOS library can convert 
between a variety of map projects, supporting (at least to some extent) the 
need to combine grids that use different projections. 

f. There is a large and growing base of software for storing, querying, 
accessing, viewing, and analyzing HDF-EOS data.  At the heart of this 
software is the HDF-EOS API, an implementation of which is supported 
by the EOS project 

g. HDF-EOS also is a good candidate for persistent storage.  Its enormous 
constituency (more than 1.6 million users) and NASA backing make it 
likely that migration technologies will be available for data stored in the 
HDF-EOS format.   

There are two versions of HDF-EOS: HDF-EOS 2 is based on the older version of HDF 
(HDF4), and HDF-EOS 5 is based on HDF5.  Their data types and access methods are 
very similar. For this study, we focus on HDF-EOS 5. 

4 Experiments with HDF5/HDF-EOS 5  
In Section 2 we list the types of geospatial data that are the focus of this study.  In 
mapping these types to HDF5, we had three major considerations: 

1. What object types, if any, are available in HDF5 or its derivatives (e.g. HDF-
EOS) that can best capture the full information content of each of these geospatial 
types?  

                                                 
7 Taaheri, “An HDF-EOS and Data Formatting Primer for the ECS Project”, p. 3-1. 
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In those cases where proper object types are identified: 

2. How might these types be organized within HDF5 to facilitate anticipated access 
requirements? 

3. What storage efficiencies are to be gained or lost by converting this data to HDF5. 

4. What performance efficiencies are to be gained or lost by converting this data to 
HDF5? 

4.1 Mapping to HDF5 and HDF-EOS 5 object types 
In the study, a number of geospatial types was examined to determine the HDF5 object 
types that can best capture their information content.  Figure 3 gives a summary of 
results.  The following sections describing these results in more detail. 
Figure 3.  Mapping geospatial objects to h5 and its derivatives. 
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4.1.1 2D grid 
2D grids consist of simple homogeneous arrays, plus metadata.  For the test case, the 
Digital Ortho Photo Quadrangle (DOQ) was chosen.  DOQs are found in a number of 
formats, including a “USGS” format, a form of the TIFF format called GeoTIFF, and 
SDTS.  We mapped both USGS and GeoTIFF DOQs to HDF5.10 

DOQ images map easily the HDF5 “image” format, and this was used in both cases.  As 
for the metadata, the USGS and GeoTIFF DOQ formats differ – USGS uses a standard 
header, while GeoTIFF has both structural metadata (“tiff header”) and a geospatial 

                                                 
8 GeoTIFF is a TIFF-based interchange format for georeferenced raster imagery.  For more information, see 
http://remotesensing.org/geotiff/geotiff.html. 
9 RockWorks is a product of RockWare, Inc.  An ASCII-based format used by RockWorks was used in this 
study. 
10 We might also have mapped this data type to the HDF-EOS 5 “grid” type.  In fact, we did this to the 
multi-layer 2D grid, described next. 
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metadata (“GeoTIFF header”).  There are many ways to map these metadata to HDF5 
structures.   

For this experiment, we chose to map the USGS DOQ metadata to two HDF5 structures : 
the user block and to an image attribute with the named “HEADER”.  That is we stored 
identical copies of the metadata in two places, in both cases using the same ASCII text 
format that it occurs in the original USGS file.  The use of the user block makes all of the 
metadata available to any application that can read text, a particular benefit for long-term 
archiving.  The use of the image attribute makes it clear that this metadata applies in 
particular to the image. 

For the GeoTIFF DOQ format, we could have used the same approach, but because there 
are two types of metadata, we chose to use image attributes for both metadata 
components, respectively named “geotiffheader” and “tiffheader”.  

 
Figure 4. USGS DOQ stored as image in HDF5 file.  Headers stored as attribute. 

 

 HDF5 user block:  
   USGS HEADER 

/

Attr: USGS HEADER

4.1.2 Multi-layer 2D grid 
Multi-layer 2D grids are similar to 2D grids, except there are many of them in a single 
container.  For this part of the study we chose a geologic grid file in the RockWorks 
format.11  The dataset contains 13 elevation models corresponding to 13 geologic layers, 
each gridded to the same projection.  

In this example we chose a multi-layer HDF-EOS 5 “grid” as the target HDF5 format to 
map to.   An HDF-EOS grid contains a series of data fields of two or more dimensions 
that is mapped to a particular projection.  Hence it was straightforward to map each of the 
13 elevation models to an HDF-EOS grid data field.   

                                                 

11 RockWorks is a collection of earth science software that provides access to analytical 
and visual tools. RockWorks has its own format for gridded data. 
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The metadata in the RockWorks file mapped easily and naturally to the HDF-EOS 5 grid 
metadata, which in this case is relatively simple.  

The use of the HDF-EOS grid for multi-layer 2D grid is illustrated in . Figure 5

Figure 5. Multi-layer 2D grid organized as HDF-EOS grid with 13 data fields. 

It should be noted that the example chosen for this experiment used the same projection 
and extent for all layers, and hence the original dataset mapped to a single HDF-EOS 
grid.  If the different layers had had different extents, or used different projections, it 
would still have been possible to store them in one file, because HDF-EOS permits the 
storage of multiple grids per file. 

 

 

HDF-EOS Grid dataset
(13 2D fields) 

“Elevation”
Grid data fields Attr: Projection, extent, 

and other metadata Sankoty_top 
Radnor_top 
Radnor_base 
   . 
   . 
Bedrock_top 
Bedrock_base 

4.1.3 3D volume 
As defined above, a 3D volume is just an extension of a 2D grid to a third dimension, 
such as altitude, depth, or time.  For this study, we also used a dataset in a RockWorks 
format, this format designed for 3D volumes.  This dataset provides the same basic 
information as the one used for the multi-layer 2D grid, but in this case each of the 13 
layers is represented by a particular value.  Each voxel in the 3D array stores either a fill 
value (if none of the 13 layers is present at that point) or one of the 13 values. 

Since the HDF-EOS grid can accommodate volumes, it was equally straightforward to 
map the original RockWorks geologic dataset to an HDF-EOS grid, including the 
metadata. 
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Figure 6. 3D volume organized as HDF-EOS grid with one 3D data field 

 

HDF-EOS Grid dataset 
(one 3D field) 

Attr: Projection, extent, 
and other metadata 

4.1.4 Vector 
Vector data represents the most challenging data type encountered in this study.  In this 
study, we focused on vector datatypes that do not include topological information.  For 
this we used sample data from a number of ESRI “shapefiles”.  An ESRI shapefile is 
described in [3] as follows. 

A shapefile stores nontopological geometry and attribute information for the 
spatial features in a data set. The geometry for a feature is stored as a shape 
comprising a set of vector coordinates.   

Because shapefiles do not have the processing overhead of a topological data 
structure, they have advantages over other data sources such as faster drawing 
speed and edit ability. Shapefiles handle single features that overlap or that are 
noncontiguous. They also typically require less disk space and are easier to read 
and write. 

Shapefiles can support point, line, and area features. Area features are represented 
as closed loop, double-digitized polygons. Attributes are held in a dBASE ® 

format file. Each attribute record has a one-to-one relationship with the associated 
shape record. 

A shapefile is actually typically three separate files with the same base name, but 
distinguished by the extensions .shp (geospatial data file), .shx (index file), and .dbf 
(attribute data file).  The basic shape information is stored in the .shp file.  The .shx file is 
an index to the shapes in the .shp file, enabling an application to achieve extremely fast 
random access to individual shapes.  Similarly, the .dbf file enables very fast random 
access to shape attributes. 
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The study considered a variety of different shapefiles, varying in sized from about a 
kilobyte to 20 megabytes, in the number of features (from 1 to more than 11,000), and in 
the complexity of features (from shapes consisting of a few vertices to a shape with more 
than 38,000 vertices).  Figure 7 lists the files considered, with this information. 
Figure 7. Information about shapefiles used in study. 

Shapefile name 
Size (bytes) 

(.shp+.shx+.dbf)
Total # of 

shapes 
Total # of 
vertices 

Max. # of 
vertices for any 

shape in file 

A 
1,395 1 66

 

66 

B 
11,553 44 191

 

12 

C 
191,606 219 9,397

 

1,632 

D 
3,161,040 2,253 179,106

 

38,725 

E 
13,124,370 11,576 721,123

 

500 

F 
19,774,790 8,877 1,140,460

 

500 

 

We began with the assumption that vector data could be stored using the structures and 
metadata similar to those used for so-called unstructured grids, such as those used in 
computational fluid dynamics (CFD) and finite element modeling, which are supported in 
HDF5 by the “HDF5mesh” API and format.  This assumption proved misguided.  
Although it is possible to store vector data using these structures, there are important 
differences between these classes of data. 

• The metadata is much different.  Vector data contains metadata about topology 
and geographic entities that is irrelevant in the CFD and similar applications. 

• Types of objects differ: In geospatial vector data, the variety of shapes is large, 
whereas unstructured grids typically consist of large numbers of a few basic 
shapes. 

• Access and query requirements are quite different between geospatial and 
computational mesh data. 

Because of these differences, we chose not to convert vector data into HDF5mesh.   

A second approach involved mapping vectors in the most conceptually natural way to 
HDF5 – using compound data types.  This involved creating, for each vector-based 
feature, a compound HDF5 datatype containing all of the information about that object 
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that would be contained in a record of the corresponding shapefile.  Each resulting object 
was stored as a rather complex datatype with a number of variable-length fields (

).   Because of the self-describing nature of HDF5, the resulting information was very 
straightforward to store and access.  At the same time, the overhead required to store 
these records, particularly the variable-length fields could be extremely high.  HDF5 uses 
32-bytes of overhead to store a variable-length record, so a 2D line segment that might be 
described with 16 bytes could require as many as 32 bytes of additional overhead.  The 
overhead problem is compounded by the fact that any given feature might include a 
number of variable-length data types.  

Figure 
8

Figure 8. Second approach.  Features stored as a 1D array of variable-length records, one record per 
feature.  Requires substantial overhead for describing each record.  This organization is later 
referred to as format “HA”. 

Variations on this approach were also investigated, with some improvement in storage 
and access time, but in the best case the storage requirements for HDF5 were quite high 
compared with those of shapefiles. 

 

Feature # Fixed fields Variable fields (vectors)

1 

2 

3 

4 

5 

6 

… … … 

A third approach was to store the fixed metadata in a separate structure (hence requiring 
little overhead) and the variable length data in a large array, with one row per feature.  
That is, each row of the array contains all of the points that describe a given feature.   The 
array is created so that the row length is large enough to contain the feature with the most 
points.  Zeroes are use used to occupy unused space in an array.  This approach is 
illustrated in Figure 9. The overhead for this structure is even larger than in the earlier 
case, but in this case data compression might be used to decrease the overhead.  
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Figure 9. Vector points stored in 2D array, row size equal to longest vector.  The shaded area is filled 
with zero values.  Overhead for each row is small.  Later in the paper this is referred to as format 
“HB”. 
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4.2 Conversion 
Once each geospatial datatypes was mapped to HDF5 (or HDF-EOS 5), utilities were 
created to convert the data from its native format to the target HDF-based format.  For the 
most part this was not difficult.  In some cases the original format was quite simple.  In 
others (GeoTIFF and shapefiles), software was available for accessing the data in the 
original format, and the primary task was just to write it out in HDF5. 

4.3 Storage results 
For each of the geospatial types, we examined the storage implications of converting 
them to HDF5 or HDF-EOS 5.  The differences in storage requirements varied 
considerably between grid and vector data.   

4.3.1 Grid-based formats 
Figure 10 and  show the storage requirements for sample grid files converted 
from their original formats to HDF5-based formats.  

Figure 11

In the case of grids, the storage needs were either similar or much less for the HDF5-
based formats than for the original formats. The significant gains occur for the 
RockWorks formatted files.  There is nothing magic about these results – RockWorks 
uses a text format for both formats described here, and binary formats are almost always 
better for text. 

These studies did not explore the use of data compression in HDF5.  Certain files, such as 
the 3D volume solid model file, would likely lend themselves very well to data 
compression. 
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Figure 10.  File size comparison -- original format vs. HDF5-based format. 

Native format storage 
requirement 

Geospatial 
object Description of 

object(s) Format Size (KB) 
Size (KB) -- HDF-

based formats 

DOQ 
7639x6308 USGS 48,203 48,193 

GeoTIFF color 
DOQ GeoTIFF 75,000 75,004 

2D grid 

2D geologic grid RockWorks 
grid (text) 1,239 440 

Multi-layer 
2D grid 

13 layers of 
268x185 grid  
(64-bit float) 

RockWorks 
grid 

(text) 
15,470 5,202 

3D volume 3D volume 
55x268x185  
(64-bit float) 

Rockworks/ 
solid model  

(text) 
68,172 21,861  
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Figure 11. File size comparison -- original format vs. HDF5-based format. 
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4.3.2 Vector-based formats 
The storage results for the vector-based format were quite different from those of grid-
based formats.  As described above, the variability of individual features and metadata do 
not match up nearly as well with scientific formats such as HDF5 as do the grid formats. 
As described above, a number of different HDF5 organizations were investigated.  The 
following two provide good examples of the results. 

HA  Features stored as a 1D array of records, one record per feature, with variable-
length fields per record corresponding to the variable sized features.  Requires 
substantial overhead for describing each record. (See .) Figure 8

HB Fixed information stored in one compound type, but one or more 2D arrays 
used to store the x,y,z, and m.  The dimensions of this array are "max number 
of shapes" x "max number of vertices". (See Figure 9.) 

As described in Figure 7, six different shapefiles were investigated.  The result of directly 
converting each to HDF5 are shown in  and Figure 13.  It will be noted that in 
all cases, the resulting HDF5 file is substantially larger than the corresponding shapefile.  
In the case of shapefile D, file HB is nearly 200 times larger.   

Figure 12

The differences in file sizes are due to two things: in the case of HA and HB, the 
overhead of storing variable-length data in a general-purpose format such as HDF5 can 
be extremely high.  This suggests that we look for ways to efficiently store this kind of 
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data in future format development.   It also raises the question of what kind of storage 
improvements can be obtained through the use of the data compression features of HDF5, 
which we examine next. 
Figure 12. File sizes resulting from direct conversion of shapefiles to HDF5. 

Size (KB) 

Shapefile 
name 

Total # of 
shapes 

Max. # 
vertices 
for any 
shape Shapefile HA HB 

A 1 66 1   10 67 

B 44 12 12  26 25 

C 219 1,632 192 376 1,345 

D 2,253 38,725 3,161 6,411 205,186 

E 11,576 500 13,124 27,114 62,535 

F 8,877 500 19,775 43,380 86,930 

 
Figure 13. File sizes resulting from direct conversion of shapefiles to HDF5.  (Shows large files only.) 
Note HB for file type D, a 100-fold increase in file size due to the presence of a single feature with a 
very large number of vertices (38,725). 
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Data compression.  We next investigate the possible effect that data compression can 
have on storage of vector data in HDF5.  There is, after all, a great deal of redundancy in 
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the HDF5 formats, particularly format HB, which can have a large amount of empty 
space, as illustrated in .   Figure 9

The objects in each of the files was compressed using HDF5’s compression feature.  
Partial results are shown in  and .  It will be noted that for the small 
files, HDF5 files are still much larger, but for large files, the HB format shows 
comparable size with the corresponding shape files and in two cases are actually smaller.  
These differences illustrate the benefits of a flexible format that supports different storage 
structures that may be exploited to improve storage utilization.  They also illustrate the 
value of having data compression support for individual objects. 

Figure 14

Figure 14. File sizes resulting from application of HDF5 compression to vector data. 

Figure 15

Size (KB) 

Shapefile 
name 

Total # of 
shapes 

Max. # 
vertices 
for any 
shape Shapefile HA HB 

A 1 66 1 14 15 

B 44 12 3 23 18 

C 219 1,632 103 353 137 

D 2,253 38,725 2,050 6,162 2,105 

E 11,576 500 4,683 25,746 3,257 

F 8,877 500 13,357 42,743 12,570 
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Figure 15. File sizes resulting application of HDF5 compression to vector data, showing only large file 
results. 
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4.4 Access studies 
A second measure of applicability of a file format is the speed with which it provides 
access to data.  Our investigations of this important dimension are currently underway, 
and we can only report partial results here.  More will be reported on this work as we 
work through the next phase of the project. 

4.4.1 Grid-based formats 
As with storage, the regularity of grid-based formats makes it possible to implement 
features in a general purpose format that can greatly enhance performance.   These 
include parallel I/O, tiling, compression, and partial access.   

Although we did not do any work in Phase 1 on I/O do gridded data, we did do some 
work in connection with another research project12  that has interesting implications for 
NARA.  In this study, we are examining factors that can have an influence on I/O 
throughput, and in these experiments we examined the effect of compressed I/O on 
distributed access to data.  We were particularly interested in whether compression can 
improve access for very large images, such as a very high resolution DOQ.   

                                                 
12 “Programming Models for Scalable Parallel Computing”, a DOE-sponsored project in which NCSA’s 
role is to transfer technology from high-end computer science research to HDF5.   
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In these experiments, two procedures were compared: 

Compressed I/O: 
– compress data, then write compressed image 
– read compressed image, then uncompress 

Uncompressed I/O 
– perform I/O without compression 

Compressed I/O speed was measured against uncompressed I/O speed on two kinds of 
storage: a file system mounted on a local disk, and an NFS-mounted file system.  The 
latter is a surrogate for a distributed file system in the sense that the system accesses data 
over a network. In both cases simple UNIX I/O operations were used. 

These experiments suggest that data compression can indeed offer performance 
advantages, particularly when I/O is performed to a non-local file system.  When writing 
to a local disk (Figure 16), unless the data is highly compressable (0-10% of the original 
size), there is little to be gained from compressing the data before writing it to disk.  The 
real benefit comes from writing to an NFS mounted file ( ). In that scenario, we 
see better throughput for almost every level of data compressibility.  Based on these 
findings, we plan to implement the compressed I/O method as a feature in HDF5. 
Applications may invoke this method when they want to access data files reside on slow 
storage such as network disk or remote file servers.  

Figure 17

 
Figure 16. Compressed I/O to local disk.  With fast CPU speed, Compressed I/O wins when data is 
highly compressible.  Otherwise it is better not to compress. 
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Figure 17. On a non-local (NFS mounted) file system, compression wins most of the time. 
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4.4.2 Vector formats 
Vector access presents a genuine challenge for self-describing formats such as HDF5 that 
do not include vectors as native objects.  Extra information must be accessed and 
processed in order to access a given object, and this takes considerable time.  In contrast, 
a format such the Shapefile, which is designed specifically for fast access, has to deal 
with none of this extra accessing and processing.   

We have carried out a number of experiments to see whether the Shapefile organization 
does indeed offer performance advantages, comparing Shapefile access speed with 
HDF5.  The different organizational structures described in section 4.3.2 were compared, 
as well as several others.  These investigations reveal that there is indeed a considerable 
performance gain to be had by using the Shapefile format for vector data access.  One 
chart ( ) will suffice to illustrate difference. Figure 18
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Figure 18. Total access time for 1000 random accesses to all six sample Shapefiles and corresponding 
HDF5 files. 
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In Phase 2, we will explore further the reasons for these dramatic differences, but in the 
meantime this outstanding performance for Shapefiles illustrates the advantages to be 
gained from the use of a specialized format.   

5 Summary and conclusions 
This pilot study in cross-disciplinary technology transfer has begun an examination of 
ways that scientific data management technologies might help address challenges that 
NARA and other federal archives can face in dealing with federal collections of digital 
geospatial data.   

We examined a sampling of geospatial datatypes, including 2D grids, multi-layer 2D 
grids, 3D volumes, the swath, and vector types.  We identified characteristics of these 
geospatial types that match well with data types from the general scientific community, 
and postulated that scientific data formats such as HDF5 might provide a good format 
and software system for preservation of certain geospatial data.  

Mappings were developed between sample geospatial datasets and the HDF5 or HDF-
EOS 5 formats, and sample data sets were converted from their original formats to HDF5 
or HDF-EOS 5.  The object types, data types, and structures provided in HDF5 and HDF-
EOS 5 were able quite adequately to accommodate all of the information that was stored 
in the original geospatial formats. 

We then explored some of the implications of these conversions in terms of file size and, 
to a lesser extent, object access speed.  It was found that grid types not only mapped well 
to HDF5 and HDF-EOS 5, but they often also required less space, sometimes 
considerably less.  Access speed was not studied for grids, but is planned for a second 
phase of this research. 

The results for vector types were more mixed.  Vector types mapped well to HDF5 
datatypes, but required much more disk space than the original format.  Alternate, less 
self-descriptive mappings from Shapefiles to HDF5 did result in good space utilization 
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when HDF5’s compression feature was invoked.  Initial investigations of I/O 
performance were also disappointing, with Shapefile access outperforming HDF5 
substantially on random access to large numbers of features.  This investigation will 
continue in the second phase of the research. 
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