
Investigation of Parallel NetCDF with ROMS

Muqun Yang
Mike Folk

Robert E. McGrath
NCSA HDF group

May 4, 2004

I. Introduction

This paper reports results and lessons learned from an investigation of parallel NetCDF is
implemented by Argonne National Lab and Northwestern University [4]. Parallel netCDF is beta
software. The current version is 0.9.3. Source code and other information is available from:

http://www-unix.mcs.anl.gov/parallel-netcdf/

This project had two goals:

1. To help scientists understand MPI-IO and parallel NetCDF as part of the MEAD project
[8].

2. To improve Parallel HDF5 work.

This report is based on three resources:

1) Related paper reviews

• Two papers from parallel NetCDF website, at Argonne National Lab and Northwestern
University:
“Parallel netCDF: A High-Performance Scientific I/O interface” [1]
and
“A parallel API for Creating and Reading NetCDF files” [2]

• Chapter 3 of William Gropp, Ewing Lusk and Rajeev Thakur, Using MPI-2 [3].

• Studies of Parallel NetCDF by John Tannahill at Lawrence Livermore National

Laboratory, reported in [4].

2) Reading the Parallel NetCDF source code.

3) Experience from installing Parallel NetCDF and integrating it with the Regional Ocean

Modeling System (ROMS) [5].

This limited investigation may not have discovered many details of about the implementation.
The authors apologize for any incorrect statements in this report. Corrections are welcome.

 - 1 -

III. MPI-IO

In MPI-IO, there are two IO options: Independent IO and Collective IO. Independent IO means
that each process does IO independently. Collective IO requires that all processes should
participate when doing IO. With collective IO, MPI-IO can do optimization to improve IO
performance. The reason is as follows:

General OS system IO calls such as on UNIX and Windows can only handle contiguous
data in a file. For non-contiguous data, it has to read/write in many small IO accesses;
therefore the IO performance becomes worse.

Using the independent IO options means that each process does its own IO and MPI-IO library
won’t do any optimization for this option; so using independent IO is just like doing general IO
with many processes. If an application is only handling contiguous data, the performance is
mostly not going to be worse. However, for many applications, including Weather Research
Forecast (WRF) [9] and Regional Ocean Modeling System (ROMS) [10], each process needs to
access noncontiguous data, which will greatly degrade the performance. On the other hand, the
MPI-IO library can help improve performance by using the MPI-IO function call
MPI_FILE_SET_VIEW and collective IO. The basic idea is to assemble a big contiguous IO
collectively by combining the noncontiguous data layout of each process.

For example, suppose we have four processes with each process view of the data as illustrated on
the following chart:

P0’s view

P1’s view

P2’s view

P3’s view

When doing independent IO, since the view of each process is noncontiguous, essentially writing
four blocks on the above chart will require 8 individual IO access to the disk. However, when
using collective IO for this case, the IO access to the disk can be illustrated as follows:

P0 P1 P2 P3

This layout is contiguous. With an appropriate parallel file system, the previous 8 IO can become
one IO. This example is oversimplified. In real applications, MPI-IO can handle more

 - 2 -

customized cases by using collective IO. MPI_Type_create_subarray and
MPI_Type_create_darray function calls are usually used for building MPI derived data types.
ROM-IO, an MPI-IO implementation at Argonne National Lab, can use the data-sieving
technique to improve IO performance [6]. MPI_INFO hints, which pass to MPI-IO library, can
sometimes help improve the performance on specific platforms. For a detailed explanation,
please see chapter 3 of reference [4] for more details.

III. Why Parallel NetCDF?

NetCDF is a simple, straightforward and widely used file format. NetCDF is widely used,
especially in computational environment science.

As computations scale up to use MPI on large multiprocessors, NetCDF IO in MPI applications
becomes an IO bottleneck and may also exceed the memory capacity assigned to the current IO
node. In this study, these limits were observed for both ROMS and WRF.

The parallel netCDF library addresses these problems by providing a version of netCDF that uses
MPI-I/O. in Parallel netCDF, “[a]ll processes perform I/O operations cooperatively or
collectively through the parallel NetCDF library to access a single netCDF file. This approach
[…] both frees the users from dealing with details of parallel I/O and provides more
opportunities for employing various parallel I/O optimizations in order to obtain higher
performance.” [1] This is the obvious reason for all parallel I/O libraries.

IV. Some Details of the parallel netCDF Implementation

1. Design of the library

Parallel netCDF reuses small sections of the netCDF3 library from Unidata, but mostly is a new
implementation of netCDF.

2. Use of netCDF File

The structure of a netCDF file is well-suited for parallel I/O. Figure 1 shows the NetCDF file
structure: a file header contains metadata of the stored arrays, then the fixed-size arrays are laid
out in the following contiguous file space in a linear order, with variable-sized arrays appended
at the end of the file in an interleaved pattern. (adapted from Figure 1 of reference [1]).

Because each fixed-size variable are stored in a fixed contiguous region of the file, and it is
straightforward to figure out the interval between the current record position and the next record
position of each record variable, NetCDF file is ideal for using Set_file_view and collective IO
to improve performance through MPI-IO.

 - 3 -

 NetCDF Header
1st non-record variable
2nd non-record variable
……
……

nth non-record variable
1st record for 1st record variable
1st record for 2nd record variable
……
……
1st record for rth record variable
2nd records for 1st, 2nd,…, rth record
variables in order

 Fixed-size
 arrays

 variable-size
 arrays

Figure 1. The organization of a netCDF file.

3. The netCDF programming model: Define mode and Data mode

3.1. Define mode

Functions such as inquiry, attribute, dimension, are all done with collective I/O calls.

Collective calls allow for better error detection than independent calls. Error detection is
performed at the end of the define mode. This is not as costly as one might expect since it
doesn’t imply any communication at the time the call is made [2]. The error detection calls
indeed helped us find a bug when we investigated ROMS-Parallel NetCDF IO module.

3.2. Data mode

Reading and writing data arrays (netCDF variables) supports both independent IO and collective
IO. Collective IO combined with MPI_SET_FILE_VIEW yields a substantial improvement in IO
performance.

4. High-level APIs and flexible APIs

Parallel NetCDF includes high-level APIs and flexible APIs.

From the limited experience in this project, it seemed that each Unidata NetCDF API has a
corresponding Parallel NetCDF API. Each API prefix is simply changed from nc_ to ncmpi_ for
C interface and from nf_ to nfmpi_ for Fortran interface. There are no C++ and Java interfaces
for the parallel netCDF prototype.

The main change to the standard netCDF API is the addition of two arguments to ncmpi_create
and ncmpi_open. These functions require MPI_Comm and MPI_INFO structures required by

 - 4 -

MPI-I/O. Through MPI_Comm, the MPI communicator can be passed. Hints of IO optimizations
can be passed through MPI_INFO.

The MPI Datatype MPI_offset replaces C datatype size_t in some functions.

Two new functions were added for doing independent IO inside parallel NetCDF. These
functions are ncmpi_begin_indep_data(int ncid) and ncmpi_end_indep_data(int ncid).

For other APIs, the suffix all is added for collective IO calls such as, ncmpiget_vars_float_all.

Finally, there are flexible Data Mode APIs that allow users to use MPI_Datatype themselves for
better performance than standard netCDF data types. For example, Flexible function

ncmpi_put_vara(int ncid, int varid, const MPI_Offset start[], const MPI_Offset count[],
const void *buf, int bufcont, MPI_Datatype datatype)

allows the programmer to use MPI datatypes to describe the in-memory organization of the
values. The datatype passed to the flexible API should be a basic datatype such as MPI_FLOAT
and MPI_INT.

V. Dimension scales

There are no special arrangements of dimensions in parallel NetCDF. All dimension information
except the dimensional scale data is stored inside the file header. This is handled with collective
IO as mentioned above. Just as Unidata NetCDF does, the dimensional variable is treated as an
ordinary variable with the same dimensional name.

VI. Comparison of Parallel NetCDF with Parallel HDF5

Li et al [1] compared the performance of parallel NetCDF with parallel HDF5. This paper
identified two important differences between parallel netCDF and HDF5.

1. The linear data layout (regular and highly predictable) minimizes the overhead of parallel
NetCDF. In contrast, parallel HDF5 uses a tree-like file structure; in which results the
data is irregularly laid out using super block, header block, extended header block,
extended data blocks. The result is that it is difficult to pass user access patterns directly
to MPI-IO.

2. The I/O for the parallel NetCDF’s header is low. There is only one header that contains
all necessary information. By comparison, in parallel HDF5, the header metadata is
dispersed in separate header blocks for each object. It is necessary to iterate through the
entire namespace to get all the header information, and in general, HDF5 requires many
small reads and writes to manage the metadata in the files. These are inefficient for
parallel access.

However, Parallel NetCDF has some essential drawbacks compared with Parallel HDF5. These
include:

1. Parallel NetCDF doesn’t support chunking storage.

 - 5 -

2. HDF5 can create new objects and metadata at any time. Unidata NetCDF and parallel
netCDF creates all metadata during the define phase. If metadata is added during the data
phase, Parallel NetCDF has to copy the entire file header (essentially rewrites the whole
file), which may be expensive.

VII. Installation and Integration with an Application

This study tested Parallel NetCDF on two IBM SP machines (IBM P690 at NCSA and IBM
WinterHawkII clusters at NCAR). IBM GPFS was stable and easy to use on these machines, so it
was possible to experiment with MPI-I/O.

It was not difficult to install Parallel NetCDF on copper, NCSA's IBM P690. The Parallel
NetCDF test suite has some misleading information. For example, the Fortran test depends on a
C test. It was not difficult to figure this out.

The Fortran APIs did not work when turning on large file support with 64-bit object mode.
We’ve sent a bug report to the Argonne group.

It was relatively easy implement a Parallel NetCDF ROMS writer because many previous
NetCDF calls can be converted easily to Parallel NetCDF calls. The ROMS writer is discussed in
the next section.

VIII. Performance Studies

1. A Parallel NetCDF-ROMS History File Writer

In this report, the performance results come from a real application: the Regional Ocean Model
System (ROMS). ROMS is an oceanographic prediction model [10]. The model can write output
data into a history file at every time step.

This study used ROMS version 2.0. The model has an option for us to use MPI for computation
and uses sequential IO with Unidata NetCDF 3.5. We added another option to output ROMS
history file with parallel NetCDF.

These changes include

1. Adding parallel NetCDF function calls,
2. Assuring that each process writes correctly,
3. Linking with parallel netCDF.

2. Description of the Experiments

The performance of the ROMS parallel writer was measured in two experiments. The first
experiment was run on the NCAR IBM SP WinterHawk. The second experiment was run on the
NCSA IBM P690.

 - 6 -

In each experiment, we set the timestep to 2, 4, 6, 8, 10 and made 5 model runs on each platform.
For each timestep, the model wrote the NetCDF output into the same large history file and
several small files.

In parallel component of both experiments, we used parallel NetCDF to generate the history file
but serial NetCDF to generate other small files.

We called the amount of data at each timestep one unit of output data. The size of the biggest
record is a key factor to affect the parallel IO performance, as is explained in part 4 of this
section.

Table 1 summarizes the experimental conditions.

Table 1. Summary of Experiments

 Experiment 1 Experiment 2
Platform IBM SP WinterHawk NCAR IBM P690
Number of processor 128 16
Unit of data (MB) 335 48
The size of the biggest record
(elements)

656*640*16 = 6,717,440 246*240*16 = 944,640

For each run, the wall-clock time for writing output data of the model was the performance
measurement for both sequential NetCDF and Parallel NetCDF.

3. Analysis and Discussion

Figure 2 and Figure 3 show how IO performance behavior in experiment 1 and 2, respectively.

With 128 processors, at NCAR IBM, the wall-clock time to write output data with Parallel
NetCDF is much shorter than sequential NetCDF in all model runs. However, for the second
experiment, with 16 processors, at NCSA IBM p690, wall-clock time to write output data using
Parallel NetCDF was much longer than sequential NetCDF in all model runs. However, when the
model was adjusted so the unit of data was identical, the results for the 16 processors at NCSA
P690, were similar to the 128 processors at NCAR IBM SP. We conclude that the difference
between the results in these two experiments was caused by the size of the biggest record in the
output history file.

There are more than 20 1-element variables inside every ROMS file. There are also around 10
fixed-size small NetCDF variables inside the file. These small data accesses will pay tremendous
penalty when accessed using Parallel IO.

As the number of timesteps increases, the number of small writes doesn’t change. However, as
the number of timestep increases, the number of big records written to the history file increases.
So it is reasonable to say that MPI-IO overhead becomes relatively less and the overall Parallel
NetCDF IO performance should become better as the number of timesteps increases.

 - 7 -

In Figure 3 the wall clock time to write output data was less for a file with ten total timesteps
than for a file with eight timesteps. We do not have an explanation for this finding. It is possible
that these results are due to caching mechanisms in the file system or storage hardware.

In these experiments there are three factors that seem to affect the performance of the ROMS
parallel IO:

1. the size of the largest record
2. the number of processors used in a run
3. the type of platform

The NCAR IBM and the NCSA IBM are essentially the same processors and platform. Our
results suggest that the key factor is the size of the largest record.

 Parallel NetCDF outperforms Serial NetCDF
Output time comparsion between PNetCDF and NetCDF with 128 processors at IBM

WinterHawk

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 4 6 8 10

Number of unit of output data (1 unit = 335 MB; the largest record is 656*640*16 elements)

O
ut

pu
t t

im
e

(u
ni

t:
0.

1s
)

NetCDF
Parallel NetCDF

Figure 2. Comparison between PNetCDF and NetCDF with 128 processors at IBM WinterHawk.

 - 8 -

 Serial NetCDF outperforms Parallel NetCDF
Output time comparsion between PNetCDF and NetCDF with 16 processors at IBM P690

0

100

200

300

400

500

600

700

800

900

2 4 6 8 10

Number of unit of output data (1 unit: 47.6 MB; the largest record size 246*240*16 elements)

O
ut

pu
t t

im
e

(u
ni

t:
0.

1
s)

NetCDF
Parallel NetCDF

Figure 3. Comparison between PNetCDF and NetCDF with 16 processors at IBM P690

We conclude that the parallel NetCDF will outperform the serial NetCDF when the size of the
records written to the output file is large enough to overcome the overhead from MPI-IO. The
break even point will depend on platform specific factors. This finding is consistent with earlier
reports that indicated that the number of processors in use and different platforms appeared to
affect the performance [4]. We will further analyze the role of different factors in another report.

X. Summary

1. Using collective IO as well as MPI_SET_FILE_VIEW properly can greatly improve IO
performance in parallel applications.

2. Parallel NetCDF from Argonne National Lab and Northwestern University is easy to

install and to use though it still needs some tuning.

 - 9 -

 - 10 -

3. Using Parallel NetCDF can greatly improve performance for ROMS with the increasing
of big record size. Parallel netCDF gives better performance for large writes, serial
netCDF is better for small writes.

4. ROMS writes some small arrays and a few large arrays. The best I/O performance will

require a hybrid, using both serial and parallel I/O.

References:

[1] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William Gropp,

Rob Latham, Andrew Siegel, Brad Gallagher, Michael Zingale. “Parallel netCDF: A High-
Performance Scientific I/O Interface”, SC’2003 November 15-21,2003, Phoenix, Arizona,
USA.

[2] A Parallel API for Creating and Reading NetCDF Files,

http://www-unix.mcs.anl.gov/parallel-netcdf/

[3] William Gropp, Ewing Lusk, Rajeev Thakur, 1999: Using MPI-2. The MIT Press, 51-118.

[4] Parallel netCDF Study, John Tannahill, Lawrence Livermore National Laboratory,

PowerPoint slides.

[5] Regional Ocean Model System, Web site:

http://marine.rutgers.edu/po/index.php?page=&model=roms&print=true

[6] Rajeev Thakur, William Gropp, Weing Lusk, 1999: “Data Sieving and Collective I/O in

ROMIO,” in Proceeding of the 7th Symposium on the Frontiers of Massively Parallel
Computation, pp. 182-189

[7] http://hdf.ncsa.uiuc.edu/apps/WRF-ROMS/

[8] http://www.ncsa.uiuc.edu/AboutUs/FocusAreas/MEADExpedition.html

[9] http://www.wrf-model.org/

[10] http://marine.rutgers.edu/po/index.php?model=roms&page=

Acknowledgments

This work is part of NSF-funded Modeling Environment for Atmospheric Discovery Expedition
(MEAD) [8].

	I. Introduction
	III. MPI-IO

	III. Why Parallel NetCDF?
	IV. Some Details of the parallel netCDF Implementation
	V. Dimension scales
	VI. Comparison of Parallel NetCDF with Parallel HDF5
	VII. Installation and Integration with an Application
	VIII. Performance Studies
	X. Summary

