
Performance Study of HDF5-WRF IO modules 
 

MuQun Yang 
Robert E. McGrath 

Mike Folk 
National Center for Supercomputing Applications 

University of Illinois, Urbana-Champaign 
 
 

 
 1. Introduction to HDF5 

 

45

55

65

75

85

95

105

115

125

0 5 10 15 20 25 30
Output File Size (GB)

W
al

l C
lo

ck
 T

im
e 

(m
in

)

128 processors
256 processors

 

HDF5 was developed to support contemporary high 
performance computing environments, including files 
larger than 2 Gigabytes, very large numbers of objects in 
a file, and alternative storage layouts [1]. HDF5 provides 
a number of important features, including: 

• chunked storage  
• external compression packages  
• designed to use Message Passing Interface 

Input and Output (MPI-I/O) 
HDF5 is available on most important high performance 
computing platforms.   
 
HDF5 is used in many scientific and technical projects 
and communities, including important Earth Science 
data. The NASA EOS system provided data in HDF5 
beginning with the Aura satellite [3,4]. The NPOESS 
system [5] uses HDF5 as one of its principle format.  

Figure 1: Performance of Sequential HDF5 WRF 
Module With Different Output File Size at NCSA 

Teragrid Linux Cluster 

   Currently, Unidata and NCSA are collaborating to design 
netCDF4, a new netCDF built on top of HDF5 [2].  

Six model runs were made; each with 900 timesteps. 
Three model runs were assigned 128 processors; the 
other 3 runs were assigned 256 processors. In the 
individual run, the model wrote data at every ninth 
timestep, every ninetieth timestep and every nine 
hundredth timestep. Each write is the same amount of 
data, so the three runs wrote a total of about 28 GB, 2.8 
GB and 280 MB,respectively.  In Figure 1, as the output 
file size (number of writes) increases, the wall clock time 
of the model run with 256 processors increases 
significantly and eventually exceeds the wall clock time 
of the model with 128 processors.  

 
2. Why a WRF-HDF5 module? 
 
WRF is designed in such a way that it has standard 
configuration and IO common APIs to enable external IO 
packages to be easily added to. An application can select 
which IO module to use.  
 
The current WRF software package supports a netCDF-
WRF IO module. The current netCDF IO module uses 
one process to collect/distribute data from other 
processes; then uses the same process to read/write 
netCDF files. This process will become IO bottleneck 
and the IO module may exceed the memory capacity in 
some applications.   

 
The reason is that it will have more communication 
overhead with 256 processors than with 128 processors 
when only one IO node can be assigned to generate 
output. As more output is generated, the overhead 
eventually exceeds the gain of the computing 
performance with 256 processors.  The solution for this 
problem is to implement a parallel IO module in WRF 
model.  

 
To illustrate the effect of this bottleneck, the performance 
was measured for an example application using 
sequential IO. The example was run on the NCSA 
Teragrid linux cluster using data provided by John 
Michalakes of NCAR MMM Division.  
 Since this example is a real WRF application; it shows 

that the parallel IO module is necessary to be 
incorporated into the WRF model. 

In Figure 1, the wall clock time for a model run using the 
sequential WRF HDF5 IO module is compared for 128 
and 256 processors. Experiments show that the 
performance of the WRF-sequential HDF5 IO module is 
roughly equivalent to WRF-netCDF IO module. 

 
For some WRF applications, the output is huge. In-
memory data compression can save storage, network 
bandwidth, and often improves IO performance as well. 
TheWRF-sequential netCDF module does not provide in-

 
 

 



memory compression support. Currently HDF5 supports 
various compression packages; therefore it is possible for 
application users to adopt compression features with 
WRF-sequential HDF5 module.  
 
3. Characteristics of Sequential and Parallel HDF5-
WRF Design and File Structure 
 
There are two HDF5 WRF IO modules, sequential and 
parallel.  The former uses the serial HDF5 library, and is 
very similar to the standard netCDF WRF IO module. 
The sequential HDF5 module supports data compression. 
 
The Parallel HDF5-WRF uses the parallel HDF5 library, 
which is implemented with MPI IO. In contrast to the 
sequential module, every computing node will also be 
used for IO through Parallel HDF5. This provides high 
performance, especially for large data writes and reads. 
 
In both cases, the file structure of the HDF5 output is 
similar to that of NetCDF to help NetCDF users easily 
understand the WRF-HDF5 IO modules.  
 
For more information about the design and prototype 
implementation, see [7]. 
 
4. Performance report 
 
The performance of the WRF-parallel HDF5 IO module 
was tested on several platforms. The performance study 
of WRF-Parallel HDF5 module provides a guideline for 
users to adopt parallel options with NetCDF4 in the 
future.  
 
Three real WRF cases are used for performance study. 

• Case 1: A real weather forecasting case. The 
maximum hyperslab size is about 17 MB per 
time step.  

• Case 2: A real short-range climate forecasting 
case. The maximum hyperslab size is 3 MB per 
time step. 

• Case 3: A numeric simulation case of a squall 
line. The maximum hyperslab size is 1.9 MB 
per time step. 

 
The platforms included the NCSA and SDSC Teragrid 
Linux clusters; NCAR IBM power3, and the NCSA IBM 
power 4. The wall-clock time to complete a model run is 
compared for parallel HDF5-WRF and sequential 
netCDF modules. All model settings are exactly the same 
except for the output data. 
 
4.1. Parallel HDF5 WRF IO Module 
 
Figure 2 shows a comparison of the wall clock time 
between WRF-parallel HDF5 IO module and WRF-
sequential netCDF IO module for Case 1 at NCAR IBM 
with 256 processors. The maximum hyperslab size per 
timestep is 17 MB. The WRF-parallel HDF5 IO module 
outperforms WRF-netCDF IO module as the output file 
size increases. When the output file size reached around 
20GB, the model run took about 80 minutes wall clock 

time when using WRF-sequential netCDF IO module; 
compared to 20 minutes when using parallel WRF-
Parallel HDF5 IO module. 
 

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25
Output File Size(GB)

W
al

l C
lo

ck
 T

im
e 

(m
in

)

Parallel HDF5
NetCDF

 
Figure 2: Performance of Parallel HDF5 to sequential 
NetCDF for Different Output File Size IBM Power 3 

(256 Processors)  (Case 1) 
 
Similar experiments with Case 2 (a real short-range 
climate forecasting case) gave similar results.  
 
However, in some cases, WRF-sequential netCDF IO 
outperforms the WRF-parallel HDF5 IO module. Figure 
3 shows results for case 3 at NCSA IBM Power 4 with 16 
processors. The maximum hyperslab size per timestep in 
this case is 1.9 MB, only one-eighth the size of that in 
case 1. The performance of the WRF-parallel HDF5 is 
consistently worse than that of WRF-sequential netCDF. 
In this case, the overhead of MPI-IO outweighs the gain 
from multiple processors. 
 
Other analysis shows that when case 3 is run with 64 
processors at NCAR IBM, WRF-parallel HDF5 is 
slightly better than WRF-sequential netCDF. So the 
performance of WRF-parallel HDF5 appears to improve 
with the increasing of number of processors assigned to 
it. 
 

0

1

2

3

4

5

6

7

8

0 0.5 1 1.5

Output File Size(GB)

W
al

l C
lo

ck
 T

im
e 

(m
in

)

2

Parallel HDF5
NetCDF

 
Figure 3: Performance of Parallel HDF5 and 
sequential netCDF with Different Output File Size 
IBM Power 4 (16 processors) (Case 3) 

 

 



However, increasing the number of processors does not 
always improve the performance of parallel IO. In 
another experiment, the baroclinc wave case provided by 
WRF was run with different numbers of processors at 
San Diego Supercomputer Center Teragrid Linux cluster. 
Two processors are assigned for each node. The 
maximum hyperslab size is about 4.7MB, and the model 
was run with 4-64 processors. Figure 4 shows that with 
the increasing of number of processors, the performance 
of WRF-parallel HDF5 decreases.  

For each option, the model was run for 10, 30, 50 and 70 
timesteps. For each timestep, the model wrote the HDF5 
output into the same HDF5 history file.  
 
Figure 5 shows file size of different runs for each option. 
As expected, the overall HDF5 file size in either SZIP 
compression or shuffle with GZIP compression is much 
less than the same data without compression.   For 
example, for the data at timestep 70, the file size is about 
2000 MB without compression, compared to less than 
600MB for either SZIP or GZIP compression.   
 

0

10

20

30

40

50

60

70

80

90

4 8 16 32 64

Number of Nodes

W
al

l C
lo

ck
 T

im
e 

(m
in

) Parallel HDF5

 

Figure 6 shows the overall wall clock time of different 
runs for each option. The wall clock time to write the 
data with SZIP compression is just a little greater than 
that without compression. The wall clock time to write 
the data with shuffle and deflate compression is 
significantly greater than that without compression. For 
example, it took about 4 more minutes to compress 
2000MB data.  SZIP is much faster when compressing 
the WRF data. 
 

0

500

1000

1500

2000

2500

10 30 50 70
Number of Timestep to Generate Output

Fi
le

 S
iz

e 
(M

B
)

No Compression

With szip

with shuffle + gzip

 

Figure 4: Performance of parallel HDF5 with the 
same Output File Size but Different Number of 
Processors Teragrid Linux cluster (2 processors per 
node); baroclinic wave case 

 
The following summarizes our findings related to this 
issue and we hope that will help readers who will use 
parallel IO in the future. 

• Parallel HDF5-WRF IO module can greatly 
improve WRF IO performance for some WRF 
applications. Figure 5: Performance of Sequential HDF5 with 

Different Compression Methods (Case 3: Squall Line) 
IBM Power 4 (16 processors) • The parallel IO performance will depend on the 

size of the HDF5 dataset, the number of 
processors, the platform used, the parallel file 
system, MPI-IO library. 

 

0
1
2
3
4
5
6
7
8
9

10

10 30 50 70
Number of Timestep to Generate Output

W
al

l C
lo

ck
 T

im
e 

(m
in

)

No Compression
With szip
With shuffle + gzip 

 

• According to some experiments, it appears to 
be the larger the HDF5 dataset size is and the 
more processors the WRF can run, the better 
the IO performance can be possibly achieved 
on IBM SP GPFS.  

 
4.2. Sequential IO with Data Compression 
 
The sequential HDF5 module supports in-memory 
compression. The HDF5 library supports SZIP and 
deflate (GZIP) compression algorithms, as well as an 
optional byte shuffle algorithm that can improve the 
compression [8] [9]. This study compared three storage 
options:  Figure 6:  Model Output File Size With Different 

Compression Methods (Case 3: Squall Line) IBM 
Power 4 (16 processors) 

• WRF-sequential HDF5 without compression,  
• WRF-sequential HDF5 with SZIP compression, 

and  
 • WRF-sequential HDF5 combined with shuffle 

plus GZIP compression.  The results of the compression study show that: 
• SZIP compression can greatly compress the 

WRF data with little encoding time overhead. 
 

 



• The Shuffle algorithm combined with deflate 
compression can greatly compress the WRF 
data with some encoding time overhead. 

 
5. Where to obtain the HDF5 WRF IO Modules 
 
WRF-Parallel HDF5 and Sequential HDF5 IO modules 
can be obtained at:  
     http://hdf.ncsa.uiuc.edu/apps/WRF-ROMS/  
 
References 
  
1. http://hdf.ncsa.uiuc.edu/HDF5  
2. http://www.unidata.ucar.edu/proposals/NASA-AIST-

2002/ 
3. http://www.eos.ucar.edu/hirdls/ 
4. http://lennier.gsfc.nasa.gov/seeds/W3pr_Craig.pdf 
5. http://www.ipo.noaa.gov/ 
6. http://www.ncsa.uiuc.edu/expeditions/MEAD/  

7. http://www.ncsa.uiuc.edu/apps/WRF-ROMS 
8. http://www.ncsa.uiuc.edu/HDF5/papers/ 
9. http://hdf.ncsa.uiuc.edu/doc_resource/SZIP/ 
 
Acknowledgements:  
 
Authors want to thank John Michalakes at National 
Center for Atmospheric Research for providing CONUS 
WRF initial data, Dr. Xinzhong Liang at Illinois State 
Water Survey for the Climate WRF initial data, Dr. Brian 
Jewett at Dept. of Atmospheric Sciences at University of 
Illinois at Urbana-Champaign for the squall line WRF 
initial data. 
 
This work is part of NSF-funded Modeling Environment 
for Atmospheric Discovery Expedition and we appreciate 
the timely supports through NSF-sponsored TeraGrid 
project.

 
 

 
 

 


	To illustrate the effect of this bottleneck, the performance was measured for an example application using sequential IO. The example was run on the NCSA Teragrid linux cluster using data provided by John Michalakes of NCAR MMM Division.
	Six model runs were made; each with 900 timesteps. Three model runs were assigned 128 processors; the other 3 runs were assigned 256 processors. In the individual run, the model wrote data at every ninth timestep, every ninetieth timestep and every nine
	The reason is that it will have more communication overhead with 256 processors than with 128 processors when only one IO node can be assigned to generate output. As more output is generated, the overhead eventually exceeds the gain of the computing perf
	Since this example is a real WRF application; it shows that the parallel IO module is necessary to be incorporated into the WRF model.
	References


