
Using HDF5 in WRF

Part of MEAD - an alliance
expedition

Contents

• Introduction to WRF
• Introduction to parallelism of WRF
• Introduction to WRF IO APIs
• WRF-HDF5 file structure
• WRF-HDF5 sequential mode
• WRF-HDF5 parallel design and potential

problems

WRF(Weather Research
Forecasting Model)

• A limited-area weather model for research and
prediction

• Combine NCAR/PSU MM5(research model,
dynamics) with NCEP ETA(operational model,
physics)

• Have the tendency to become the most popular
limited-area weather model in this country and in
the world

• Many Potential users
• Most codes in Fortran 77 and Fortran 90

From WRF tutorial

WRF software design schematic

Driver

Config
Inquiry I/O API

Config
Module

WRF Tile-callable
Subroutines

SolveMediation Layer

Model Layer

Driver Layer

DM comm

Th
re

ad
s

OMP

External Packages

Package
Independent

Package
Dependent

Data formats,
Parallel I/O

M
es

sa
ge

Pa
ss

in
g

(Adapted from WRF software design document at
http://www.mmm.ucar.edu/wrf/users/WRF_arch_03.doc)

WRF Multi-Layer Domain Decomposition

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain allocated to a distributed memory node
Tile: section of a patch allocated to a shared-memory processor within a
node; this is also the scope of a model layer subroutine.
Distributed memory parallelism is over patches; shared memory parallelism is
over tiles within patches

• Single version of code for efficient
execution on:

– Distributed-memory
– Shared-memory
– Clusters of SMPs
– Vector and microprocessors

Inter-processor
communication

Logical
domain

1 Patch, divided
into multiple tiles

(From WRF tutorial:http://wrf-model.org/PRESENTATIONS/2002_06_NCAR_Tutorial/software.ppt

• Halo updates

Distributed Memory Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

From WRF tutorial:http://wrf-model.org/PRESENTATIONS/2002_06_NCAR_Tutorial/software.ppt

Two level decomposition
Logical domain 12 patches

Level 1
Distributed memory
MPI etc.

Level 2
S har ed m

em
ory 4 tiles

We are interested in

Goal of I/O API

– Make I/O infrastructures for both popular operational
and research format

• Operations: GRIB, BUFR
• Research: NetCDF, HDF

– “Portable I/O” – treat each I/O package as an external
package; easy to turn on or off

WRF I/O Schematic

Application

I/O API

Format
Package

Comm
Package

Application

I/O API

Format
Package

Comm
Package

Application

I/O API

Format
Package

Comm
Package

. . .

Data Medium

Package-
independent

Package-
specific

Installation-
specific

WRF data characteristics
• Many HDF5-equivalent datasets

- currently output >100 datasets, each one < 1MB
- typical dataset: 4-D real array with the dimension of time extensible

• Many output files but each file not big
• Weakly dimensional scale requirement

- no real dimensional scale data

• May need datasets to be extensible
• WRF has history, restart, initial and boundary

dataset type. Each WRF dataset is equivalent to
one HDF5 group.

First design of Schematic HDF5 File Structure of WRF Output

/

WRF_DATA Dim_group

TKE RHO_U

ETC…

Time
Top_bot

Lat Lon

Object reference

May be changed
depending on implementation
of dimscale

Solid line: HDF5 datasets or sub-groups (the arrow points to) that are members of the HDF5 parent group.
Dash line: the association of one HDF5 object to another HDF5 object;in terms of HDF5, object reference.

HDF5 group(WRF dataset)HDF5 dataset(WRF field)

An example of WRF-HDF5 output
HDF5 "wrfrst_01_000002" {
GROUP "/" {

GROUP "DATASET=RESTART" {
DATASET "ACSNOM" {

DATATYPE H5T_IEEE_F32BE
DATASPACE SIMPLE { (1, 80, 40) / (H5S_UNLIMITED,

80, 40) }
}

.

.

.
}

}}

Must the dataset be extensible?

• Seems to best fit the description of the
model (No timestamp limited for WRF)

• From J.M, the developer of WRF:impose no
requirements at all on how the data are stored in the
datasets.

WRF IO APIs
• Common APIs

- Example: wrf_open_for_read(DatasetName , Comm ,
IOComm_io,&SysDepInfo, DataHandle, Status)

• Treat IO packages as external packages
- Example: ext_open_hdf5_for_read (DatasetName , Comm ,
IOComm_io,&SysDepInfo, DataHandle, Status)

• May become common IO APIs for other
atmospheric/ocean models like ROMS

A piece of example code
SUBROUTINE wrf_open_for_read (FileName , Comm_compute, Comm_io, SysDepInfo, &DataHandle

, Status) USE module_state_description
……

Select CASE (use_package(io_form)) {
#ifdef NETCDF
CASE(IO_NETCDF)
CALL ext_ncd_open_for_read

#endif
#ifdef HDF5

CASE(IO_HDF5)
CALL ext_hdf5_open_for_read

#endif
……
}

IO quilt server

• Not using MPI-IO
• Use separate I/O nodes to generate output

asynchronously while computing continues
in computing nodes

IO Quilt server schematic
In the illustrated figure:
Totally there are 17 processors
12 processors : computing tasks

4 computing groups
5 processors: IO tasks
1 IO server group

Computing group

IO group
One task

IO Quilt server schematic
continued

IO server

Secondary IO tasks

Primary
IO

Computing tasks
disk

Asynchronous
output

Evaluation of IO Quilt server

• Improve performance
• Somehow waste some computing

processors
• If IO is too slow, computing nodes have to

wait until the finishing of IO in the previous
timestamp

Why using HDF5?

• HDF5 is the only data format that supports
MPI-IO.

• Potential big file size in the future
• Potential user at NCSA- BW

Milestone highlights

• By March 31st, 2003:
-Complete the initial prototype implementation of WRF-
HDF5 including parallel I/O support.

• By June 30th, 2003:
-Possibly re-design HDF5 structures of WRF output to take
advantage of parallel HDF5 I/O.
-Begin the initial implementation of serial and parallel
versions of HDF5 module in WRF model.

Strategy of this project

1. Starting from the implementation of the
sequential HDF5 parallel writer module

2. Learning parallel HDF5 on IBM NCAR SP
machine

3. Designing parallel HDF5-WRF module
4. Implementing HDF5 parallel writer module
5. Testing with real case and do performance

comparison study with sequential HDF5
and NetCDF.

Existing WRF IO modules

• NetCDF: sequential I/O that can be used in
parallel run
Internally a monitor will collect all the data
from the computing node and write data out
to the disk.

• IO quilt server
• Internal MM5 data format

Challenges for sequential mode

• To understand how and why WRF wants to
transpose data from different memory
orders to disk

• The current NetCDF implementation can
only handle with fixed number of maximum
timestep

Solutions to the challenge
• Transposing the data

-In memory, to gain high performance of computing; fields may
need to be in different orders (XYZ, XZY, YZX etc.)

-In disk, we could store the data in a file with the same order as it is
stored in memory. However, that may cause tool developers to do
more work.
For this reason, when data fields are written to the disk, they will
always be transposed to the same order. When data fields are read from
disk, the model will transpose to the correct memory order for each
field.

An incomplete WRF-HDF5
writer

• Can write raw data in HDF5 format
• Doesn’t implement attributes yet
• Doesn’t implement dimensional scale yet

- wait for implementation of HDF5
dimensional scale

• Has been tested on O2K, PC linux and
NCAR IBM SP

Parallel WRF-HDF5 design

Two level decomposition
Logical domain

Level 1
Distributed memory
MPI etc.

Parallel WRF-HDF5 design

Solution 1:
• Each computing node is also an I/O node;

All nodes will participate in writing data to
the output file in a parallel file system.

p2 p1 p0

p5 p4 p3

p8 p7 p6

p11 p10 p9

p7

p6

p8

p9

p10

p11

p5

p4

p3

p2

p1

p0

Parallel
File
System

Parallel WRF-HDF5 design - Solution 1

Computing tasks

Parallel WRF-HDF5 design 1

Pros:
1) Kind of easy to implement

Cons:
1) With many processors, overhead(many

small writes) will be expensive.

IO Quilt server schematic
continued

IO server

Secondary IO tasks

Primary
IO

Computing tasks
disk

Asynchronous
output

Parallel WRF-HDF5 design

Solution 2:
• Like I/O quilt server, Divide nodes into

computing nodes and I/O nodes.
• WRF data fields are written to the disk

through I/O nodes via parallel HDF5.

Parallel WRF-HDF5 design-solution 2

Parallel File
System

Computing tasks Secondary IO tasks

PH
D

F5

Parallel WRF-HDF5 design 2

Pros:
1) Overhead is small, scaleable?

Cons:
1) Need extra work to transfer data from

computing nodes to IO nodes
2) For computing bound, IO nodes kind

of Waste.

Parallel WRF-HDF5 design

Solution 3:
• Similar to solution 2, but all nodes will be

used to compute; some nodes will also be
used for IO.

• WRF data fields are written to the disk
through I/O nodes via parallel HDF5.

Parallel WRF-HDF5 design-solution 3

PH
D

F5

IO group
Computing tasks Parallel File

System

Parallel WRF-HDF5 design 3

Pros:
1) Overhead is small, scaleable?
2) For computing bound, gain performance.
Cons:
1) Need extra work to transfer data from

computing nodes to IO.
2) For IO bound, may affect performance.

An extra problem for all solutions

• The HDF5 dataset has to be extensible in time.
This requires chunk storage.

• Challenge for chunk size:
The dimensional size in each patch is not necessarily the same, the chunk size
can not be assigned easily.

• Two potential solutions for chunk size problem:
- find common factor of the chunk size: may cause very bad performance

- Partial data transferring from computing nodes to I/O nodes and using
synchronization schemes(semaphore etc.) to avoid inconsistencies when
writing data from different I/O nodes to the same place in a dataset.
Hard to implement and cannot assure good performance.

Another thought to handle this
problem

• Does WRF really need WRF fields to be
extensible?
Answer: Not required according to WRF
developers.
Good news, bad news? Then how we store
the raw data?

Some facts related to WRF-
HDF5 module

Parallel
HDF5

Parallel
IO

Parallel
Computing

Sequential
HDF5

Sequential
IO

Parallel
Computing

Sequential
HDF5

Sequential
IO

Sequential
Computing

WRF-HDF5
module

	Using HDF5 in WRF
	Contents
	WRF(Weather Research Forecasting Model)
	WRF software design schematic
	WRF Multi-Layer Domain Decomposition
	Goal of I/O API
	WRF I/O Schematic
	WRF data characteristics
	An example of WRF-HDF5 output
	Must the dataset be extensible?
	WRF IO APIs
	A piece of example code
	IO quilt server
	IO Quilt server schematic
	IO Quilt server schematic continued
	Evaluation of IO Quilt server
	Why using HDF5?
	Milestone highlights
	Strategy of this project
	Existing WRF IO modules
	Challenges for sequential mode
	Solutions to the challenge
	An incomplete WRF-HDF5 writer
	Parallel WRF-HDF5 design
	Parallel WRF-HDF5 design
	Parallel WRF-HDF5 design 1
	Parallel WRF-HDF5 design
	Parallel WRF-HDF5 design-solution 2
	Parallel WRF-HDF5 design 2
	Parallel WRF-HDF5 design
	An extra problem for all solutions
	Another thought to handle this problem
	Some facts related to WRF-HDF5 module

