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WRF(Weather Research 
Forecasting Model)

• A limited-area weather model for research and 
prediction

• Combine NCAR/PSU MM5(research model, 
dynamics) with NCEP ETA(operational model, 
physics)

• Have the tendency to become the most popular 
limited-area weather model in this country and in 
the world

• Many Potential users
• Most codes in Fortran 77 and Fortran 90



From WRF tutorial



WRF software design schematic
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(Adapted from WRF software design document at
http://www.mmm.ucar.edu/wrf/users/WRF_arch_03.doc)



WRF Multi-Layer Domain Decomposition

Model domains are decomposed for parallelism on two-levels
Patch: section of model domain  allocated to a distributed memory  node
Tile: section of a patch allocated to a shared-memory processor within a 
node; this is also the scope of a model layer subroutine.
Distributed memory parallelism is over patches; shared memory parallelism is 
over tiles within patches

• Single version of code for efficient 
execution on:

– Distributed-memory
– Shared-memory 
– Clusters of SMPs
– Vector and microprocessors

Inter-processor 
communication

Logical 
domain

1 Patch, divided 
into multiple tiles

(From WRF tutorial:http://wrf-model.org/PRESENTATIONS/2002_06_NCAR_Tutorial/software.ppt 



• Halo updates

Distributed Memory Communications

memory on one processor memory on neighboring processor

*
+ *
*

* *

From WRF tutorial:http://wrf-model.org/PRESENTATIONS/2002_06_NCAR_Tutorial/software.ppt 



Two level decomposition
Logical domain 12 patches

Level 1
Distributed memory
MPI etc. 

Level 2
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Goal of I/O API

– Make I/O infrastructures for both popular operational 
and research format

• Operations: GRIB, BUFR
• Research:  NetCDF, HDF

– “Portable I/O” – treat each I/O package as an external 
package; easy to turn on or off



WRF I/O Schematic
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WRF data characteristics
• Many HDF5-equivalent datasets

- currently output >100 datasets, each one < 1MB
- typical dataset: 4-D real array with the dimension of time extensible

• Many output files but each file not big
• Weakly dimensional scale requirement

- no real dimensional scale data

• May need datasets to be extensible
• WRF has history, restart, initial and boundary 

dataset type. Each WRF dataset is equivalent to 
one HDF5 group. 



First design of Schematic HDF5 File Structure of WRF Output
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An example of WRF-HDF5 output
HDF5 "wrfrst_01_000002" {
GROUP "/" {

GROUP "DATASET=RESTART" {
DATASET "ACSNOM" {

DATATYPE  H5T_IEEE_F32BE  
DATASPACE  SIMPLE { ( 1, 80, 40 ) / ( H5S_UNLIMITED, 

80, 40 ) } 
} 

.

.

.
}

}}



Must the dataset be extensible?

• Seems to best fit the description of the 
model (No timestamp limited for WRF)

• From J.M, the developer of WRF:impose no 
requirements at all on how the data are stored in the 
datasets.



WRF IO APIs
• Common APIs

- Example: wrf_open_for_read( DatasetName , Comm ,
IOComm_io,&SysDepInfo, DataHandle, Status )

• Treat IO packages as external packages
- Example: ext_open_hdf5_for_read ( DatasetName , Comm ,
IOComm_io,&SysDepInfo, DataHandle, Status )

• May become common IO APIs for other
atmospheric/ocean models like ROMS



A piece of example code
SUBROUTINE wrf_open_for_read ( FileName , Comm_compute, Comm_io, SysDepInfo, &DataHandle

, Status )                                                      USE module_state_description 
……

Select CASE ( use_package( io_form ) ) {
#ifdef NETCDF
CASE(IO_NETCDF)
CALL ext_ncd_open_for_read 

#endif
#ifdef HDF5

CASE(IO_HDF5)
CALL ext_hdf5_open_for_read

#endif
……
}



IO quilt server

• Not using MPI-IO
• Use separate I/O nodes to generate output 

asynchronously while computing continues
in computing nodes



IO Quilt server schematic
In the illustrated figure:
Totally there are 17 processors
12 processors : computing tasks

4 computing groups
5 processors: IO tasks
1 IO server group
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IO Quilt server schematic 
continued
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Evaluation of IO Quilt server

• Improve performance 
• Somehow waste some computing 

processors
• If IO is too slow, computing nodes have to 

wait until the finishing of IO in the previous 
timestamp 



Why using HDF5?

• HDF5 is the only data format that supports 
MPI-IO. 

• Potential big file size in the future
• Potential user at NCSA- BW



Milestone highlights 

• By March 31st, 2003:
-Complete the initial prototype implementation of WRF-
HDF5 including parallel I/O support.

• By June 30th, 2003:
-Possibly re-design HDF5 structures of WRF output to take 
advantage of parallel HDF5 I/O.
-Begin the initial implementation of serial and parallel 
versions of HDF5 module in WRF model.



Strategy of this project

1. Starting from the implementation of the 
sequential HDF5 parallel writer module

2. Learning parallel HDF5 on IBM NCAR SP 
machine

3. Designing parallel HDF5-WRF module
4. Implementing HDF5 parallel writer module
5. Testing with real case and do performance 

comparison study with sequential HDF5 
and NetCDF.



Existing WRF IO modules

• NetCDF: sequential I/O that can be used in 
parallel run
Internally a monitor will collect all the data 
from the computing node and write data out 
to the disk.

• IO quilt server
• Internal MM5 data format



Challenges for sequential mode

• To understand how and why WRF wants to 
transpose data from different memory 
orders to disk

• The current NetCDF implementation can 
only handle with fixed number of maximum 
timestep



Solutions to the challenge
• Transposing the data

-In memory, to gain high performance of computing; fields may 
need to be in different orders (XYZ, XZY, YZX etc.)

-In disk, we could store the data in a file with the same order as it is
stored in memory. However, that may cause tool developers to do 
more work.
For this reason, when data fields are written to the disk, they will 
always be transposed to the same order. When data fields are read from 
disk, the model will transpose to the correct memory order for each 
field.



An incomplete WRF-HDF5 
writer 

• Can write raw data in HDF5 format
• Doesn’t implement attributes yet
• Doesn’t implement dimensional scale yet

- wait for implementation of HDF5  
dimensional scale 

• Has been tested on O2K, PC linux and 
NCAR IBM SP



Parallel WRF-HDF5 design

Two level decomposition
Logical domain

Level 1
Distributed memory
MPI etc. 



Parallel WRF-HDF5 design

Solution 1:
• Each computing node is also an I/O node;

All nodes will participate in writing data to 
the output file in a parallel file system.
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Parallel WRF-HDF5 design 1

Pros:
1) Kind of easy to implement

Cons:
1) With many processors, overhead(many 

small writes) will be expensive.



IO Quilt server schematic 
continued
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Parallel WRF-HDF5 design

Solution 2:
• Like I/O quilt server, Divide nodes into 

computing nodes and I/O nodes.
• WRF data fields are written to the disk 

through I/O nodes via parallel HDF5.



Parallel WRF-HDF5 design-solution 2
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Parallel WRF-HDF5 design 2

Pros:
1) Overhead is small, scaleable?

Cons:
1) Need extra work to transfer data from 

computing nodes to IO nodes
2) For computing bound, IO nodes kind

of Waste.



Parallel WRF-HDF5 design

Solution 3:
• Similar to solution 2, but all nodes will be

used to compute; some nodes will also be
used for IO.

• WRF data fields are written to the disk 
through I/O nodes via parallel HDF5.



Parallel WRF-HDF5 design-solution 3
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Parallel WRF-HDF5 design 3

Pros:
1) Overhead is small, scaleable?
2) For computing bound, gain performance.
Cons:
1) Need extra work to transfer data from 

computing nodes to IO.
2) For IO bound, may affect performance.



An extra problem for all solutions

• The HDF5 dataset has to be extensible in time. 
This requires chunk storage. 

• Challenge for chunk size:
The dimensional size in each patch is not necessarily the same, the chunk size 
can not be assigned easily. 

• Two potential solutions for chunk size problem:
- find common factor of the chunk size: may cause very bad performance

- Partial data transferring from computing nodes to I/O nodes and using
synchronization schemes(semaphore etc.) to avoid inconsistencies when
writing data from different I/O nodes to the same place in a dataset.
Hard to implement and cannot assure good performance.



Another thought to handle this 
problem

• Does WRF really need WRF fields to be 
extensible?
Answer: Not required according to WRF 
developers.
Good news, bad news? Then how we store 
the raw data?



Some facts related to WRF-
HDF5 module
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