Francesc Altet

Carabos Coop. V.

CJI
MATANNC
ﬂ ﬂ ' @ Urbana-Champaign 10/08/07

ENJOY DATA

Features of

PyTables Pro

= OPSI (Optimized Partially Sorted Indexes)

= Indexing engine optimized for HDF5 features
(chunking, compression, data types)

= Improved LRU node cache performance (up to
20x faster than PyTables Standard)

= Focus on stability (meant for use in production
environments)

= All-in-one installers for Windows and Mac OS X

OPSI Features

- Based on well-tested PSI engine (PyTables 1.x]

= Improvements over PSI

= Better query times
= Selectable index quality
= Complex queries

= Current limitations

= Only one index can be used in a complex
expression

= Only supports compound types, not atomic types

Presenter
Presentation Notes
L’últim punt no està a l’inrevés?

¢ Query time for Float64 column (warm cache)

-
- | == pyTables Pro OO0 zlibl | : ' '
®®®® PyTables Pro O3 zlibl
V¥¥¥ PyTables Pro O6 zlib1

3 = Postgres : : : : 3

-
— g

.) M |) PR | A PR | L PR | L PR |

T — 10 107 107 107 P 10©
Number of rows

Plans for the Near Future

= Optimize the retrieval of results in queries with a
large number of hits (low selectivity)

= T'he current algorithm is quite efficient for medium
or high selectivity, but less so for low selectivity

= Ability to use several indexes in complex
queries

= If col1 and col2 are indexed, then the expression
(coll < 3.1) & (col2 > 2.3)cannotbe

computed using both indexes (the first one will be
used instead)

Low Selectivity Retrieval

« A table with 4 columns:

class Record(tables.lsDescription):
col1 = tables.Int32Col()
col2 = tables.Int32Col()
col3 = tables.Float64Col()
col4 = tables.Float64Col()

= 1 billion rows (1 Gigarow)
= AMD Opteron @ 2 GHz
= SATA disk @ 7200 rpm

= Query:
(Lower<=col4d) & (cold<=upper) &
(sgrt (coll+3.1*col2+col3*cold) > 3) T

Low Selectivity Retrieval

Query time for an indexed table with 1 Grow (cold cache)

11 I —
5 ---I F’yTah]eslPro zlib1 1|28k originall ! I I
Postgres

10°}
109}

107

Time (s)

104
10°

100

10%00* ' '1’{11' 102 100 100 106 10° 100 10®
Number of hits

Low Selectivity Retrieval

= Current approach:

= Get the set of coordinates satisfying the indexed
part of the query

« Break the set into buckets and read a bucket at a
time (using H5Sselect elements)

= Read the elements from disk and apply the residual
query
= Return the rows that satisfy the query condition

Current approach

Index
Bucket 1 Bucket 2 Bucket3 | <~—— part of

the query

Chunk 1| Chunk | Chunk | Chunk mEn Chunk N-1|Chunk N
2 3 Z
@ H5Sselect _elements @

Residual expression

Problems with the Current

Approach

= Potential chunk revisiting (and very difficult to
find the chunk in HDF5 cache because of
capacity problems)

= Even if the chunk is found in HDF5 cache, it still
has to be decompressed again

= Non-ordered access to chunks, resulting In
longer disk access times

A Message from the Fifth

Century, BC

“In general, commanding a large number is like
commanding a few. It is a question of dividing up
the numbers. Fighting with a large number is like
fighting with a few. It is a question of configuration

and designation.”

Sun Tzu — The Art of War

Section 5 (Strategic Military Power) verse 1

Solution: A Chunk Map

Bucket 1

Bucket 2

Bucket 3 — plral:jte():f
the query

Memory

Chunkmap Performance

Query time for an indexed table with 1 Grow (cold cache)
10° — : i St .

. o] ; y I :] T | I I
PyTables Pro zlibl 128k chunkmap : : :
PyTables Pro lzol 128k chunkmap
PyTables Pro zlib1 128k original : : :
stares et =

101

i

Time (s)

s, I S oo fO e, i
0o sy

lﬂ-l 2

107 00 107 10° 10F T 107 107 To?
Number of hits

Chunkmap: Pros & Cons

« Pros

= The interesting chunks are visited only once

= Chunks are accessed in a strict sequential order,
minimizing the amount of trips of disk heads

= The chunkmap on disk has much lower entropy
than the original indices: much better compression

= Cons

= It requires memory: 1 byte per chunk. It can be up
to 1 bit per chunk (packed chunkmap)

= It requires more CPU, as the incoming data from
disk has to be filtered through the query condition

How Much Memory is Required

by a Chunkmap?

= Let's imagine a table with 1 billion of rows and
1000 bytes/row. That's around 1 TB in size.

= Size of the chunkmap, depending on the
chunksize:

= 32 KB CS: 32 MB (4 MB packed)
= 64 KB CS: 16 MB (2 MB packed)
= 128 KB CS: 8 MB (1 MB packed)
= 256 KB CS: 4 MB (0.5 MB packed)

Optimal Chunksize?

= What is the optimal chunksize for reducing the
chunkmap to a minimum without penalizing
retrieval times too much?

= We have to choose a size that takes a relatively
short time to read compared with disk access
times (the main bottleneck in sparse reads)

= What is the mean latency when doing sparse
reads?

Typical Disk Access Times

FRotational latency

Seck time Transmission time

Average rotational latency: 4.1 ms

Times for 7200 rpmdrives =——=> g\ times: from 2 ms to 18 ms

Typical Disk Access Times

= For general random sparse access data on
disk, these figures usually give 12 ~ 15 ms

= However, for sequentially ordered sparse
access of chunks that are close to each other,
the typical times are bound by the rotational
latency or less, i.e. <= 4.1 ms access times.

Optimal Chunksize (revisited)

= T'he optimal chunksize for reducing the amount
of memory allocated to the chunkmap has to be
chosen so that reads would constitute a

relatively small fraction of the average rotational
latency of a disk

= I'he most significant cost in time to process the
chunk is the sum of:

= The time to physically read it from disk
= The time to uncompress it

= The time to apply the query condition to it

Times to Process a Chunk

= T'his depends on many factors. For an
example, we will choose:

= Chunk size: 128 KB

= Compression on (225% of reduction)

= Modern 7200 rom SATA disk drive

= Modern CPU (Intel Core2 or AMD Opteron)
= Query Filter:

» (lower<=cold) & (cold<=upper) &
(sgrt (coll+3.1*col2+col3*cold) > 3)

Times to Process a Chunk

Times (us) for a 128 KB chunk (57 KB compressed)

800

700 —

600 —

500

400 -

300~

200 —

100 —

170 ZLIB Query Filter Shuffle LZO2

Times for Different Chunksizes

= Times and overhead for low selectivity:

« 32 KB: 0.45 ms, 11% overhead
= 64 KB: 0.90 ms, 22% overhead
= 128 KB: 1.8 ms, 44% overhead
= 256 KB: 3.6 ms, 88% overhead

= 32 KB or 64 KB would be a good choice for
increased low selectivity retrieval speed

= 128 KB would strike a good balance between
overhead (44%) and the memory used by the
chunkmap (8 MB, or 1 MB packed)

Times for Different Chunksizes

Query time for an indexed table with 1 Grow (cold cache)

10°% . e e e e
' mwsa PyTables Pro lzol 32k chunkmap : : :
seee Pylables Prolzol 64k chunkmap

wewy PyTables Pro lzol 128k chunkmap
S,

PyTables Pro lzol 256k chunkmap

1 - + L ’.-" P ® L ¥

10 R g T < o A
: : : : ’ ; : : :]
- - . . " n ' -

Time (s)

o — H— 7 A N— — O N T— J

102+

10° 10! 102 108 108 10° 106 107 108

Number of hits

Some Considerations

= The query conditions are evaluated very
efficiently thanks to the NumExpr computing
kernel integrated into PyTables

=« Compression reduces the total I/O time. Not
new, but interesting anyway

= The use of LZO2 compressor can be very
effective in this scenario (as compared to ZLIB)

= Shuffle takes longer than LZO2, but is worth the
while: compression is much higher

Presenter
Presentation Notes
Respecte a l’últim punt, algun comentari sobre una possible ordenació per columnes?

A Few Words About NumEXxpr

= Fast evaluation of array expressions element-
wise by using a vector-based virtual machine

= It works by splitting up the operand arrays in
chunks that fit into the cache of CPUs, allowing
the CPU to attain very high-performance while
performing the operations

= We have added support for boolean and string
types, heterogeneous arrays (compound types),
and optimized the amount of memory copies of
unaligned arrays

Using MultiCore CPUs

- Nowadays, it is possible to use multicore CPUs
and concurrent programming with threads to
further accelerate the reading process in low
selectivity environments

MultiCore & Threaded Disk
Access

Uncompress
Read
Select
.. I
Uncompress
J Select
— The 1/O buffer is full
Deliver elements to Python space

Presenter
Presentation Notes
Però si la lectura de disc és seqüencial, mai no es pot arribar a 2x. Com a molt a T_LECT + T_SEL/N_CORES, no?

Multicore & RAID

= With the advent of multicore CPUs, having a 2,

4 or 8-core system is not uncommon in current
workstations

« |In addition, drastic reductions in the cost of a
medium-sized disk (500 GB costs about $120),
makes it possible to build cheap but fast RAID
systems reaching multi-TB of capacity

= This system configuration should be considered
the norm right now!

Multicore & RAID

Select Uncompress

Select

Full I/O buffer

Presenter
Presentation Notes
No es podrien paraŀlelitzar N_DISCS lectures? Potser no he entés el diagrama…

Using Several Indexes in Queries

= Perhaps the most appealing use of chunkmaps
IS that they can utilize several indexes on a
single query

= Examples:

= '(pressure < 20) & (temperature > 50)'
current OPSI is not able to use the indexes
simultaneously

= '(pressure < 20) | (temperature > 50)°
current OPSI can't use any index (because the
conditions are 'ORed')

O
Using Several Indexes in Queries

= (pressure < 20) | (temperature > 50)'
' Pressure Chunkmap [emperature Chunkmap
L L
Logical OR

H58!elect_hypersla¢

Chunk 1 Chunk | Chunk Chunk E RN Chunk N-1 |Chunk N
2 S 4

Presenter
Presentation Notes
Açò s’acosta als índexs basats en mapes de bits: http://elephant.cs.uiuc.edu/~rsinha/papers/TODS_2007.pdf (amb la secció 1 t’aclariràs).

Using Several Indexes in Queries

= NumExpr will be used to combine any amount
of logical combinations among chunkmaps

= Challenge: From a potentially complex query

expression such as:
((pressure < 20) & (temperature > 50) |

((lati > 20) & (lati <=40) & (longi < 30))
find the maximum number of usable indexes

= This can represent a fair amount of work for
very complex expressions!

= Start with the simplest ones and refine the
query optimization as needed (not new)

Medium/Long Term Goals

= Try reducing the precision of values of the
indexes

= Faster convergence during index creation
= Less entropy: better compression, less disk space

= Inexact results in queries
= Column-wise tables

= Current table datasets in PyTables are row-wise

= They are perfect for dealing with tables with a
small/medium number of fields

= Column-wise may prove to be more efficient in
scenarios where a large number of fields is required

Presenter
Presentation Notes
Primer punt també relacionat amb els índexs multi‐resolució de l’article anterior (però més per al futur).

Taules per cols: sospite que a més simplificarien certes parts de la implementació (taules heterogènies en Numexpr, cols desalineades, etc.).

Final Thoughts

= Chunkmaps seem like a good idea for OPSI

= They perform much better when the selectivity is
low, while retaining the same efficiency for high
selectivity queries

= They permit the use of several indexes in complex
queries without too much effort (not taking into
consideration the battle to optimize queries!)

= Precision reduction seems easy to implement

= Column-wise tables can be very interesting in
some scenarios, but implementation could be
difficult

Presenter
Presentation Notes
Haurem de debatre això de que les taules per cols siguen tan hard… ;)‏

Appendix: OPSI vs MRBM

= After reading the paper on Multi-Resolution
Bitmaps, | decided to make a quick comparison
between it and OPSI

= WARNING! These conclusions are very
preliminary and | may be completely wrong!

Main Characteristics

= Better suited to tables that have fewer fields (<10 ~
15) and more rows (no practical limit)

= 1/O bounded (both in latency and throughput)
= Needs less space for each index
= It supports strings right out-of-the-box

= MR-BitMap

= Better suited to tables with many fields (> 100) and
fewer rows (< 1 billion?)

= CPU bounded
= Requires more space for indexes

Which One Is Better?

= It depends on many factors

— OPSI

- ——> MR-BitMap

= Low cardinality: MR-BitMap, OPSI
High cardinality: OPSI, MR-BitMap
= Many others!

Use Domains

OPSI MR-BitMap

Raid
(+Multicore)

Multicore
(+RAID)

Software
improvements

Software
improvements

Suggestions for a More Detailed

Comparison of OPSI/MR-BitMap

= |If we were to undertake an implementation of
OPSI in C, perhaps it would be wise to do a
detailed comparison of OPS| and MR-BitMap

first

= Some ideas from one approach can be applied
to the other!

= A repository of real-world data for testing
purposes would be useful. It would provide a
common base of data for determining the
suitability of each approach in each context

	Slide Number 1
	Features of� PyTables Pro
	OPSI Features
	Slide Number 4
	Plans for the Near Future
	Low Selectivity Retrieval
	Low Selectivity Retrieval
	Low Selectivity Retrieval
	Current approach
	Problems with the Current Approach
	A Message from the Fifth Century, BC
	Solution: A Chunk Map
	Chunkmap Performance
	Chunkmap: Pros & Cons
	How Much Memory is Required by a Chunkmap?
	Optimal Chunksize?
	Typical Disk Access Times
	Typical Disk Access Times
	Optimal Chunksize (revisited)‏
	Times to Process a Chunk
	Times to Process a Chunk
	Times for Different Chunksizes
	Times for Different Chunksizes
	Some Considerations
	A Few Words About NumExpr
	Using MultiCore CPUs
	MultiCore & Threaded Disk Access
	Multicore & RAID
	Multicore & RAID
	Using Several Indexes in Queries
	Using Several Indexes in Queries
	Using Several Indexes in Queries
	Medium/Long Term Goals
	Final Thoughts
	Appendix: OPSI vs MRBM
	Main Characteristics
	Which One Is Better?
	Use Domains
	Suggestions for a More Detailed Comparison of OPSI/MR-BitMap

