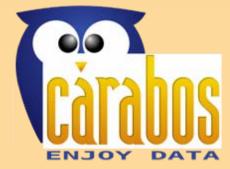
An Overview of Future Improvements to OPSI

Francesc Altet

Cárabos Coop. V.



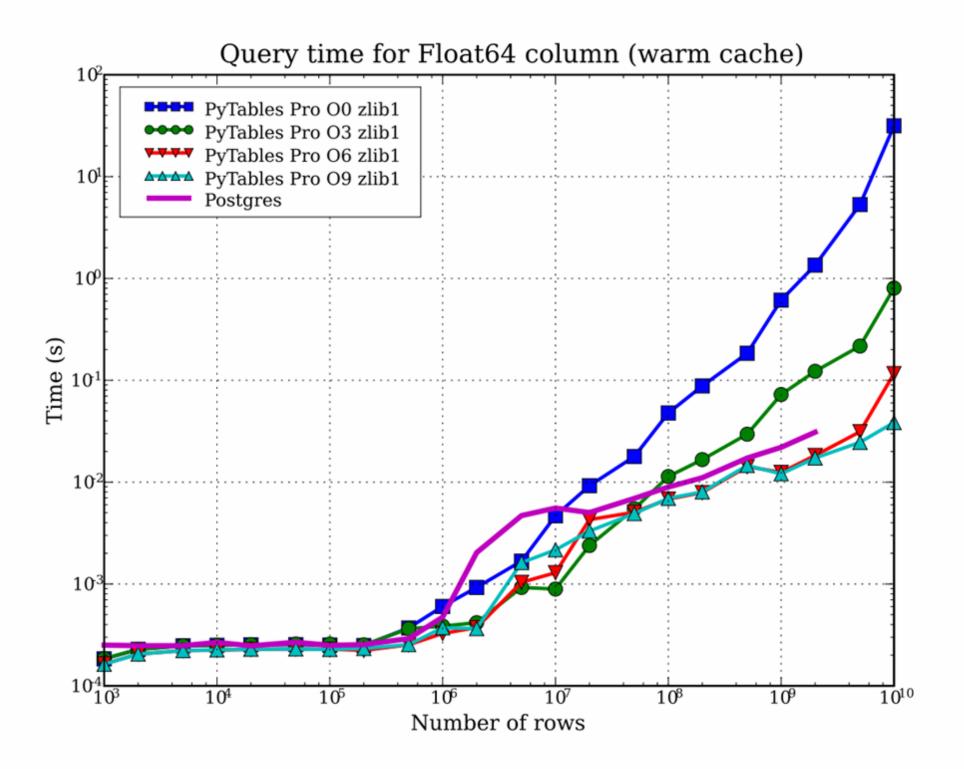
Urbana-Champaign 10/08/07

Features of PyTables Pro

- OPSI (Optimized Partially Sorted Indexes)
 - Indexing engine optimized for HDF5 features (chunking, compression, data types)
- Improved LRU node cache performance (up to 20x faster than PyTables Standard)
- Focus on stability (meant for use in production environments)
- All-in-one installers for Windows and Mac OS X

OPSI Features

- Based on well-tested PSI engine (PyTables 1.x)
- Improvements over PSI
 - Better query times
 - Selectable index quality
 - Complex queries
- Current limitations
 - Only one index can be used in a complex expression
 - Only supports compound types, not atomic types



Plans for the Near Future

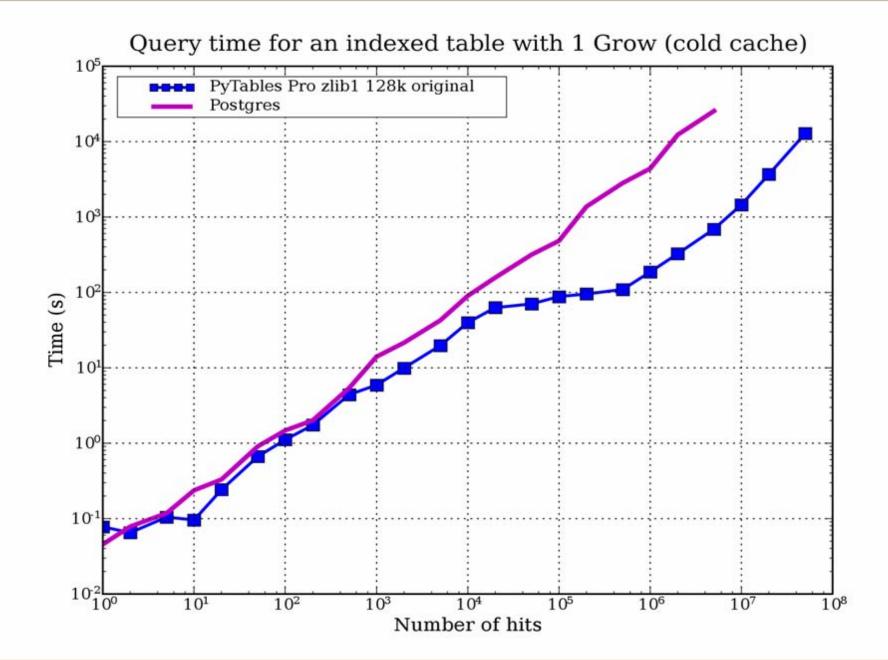
- Optimize the retrieval of results in queries with a large number of hits (low selectivity)
 - The current algorithm is quite efficient for medium or high selectivity, but less so for low selectivity
- Ability to use several indexes in complex queries
 - If col1 and col2 are indexed, then the expression (col1 < 3.1) & (col2 > 2.3) cannot be computed using both indexes (the first one will be used instead)

Low Selectivity Retrieval

- A table with 4 columns:
 - class Record(tables.IsDescription):
 - col1 = tables.Int32Col()
 - col2 = tables.Int32Col()
 - col3 = tables.Float64Col()
 - col4 = tables.Float64Col()
- 1 billion rows (1 Gigarow)
- AMD Opteron @ 2 GHz
- SATA disk @ 7200 rpm
- Query:

(lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3))

Low Selectivity Retrieval

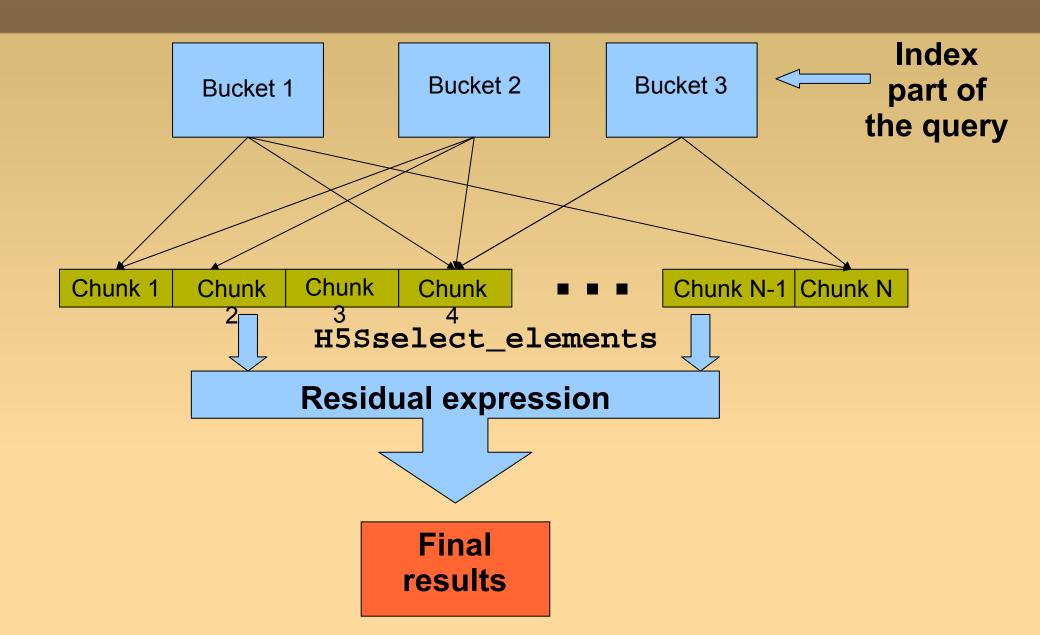


Low Selectivity Retrieval

Current approach:

- Get the set of coordinates satisfying the indexed part of the query
- Break the set into buckets and read a bucket at a time (using H5Sselect_elements)
- Read the elements from disk and apply the residual query
- Return the rows that satisfy the query condition

Current approach



Problems with the Current Approach

- Potential chunk revisiting (and very difficult to find the chunk in HDF5 cache because of capacity problems)
- Even if the chunk is found in HDF5 cache, it still has to be decompressed again
- Non-ordered access to chunks, resulting in longer disk access times

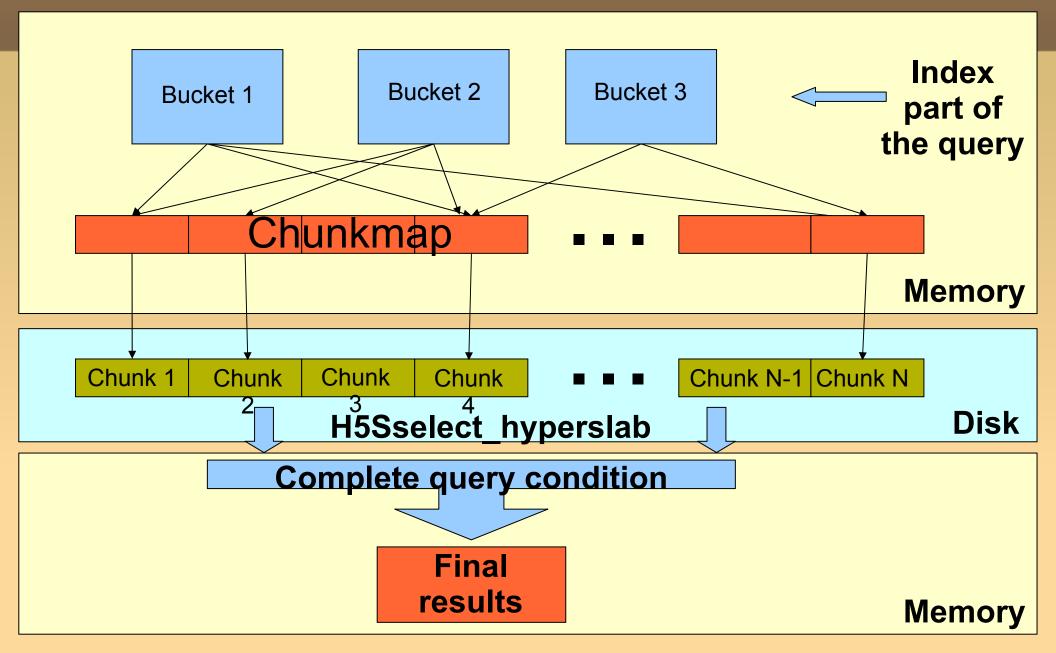
A Message from the Fifth Century, BC

"In general, commanding a large number is like commanding a few. It is a question of dividing up the numbers. Fighting with a large number is like fighting with a few. It is a question of configuration and designation."

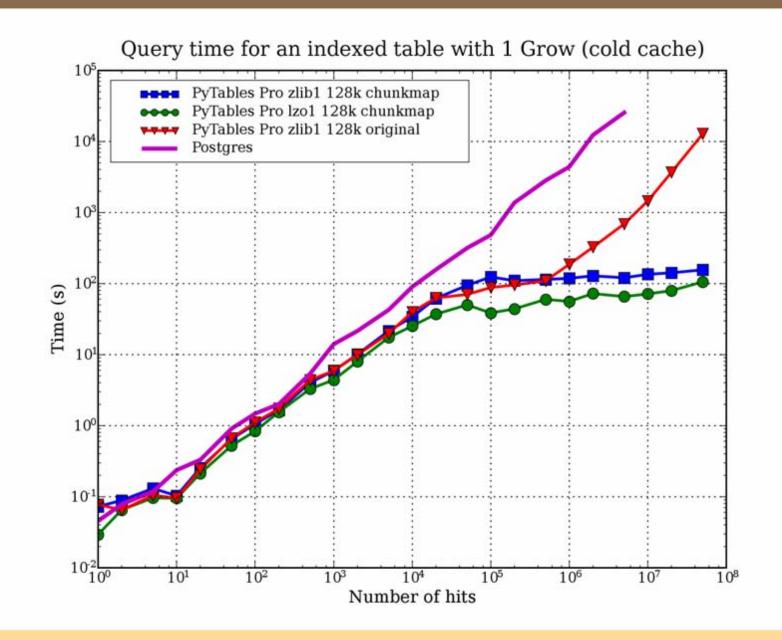
Sun Tzu – The Art of War

Section 5 (Strategic Military Power) verse 1

Solution: A Chunk Map



Chunkmap Performance



Chunkmap: Pros & Cons

Pros

- The interesting chunks are visited only once
- Chunks are accessed in a strict sequential order, minimizing the amount of trips of disk heads
- The chunkmap on disk has much lower entropy than the original indices: much better compression

Cons

- It requires memory: 1 byte per chunk. It can be up to 1 bit per chunk (packed chunkmap)
- It requires more CPU, as the incoming data from disk has to be filtered through the query condition

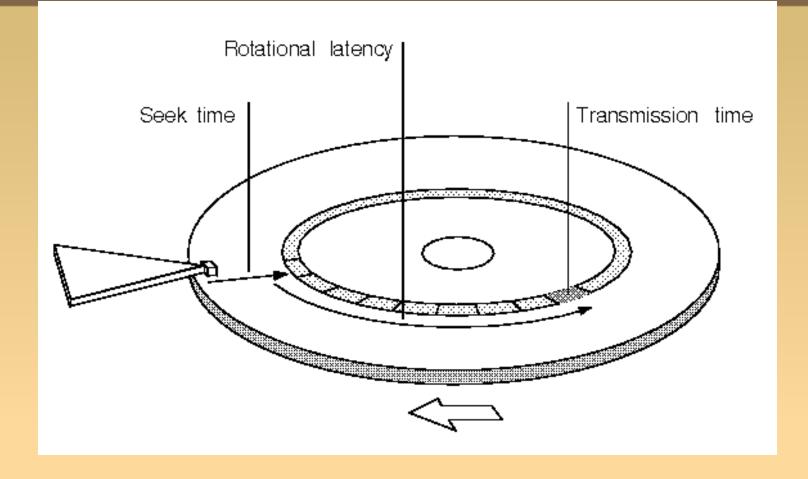
How Much Memory is Required by a Chunkmap?

- Let's imagine a table with 1 billion of rows and 1000 bytes/row. That's around 1 TB in size.
- Size of the chunkmap, depending on the chunksize:
 - 32 KB CS: 32 MB (4 MB packed)
 - 64 KB CS: 16 MB (2 MB packed)
 - 128 KB CS: 8 MB (1 MB packed)
 - 256 KB CS: 4 MB (0.5 MB packed)

Optimal Chunksize?

- What is the optimal chunksize for reducing the chunkmap to a minimum without penalizing retrieval times too much?
- We have to choose a size that takes a relatively short time to read compared with disk access times (the main bottleneck in sparse reads)
- What is the mean latency when doing sparse reads?

Typical Disk Access Times



Times for 7200 rpm drives

Average rotational latency: 4.1 ms Seek times: from 2 ms to 18 ms

Typical Disk Access Times

- For general random sparse access data on disk, these figures usually give 12 ~ 15 ms
- However, for sequentially ordered sparse access of chunks that are close to each other, the typical times are bound by the rotational latency or less, i.e. <= 4.1 ms access times.

Optimal Chunksize (revisited)

- The optimal chunksize for reducing the amount of memory allocated to the chunkmap has to be chosen so that reads would constitute a relatively small fraction of the average rotational latency of a disk
- The most significant cost in time to process the chunk is the sum of:
 - The time to physically read it from disk
 - The time to uncompress it
 - The time to apply the query condition to it

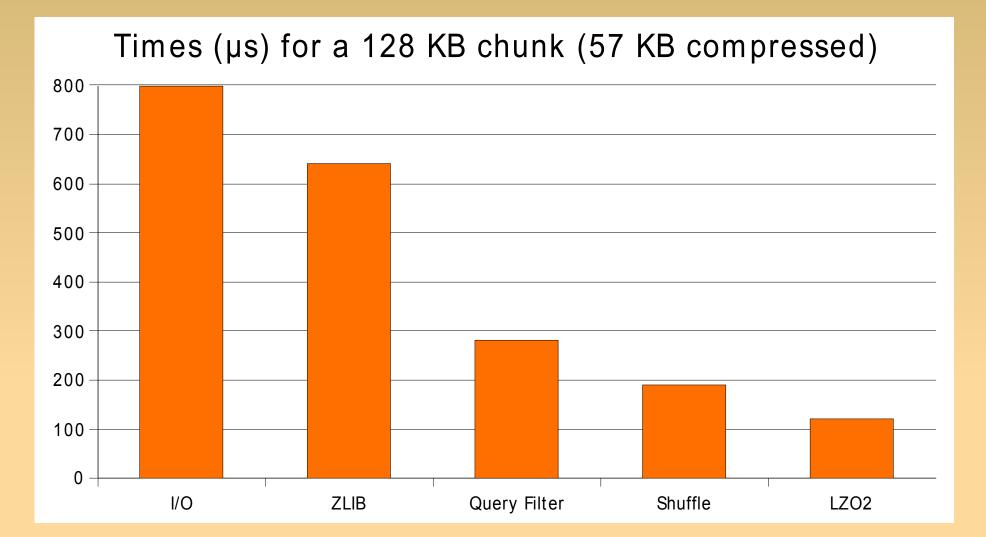
Times to Process a Chunk

- This depends on many factors. For an example, we will choose:
 - Chunk size: 128 KB
 - Compression on (225% of reduction)
 - Modern 7200 rpm SATA disk drive
 - Modern CPU (Intel Core2 or AMD Opteron)
 - Query Filter:
 - (lower<=col4) & (col4<=upper) &
 (sqrt(col1+3.1*col2+col3*col4) > 3))

Times to Process a Chunk

Using ZLIB: 1.8 ms

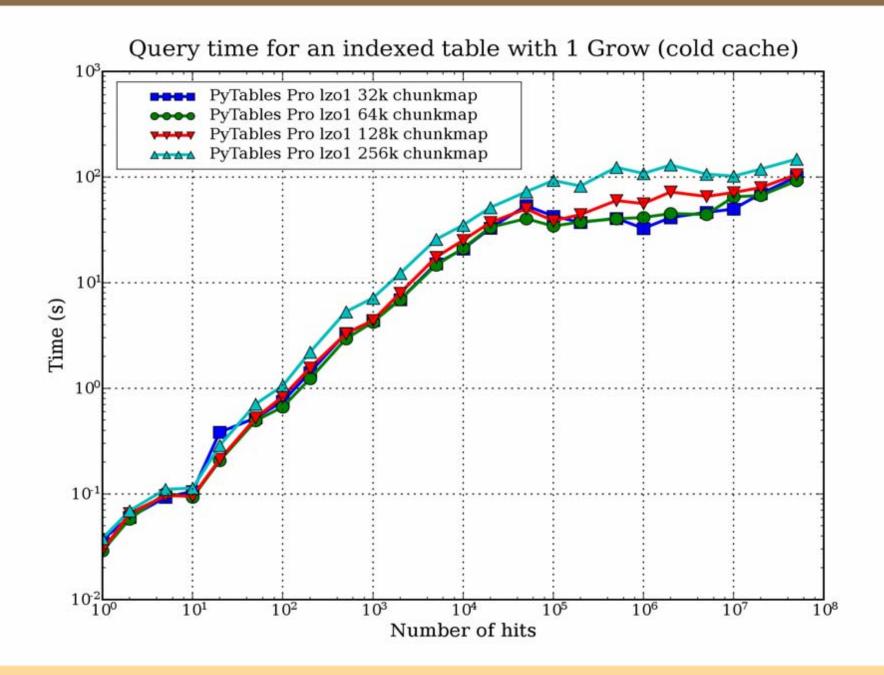
Using LZO2: 1.3 ms



Times for Different Chunksizes

- Times and overhead for low selectivity:
 - 32 KB: 0.45 ms, 11% overhead
 - 64 KB: 0.90 ms, 22% overhead
 - 128 KB: 1.8 ms, 44% overhead
 - 256 KB: 3.6 ms, 88% overhead
- 32 KB or 64 KB would be a good choice for increased low selectivity retrieval speed
- 128 KB would strike a good balance between overhead (44%) and the memory used by the chunkmap (8 MB, or 1 MB packed)

Times for Different Chunksizes



Some Considerations

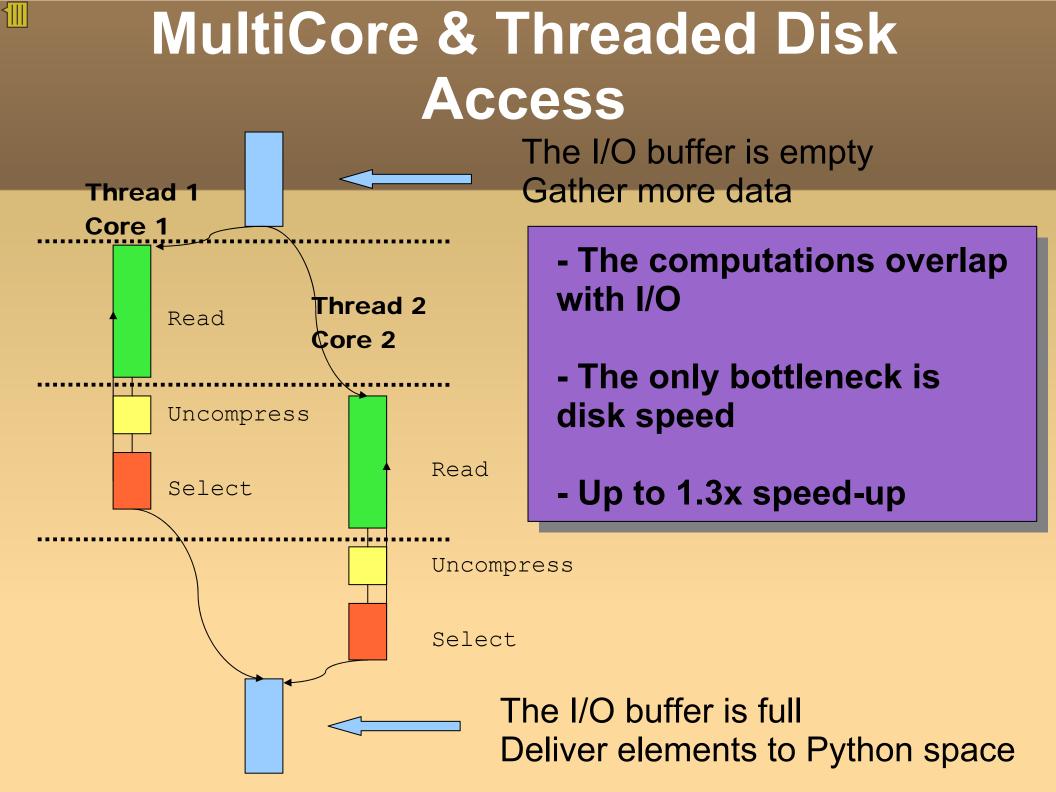
- The query conditions are evaluated very efficiently thanks to the NumExpr computing kernel integrated into PyTables
- Compression reduces the total I/O time. Not new, but interesting anyway
- The use of LZO2 compressor can be very effective in this scenario (as compared to ZLIB)
- Shuffle takes longer than LZO2, but is worth the while: compression is much higher

A Few Words About NumExpr

- Fast evaluation of array expressions elementwise by using a vector-based virtual machine
- It works by splitting up the operand arrays in chunks that fit into the cache of CPUs, allowing the CPU to attain very high-performance while performing the operations
- We have added support for boolean and string types, heterogeneous arrays (compound types), and optimized the amount of memory copies of unaligned arrays

Using MultiCore CPUs

 Nowadays, it is possible to use multicore CPUs and concurrent programming with threads to further accelerate the reading process in low selectivity environments

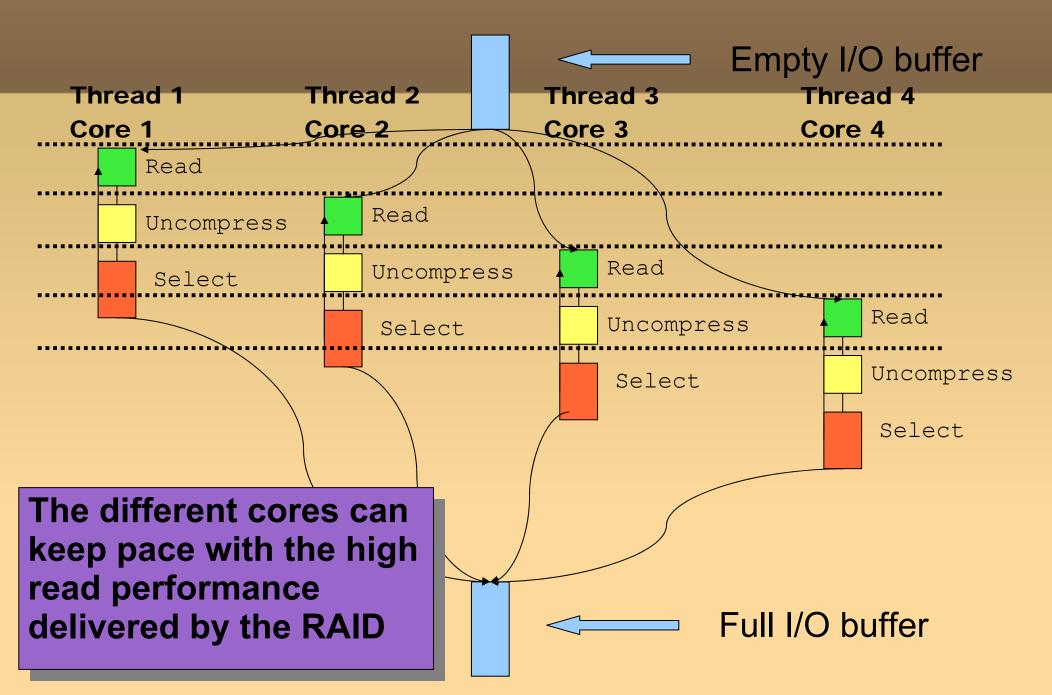


Multicore & RAID

- With the advent of multicore CPUs, having a 2, 4 or 8-core system is not uncommon in current workstations
- In addition, drastic reductions in the cost of a medium-sized disk (500 GB costs about \$120), makes it possible to build cheap but fast RAID systems reaching multi-TB of capacity
- This system configuration should be considered the norm right now!

Multicore & RAID

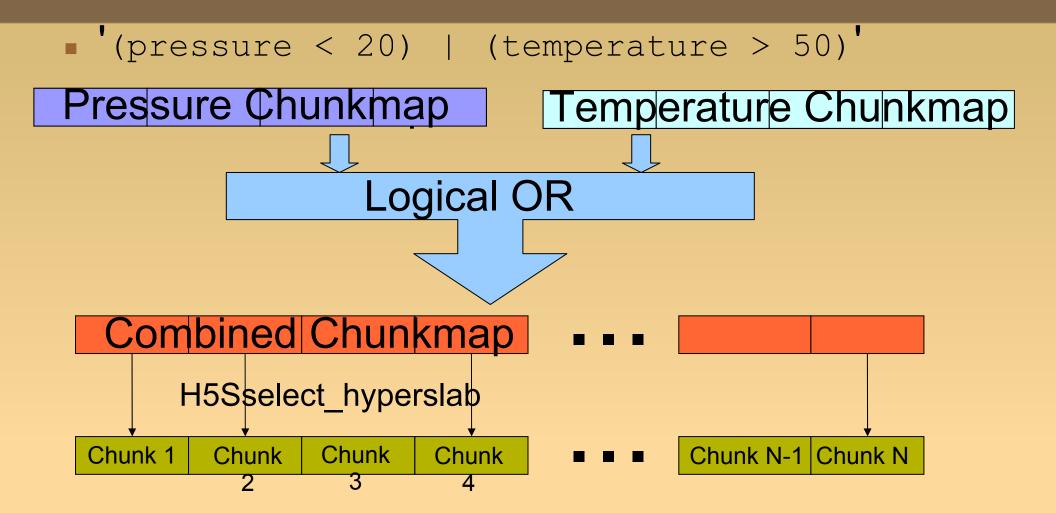
{||||



Using Several Indexes in Queries

- Perhaps the most appealing use of chunkmaps is that they can utilize several indexes on a single query
- Examples:
 - '(pressure < 20) & (temperature > 50)'
 current OPSI is not able to use the indexes
 simultaneously
 - '(pressure < 20) | (temperature > 50)'
 current OPSI can't use any index (because the
 conditions are 'ORed')

Using Several Indexes in Queries



Using Several Indexes in Queries

- NumExpr will be used to combine any amount of logical combinations among chunkmaps
- Challenge: From a potentially complex query expression such as:

((pressure < 20) & (temperature > 50) |
 ((lati > 20) & (lati <=40) & (longi < 30))
find the maximum number of usable indexes</pre>

- This can represent a fair amount of work for very complex expressions!
- Start with the simplest ones and refine the query optimization as needed (not new)

Medium/Long Term Goals

- Try reducing the precision of values of the indexes
 - Faster convergence during index creation
 - Less entropy: better compression, less disk space
 - Inexact results in queries
- Column-wise tables
 - Current table datasets in PyTables are row-wise
 - They are perfect for dealing with tables with a small/medium number of fields
 - Column-wise may prove to be more efficient in scenarios where a large number of fields is required

Final Thoughts

Chunkmaps seem like a good idea for OPSI

- They perform much better when the selectivity is low, while retaining the same efficiency for high selectivity queries
- They permit the use of several indexes in complex queries without too much effort (not taking into consideration the battle to optimize queries!)
- Precision reduction seems easy to implement
- Column-wise tables can be very interesting in some scenarios, but implementation could be difficult

Appendix: OPSI vs MRBM

- After reading the paper on Multi-Resolution Bitmaps, I decided to make a quick comparison between it and OPSI
- WARNING! These conclusions are very preliminary and I may be completely wrong!

Main Characteristics

OPSI

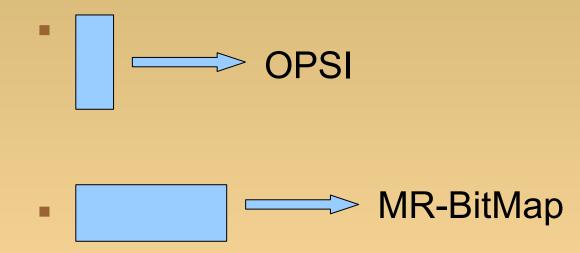
- Better suited to tables that have fewer fields (<10 ~ 15) and more rows (no practical limit)
- I/O bounded (both in latency and throughput)
- Needs less space for each index
- It supports strings right out-of-the-box

MR-BitMap

- Better suited to tables with many fields (> 100) and fewer rows (< 1 billion?)
- CPU bounded
- Requires more space for indexes

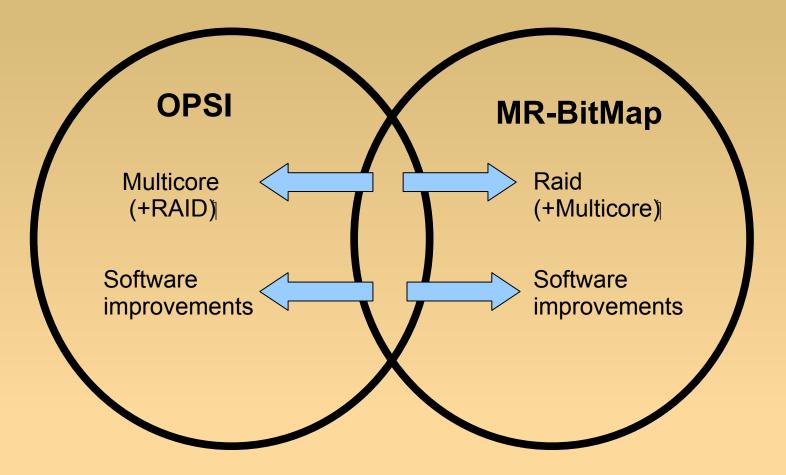
Which One Is Better?

It depends on many factors



- Low cardinality: MR-BitMap, OPSI
- High cardinality: OPSI, MR-BitMap
- Many others!

Use Domains



Suggestions for a More Detailed Comparison of OPSI/MR-BitMap

- If we were to undertake an implementation of OPSI in C, perhaps it would be wise to do a detailed comparison of OPSI and MR-BitMap first
- Some ideas from one approach can be applied to the other!
- A repository of real-world data for testing purposes would be useful. It would provide a common base of data for determining the suitability of each approach in each context