
An Overview of Future
Improvements to OPSI

Francesc Altet

Cárabos Coop. V.

Urbana-Champaign 10/08/07

Features of
PyTables Pro

OPSI (Optimized Partially Sorted Indexes) ‏
Indexing engine optimized for HDF5 features
(chunking, compression, data types) ‏

Improved LRU node cache performance (up to
20x faster than PyTables Standard)‏
Focus on stability (meant for use in production
environments)‏
All-in-one installers for Windows and Mac OS X

OPSI Features

Based on well-tested PSI engine (PyTables 1.x) ‏
Improvements over PSI

Better query times
Selectable index quality
Complex queries

Current limitations
Only one index can be used in a complex
expression
Only supports compound types, not atomic types

Presenter
Presentation Notes
L’últim punt no està a l’inrevés?

Plans for the Near Future

Optimize the retrieval of results in queries with a
large number of hits (low selectivity)‏

The current algorithm is quite efficient for medium
or high selectivity, but less so for low selectivity

Ability to use several indexes in complex
queries

If col1 and col2 are indexed, then the expression
(col1 < 3.1) & (col2 > 2.3)cannot be
computed using both indexes (the first one will be
used instead)‏

Low Selectivity Retrieval

A table with 4 columns:
class Record(tables.IsDescription):

col1 = tables.Int32Col()
col2 = tables.Int32Col()
col3 = tables.Float64Col()
col4 = tables.Float64Col() ‏

1 billion rows (1 Gigarow) ‏
AMD Opteron @ 2 GHz
SATA disk @ 7200 rpm
Query:
(lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3)‏

Low Selectivity Retrieval

Low Selectivity Retrieval

Current approach:
Get the set of coordinates satisfying the indexed
part of the query
Break the set into buckets and read a bucket at a
time (using H5Sselect_elements)‏
Read the elements from disk and apply the residual
query
Return the rows that satisfy the query condition

Current approach

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk
2

Chunk
3

Chunk N-1 Chunk NChunk
4

Residual expression

Final
results

Index
part of

the query

H5Sselect_elements

Problems with the Current
Approach

Potential chunk revisiting (and very difficult to
find the chunk in HDF5 cache because of
capacity problems)‏
Even if the chunk is found in HDF5 cache, it still
has to be decompressed again
Non-ordered access to chunks, resulting in
longer disk access times

A Message from the Fifth
Century, BC

“In general, commanding a large number is like
commanding a few. It is a question of dividing up
the numbers. Fighting with a large number is like

fighting with a few. It is a question of configuration
and designation.”

Sun Tzu – The Art of War

Section 5 (Strategic Military Power) verse 1

Solution: A Chunk Map

Chunk 1 ...

Bucket 1 Bucket 2 Bucket 3

Chunk
2

Chunk
3

Chunk N-1 Chunk NChunk
4

Chunkmap ...
Memory

DiskH5Sselect_hyperslab
Complete query condition

Final
results Memory

Index
part of

the query

Chunkmap Performance

Chunkmap: Pros & Cons

Pros
The interesting chunks are visited only once
Chunks are accessed in a strict sequential order,
minimizing the amount of trips of disk heads
The chunkmap on disk has much lower entropy
than the original indices: much better compression

Cons
It requires memory: 1 byte per chunk. It can be up
to 1 bit per chunk (packed chunkmap) ‏
It requires more CPU, as the incoming data from
disk has to be filtered through the query condition

How Much Memory is Required
by a Chunkmap?

Let's imagine a table with 1 billion of rows and
1000 bytes/row. That's around 1 TB in size.
Size of the chunkmap, depending on the
chunksize:

32 KB CS: 32 MB (4 MB packed) ‏
64 KB CS: 16 MB (2 MB packed) ‏
128 KB CS: 8 MB (1 MB packed) ‏
256 KB CS: 4 MB (0.5 MB packed) ‏

Optimal Chunksize?

What is the optimal chunksize for reducing the
chunkmap to a minimum without penalizing
retrieval times too much?
We have to choose a size that takes a relatively
short time to read compared with disk access
times (the main bottleneck in sparse reads)‏
What is the mean latency when doing sparse
reads?

Typical Disk Access Times

Average rotational latency: 4.1 ms
Seek times: from 2 ms to 18 msTimes for 7200 rpm drives

Typical Disk Access Times

For general random sparse access data on
disk, these figures usually give 12 ~ 15 ms
However, for sequentially ordered sparse
access of chunks that are close to each other,
the typical times are bound by the rotational
latency or less, i.e. <= 4.1 ms access times.

Optimal Chunksize (revisited)‏

The optimal chunksize for reducing the amount
of memory allocated to the chunkmap has to be
chosen so that reads would constitute a
relatively small fraction of the average rotational
latency of a disk
The most significant cost in time to process the
chunk is the sum of:

The time to physically read it from disk
The time to uncompress it
The time to apply the query condition to it

Times to Process a Chunk

This depends on many factors. For an
example, we will choose:

Chunk size: 128 KB
Compression on (225% of reduction) ‏
Modern 7200 rpm SATA disk drive
Modern CPU (Intel Core2 or AMD Opteron) ‏
Query Filter:

(lower<=col4) & (col4<=upper) &
(sqrt(col1+3.1*col2+col3*col4) > 3)‏

Times to Process a Chunk

I/O ZLIB Query Filt er Shuffle LZO2
0

100

200

300

400

500

600

700

800

Times (μs) for a 128 KB chunk (57 KB compressed)

Using ZLIB: 1.8 ms Using LZO2: 1.3 ms

Times for Different Chunksizes

Times and overhead for low selectivity:
32 KB: 0.45 ms, 11% overhead
64 KB: 0.90 ms, 22% overhead
128 KB: 1.8 ms, 44% overhead
256 KB: 3.6 ms, 88% overhead

32 KB or 64 KB would be a good choice for
increased low selectivity retrieval speed
128 KB would strike a good balance between
overhead (44%) and the memory used by the
chunkmap (8 MB, or 1 MB packed)

Times for Different Chunksizes

Some Considerations

The query conditions are evaluated very
efficiently thanks to the NumExpr computing
kernel integrated into PyTables
Compression reduces the total I/O time. Not
new, but interesting anyway
The use of LZO2 compressor can be very
effective in this scenario (as compared to ZLIB)‏
Shuffle takes longer than LZO2, but is worth the
while: compression is much higher

Presenter
Presentation Notes
Respecte a l’últim punt, algun comentari sobre una possible ordenació per columnes?

A Few Words About NumExpr

Fast evaluation of array expressions element-
wise by using a vector-based virtual machine
It works by splitting up the operand arrays in
chunks that fit into the cache of CPUs, allowing
the CPU to attain very high-performance while
performing the operations
We have added support for boolean and string
types, heterogeneous arrays (compound types),
and optimized the amount of memory copies of
unaligned arrays

Using MultiCore CPUs

Nowadays, it is possible to use multicore CPUs
and concurrent programming with threads to
further accelerate the reading process in low
selectivity environments

MultiCore & Threaded Disk
Access

The I/O buffer is empty
Gather more data

The I/O buffer is full
Deliver elements to Python space

Read

Uncompress

Select

Read

Uncompress

Select

Thread 1
Core 1

Thread 2
Core 2

- The computations overlap
with I/O

- The only bottleneck is
disk speed

- Up to 1.3x speed-up

Presenter
Presentation Notes
Però si la lectura de disc és seqüencial, mai no es pot arribar a 2x. Com a molt a T_LECT + T_SEL/N_CORES, no?

Multicore & RAID

With the advent of multicore CPUs, having a 2,
4 or 8-core system is not uncommon in current
workstations
In addition, drastic reductions in the cost of a
medium-sized disk (500 GB costs about $120),
makes it possible to build cheap but fast RAID
systems reaching multi-TB of capacity
This system configuration should be considered
the norm right now!

Multicore & RAID

Read

Uncompress

Select

Thread 1
Core 1

Read

Uncompress

Select

Thread 2
Core 2

Read

Uncompress

Select

Thread 3
Core 3

Read

Uncompress

Select

Thread 4
Core 4

Empty I/O buffer

Full I/O buffer

The different cores can
keep pace with the high
read performance
delivered by the RAID

Presenter
Presentation Notes
No es podrien paraŀlelitzar N_DISCS lectures? Potser no he entés el diagrama…

Using Several Indexes in Queries

Perhaps the most appealing use of chunkmaps
is that they can utilize several indexes on a
single query
Examples:

'(pressure < 20) & (temperature > 50)'
current OPSI is not able to use the indexes
simultaneously
'(pressure < 20) | (temperature > 50)'
current OPSI can't use any index (because the
conditions are 'ORed') ‏

Using Several Indexes in Queries

'(pressure < 20) | (temperature > 50)'
Pressure ChunkmapPressure Chunkmap Temperature Chunkmap

Logical OR

Chunk 1 ...Chunk
2

Chunk
3

Chunk N-1 Chunk NChunk
4

H5Sselect_hyperslab

Combined Chunkmap ...

Presenter
Presentation Notes
Açò s’acosta als índexs basats en mapes de bits: http://elephant.cs.uiuc.edu/~rsinha/papers/TODS_2007.pdf (amb la secció 1 t’aclariràs).

Using Several Indexes in Queries

NumExpr will be used to combine any amount
of logical combinations among chunkmaps
Challenge: From a potentially complex query
expression such as:
((pressure < 20) & (temperature > 50) |
((lati > 20) & (lati <=40) & (longi < 30))

find the maximum number of usable indexes
This can represent a fair amount of work for
very complex expressions!
Start with the simplest ones and refine the
query optimization as needed (not new) ‏

Medium/Long Term Goals

Try reducing the precision of values of the
indexes

Faster convergence during index creation
Less entropy: better compression, less disk space
Inexact results in queries

Column-wise tables
Current table datasets in PyTables are row-wise
They are perfect for dealing with tables with a
small/medium number of fields
Column-wise may prove to be more efficient in
scenarios where a large number of fields is required

Presenter
Presentation Notes
Primer punt també relacionat amb els índexs multi‐resolució de l’article anterior (però més per al futur).

Taules per cols: sospite que a més simplificarien certes parts de la implementació (taules heterogènies en Numexpr, cols desalineades, etc.).

Final Thoughts

Chunkmaps seem like a good idea for OPSI
They perform much better when the selectivity is
low, while retaining the same efficiency for high
selectivity queries
They permit the use of several indexes in complex
queries without too much effort (not taking into
consideration the battle to optimize queries!) ‏

Precision reduction seems easy to implement
Column-wise tables can be very interesting in
some scenarios, but implementation could be
difficult

Presenter
Presentation Notes
Haurem de debatre això de que les taules per cols siguen tan hard… ;)‏

Appendix: OPSI vs MRBM

After reading the paper on Multi-Resolution
Bitmaps, I decided to make a quick comparison
between it and OPSI
WARNING! These conclusions are very
preliminary and I may be completely wrong!

Main Characteristics

OPSI
Better suited to tables that have fewer fields (<10 ~
15) and more rows (no practical limit) ‏
I/O bounded (both in latency and throughput) ‏
Needs less space for each index
It supports strings right out-of-the-box

MR-BitMap
Better suited to tables with many fields (> 100) and
fewer rows (< 1 billion?) ‏
CPU bounded
Requires more space for indexes

Which One Is Better?

It depends on many factors

OPSI

MR-BitMap

Low cardinality: MR-BitMap, OPSI
High cardinality: OPSI, MR-BitMap
Many others!

Use Domains

OPSI MR-BitMap

Raid
(+Multicore) ‏

Multicore (+RAID) ‏

Software
improvements

Software
improvements

Suggestions for a More Detailed
Comparison of OPSI/MR-BitMap

If we were to undertake an implementation of
OPSI in C, perhaps it would be wise to do a
detailed comparison of OPSI and MR-BitMap
first
Some ideas from one approach can be applied
to the other!
A repository of real-world data for testing
purposes would be useful. It would provide a
common base of data for determining the
suitability of each approach in each context

	Slide Number 1
	Features of� PyTables Pro
	OPSI Features
	Slide Number 4
	Plans for the Near Future
	Low Selectivity Retrieval
	Low Selectivity Retrieval
	Low Selectivity Retrieval
	Current approach
	Problems with the Current Approach
	A Message from the Fifth Century, BC
	Solution: A Chunk Map
	Chunkmap Performance
	Chunkmap: Pros & Cons
	How Much Memory is Required by a Chunkmap?
	Optimal Chunksize?
	Typical Disk Access Times
	Typical Disk Access Times
	Optimal Chunksize (revisited)‏
	Times to Process a Chunk
	Times to Process a Chunk
	Times for Different Chunksizes
	Times for Different Chunksizes
	Some Considerations
	A Few Words About NumExpr
	Using MultiCore CPUs
	MultiCore & Threaded Disk Access
	Multicore & RAID
	Multicore & RAID
	Using Several Indexes in Queries
	Using Several Indexes in Queries
	Using Several Indexes in Queries
	Medium/Long Term Goals
	Final Thoughts
	Appendix: OPSI vs MRBM
	Main Characteristics
	Which One Is Better?
	Use Domains
	Suggestions for a More Detailed Comparison of OPSI/MR-BitMap

