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Features of 
PyTables Pro

OPSI (Optimized Partially Sorted Indexes) ‏
Indexing engine optimized for HDF5 features 
(chunking, compression, data types) ‏

Improved LRU node cache performance (up to 
20x faster than PyTables Standard)‏
Focus on stability (meant for use in production 
environments)‏
All-in-one installers for Windows and Mac OS X



OPSI Features

Based on well-tested PSI engine (PyTables 1.x) ‏
Improvements over PSI

Better query times
Selectable index quality
Complex queries

Current limitations
Only one index can be used in a complex 
expression
Only supports compound types, not atomic types
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Plans for the Near Future

Optimize the retrieval of results in queries with a 
large number of hits (low selectivity)‏

The current algorithm is quite efficient for medium 
or high selectivity, but less so for low selectivity

Ability to use several indexes in complex 
queries

If col1 and col2 are indexed, then the expression 
(col1 < 3.1) & (col2 > 2.3)cannot be 
computed using both indexes (the first one will be 
used instead)‏



Low Selectivity Retrieval

A table with 4 columns:
class Record(tables.IsDescription):

col1 = tables.Int32Col()
col2 = tables.Int32Col()
col3 = tables.Float64Col()
col4 = tables.Float64Col() ‏

1 billion rows (1 Gigarow) ‏
AMD Opteron @ 2 GHz
SATA disk @ 7200 rpm
Query:
(lower<=col4) & (col4<=upper) & 
(sqrt(col1+3.1*col2+col3*col4) > 3)‏



Low Selectivity Retrieval



Low Selectivity Retrieval

Current approach:
Get the set of coordinates satisfying the indexed 
part of the query
Break the set into buckets and read a bucket at a 
time (using H5Sselect_elements)‏
Read the elements from disk and apply the residual 
query
Return the rows that satisfy the query condition



Current approach
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Problems with the Current 
Approach

Potential chunk revisiting (and very difficult to 
find the chunk in HDF5 cache because of 
capacity problems)‏
Even if the chunk is found in HDF5 cache, it still 
has to be decompressed again
Non-ordered access to chunks, resulting in 
longer disk access times



A Message from the Fifth 
Century, BC

“In general, commanding a large number is like 
commanding a few. It is a question of dividing up 
the numbers. Fighting with a large number is like 

fighting with a few. It is a question of configuration 
and designation.”

Sun Tzu – The Art of War

Section 5 (Strategic Military Power) verse 1



Solution: A Chunk Map

Chunk 1 ...
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Chunkmap Performance



Chunkmap: Pros & Cons

Pros
The interesting chunks are visited only once
Chunks are accessed in a strict sequential order, 
minimizing the amount of trips of disk heads
The chunkmap on disk has much lower entropy 
than the original indices: much better compression

Cons
It requires memory: 1 byte per chunk.  It can be up 
to 1 bit per chunk (packed chunkmap) ‏
It requires more CPU, as the incoming data from 
disk has to be filtered through the query condition



How Much Memory is Required 
by a Chunkmap?

Let's imagine a table with 1 billion of rows and 
1000 bytes/row.  That's around 1 TB in size.
Size of the chunkmap, depending on the 
chunksize:

32 KB CS: 32 MB (4 MB packed) ‏
64 KB CS: 16 MB (2 MB packed) ‏
128 KB CS: 8 MB (1 MB packed) ‏
256 KB CS: 4 MB (0.5 MB packed) ‏



Optimal Chunksize?

What is the optimal chunksize for reducing the 
chunkmap to a minimum without penalizing  
retrieval times too much?
We have to choose a size that takes a relatively 
short time to read compared with disk access 
times (the main bottleneck in sparse reads)‏
What is the mean latency when doing sparse 
reads?



Typical Disk Access Times

Average rotational latency: 4.1 ms
Seek times: from 2 ms to 18 msTimes for 7200 rpm drives



Typical Disk Access Times

For general random sparse access data on 
disk, these figures usually give 12 ~ 15 ms
However, for sequentially ordered sparse 
access of chunks that are close to each other, 
the typical times are bound by the rotational 
latency or less, i.e. <= 4.1 ms access times.



Optimal Chunksize (revisited)‏

The optimal chunksize for reducing the amount 
of memory allocated to the chunkmap has to be 
chosen so that reads would constitute a 
relatively small fraction of the average rotational 
latency of a disk
The most significant cost in time to process the 
chunk is the sum of:

The time to physically read it from disk
The time to uncompress it
The time to apply the query condition to it



Times to Process a Chunk

This depends on many factors.  For an 
example, we will choose:

Chunk size: 128 KB
Compression on (225% of reduction) ‏
Modern 7200 rpm SATA disk drive 
Modern CPU (Intel Core2 or AMD Opteron) ‏
Query Filter: 

(lower<=col4) & (col4<=upper) & 
(sqrt(col1+3.1*col2+col3*col4) > 3)‏



Times to Process a Chunk
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Times for Different Chunksizes

Times and overhead for low selectivity:
32 KB: 0.45 ms, 11% overhead
64 KB: 0.90 ms, 22% overhead
128 KB: 1.8 ms, 44% overhead
256 KB: 3.6 ms, 88% overhead

32 KB or 64 KB would be a good choice for 
increased low selectivity retrieval speed
128 KB would strike a good balance between 
overhead (44%) and the memory used by the 
chunkmap (8 MB, or 1 MB packed) 



Times for Different Chunksizes



Some Considerations

The query conditions are evaluated very 
efficiently thanks to the NumExpr computing 
kernel integrated into PyTables
Compression reduces the total I/O time.  Not 
new, but interesting anyway
The use of LZO2 compressor can be very 
effective in this scenario (as compared to ZLIB)‏
Shuffle takes longer than LZO2, but is worth the 
while:  compression is much higher
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A Few Words About NumExpr

Fast evaluation of array expressions element-
wise by using a vector-based virtual machine
It works by splitting up the operand arrays in 
chunks that fit into the cache of CPUs, allowing 
the CPU to attain very high-performance while 
performing the operations
We have added support for boolean and string 
types, heterogeneous arrays (compound types), 
and optimized the amount of memory copies of 
unaligned arrays



Using MultiCore CPUs

Nowadays, it is possible to use multicore CPUs 
and concurrent programming with threads to 
further accelerate the reading process in low 
selectivity environments



MultiCore & Threaded Disk 
Access

The I/O buffer is empty
Gather more data

The I/O buffer is full
Deliver elements to Python space

Read

Uncompress

Select

Read

Uncompress

Select

Thread 1
Core 1

Thread 2
Core 2

- The computations overlap
with I/O

- The only bottleneck is
disk speed

- Up to 1.3x speed-up
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Multicore & RAID

With the advent of multicore CPUs, having a 2, 
4 or 8-core system is not uncommon in current 
workstations
In addition, drastic reductions in the cost of a 
medium-sized disk (500 GB costs about $120), 
makes it possible to build cheap but fast RAID 
systems reaching multi-TB of capacity
This system configuration should be considered 
the norm right now!



Multicore & RAID
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The different cores can 
keep pace with the high 
read performance 
delivered by the RAID
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Using Several Indexes in Queries

Perhaps the most appealing use of chunkmaps 
is that they can utilize several indexes on a 
single query
Examples:

'(pressure < 20) & (temperature > 50)'
current OPSI is not able to use the indexes 
simultaneously
'(pressure < 20) | (temperature > 50)'
current OPSI can't use any index (because the 
conditions are 'ORed') ‏



Using Several Indexes in Queries

'(pressure < 20) | (temperature > 50)'
Pressure ChunkmapPressure Chunkmap Temperature Chunkmap

Logical OR

Chunk 1 ...Chunk 
2

Chunk 
3

Chunk N-1 Chunk NChunk 
4

H5Sselect_hyperslab

Combined Chunkmap ...
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Using Several Indexes in Queries

NumExpr will be used to combine any amount 
of logical combinations among chunkmaps
Challenge: From a potentially complex query 
expression such as:
((pressure < 20) & (temperature > 50) |
((lati > 20) & (lati <=40) & (longi < 30))

find the maximum number of usable indexes
This can represent a fair amount of work for 
very complex expressions!
Start with the simplest ones and refine the 
query optimization as needed (not new) ‏



Medium/Long Term Goals

Try reducing the precision of values of the 
indexes

Faster convergence during index creation
Less entropy: better compression, less disk space
Inexact results in queries

Column-wise tables
Current table datasets in PyTables are row-wise
They are perfect for dealing with tables with a 
small/medium number of fields
Column-wise may prove to be more efficient in 
scenarios where a large number of fields is required

Presenter
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Final Thoughts

Chunkmaps seem like a good idea for OPSI
They perform much better when the selectivity is 
low, while retaining the same efficiency for high 
selectivity queries
They permit the use of several indexes in complex 
queries without too much effort (not taking into 
consideration the battle to optimize queries!) ‏

Precision reduction seems easy to implement
Column-wise tables can be very interesting in 
some scenarios, but implementation could be 
difficult
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Appendix: OPSI vs MRBM

After reading the paper on Multi-Resolution 
Bitmaps, I decided to make a quick comparison 
between it and OPSI
WARNING! These conclusions are very
preliminary and I may be completely wrong!



Main Characteristics

OPSI
Better suited to tables that have fewer fields (<10 ~ 
15) and more rows (no practical limit) ‏
I/O bounded (both in latency and throughput) ‏
Needs less space for each index
It supports strings right out-of-the-box

MR-BitMap
Better suited to tables with many fields (> 100) and 
fewer rows (< 1 billion?) ‏
CPU bounded
Requires more space for indexes



Which One Is Better?

It depends on many factors

OPSI

MR-BitMap

Low cardinality: MR-BitMap, OPSI
High cardinality:  OPSI, MR-BitMap
Many others!



Use Domains

OPSI MR-BitMap

Raid
(+Multicore) ‏

Multicore (+RAID) ‏

Software
improvements

Software
improvements



Suggestions for a More Detailed 
Comparison of OPSI/MR-BitMap

If we were to undertake an implementation of 
OPSI in C, perhaps it would be wise to do a 
detailed comparison of OPSI and MR-BitMap 
first
Some ideas from one approach can be applied 
to the other!
A repository of real-world data for testing 
purposes would be useful.  It would provide a 
common base of data for determining the 
suitability of each approach in each context
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