
Performance evaluation report:
gzip, bzip2 compression with and without shuffling algorithm

0. Purposes:

• To evaluate the performance of the combination of shuffling and general
compression packages such as gzip and bzip2

• To evaluate the possibility of integrating shuffling algorithm to HDF5

1. What’s the shuffling algorithm and why it is useful for data compression?

The shuffling algorithm itself will not compress the data; it is only changing the byte
order in the data stream. Since all scientific data more or less have locality; that means
many numbers are very close to each other; so when we use the combination of shuffling
algorithm with general compression packages, we may take advantage of this
characteristic of data and obtain better compression ratio.

An example:

We have five 32-bit unsigned integers: 1, 23, 43, 56, 35
The hexidecimal form of these numbers is 0x01, 0x17, 0x2B, 0x38, 0x23

In big-endian machine, these numbers are stored in memory as follows:
0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x17 0x00 0x00 0x00 0x2B 0x00 0x00
0x00 0x38 0x00 0x00 0x00 0x23

The shuffling algorithm re-arrange the byte order of these numbers, put the first byte of
every number in the first chunk and then the second byte of every number and so on.
After shuffling the data stream, in memory these numbers are stored as follows:
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x01 0x17 0x2B 0x38 0x23

You can see 15 continuous zeroes in the second data stream and all non-zero numbers are
at the end. Imagine if we have 256 MB such kind of data and we may have 192 MB
continuous data filling with 0 at this 256 MB buffer. Compression packages like gzip and
bzip2 can greatly improve the compression ratio with this shuffling data set.

When reading the shuffled compressed data back to the memory, we should re-shuffling
the data after decompressing the data.

The side effect of shuffling algorithm is that it may take extra time to shuffle and re-
shuffle the data.

2. How the shuffling algorithm is integrated into HDF5

Shuffling algorithm is treated as a filter in the HDF5 I/O pipeline. To integrate the
shuffling algorithm into the HDF5 includes the following steps:

a) Define a filter constant called H5Z_FILTER_SHUFFLE at H5Zpublic.h
b) Following the deflate example, declare a filter function called H5Z_filter_shuffle

with the parameter set exactly as H5Z_filter_deflate.
c) Create a new source code called H5Zshuffle.c, put the implementation of

shuffling algorithm inside.
d) Define a new property list function called H5Pset_shuffle following the definition

of H5Pset_deflate.
e) Following the function H5Pset_deflate, put the implementation of H5Pset_shuffle

inside function H5Pdcpl.c.
f) At Makefile.in, adding H5Zshuffle.c in the source file list.

3. Definitions in this report:

1) Compression ratio: The ratio of the compressed file size or array size to the
original file size or array size.

2) Encoding time of the library: Difference of the elapsed time between writing an
HDF5 dataset with compression and without compression

3) Decoding time of the library: Difference of the elapsed time between reading an
HDF5 dataset with compression and without compression

4) Improvement of compression ratio: The subtraction of the compression ratio of
the data array without data shuffling and re-shuffling to the compression ratio of the
data array with data shuffling

5) Difference of unit encoding time: The subtraction of total elapsed time of the
1MB data with data shuffling and compression to the encoding time of the1MB data
with compression only.

6) Difference of unit decoding time: The subtraction of total elapsed time of the
1MB data with data shuffling and decompression to the decoding time of the 1MB
data with decompression only.

7) Relative overhead of encoding time with the addition of shuffling: The ratio of
extra processing time with the addition of shuffling in encoding stage to the encoding
time without shuffling in the compression package

For example:
To encode a 1MB 32-bit floating point HDF5 data with gzip takes 0.1 second.
When we shuffle the data and then use gzip compression, it takes 0.11 second.
Relative overhead of encoding time with the addition of shuffling is (0.11-
0.1)/0.11=9%.

8) Relative overhead of decoding time with the addition of shuffling: The ratio of
“extra” processing time used with the addition of shuffling in decoding to the
decoding time without shuffling in the compression package

For example:
To decode a 1MB 32-bit floating point HDF5 data with gzip takes 0.01 second.
When we use gzip to decompress and then shuffle the data, it takes 0.012second.
Relative overhead of encoding time with the addition of shuffling is (0.112-
0.01)/0.01=20%.

9) Relative improvement of compression ratio: The ratio of improvement of
compression ratio to the compressed percentage of the array without data shuffling

For example, the compression ratio for array A without shuffling is 0.8.
So the compressed percentage of the array is 1 – 0.8 = 0.2.
The compression ratio for array A with shuffling is 0.5.
So the improvement of compression ratio is 0.8-0.5 = 0.3.
Relative improvement of compression ratio is 0.3/0.2 = 1.5.

Note:

• gettimeofday is used to calculate encoding and decoding time of the library

4. Data collections

I totally collected 24 HDF5 datasets from HDF4 and HDF5 files. Among them there are 5
SAF datasets, 2 Swede radar datasets, 2 MIT physics datasets, 1 Spot dataset, 1 SWARM
dataset, 13 NASA EOS datasets.

Table 1: Dataset information of the study
File Name Dataset Name Array size

(byte)
Data type

TRIM /DATA_GRANULE/SwathData/geolocation 4968704 Float32
TRIM

/DATA_GRANULE/SwathData/lowResCh
4347616 Int16

CERES1 /CERES_ES8_subset/Data Fields/CERES
LW flux at TOA

5359200 Float32

ASTER2 /SurfaceReflectanceSWIR/Data
Fields/Band5

10458000 Unsigned
int16

ASTER1 /VNIR/VNIR_Swath/Data
Fields/ImageData3B

22908000 Unsigned
char

MODIS1 /MODIS_SWATH_Type_L1B/Data
Fields/EV_500_RefSB

109944800 Unsigned
int16

MODIS1 /MODIS_SWATH_Type_L1B/Geolocation
Fields/Latitude

10994480 Float32

MODIS2 /mod07/Data
Fields/Brightness_Temperature

2630880 Int16

MODIS3 /Standard_Map 2097152 Float32
MODIS4 /MODIS_Swath_Type_GEO/Data

Fields/Height
5497240 Int16

CERES2 /Footprint Imager Radiance
Statistics/5th percentile of imager
radiances over full CERES FOV

572900 Float32

SRB /Data-Set-11 817904 Float32
MOPS1 /MOP01/Data Fields/MOPITT Radiances 47142400 Float32
MIT1 /x.i 658560 Float64
MIT2 /x.i 1393200 Float64
SWARM /inp_gammaFN-002000_gammaTT-

000100_agentTTCash-
000100_agentFNCash-
005000/position/AgentFNImpl-E0-0

4000000 Float64

SPOT /PIXEL DATA 146684610 Unsigned
int16

swe-radar1 /v0 1440000 Float64
swe-radar2 /data 3787560 Float32
SAF1 /fld_ss_[1040…1103] 10250240 Float64
SAF2 /fld_velocity_[2012…2075] 35551488 Float64
SAF3 /ssrel__[0064…0127] 5125120 Int32
SAF4 /toporel__[0192…0255] 41000960 Int32
SAF5 /fld_coords_[0452…0515] 35551488 Float64

5. System descriptions

Linux 2.2.18smp i686
Physical memory 960 MB

CPU:
Two processors
Model name: Pentium III(Katmai)
Speed: 551.261 MHZ
Cache_size: 512KB

6. Experiment procedures

a) Converting HDF4 file to HDF5 file
All NASA data are in HDF4 format; so we are using h4toh5 utility to convert HDF4 data
to HDF5 data.
b) Test the validity of shuffling algorithm
Since shuffling 8-bit data will not change the real data stream, so for 8-bit data, the data
should be exactly the same with shuffling and without shuffling. ASTER1 data is used to
check whether this is true.
c) Then bzip2 and gzip are added to I/O pipeline after the shuffling filter. We choose
three levels: 1,6,9 in this performance study.
d) To do the performance comparison, we then calculate the improvement of
compression ratio, relative overhead of decoding time with the addition of shuffling,
relative overhead of encoding time with the addition of shuffling and generate charts.

7. Results
a) Control test
CR: Compression Ratio CL: Compression Level
File name: ASTER1 Array size: 22908000 bytes Data type: unsigned char

Table 1: Difference of compression ratio between shuffled run and un-shuffled run
CL Un-shuffled

Compressed
 Size (byte)

Shuffled
Compressed
Size (byte)

Un-shuffled
CR

Shuffled
CR

CR
difference

bzip2 1 10110257 10110257 0.441341758 0.441341758 0
gzip 1 13577118 13577118 0.592680199 0.592680199 0

bzip2 6 9801662 9801662 0.4278707 0.4278707 0
gzip 6 13429576 13429576 0.586239567 0.586239567 0

bzip2 9 9758766 9758766 0.425998167 0.425998167 0
gzip 9 13412551 13412551 0.585496377 0.585496377 0

This test verifies that shuffling algorithm is implemented correctly and returns the correct
output.

b) Results

• The combination of shuffling algorithm with bzip2 and gzip can gain
improvement of compression ratio for most 32-bit and 64-bit data samples.

• On average, the improvement of compression ratio for float32 is 10% for
both compression packages.

• On average, the improvement of compression ratio for float64 is 5% for both
compression packages.

• Most cases show than less encoding time and decoding time are used for
compression with the shuffling and bzip2.

• Most cases show than insignificant extra encoding and decoding time are
used for compression with the shuffling and gzip.

• The combination of shuffling algorithm with bzip2 and gzip cannot
significantly benefit for those data that can gain better compression ratio with
bzip2 and gzip only.

• The combination of shuffling algorithm with bzip2 and gzip is generally not
good for 16-bit data.

The following figures will show illustration of CR improvement, relative overhead of
encoding time and decoding time of float32 and float 64 in detail.

X-axis: the number of data arrays
Y-axis:
The relative overhead of encoding and decoding with shuffling and bzip2/gzip.
The relative overhead of CR improvement with shuffling and bzip2/gzip.

Fig. 1: Illustration of bzip2 level 1 CR improvement, extra time of encoding and decoding for float32

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the
addition of shuffling

Relative overhead of decoding time with the
addition of shuffling

Relative improvement of compression ratio

Fig.2: Illustration of bzip2 level 6 CR improvement, extra time of encoding and decoding for float32

-1

-0.5

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the addition of
shuffling

Relative overhead of decoding time with the addition of
shuffling

Relative improvement of compression ratio

Fig. 3: Illustration of bzip level 9 CR improvement, extra time of encoding and decoding for float32

-1

-0.5

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the addition of
shuffling

Relative overhead of decoding time with the addition of
shuffling

Relative improvement of compression ratio

Fig.4 Illustration of CR improvement, extra time of encoding and decoding for float32 data with gzip level 1 compression

-1

-0.5

0

0.5

1

1.5

2

1 2 3 4 5 6 7 8

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the addition of
shuffling

Relative overhead of decoding time with the addition of
shuffling

Relative improvement of compression ratio

Fig.5: Illustration of CR improvement, extra time of encoding and decoding for float32 data with gzip level 6 compression

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d
 d

ec
o

d
in

g

Relative overhead of encoding time with the
addition of shuffling

Relative overhead of decoding time with the
addition of shuffling

Relative improvement of compression ratio

Fig.6: Illustration of CR improvement, extra time of encoding and decoding for float32 data with gzip level 9
 compression

-1

-0.5

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the
addition of shuffling

Relative overhead of decoding time with the
addition of shuffling

Relative improvement of compression ratio

Fig.7: Illustration of CR improvement, extra time of encoding and decoding for float64 data with
bzip level 1 compression

-5

0

5

10

15

20

25

1 2 3 4 5 6 7

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time
with the addition of shuffling

Relative overhead of decoding time
with the addition of shuffling

Relative improvement of
compression ratio

Fig.8: Illustration of CR improvement, extra time of encoding and decoding for float64 data with
bzip2 level 6 compression

-2

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the
addition of shuffling

Relative overhead of decoding time with the
addition of shuffling

Relative improvement of compression ratio

Fig.9: Illustration of CR improvement, extra time of encoding and decoding for float64 data
 with bzip2 level 9 compression

-2

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with
the addition of shuffling

Relative overhead of decoding time with
the addition of shuffling

Relative improvement of compression
ratio

Fig. 10: Illustration of CR improvement, extra time of encoding and decoding for float64 data
 with gzip level 1 compression

-0.5

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7

sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with the
addition of shuffling

Relative overhead of decoding time with the
addition of shuffling

Relative improvement of compression ratio

Fig.11: Illustration of CR improvement, extra time of encoding and decoding for float64 data
with gzip level 6 compression

-0.5

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g

Relative overhead of encoding time with
the addition of shuffling

Relative overhead of decoding time with
the addition of shuffling

Relative improvement of compression
ratio

Fig.12: Illustration of CR improvement, extra time of encoding and decoding for float64 data
 with gzip level 9 compression

-1

0

1

2

3

4

5

6

1 2 3 4 5 6 7

Sample arrays

R
el

at
iv

e
im

p
ro

ve
m

en
t

fo
r

C
R

 a
n

d
 e

xt
ra

 t
im

e
fo

r
en

co
d

in
g

 a
n

d

d
ec

o
d

in
g Relative overhead of encoding time with the

addition of shuffling

Relative overhead of decoding time with the
addition of shuffling

Relative improvement of compression ratio

8. Concluding remarks

• Integrating shuffling filter to HDF5 library is not hard.
• For floating point scientific data, using the shuffling algorithm with bzip2 or

gzip can significantly improve compression ratio.
• It takes less processing time to use shuffling algorithm and bzip2 for data

compression and data decompression than to solely use bzip2 only.
• It takes insignificantly extra processing time to use shuffling algorithm and

gzip for data compression and data decompression than to solely use gzip
only.

9. Future work

Special shuffling algorithm should apply to float32 and float64 data to gain more
compression ratio and cut down decoding and encoding time.

