Performance eval uation report:
gzip, bzip2 compression with and without shuffling algorithm

0. Purposes:
» To evauate the performance of the combination of shuffling and general
compression packages such as gzip and bzip2
» Toevauate the possibility of integrating shuffling algorithm to HDF5

1. What's the shuffling algorithm and why it is useful for data compression?

The shuffling algorithm itself will not compress the data; it is only changing the byte

order in the data stream. Since all scientific data more or less have locality; that means
many numbers are very close to each other; so when we use the combination of shuffling
algorithm with general compression packages, we may take advantage of this
characteristic of data and obtain better compression ratio.

An example:

We have five 32-bit unsigned integers: 1, 23, 43, 56, 35
The hexidecimal form of these numbers is 0x01, 0x17, 0x2B, 0x38, 0x23

In big-endian machine, these numbers are stored in memory as follows:
0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x17 0x00 0x00 0x00 0x2B 0x00 0x00
0x00 0x38 0x00 0x00 0x00 0x23

The shuffling algorithm re-arrange the byte order of these numbers, put the first byte of
every number in the first chunk and then the second byte of every number and so on.

After shuffling the data stream, in memory these numbers are stored as follows:
0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x01 0x17 O0x2B 0x38 0x23

You can see 15 continuous zeroes in the second data stream and all non-zero numbers are
at the end. Imagine if we have 256 MB such kind of data and we may have 192 MB
continuous data filling with 0 at this 256 MB buffer. Compression packages like gzip and
bzip2 can greatly improve the compression ratio with this shuffling data set.

When reading the shuffled compressed data back to the memory, we should re-shuffling
the data after decompressing the data.

The side effect of shuffling algorithm is that it may take extra time to shuffle and re-
shuffle the data.
2. How the shuffling algorithm is integrated into HDF5

Shuffling algorithm is treated as a filter in the HDF5 1/O pipeline. To integrate the
shuffling algorithm into the HDF5 includes the following steps:

a) Defineafilter constant called H5Z_FILTER_SHUFFLE at H5Zpublic.h

b) Following the deflate example, declare afilter function called H5Z_filter_shuffle
with the parameter set exactly asH5Z_filter_deflate.

c) Create anew source code called H5Zshuffle.c, put the implementation of
shuffling algorithm inside.

d) Defineanew property list function called H5Pset_shuffle following the definition
of H5Pset_deflate.

€) Following the function H5Pset_deflate, put the implementation of H5Pset_shuffle
inside function H5Pdcpl.c.

f) At Makefile.in, adding H5Zshuffle.c in the sourcefilelist.

3. Definitionsin this report:

1) Compression ratio: The ratio of the compressed file size or array sizeto the
original filesize or array size.

2) Encoding time of thelibrary: Difference of the elapsed time between writing an
HDF5 dataset with compression and without compression

3) Decoding time of the library: Difference of the elapsed time between reading an
HDFS5 dataset with compression and without compression

4) Improvement of compression ratio: The subtraction of the compression ratio of
the data array without data shuffling and re-shuffling to the compression ratio of the
data array with data shuffling

5) Difference of unit encoding time: The subtraction of total elapsed time of the
1MB data with data shuffling and compression to the encoding time of thelMB data
with compression only.

6) Difference of unit decoding time: The subtraction of total elapsed time of the
1MB data with data shuffling and decompression to the decoding time of the IMB
data with decompression only.

7) Relative overhead of encoding time with the addition of shuffling: Theratio of
extra processing time with the addition of shuffling in encoding stage to the encoding
time without shuffling in the compression package

For example:

To encode a IMB 32-bit floating point HDF5 data with gzip takes 0.1 second.
When we shuffle the data and then use gzip compression, it takes 0.11 second.
Relative overhead of encoding time with the addition of shufflingis (0.11-
0.1)/0.11=9%.

8) Relative overhead of decoding time with the addition of shuffling: The ratio of
“extra” processing time used with the addition of shuffling in decoding to the
decoding time without shuffling in the compression package

For example:

To decode a 1MB 32-bit floating point HDF5 data with gzip takes 0.01 second.
When we use gzip to decompress and then shuffle the data, it takes 0.012second.
Relative overhead of encoding time with the addition of shuffling is (0.112-
0.01)/0.01=20%.

9) Relative improvement of compression ratio: The ratio of improvement of
compression ratio to the compressed percentage of the array without data shuffling

For example, the compression ratio for array A without shuffling is 0.8.
So the compressed percentage of the array is 1 — 0.8 = 0.2.

The compression ratio for array A with shuffling is 0.5.

So the improvement of compression ratio is 0.8-0.5 = 0.3.

Relative improvement of compression ratio is 0.3/0.2 = 1.5.

Note:
» gettimeofday is used to calculate encoding and decoding time of the library

4. Data collections

| totally collected 24 HDF5 datasets from HDF4 and HDF5 files. Among them there are 5
SAF datasets, 2 Swede radar datasets, 2 MIT physics datasets, 1 Spot dataset, 1 SWARM

dataset, 13 NASA EOS datasets.

Table 1: Dataset information of the study

FileName | Dataset Name Array size Data type
(byte)
TRIM / DATA_GRANULE/ Swat hDat a/ geol ocati on | 4968704 Float32
TRIM / DATA GRANULE/ Swat hDat a/ | owResCh 4347616 Int16
CERES1 [CERES_ES8_subset / Dat a Fi el ds/ CERES | 5350200 Float32
LWflux at TOA
ASTER2 / SurfaceRefl ectanceSW R/ Dat a 10458000 Unsigned
Fi el ds/ Band5 int16
/' VNI R VNI R_Swat h/ Dat a i
ASTERL Fi el ds/ | mageDat a3B 22908000 (L:Jhr;?gned
/NMODI S_SWATH _Type L1B/ Dat a :
MODISL Fi el ds/ EV_500_Ref SB 109944800 iL:]?fInged
MODIS1 / MODI S_SWATH_Type_L1B/ Geol ocati on 10994480 Float32
Fi el ds/ Lati tude
[/ mod07/ Dat a
MODIS2 Fi el ds/ Bri ght ness_Tenperature 2630880 Int16
MODIS3 | /Standard_Map 2097152 Float32
MODIS4 | /MXDIS Swath_Type GEQ Data 5497240 Int16
Fi el ds/ Hei ght
CERES2 / Footprint | mager Radiance 572900 Float32
Statistics/5th percentile of inmager
radi ances over full CERES FOV
SRB /Data- Set-11 817904 Float32
M OPS1 / MOPO1/ Dat a Fi el ds/ MOPI TT Radi ances | 47142400 Float32
MIT1 /X1 658560 Float64
MIT2 /X1 1393200 Float64
/i np_gamaFN- 002000 _gammaTT-
SWARM 000100_agent TTCash- 4000000 Float64
000100_agent FNCash-
005000/ posi ti on/ Agent FNI npl - EO- 0
SPOT [PIXEL DATA 146684610 | Unsigned
int16
sweradarl | /vO 1440000 Float64
sweradar2 |/data 3787560 Float32
SAF1 /fld_ss_[1040...1103] 10250240 Float64
SAF2 /fld_velocity_[2012...2075] 35551488 Float64
SAF3 Issrel__[0064...0127] 5125120 Int32
SAF4 /toporel__[0192...0255] 41000960 Int32
SAF5 /fld_coords_[0452...0515] 35551488 Float64

5. System descriptions

Linux 2.2.18smp i686
Physical memory 960 MB

CPU:

Two processors
Model name: Pentium I11(Katmai)
Speed: 551.261 MHZ
Cache_size: 512KB

6. Experiment procedures

a) Converting HDF4 file to HDF5 file
All NASA dataare in HDF4 format; so we are using h4toh5 utility to convert HDF4 data
to HDF5 data
b) Test the validity of shuffling algorithm
Since shuffling 8-bit datawill not change the real data stream, so for 8-bit data, the data

should be exactly the same with shuffling and without shuffling. ASTER1 datais used to
check whether thisistrue.
¢) Then bzip2 and gzip are added to 1/0 pipeline after the shuffling filter. We choose

three levels: 1,6,9 in this performance study.
d) To do the performance comparison, we then calcul ate the improvement of

compression ratio, relative overhead of decoding time with the addition of shuffling,
relative overhead of encoding time with the addition of shuffling and generate charts.

7. Results

a) Control test
CR: Compression Ratio
File name: ASTER1

CL: Compression Level

Array size: 22908000 bytes Datatype: unsigned char

Table 1: Difference of compression ratio between shuffled run and un-shuffled run

CL Un-shuffled | Shuffled Un-shuffled | Shuffled CR

Compressed | Compressed | CR CR difference
Size (byte) Size (byte)

bzip2 1 10110257 10110257 | 0. 441341758 | 0. 441341758 0

gzip 1 13577118 13577118 | 0. 592680199 | 0. 592680199 0

bzip2 6 9801662 9801662 0. 4278707 0. 4278707 0

9zip 6 13429576 13429576 | 0. 586239567 | 0. 586239567 0

bzi p2 9 9758766 9758766 | 0. 425998167 | 0. 425998167 0

gzip 9 13412551 13412551 | 0. 585496377 | 0.585496377 0

Thistest verifies that shuffling algorithm is implemented correctly and returns the correct

output.

b) Results

» The combination of shuffling algorithm with bzip2 and gzip can gain
improvement of compression ratio for most 32-bit and 64-bit data samples.

* On average, theimprovement of compression ratio for float32 is 10% for
both compression packages.

* On average, the improvement of compression ratio for float64 is 5% for both
compression packages.

* Most cases show than less encoding time and decoding time are used for
compression with the shuffling and bzip2.

* Most cases show than insignificant extra encoding and decoding time are
used for compression with the shuffling and gzip.

* The combination of shuffling algorithm with bzip2 and gzip cannot
significantly benefit for those data that can gain better compression ratio with
bzip2 and gzip only.

* The combination of shuffling algorithm with bzip2 and gzip is generally not
good for 16-bit data.

The following figures will show illustration of CR improvement, relative overhead of
encoding time and decoding time of float32 and float 64 in detail.

X-axis. the number of data arrays

Y-axis:

Therelative overhead of encoding and decoding with shuffling and bzip2/gzip.
Therelative overhead of CR improvement with shuffling and bzip2/gzip.

Relative improvement for CR and extra time for encoding and

decoding

Fig. 1: lllustration of bzip2 level 1 CR improvement, extra time of encoding and decoding for float32

Sample arrays

— &— Relative overhead of encoding time with the
addition of shuffling

- - -m- - - Relative overhead of decoding time with the
addition of shuffling

- Relative improvement of compression ratio

Relative improvement for CR and extra time for encoding and

decoding

Fig.2: lllustration of bzip2 level 6 CR improvement, extra time of encoding and decoding for float32

sample arrays

—¢ == Relative overhead of encoding time with the addition of
shuffling

- - 4 - - Relative overhead of decoding time with the addition of
shuffling

= w2 elative improvement of compression ratio

Relative improvement for CR and extra time for encoding and

decoding

Fig. 3: lllustration of bzip level 9 CR improvement, extra time of encoding and decoding for float32

—¢ —=Relative overhead of encoding time with the addition of
shuffling

- - ¥ - - Relative overhead of decoding time with the addition of
shuffling

= w2 elative improvement of compression ratio

Sample arrays

Fig.4 lllustration of CR improvement, extra time of encoding and decoding for float32 data with gzip level 1 compression

2

el
8
o 15
c
<
o
(8]
o
()
S
2 1
'z —& —Relative overhead of encoding time with the addition of
= shuffling
x
g g - - ¥ - - Relative overhead of decoding time with the addition of
S8 05 shuffling
5 § — wm—Relative improvement of compression ratio
s
<
()
£ 0
>
°
o
E
[
2
8 -05
[0)
o

-1

Sample arrays

Fig.5: Illustration of CR improvement, extra time of encoding and decoding for float32 data with gzip level 6 compression

25

S
m 2
£
s
% - 15

c
== —& —Relative overhead of encoding time with the
S § 1 addition of shuffling
0o - - 4 - -Relative overhead of decoding time with the
- T oy .
e < addition of shuffling
g 2 05 w—wmm=Relative improvement of compression ratio
5%
° 5
=3 0
E
3]
2
8 .05
[0)
14

Sample arrays

Relative improvement for CR and extra time for encoding and

decoding

Fig.6: lllustration of CR improvement, extra time of encoding and decoding for float32 data with gzip level 9

25

15

0.5

Sample arrays

compression

—& — Relative overhead of encoding time with the
addition of shuffling

- - i - - Relative overhead of decoding time with the
addition of shuffling

— wm—Relative improvement of compression ratio

Relative improvement for CR and extra time for encoding and

decoding

25

20

15

10

Fig.7: lllustration of CR improvement, extra time of encoding and decoding for float64 data with

Sample arrays

bzip level 1 compression

— ¢— Relative overhead of encoding time
with the addition of shuffling

---m- - - Relative overhead of decoding time
with the addition of shuffling

— w Relative improvement of
compression ratio

Relative improvement for CR and extra time for encoding and

decoding

14

Fig.8: lllustration of CR improvement, extra time of encoding and decoding for float64 data with

Sample arrays

bzip2 level 6 compression

—&—Relative overhead of encoding time with the
addition of shuffling

- - 4 - - Relative overhead of decoding time with the
addition of shuffling

— wRelative improvement of compression ratio

Relative improvement for CR and extra time for encoding and

decoding

Fig.9: lllustration of CR improvement, extra time of encoding and decoding for float64 data

Sample arrays

with bzip2 level 9 compression

—&— Relative overhead of encoding time with
the addition of shuffling

- - 4 - - Relative overhead of decoding time with
the addition of shuffling

= Relative improvement of compression
ratio

Relative improvement for CR and extra time for encoding and

decoding

Fig. 10: lllustration of CR improvement, extra time of encoding and decoding for float64 data
with gzip level 1 compression

2.5

15
- - # - - Relative overhead of encoding time with the
addition of shuffling

-

—ll— Relative overhead of decoding time with the
addition of shuffling

0.5 m—— wRelative improvement of compression ratio

sample arrays

Relative improvement for CR and extra time for encoding and

decoding

Fig.11: lllustration of CR improvement, extra time of encoding and decoding for float64 data
with gzip level 6 compression

—&— Relative overhead of encoding time with
the addition of shuffling

- - 4 - - Relative overhead of decoding time with
the addition of shuffling

= Relative improvement of compression
ratio

Sample arrays

Relative improvement for CR and extra time for encoding and

decoding

Fig.12: lllustration of CR improvement, extra time of encoding and decoding for float64 data

Sample arrays

with gzip level 9 compression

—&—Relative overhead of encoding time with the
addition of shuffling

- - 4 - - Relative overhead of decoding time with the
addition of shuffling

— wmRelative improvement of compression ratio

8. Concluding remarks

» Integrating shuffling filter to HDFS5 library is not hard.

» For floating point scientific data, using the shuffling agorithm with bzip2 or
gzip can significantly improve compression rétio.

» |t takesless processing time to use shuffling agorithm and bzip2 for data
compression and data decompression than to solely use bzip2 only.

* It takesinsignificantly extra processing time to use shuffling algorithm and
gzip for data compression and data decompression than to solely use gzip
only.

9. Future work

Special shuffling algorithm should apply to float32 and float64 data to gain more
compression ratio and cut down decoding and encoding time.

