
November 3, 2011 Fortran 2003

Page 1 of 19

New Features in the HDF5 Fortran Library:
Adding support for the Fortran 2003 Standard

This document describes limitations in the current HDF5 Fortran Library and how they are
addressed in HDF5 Release 1.8.8 by using properties of the Fortran 2003 standard. The release
is scheduled for November 2011.

The 1.8.8 version of the library supports a wider set of Fortran data types and HDF5 datatypes1

• Any kind of Fortran INTEGER or REAL

than prior versions. The wider set includes the following:

• Fortran derived types
• Fortran enumerations
• HDF5 datatypes

o Enum datatype
o Variable-length datatype
o Compound datatype of any complexity

The 1.8.8 version of the library also contains several new Fortran bindings for the HDF5 C
functions that use a callback function as a parameter.

1 We use “data type” when referring to a Fortran language type and “datatype” when referring to an HDF5
type.

November 3, 2011 Fortran 2003

Page 2 of 19

Contents

1. Introduction .. 3

2. Limitations of the Current Implementation .. 4

2.1. Support for Intrinsic Fortran Data Types.. 4

2.2. Support for Fortran Derived Data Types and HDF5 Compound Datatypes ... 4

2.3. Support for HDF5 Variable-length Datatypes .. 5

2.4. Support for Fortran Enumerated Data Types and HDF5 Enumerated Datatypes .. 5

2.5. HDF5 APIs with Callback Functions .. 6

3. Support for Fortran 2003 Features in HDF5 .. 7

4. New Capabilities of the HDF5 Fortran Library .. 9

4.1. Fortran INTEGER and REAL Data Types .. 9

4.1.1. Function to Convert an Intrinsic INTEGER or REAL Fortran Data Type to an HDF5 Datatype 9

4.1.2. Example of the h5kind_to_type Function ... 10

4.2. Compound Datatypes... 11

4.2.1. Constructing a Compound Datatype with H5OFFSETOF .. 11

4.2.2. How to Write or Read a Compound Datatype .. 12

4.2.3. Variable-length Datatypes... 12

4.2.4. Enumerated Type .. 15

4.3. HDF5 Fortran APIs with Callbacks .. 17

4.4. Backward and Forward Compatibility Issues ... 18

4.5. Source Code File Structure ... 18

4.6. Fortran API Changes and Additions in Version 1.8.8 ... 18

November 3, 2011 Fortran 2003

Page 3 of 19

1. Introduction

The HDF5 Fortran APIs were first introduced more than 10 years ago in HDF5 Release 1.4.0. The initial
implementation has used Fortran 90 features such as modules, function overloading, function interfaces,
dynamic memory allocation, and optional parameters. In many cases, this made the Fortran APIs simpler than
their C counterparts. While the choice of the Fortran 90 standard for the implementation of bindings allowed
us to provide one source code for all platforms and to take advantage of compiler-level protection, it also
restricted us from supporting some HDF5 features available for applications written in C or C++. For example,
we could not support HDF5 compound and enumeration datatypes or HDF5 APIs that use a callback function
as an argument.

In the past few years most of the commercial and free Fortran compilers have added support for the Fortran
2003 standard. The standard provides interoperability between C and Fortran, and this interoperability makes
it possible for us to improve the HDF5 Fortran APIs. The new features described in this document will be
available in HDF5 Release 1.8.8. Readers interested in testing and commenting on the features described
below may access the source code at https://svn.hdfgroup.uiuc.edu/hdf5/branches/hdf5_1_8 or pick up the
latest snapshot from http://www.hdfgroup.uiuc.edu/ftp/pub/outgoing/hdf5/snapshots/v18/. Please send any
comments or questions to the HDF Group Help Desk via help@hdfgroup.org.

https://svn.hdfgroup.uiuc.edu/hdf5/branches/hdf5_1_8�
http://www.hdfgroup.uiuc.edu/ftp/pub/outgoing/hdf5/snapshots/v18/�
mailto:help@hdfgroup.org�

November 3, 2011 Fortran 2003

Page 4 of 19

2. Limitations of the Current Implementation

The HDF5 Fortran bindings in versions prior to 1.8.8 have at least two limitations. First, they support only a
small number of the HDF5 datatypes available to C applications, and second, many powerful HDF5 C functions
that have callback functions in their parameters do not have Fortran counterparts. For example, H5Literate
has not had a Fortran counterpart. For more information, see
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html#Link-Iterate. The sections below provide more
background on these issues.

2.1. Support for Intrinsic Fortran Data Types

HDF5 Fortran applications have only been able to write or read data using the following four intrinsic data
types: INTEGER, REAL, CHARACTER, and DOUBLE PRECISION. DOUBLE PRECISION is obsolete and is not
recommended by Fortran 90 and later standards. Applications cannot pass to HDF5 any data buffers that have
a “non-standard” type like INTEGER*1, INTEGER*2, INTEGER*8, or REAL*16. While those types are non-
standard and may be expected to be unsupported, the HDF5 Fortran Library has not supported Fortran 90
recommended integers, reals, and characters of different kinds either. This is a severe limitation, and
sometimes there is no workaround. For example, if an HDF5 dataset stores 64-bit integers, data cannot be
read by an HDF5 Fortran application into the buffer of the appropriate type like INTEGER*8 or
INTEGER(KIND=big_enough_to_store) because there is no interface provided by the HDF5 Fortran
Library. Data can be read into the INTEGER buffer instead, but precision may be lost. Another example is
storing or retrieving data that requires one or two bytes of storage for each data element. The application has
to use an INTEGER buffer to hold the data and rely on the HDF5 Library to perform the datatype conversion.
As a result, the application uses more memory than necessary since INTEGER is usually 4 bytes, and the
library performs extra work to convert data between the memory buffer and the file.

2.2. Support for Fortran Derived Data Types and HDF5 Compound Datatypes

Fortran 90 introduced derived data types that are similar to C structures. This is shown in the following
example:

C Structure Fortran 90 Derived Data Type
 typedef struct {
 int a;
 float b;
 my_type c;
 }

 TYPE DERIVED
 INTEGER A
 REAL B
 TYPE(MY_TYPE) C
 END TYPE DERIVED

Unlike the intrinsic types that are defined by the language, derived data types are defined by the programmer.
While it is usually possible to construct a corresponding HDF5 compound datatype, data of a derived type
cannot be passed to current HDF5 subroutines for writing and reading because there is no predefined module
procedure due to the arbitrariness of the type. For the same reason, Fortran applications cannot write and

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html#Link-Iterate�

November 3, 2011 Fortran 2003

Page 5 of 19

read data using HDF5 compound datatypes if the datatypes contain Fortran data types other than the Fortran
intrinsic types supported in the library prior to 1.8.8. Writing and reading data of HDF5 compound datatypes is
very inefficient since the application has to write and read data one field at a time field. See the example at
http://www.hdfgroup.org/HDF5/Tutor/examples/F90/compound.f90.

2.3. Support for HDF5 Variable-length Datatypes

Versions of the HDF5 Fortran Library prior to 1.8.8 have provided an inefficient way of managing a limited
number of HDF5 variable-length datatypes. The base type of the HDF5 variable-length datatype has to be one
of the Fortran intrinsic types. Applications have to use the special subroutines h5dwrite_vl_f and
h5dread_vl_f to perform I/O. Both subroutines take as parameters two arrays (a two-dimensional array
buf(max_elem_length, num_elem) with the actual data and a one-dimensional array with the length of
each element elen(num_elem)) and pass this data to a wrapper layer that repacks the application’s data
into an appropriate C structure. This approach is not scalable; it is also not convenient because a special
subroutine has to be called to perform I/O on a variable-length data.

2.4. Support for Fortran Enumerated Data Types and HDF5 Enumerated
Datatypes

The HDF5 C Library supports enumerated datatypes. See the “Datatypes” chapter in the HDF5 User’s Guide at
http://www.hdfgroup.org/HDF5/doc/UG/. Versions of the HDF5 Fortran Library prior to 1.8.8 cannot write or
read data of such type.

Fortran 2003 introduced an enumeration definition to allow interoperability with enumeration constants in C.
An example of a Fortran enumerator and its C counterpart are shown below:

C Fortran 2003
 typedef enum {
 A = 65;
 D = 68;
 E;
 } ascii_code_t

 ENUM, BIND(C)
 ENUMERATOR :: A = 65, D = 68
 ENUMERATOR e
 END ENUM

Both definitions declare an enumerator with constants 65, 68, and 69. The Fortran 2003 standard guarantees
that constants declared as enumerator correspond to the same integer type used in C; in other words, int.
This new feature allows us to support HDF5 enumerated datatypes in version 1.8.8.

http://www.hdfgroup.org/HDF5/Tutor/examples/F90/compound.f90�
http://www.hdfgroup.org/HDF5/doc/UG/�

November 3, 2011 Fortran 2003

Page 6 of 19

2.5. HDF5 APIs with Callback Functions

The HDF5 Fortran Library prior to the 1.8.8 release has not had Fortran counterparts of the C functions that
use callbacks as parameters. For example, there is no Fortran subroutine for the H5Literate function. As a
result, operations such as traversing an HDF5 file, customizing datatype conversions, handling error stacks, and
controlling metadata caches have not been available to Fortran application developers.

November 3, 2011 Fortran 2003

Page 7 of 19

3. Support for Fortran 2003 Features in HDF5

Fortran 2003 provides a standard mechanism for interoperability with C. The limitations discussed in section 2
are addressed by expanding the Fortran API in HDF5-1.8.8 to support C data and function pointers.

An HDF5 Fortran program on its part has to treat all previously unsupported types, variables, and procedures
that will be passed to the HDF5 Fortran API as ‘interoperable’ with C. This is done by following the
programming model:

1. Include the ISO_C_BINDING module
2. Use the following declarations for variables and functions:

a. Use the TARGET attribute in declarations of a variable or an array that contains data to be
written or read by the HDF5 Fortran APIs

b. Use the C_PTR derived data type to declare a pointer to a variable or array in item a
c. Use the BIND(C) attribute in derived type declarations
d. Use the BIND(C) attribute in a Fortran callback function declaration
e. Use the C_FUNPTR derived type to declare a pointer to the Fortran function in item d

3. Associate a pointer with a variable or an array using the C_LOC intrinsic data type, and then pass it an
HDF5 Fortran call

4. Associate a pointer with a callback function using the C_FUNLOC intrinsic data type, and then pass it
an HDF5 Fortran call

The example below shows how to pass a buffer.

 PROGRAM main
 USE ISO_C_BINDING
 USE HDF5
 …
 TYPE, BIND(C) :: sensor_t
 …
 END TYPE sensor_t
 TYPE(sensor_t), DIMENSION(1:100), TARGET :: wdata ! Write buffer
 TYPE(C_PTR) :: ptr
 …
 ptr = C_LOC(wdata(1))
 CALL h5dwrite_f(dset, memtype, ptr, hdferr)
 …
 END PROGRAM main

The example below shows how to pass a callback function.

 PROGRAM main
 USE ISO_C_BINDING
 USE HDF5
 ! Type iter_info and call op_func function are declared in liter_cb_mod
 USE liter_cb_mod
 …
 TYPE(C_PTR) :: ptr
 TYPE(C_FUNPTR) :: funptr
 TYPE(iter_info), TARGET :: info
 …

November 3, 2011 Fortran 2003

Page 8 of 19

 ptr = C_LOC(info)
 funptr = C_FUNLOC(op_func)
 CALL h5literate_f(file, …, funptr, ptr, …)
 …
 END PROGRAM main

To enable Fortran 2003 features in HDF5, use the --enable-fortran2003 configure flag in addition to the
--enable-fortran flag when configuring the HDF5 Library. Configure checks to see if the Fortran compiler is
compliant with the Fortran 2003 standard and enables support for new features; if not, configure will fail. You
can also check the summary in the libhdf5.settings file found in the lib subdirectory under the
installation point to check for Fortran 2003 support. See the example below.

 SUMMARY OF THE HDF5 CONFIGURATION
 =================================
…

Languages:

 Fortran: yes
 Fortran Compiler: /usr/local/bin/gfortran …
 Fortran 2003 Compiler: yes
 …

The current implementation of the Fortran 2003 features was tested with the following compilers:

Operating System Fortran Compiler
Linux 32- and 64-bit systems gfortran 4.5.*

PGI Fortran 11.7 and 11.8
Intel 11.1 and 12.0

Mac OS X gfortran 4.6.*
SunOS Oracle Studio 12.3 beta

November 3, 2011 Fortran 2003

Page 9 of 19

4. New Capabilities of the HDF5 Fortran Library

This section describes in more detail how different Fortran data types, HDF5 datatypes, and HDF5 callback
functions are handled in HDF5 Release 1.8.8. The source code of the examples in this section can be
downloaded from http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html. Check
for the files with names containing the “F03” string.

4.1. Fortran INTEGER and REAL Data Types

Fortran has five intrinsic data types: INTEGER, REAL, COMPLEX, CHARACTER, and LOGICAL. The Fortran 90
standard introduced a property called KIND that characterized precision and range for the first three types and
storage presentation for the last two. Only one kind is required by the standard, but a processor may provide
more. For example, very often there will be two kinds of REAL data types that correspond to single and double
precision.

The HDF5 Fortran Library before version 1.8.8 could handle only INTEGER, REAL, and CHARACTER types, and
an obsolete DOUBLE PRECISION type. It could not support COMPLEX and LOGICAL types because there is no
support for the corresponding C types in the HDF5 C Library. The library also does not support intrinsic types of
a non-default kind. For example, if a processor supports a one-byte integer type and an application has to
store integers with the values between -128 to 127, it has to use INTEGER type buffers and rely on HDF5 to
perform conversion to store one-byte integers in the HDF5 file.

The C interoperability that was introduced by the Fortran 2003 standard allows the HDF5 Fortran Library to
support any kind of INTEGER or REAL types as discussed in the following sections.

4.1.1. Function to Convert an Intrinsic INTEGER or REAL Fortran Data Type to an HDF5
Datatype
The HDF5 Fortran Library provides predefined HDF5 datatypes that correspond to the Fortran intrinsic types
INTEGER, REAL, and CHARACTER: H5T_NATIVE_INTEGER, H5T_NATIVE_REAL, and
H5T_NATIVE_CHARACTER. There are no HDF5 predefined types for kinds of INTEGERS and REALS that may
be available on the system. To find a corresponding HDF5 datatype, use the new function h5kind_to_type.
The signature is shown below:

INTEGER(HID_T) FUNCTION h5kind_to_type(kind, flag) RESULT(h5_type)

The flag parameter can be either H5_INTEGER_KIND or H5_REAL_KIND. For example, suppose an
application uses an integer variable array declared as the following:

INTEGER(SELECTED_INT_KIND (5)), DIMENSION(100), TARGET :: ivar

A Fortran HDF5 application should find the corresponding HDF5 datatype by using the following call:

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html�

November 3, 2011 Fortran 2003

Page 10 of 19

mem_type = h5kind_to_type(KIND(ivar(1), H5_INTEGER_KIND)

The returned type could then be used to describe a memory buffer in an HDF5 API call. The example below
uses the h5dwrite_f function:

ptr = C_LOC(ivar(1))
CALL h5dwrite_f (dset_t, mem_type, ptr, error)

The example in the section below illustrates the usage of the function h5kind_to_type.

4.1.2. Example of the h5kind_to_type Function
The example program h5ex_d_rdwr_kind_F03.f90 shows how to read and write real and integer data
where the precision is set by SELECTED_REAL_KIND and SELECTED_INT_KIND. The whole example program
is at http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html.

First, the program defines precision for a REAL type and the range for an INTEGER type, and then it declares
array variables as shown below.

INTEGER, PARAMETER :: sp = KIND(1.0), &
dp = SELECTED_REAL_KIND(2*PRECISION(1.0_sp)))
INTEGER, PARAMETER :: ip = SELECTED_INT_KIND(10)

REAL(KIND=dp), DIMENSION(…), TARGET :: wdata_r ! Double precision floating point
INTEGER(KIND=ip), DIMENSION(…), TARGET :: wdata_i! Integer between -1010 and 1010

Second, the program gets the corresponding HDF5 datatypes by calling h5kind_to_type, and the result is
used in the calls to h5dcreate_f and h5dwrite_f.

h5_kind_type_r = h5kind_to_type(dp,H5_REAL_KIND)
h5_kind_type_i = h5kind_to_type(ip,H5_INTEGER_KIND)

Then the datasets are created and written.

CALL h5dcreate_f(file, dataset_r, h5_kind_type_r, space, dset_r, hdferr)
CALL h5dcreate_f(file, dataset_i, h5_kind_type_i, space, dset_i, hdferr)
….
CALL h5dwrite_f(dset_i, h5_kind_type_i, C_LOC(wdata_i(1,1)), hdferr)
CALL h5dwrite_f(dset_r, h5_kind_type_r, C_LOC(wdata_r(1,1)), hdferr)

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html�

November 3, 2011 Fortran 2003

Page 11 of 19

4.2. Compound Datatypes

Fortran 90 derived data types are similar to C structures. The example below shows a declaration of a derived
type sensor_t with INTEGER, CHARACTER, and DOUBLE PRECISION members and shows the initialization
of the variable of this type. See h5ex_t_cmpd_F03.f90 at
http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html for the complete example.

 TYPE! Compound data type
 INTEGER :: serial_no
 CHARACTER(LEN=maxstringlen) :: location
 REAL(real_kind_15) :: temperature
 REAL(real_kind_15) :: pressure
 END TYPE sensor_t

TYPE(sensor_t), DIMENSION(1:dim0), TARGET :: wdata
 wdata(1)%serial_no = 1153
 wdata(1)%location = "Exterior (static)"
 wdata(1)%temperature = 53.23_real_kind_15
 wdata(1)%pressure = 24.57_real_kind_15
….

Prior to HDF5 Release 1.8.8, HDF5 Fortran applications could not easily store derived type data using HDF5
compound datatypes. Derived types had to be composed with the members of the default Fortran intrinsic
types and had to be written by a field. Construction of the compound type in Fortran also presented some
difficulties since it required manual calculations of the members’ offsets. For details, see the example in the
HDF5 Tutorial on the compound datatypes at http://www.hdfgroup.org/HDF5/Tutor/compound.html.

The Fortran 2003 standard allows the HDF5 Fortran Library to enable an easy and efficient way to work with
compound datatypes. The sections below show how to construct an HDF5 compound datatype that
corresponds to the derived type and how to write and read data of this type.

4.2.1. Constructing a Compound Datatype with H5OFFSETOF
As mentioned above, versions of the HDF5 Fortran Library prior to 1.8.8 require manual calculations of the
members’ offsets within a structure when an HDF5 compound datatype is created. The 1.8.8 version provides
the H5OFFSETOF function to find offsets. This function is similar to the HDF5 C Library macro HOFFSET. The
following is the signature:

FUNCTION h5offsetof(structure_ptr,member_ptr) RESULT(member_offset)

structure_ptr is a C address of the derived type element, and member_ptr is a C address of its member.
The size returned by the function is used with the h5tinsert_f function to specify the offset of a member
within the derived type.

The example below illustrates the calculation of an offset of the pressure member and how it is passed it to
the h5tinsert_f call for constructing an HDF5 compound datatype.

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html�
http://www.hdfgroup.org/HDF5/Tutor/compound.html�

November 3, 2011 Fortran 2003

Page 12 of 19

…
CALL h5tinsert_f(memtype, "pressure", &
H5OFFSETOF(C_LOC(wdata(1)),C_LOC(wdata(1)%pressure)), H5T_NATIVE_INTEGER, hdferr)
…..

4.2.2. How to Write or Read a Compound Datatype
After a memory datatype was constructed as shown in section 4.2.1, data can be written by passing a C pointer
to the h5dwrite_f call (or h5dread_f call).

CALL h5dwrite_f(dset, memtype, C_LOC(wdata(1)), hdferr)

Please notice a simplified interface: there is no longer any need to pass the dims parameter when passing data
by C pointer. The same is true for writing and reading HDF5 attributes of compound datatypes; for more
details see the example h5ex_t_cmpd_F03.f90 at http://www.hdfgroup.org/ftp/HDF5/examples/examples-
by-api/api18-fortran.html

4.2.3. Variable-length Datatypes
In this section we will show how to write and read data of the variable-length datatype using h5dwrite_f and
h5dread_f APIs instead on the specialized h5dwrite_vl_f and h5dread_vl_f APIs. First, we will look at
the writing and reading of variable-length strings. Then we will discuss the writing and reading of variable-
length data of an arbitrary base datatype.

4.2.3.1. Steps to Write or Read Variable-length Strings
The example h5ex_t_vlstring.f90 shows how to store an array of Fortran strings as variable-length C
strings in an HDF5 file and how to read them back using h5dwrite_vl_f and h5dread_vl_f APIs. This
approach requires usage of special API and advance knowledge of the maximum length of all strings to be
written. The example h5ex_t_vlstring_F03.f90 shows how to write and read Fortran strings that have
different lengths without using special APIs.

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html�
http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html�

November 3, 2011 Fortran 2003

Page 13 of 19

4.2.3.1.1. Declaring Variable-length Strings
To write Fortran strings of different lengths, one has to declare a write buffer (in our example wdata) and
initialize it as follows:

TYPE(C_PTR), DIMENSION(1:dim0) :: wdata
CHARACTER(len=8, KIND=c_char), DIMENSION(1), TARGET :: A = "Parting"//C_NULL_CHAR
…
CHARACTER(len=6, KIND=c_char), DIMENSION(1), TARGET :: C = "sweet"//C_NULL_CHAR
! Initialize array of C pointers
wdata(1) = C_LOC(A(1))
 …
wdata(3) = C_LOC(C(1))

Please notice the usage of the KIND parameter and its value c_char. The length of the original string is
increased by 1 (specifying 8 instead of 7), and C_NULL_CHAR is added to the end of the Fortran string. The
write buffer is initialized with a C address of the modified Fortran string.

The array for reading data back is declared as follows:

TYPE(C_PTR), DIMENSION(:), ALLOCATABLE :: rdata

4.2.3.1.2. Writing and Reading Variable-length Strings
After variables were declared and initialized in the section above (4.2.3.1.1), dataset creation to store data and
write or read data is straightforward:

CALL h5dcreate_f(file, dataset, H5T_STRING, space, dset, hdferr)
CALL h5dwrite_f(dset, H5T_STRING, wdata, hdferr)
…
ALLOCATE(rdata(1:dims(1)))
CALL h5dread_f(dset, H5T_STRING, rdata, hdferr)

Since the call above returns a pointer array, we will need to get a Fortran pointer for each element of the array
to get a string. This can be done by using the C_F_POINTER intrinsic procedure as shown below:

CHARACTER(len=8, kind=c_char), POINTER :: data
….
 DO i = 1, dims(1)
 CALL C_F_POINTER(rdata(i), data)
 ! Display data
 END DO

If the length in the declaration of the data pointer is not big enough, the string will be truncated.

November 3, 2011 Fortran 2003

Page 14 of 19

4.2.3.2. Steps to Write or Read Variable-length Data
Adding support for the C_PTR derived type made it easy to support HDF5 variable-length datatypes of any
base type. The HDF5 Fortran library introduced new derived type hvl_t defined as

TYPE hvl_t
 INTEGER(size_t) :: len ! Length of VL data (in base type units)
 TYPE(C_PTR) :: p ! Pointer to VL data
 END TYPE hvl_t

4.2.3.2.1. Declaring Variable-length Data
The data should be declared using the derived type hvl_t. The example below shows this.

TYPE(hvl_t), DIMENSION(1:2), TARGET :: wdata

4.2.3.2.2. Writing and Reading Variable-length Data
Writing and reading variable-length data is done in the same way as for any other derived type. This is
demonstrated by the following code from the example h5ex_t_vlen_F03.f90:

TYPE(hvl_t), DIMENSION(1:2), TARGET :: wdata
INTEGER, DIMENSION(:), POINTER :: ptr_r
TYPE(C_PTR) :: f_ptr
….
ALLOCATE(ptr(1:2))
ALLOCATE(ptr(1)%data(1:wdata(1)%len))
….
DO i=1, wdata(1)%len
 ptr(1)%data(i) = wdata(1)%len - i + 1 ! 3 2 1
ENDDO
wdata(1)%p = C_LOC(ptr(1)%data(1))
…..
CALL H5Tvlen_create_f(H5T_NATIVE_INTEGER, memtype, hdferr)
f_ptr = C_LOC(wdata(1))
CALL h5dwrite_f(dset, memtype, f_ptr, hdferr)
CALL h5dvlen_reclaim_f(memtype, space, H5P_DEFAULT_F, f_ptr, hdferr)

Please notice that the HDF5 Fortran Library provides a new subroutine h5dvlen_reclaim_f that should be
used to release allocated data buffers.

November 3, 2011 Fortran 2003

Page 15 of 19

4.2.4. Enumerated Type
Reading and writing enumerations from a Fortran program is illustrated in h5ex_t-enum_F03.f90. This
example can be found at

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html.

Fortran applications should carefully follow the steps described in the sub-sections below to assure that data is
passed correctly to the HDF5 library.

4.2.4.1. Steps to Write or Read Data of an Enumerated Type
Go through these steps to write or read data of an enumerated datatype.

4.2.4.1.1. Variable Declarations
To write or read HDF5 enum data, one should use an enumerated type using ENUMERATOR as shown in the
following example:

! Enumerated type
 ENUM, BIND(C)
 ENUMERATOR :: SOLID = 0, LIQUID, GAS, PLASMA
 END ENUM

The buffers with data to write or read should be declared as using integers of the KIND that corresponds to the
enumerator and the TARGET attribute as shown below:

INTEGER(KIND(SOLID)), DIMENSION(1:dim0, 1:dim1), TARGET :: wdata ! Write buffer
INTEGER(KIND(SOLID)), DIMENSION(:,:), ALLOCATABLE, TARGET :: rdata ! Read buffer

4.2.4.1.2. Constructing a Memory Datatype
A memory datatype should be constructed by finding an appropriate HDF5 integer datatype and then following
the standard procedure for constructing an HDF5 enum type. To find an appropriate HDF5 integer datatype,
use the h5kind_to_type function as shown in the following example:

M_BASET = h5kind_to_type(kind(SOLID), H5_INTEGER_KIND) ! Memory base type
CALL h5tenum_create_f (M_BASET, memtype, hdferr)
DO i = SOLID, PLASMA
…
 val = i
 CALL h5tenum_insert_f(memtype, TRIM(names(i+1)), val, hdferr)
….
ENDDO

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/api18-fortran.html�

November 3, 2011 Fortran 2003

Page 16 of 19

4.2.4.1.3. Constructing a File Datatype
If the datatype in the file is different from memtype, special care should be taken to convert enum values
before constructing the HDF5 enum datatype. Conversion is performed on each value using the
h5tconvert_f subroutine. Please note that the enum value has to have a datatype big enough to contain a
converted value. The following example may not work if the file datatype would be, for example,
H5T_STD_I64BE.

INTEGER(kind(SOLID)), TARGET :: val
….
! In the file enums are 16-bit integers
CALL h5tenum_create_f (H5T_STD_I16BE, filetype, hdferr)
DO i = SOLID, PLASMA
…
 !
 ! Insert enumerated value for filetype. We must first convert
 ! the numerical value val to the base type of the destination.
 !
 f_ptr = C_LOC(val)
 CALL h5tconvert_f (M_BASET, H5T_STD_I16BE, INT(1,SIZE_T), f_ptr, hdferr)
 CALL h5tenum_insert_f(filetype, TRIM(names(i+1)), val, hdferr)
 ENDDO

4.2.4.1.4. Creating, Writing, and Reading Enums
To create a dataset with an HDF5 enum datatype, use a standard h5dcreate_f call. Here is an example:

CALL h5dcreate_f(file, dataset, filetype, space, dset, hdferr)

After the dataset is created, write data using the new signature for the h5dwrite_f subroutine as shown
below:

f_ptr = C_LOC(wdata(1,1))
CALL h5dwrite_f(dset, memtype, f_ptr, hdferr)

Reading is a similar process. First, find the size of the buffer to hold data and allocate it, and then use
h5dread_f as shown:

 CALL h5dget_space_f(dset,space, hdferr)
 CALL h5sget_simple_extent_dims_f (space, dims, maxdims, hdferr)
 ALLOCATE(rdata(1:dims(1),1:dims(2)))
 !
 ! Read the data.
 !
 f_ptr = C_LOC(rdata(1,1))
 CALL h5dread_f(dset, memtype, f_ptr, hdferr)

November 3, 2011 Fortran 2003

Page 17 of 19

4.3. HDF5 Fortran APIs with Callbacks

The Fortran 2003 standard allows us to implement Fortran wrappers for the HDF5 C functions that use callback
functions. Those APIs are the following: h5eget_auto_f, h5literate_f, h5literate_by_name_f,
h5ovisit_f, and h5pcreate_class_f.

The example h5ex_g_iterate_F03.f90 shows how to use a callback function written in Fortran to iterate
over the groups and their members. The module liter_cb_mod contains a callback Fortran function
op_func that uses the H5Oget_info_by_name_f subroutine to discover the types of the objects, to discover
the names of the links to them, and to print this information. The C pointer to this function is passed as a
parameter to the h5literate_f subroutine that iterates over all objects found in the file specified by the file
identifier file. See the code examples below.

MODULE liter_cb_mod
 USE HDF5
 USE ISO_C_BINDING
INTEGER FUNCTION op_func(loc_id, name, info, operator_data) bind(C)
…..
TYPE(H5O_info_t), TARGET :: infobuf
ptr = C_LOC(infobuf)
TYPE(C_PTR) :: ptr
CALL H5Oget_info_by_name_f(loc_id, name_string, ptr, status)
IF(infobuf%type.EQ.H5O_TYPE_GROUP_F)THEN
 WRITE(*,*) "Group: ", name_string
 ELSE IF(infobuf%type.EQ.H5O_TYPE_DATASET_F)THEN
……
END FUNCTION op_func
END MODULE liter_cb_mod

PROGRAM main
 USE HDF5
 USE ISO_C_BINDING
 USE liter_cb_mod
 ………
 funptr = C_FUNLOC(op_func)
 ptr = C_LOC(info)
 CALL h5literate_f(file, H5_INDEX_NAME_F, H5_ITER_NATIVE_F, idx, funptr, ptr,
ret_value, status)
…….
END PROGRAM main

November 3, 2011 Fortran 2003

Page 18 of 19

4.4. Backward and Forward Compatibility Issues

Fortran 2003 features do not affect the HDF5 file format or the Fortran APIs available in earlier versions of the
software. Fortran applications written for versions of the library prior to HDF5 Release 1.8.8 will work without
any changes with HDF5 Release 1.8.8 and later. HDF5 files written by the 1.8.8 version of the HDF5 Fortran
Library using APIs introduced in HDF5 Release 1.8.8 can be read by earlier versions of the HDF5 1.8.* library.

4.5. Source Code File Structure

There were several additions to the Fortran source code file structure in the 1.8.8 release.

The source code for all Fortran APIs that require Fortran 2003 features is located in the fortran/src directory in
the files with the names containing the “F03” string. For example, H5Lff_F03.f90 contains Fortran wrappers
for the H5L C interface. The source code in those files is conditionally compiled in the release when the --
enable-fortran2003 configure flag is specified along with the --enable-fortran flag during the HDF5
configuration step.

The Fortran test directory fortran/test contains new files with the “F03” string in their names. The files contain
tests for the new APIs. As for the source, the tests are conditionally compiled in when the Fortran 2003
features are available.

The Fortran example directory fortran/examples has three new examples to illustrate Fortran 2003 features:
compound_fortran2003.f90, nested_derived_type.f90, and rwdset_fortran2003.f90.

4.6. Fortran API Changes and Additions in Version 1.8.8

The table below shows existing Fortran functions that have been upgraded and new functions introduced in
HDF5 Release 1.8.8. The upgraded functions have been changed so that they now pass a pointer to the buffer
instead of passing the data buffer itself. The functions in the New Functions column have had no Fortran
implementation prior to version 1.8.8. They have had a C implementation. See the “HDF5 Software Changes
from Release to Release” page on the web site for more information.

API Interface Upgraded Functions New Functions
H5 h5open_f
 h5close_f
 h5check_version_f
 h5get_libversion_f
 h5garbage_collect_f
 h5dont_atexit_f
H5A h5aread_f
 h5awrite_f
H5D h5dread_f
 h5dwrite_f

November 3, 2011 Fortran 2003

Page 19 of 19

API Interface Upgraded Functions New Functions
 h5dvlen_reclaim_f
H5DS h5dsattach_scale_f
 h5dsdetach_scale_f
 h5dsget_label_f
 h5dsget_num_scales_f
 h5dsget_scale_name_f
 h5dsis_attached_f
 h5dsis_scale_f
 h5dsset_label_f
 h5dsset_scale_f
H5E h5eset_auto_f
H5L h5literate_by_name_f
 h5literate_f
H50 h5ovisit_f
 h5oget_info_by_name_f
H5P h5pset_fill_value_f
 h5pget_fill_value_f
 h5pset_f
 h5pget_f
 h5pregister_f
 h5pinsert_f
 h5pcreate_class_f
 h5pset_nbit_f
 h5pset_scaleoffset_f
H5R h5rcreate_f
 h5rdereference_f
 h5rget_name_f
 h5rget_object_type_f
H5T h5tconvert_f
HDF5 Utility h5offsetof
 h5kind_to_type

	1. Introduction
	2. Limitations of the Current Implementation
	2.1. Support for Intrinsic Fortran Data Types
	2.2. Support for Fortran Derived Data Types and HDF5 Compound Datatypes
	2.3. Support for HDF5 Variable-length Datatypes
	2.4. Support for Fortran Enumerated Data Types and HDF5 Enumerated Datatypes
	2.5. HDF5 APIs with Callback Functions

	3. Support for Fortran 2003 Features in HDF5
	4. New Capabilities of the HDF5 Fortran Library
	4.1. Fortran INTEGER and REAL Data Types
	4.1.1. Function to Convert an Intrinsic INTEGER or REAL Fortran Data Type to an HDF5 Datatype
	4.1.2. Example of the h5kind_to_type Function

	4.2. Compound Datatypes
	4.2.1. Constructing a Compound Datatype with H5OFFSETOF
	4.2.2. How to Write or Read a Compound Datatype
	4.2.3. Variable-length Datatypes
	4.2.3.1. Steps to Write or Read Variable-length Strings
	4.2.3.1.1. Declaring Variable-length Strings
	4.2.3.1.2. Writing and Reading Variable-length Strings

	4.2.3.2. Steps to Write or Read Variable-length Data
	4.2.3.2.1. Declaring Variable-length Data
	4.2.3.2.2. Writing and Reading Variable-length Data

	4.2.4. Enumerated Type
	4.2.4.1. Steps to Write or Read Data of an Enumerated Type
	4.2.4.1.1. Variable Declarations
	4.2.4.1.2. Constructing a Memory Datatype
	4.2.4.1.3. Constructing a File Datatype
	4.2.4.1.4. Creating, Writing, and Reading Enums

	4.3. HDF5 Fortran APIs with Callbacks
	4.4. Backward and Forward Compatibility Issues
	4.5. Source Code File Structure
	4.6. Fortran API Changes and Additions in Version 1.8.8

