HDF5 User’s Guide

HDF5 Release 1.8.16

November 2015

2.3

The HDF Group

HDFS5 User’s Guide

ii

The HDF Group

HDF5 User’s Guide Copyright Notice and License Terms

Copyright Notice and License Terms

This page has copyright notice and license terms for the HDF5 (Hierarchical Data Format 5) Software
Library and Utilities.

HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 2006-2015 by The HDF Group.

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities

Copyright 1998-2006 by the Board of Trustees of the University of lllinois.
All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted for any
purpose (including commercial purposes) provided that the following conditions are met:

¢ Redistributions of source code must retain the above copyright notice, this list of conditions, and
the following disclaimer.

e Redistributions in binary form must reproduce the above copyright notice, this list of conditions,
and the following disclaimer in the documentation and/or materials provided with the distribu-
tion.

¢ In addition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

e All publications or advertising materials mentioning features or use of this software are asked, but
not required, to acknowledge that it was developed by The HDF Group and by the National Center
for Supercomputing Applications at the University of lllinois at Urbana-Champaign and credit the
contributors.

¢ Neither the name of The HDF Group, the name of the University, nor the name of any Contributor
may be used to endorse or promote products derived from this software without specific prior
written permission from The HDF Group, the University, or the Contributor, respectively.

DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH
NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the
Contributors be liable for any damages suffered by the users arising out of the use of this software, even if
advised of the possibility of such damage.

The HDF Group iii

Copyright Notice and License Terms HDF5 User’s Guide

Contributors: National Center for Supercomputing Applications (NCSA) at the University of lllinois, Fort-
ner Software, Unidata Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly
and Mark Adler (gzip), and Digital Equipment Corporation (DEC).

Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL)
and the United States Department of Energy under Prime Contract No. DE-AC02-05CH11231.

Portions of HDF5 were developed with support from the University of California, Lawrence Livermore
National Laboratory (UC LLNL). The following statement applies to those portions of the product and must
be retained in any redistribution of source code, binaries, documentation, and/or accompanying materi-
als:

This work was partially produced at the University of California, Lawrence Livermore National Lab-
oratory (UC LLNL) under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department
of Energy (DOE) and The Regents of the University of California (University) for the operation of
UC LLNL.

DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor the University of California nor
any of their employees, makes any warranty, express or implied, or assumes any liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, prod-
uct, or process disclosed, or represents that its use would not infringe privately- owned rights. Ref-
erence herein to any specific commercial products, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the United
States Government or the University of California, and shall not be used for advertising or product
endorsement purposes.

HDF5 is available with the SZIP compression library but SZIP is not part of HDF5 and has separate copyright
and license terms. See “Szip Compression in HDF Products” for further details.

iv The HDF Group

http://www.hdfgroup.org/doc_resource/SZIP/

HDF5 User’s Guide The HDF Group Help Desk

The HDF Group Help Desk

The HDF Group Help Desk: help@hdfgroup.org

See the “Support Services” page on The HDF Group website for information on the following:

¢ Frequently asked questions
e Tutorials

e How to subscribe to the hdf-forum

See the “HDF5 Examples” page on The HDF Group website at for a set of code examples.

The HDF Group A%

http://www.hdfgroup.org/services/support.html
http://www.hdfgroup.org/HDF5/examples/
http://www.hdfgroup.org

The HDF Group Help Desk HDFS5 User’s Guide

vi The HDF Group

HDF5 User’s Guide Update Status

Update Status

No major changes have been made to the HDF5 User’s Guide for HDF5 Release 1.8.16.

We welcome feedback on the documentation. Please send your comments to docs@hdfgroup.org.

The HDF Group vii

mailto:docs@hdfgroup.org

Update Status HDF5 User’s Guide

viii The HDF Group

HDF5 User’s Guide Table of Contents

Table of Contents

Copyright Notice and LiCENSE TEIMS . .ottt et e e e ettt et ettt ettt iii
The HDF Group Help Deskot e e et e e et e e et e et e v
UpPdate Statlus. . ..ottt e e e e e e vii
LISt Of FIgUIES . . oottt e e e et et e e e e e XV
List Of Tables. oot e e e e e Xix
List of Code EXampleso e e e e e XXi
List of FUNCHION LiStingsot e e e e e e e e e e e e e XXV
1. The HDF5 Data Model and File Structure. i e e e e e 1
L INtrodUCHION . ..o e e e e e e 1
1.2. The Abstract Data Modelot e e e e e e e e e 5
00 O 1 5

0 C 1 o T | o TS 7

1. 2. 83, Dataset. . oot e 8

R D - | = 1 o 1= [o < 9

A T D - | - 1Y/ o 1= O 10

12 B, At DULE .ottt e e e 11

1.2, 7. Property List ..o e e e e 13

1 2.8, LiNK. oot e e e e e e 14

1.3. The HDF5 Storage Model e e e et e et e et e 14
1.3.1. The Abstract Storage Model: the HDF5 Format Specification 14

1.3.2. Concrete Storage Model i e e 15
1.4.The Structure of an HDFS File. . ..o oottt e e e e et e e 16
1.4.1. Overall File Structureot e i e e e e e e 16

1.4.2. HDF5 Path Names and Navigation i ittt e 18

1.4.3. Examples of HDF5 File Structuresttt ittt e e e 18

2. The HDFS5 Library and Programming Model i i i e 21
20 I 1 e Yo [o1 f [o P 21
2.2. The HDF5 Programming Model e e e e e e 22
2.2.1.Creatingan HDFS File. it e e e e e e e e e 22

2.2.2. Creating and Initializinga Dataset. it e e 23
2.2.3.Closing an Object oot e 24

2.2.4. Writing or Reading a DatasettoorfromaF File 25

2.2.5. Reading and Writing a PortionofaDataset., 26

2.2.6. Getting Information aboutaDataset e 32

2.2.7. Creating and Defining Compound Datatypes. . ..ottt ittt 32

2.2.8. Creating and Writing Extendable Datasets. i i 34

2.2.9. Creating and Working with Groups. i e et et e e 37
2.2.10. Working with Attributes ... i e 40

The HDF Group ix

Table of Contents HDF5 User’s Guide

2.3. The Data Transfer Pipeline i e e e e e 43
TR I o T o] o 45
3L INtrodUCHION . o .t e e 45
3.2, File ACCESS MOTES . . ottt i ettt e e et e e e e e 45
3.3. File Creation and File Access Propertiest et 46
3.4, Low-level File DriVers ...ttt e e e e e e e e e 47
3.5. Programming Model for Files. i e e 48
3.5. 1. Creatinga New File.o e e e e 48
3.5.2. 0pening an Existing File i e e 49
3.5.3.Closing aFile e e 49
3.6. Using hSdump to View a File e e e e e e e e 49
3.7, File FUNCLION SUMIMAIi@S. o\ vt ittt et e et e e e et et et ettt 50
3.8. Creatingor Openingan HDFS File i e e e e 56
3.9.Closing an HDFS File ..ot e e e e e e e e e 57
3.10. File Property Lists . ..uit ittt e e e et e e e e 58
3.10.1. Creating a Property Listot e e e e 58
3.10.2. File Creation Propertiesottt e e e e e e e e e e 58
3.10.3. File ACCeSS Properties. . ..o vttt ettt e e e e 60
3.11. Alternate File Storage Layouts and Low-level File Drivers., 61
3.11.1. Identifying the Previously-used File Driver. i i i e 65
3.11.2. The POSIX (@ka SEC2) DIiVer . ..ttt et ettt ettt et ettt et ieen 66
3.11.3. The DireCt DIiVer. . o oot e e et e e et e e et e e e e 66
311 4. The Log DriVer. . oot e et e et e e e e e e 67
3.10.5. The WINdOWS DIiVer. . oottt ettt et e e e e e ettt e ettt e e 68
3.11.6. The STDIO DIiVer. « ot it ettt et e e e e e e e e e et e e e et e e 68
3.11.7. The Memory (aka Core) Drivert e e e et 68
3.11.8. The Family Driver . ..o e e e e et et e e e e e 70
3.11.9. The MUK DIIVEr .\t e e e e e e et e et e e e e e e e 71
3.11.00. The SPHt DIiVEr . . ottt e e e e e e et et e e e e e e 72
3.12.10. The Parallel Driver ..ot e e e e e e e e e 73
3.12. Code Examples for Opening and Closing Files 74
3.12.1. Example Using the H5F_ACC TRUNCFIag e i 74
3.12.2. Example with the File Creation Property List.......... i, 74
3.12.3. Example with the File Access Property Listt 75
3.13. Working with Multiple HDFS Files oo e et e et et e e 76
A HDEFS GrOUPS vttt ettt et et e et e e e e e e 79
AL INtrodUCHION . . oot e e e 79
4.2. Description of the Group Object e e 81
4.2.1. The Group ObjJeCtot e e e e 81
4.2.2. The Hierarchy of Data Objects. ottt e e e e e e e 83
4.2.3. HDFS Path Names. . .ottt e e e e e e e e 84
4.2.4. Group Implementations iN HDFS. i e e e 85
4.3, UsiNg hodUMP . .o e 86
4.4, Group FUNCLiON SUMMAIiEs . ..o e e e e e e e et e e 87
4.5. Programming Model for Groupsttt i e e e e e 91
4. 5. . Creating @ GrOUP. . ottt et e e e e e e e 92
4.5.2. Opening a Group and Accessing an ObjectinthatGroup............................. 93
4.5.3. Creating a Dataset in a Specific Groupt i et 93

X The HDF Group

HDF5 User’s Guide Table of Contents

4. 5.4, CloSING @ GrOUP . . ottt ettt e e e e e e 94
4.5.5. Creating LinKso i e e e e 94
4.5.6. Discovering Information about Objects i e 97
4.5.7. Discovering Objects iN @ GroUP . ..o v ittt ettt et e e e 97
4.5.8. Discovering All of the ObjectsintheFile 97
4.6. Examples of File Structuresot i e e e e e e e e 98
S HDFS Datasets . .ottt e 103
DL INtrOdUCHION . o .o e e e 103
5.2. Dataset FUNCtion SUMMaANIEsot e e e e 104
5.3. Programming Model for Datasetst i e 110
5.3.1. General Modelo e e e 110
5.3.2. Create Dataset e 112
5.3.3. Data Transfer OperationsonaDatasetiiiiiiii i, 115
5.3.4. Retrieve the Propertiesof aDataset. i e e e 121
5.4, Data Trans e . ot e e e 122
5.4.1. The Data Pipelineot e e e e e e e e e e e 124
5.4.2. Data Pipeline Filters e e e e e e 126
LT . TR 1T B o =Y 127
5.4.4. Data Transfer Properties to Manage the Pipeline 127
5.4.5. Storage Strategies.o e e e 129
5.4.6. Partial I/O Sub-setting and Hyperslabs. 131
5.5. Allocation of Spaceinthe File i e e e 131
5.5.1. Storage Allocation in the File: Early, Incremental, Late.............................. 135
5.5.2. Deleting a Dataset from a File and ReclaimingSpace 139
5.5.3. Releasing Memory RESOUICES . ..ottt et e et e et ettt 139
5.5.4. External Storage Properties.t e 140
5.6. USiNg HDFS Filters . ..ottt e e e e et e e et e et et 143
5.6.1. Using the N-bit Filter o e e e e e et e e e 143
5.6.2. Using the Scale-offset Filter. o i e e et e i 160
5.6.3. Using the Szip Filter i e e e e e e e 172

6. HDFS Datatypes . . oo e e e e 173
6.1. Introduction and Definitions i e e 173
6.2. HDF5 Datatype Model. o e e 175
6.2.1. Datatype Classes and Properties.ottt et et e e 177
6.2.2. Predefined Datatypes.o ottt e e 179
6.3. How Datatypes are Usedot i e e e e et e e e 182
6.3.1. The Datatype Object and the HDF5 Datatype APl 182
6.3.2. Dataset Creationot e 183
6.3.3. Data Transfer (Read and Write).o ittt i e et et et 183
6.3.4. Discovery of Data Format.ottt i e e e 184
6.3.5. Creating and Using User-defined Datatypes ...t nnnnnnn. 185
6.4. Datatype (H5T) FUNCLION SUMMaANi@S.ottt ettt et et et e e 186
6.5. Programming Model for Datatypes.t e e 192
6.5.1. Discovery of Datatype Propertiest e e e e e 194
6.5.2. Definition of Datatypest e e 199
6.6. Other Non-numeric Datatypes. .. .ottt e e e et e et et et et e e 232
B.6. 0. SEIINES .« ottt e e e e e e e e 232
B.6.2. REIIENCE .ottt e e 234

The HDF Group xi

Table of Contents HDF5 User’s Guide

6.6. 3. ENUM . . o e e e e e 236
B.6.4. OPagUE . .ttt e e e e e e e 238
6.6.5. Bitfield o e e 238
B.7. Fill Values . . o e e e 238
6.8. Complex Combinations of Datatypes i e e e 241
6.8.1. Creating a Complicated Compound Datatypettt 242
6.8.2. Analyzing and Navigatinga Compound Datatype, 248
6.9. Life Cycle of the Datatype Object. oot e et et e 249
6.10. Data Transfer: Datatype Conversionand Selection 253
6.11. Text Descriptions of Datatypes: Conversiontoandfrom 260
7. HDF5 Dataspaces and Partial 1/Oot e e e 265
7. L INtrodUCHION . . .t e e 265
7.2. Dataspace (H5S) FUNCLion SUMMaries.ottt ettt et et et e 265
7.3. Definition of Dataspace Objects and the Dataspace Programming Model 268
7.3.1. Dataspace ObjeCtS . ..o it e 268
7.3.2. Dataspace Programming Model e 269
7.4. Dataspaces and Data Transfer i e 276
74,0, Data Selectionot e 278
7.4.2. Programming Model. i e 282
7.5. Dataspace Selection Operationsand Data Transfer.......... i .. 292
7.6. References to Dataset RegioNsttt e e e e e e 292
7.6.1. Example Uses for Region Referencesttt it iie e 292
7.6.2. Creating References to RegioNsS.o ittt e e et et et e e e 294
7.6.3. Reading References to RegIOoNSo it e e e e e 298
7.7, SamMPlE PrOgrames. . oottt e e e 300
2 2 R o 1= .Y 1 = o 300
7.7.2. S WHItE. 00 . .o e e e 302
7.7.3. K Write _trf00. ..o e 304

8. HDFS At ULES . . oot e e e e 307
8. L. INtrodUCTION . . .ttt e e e 307
8.2. Programming Model for Attributes. i e 308
8.2.1. To Open and Read or Write an Existing Attribute 309
8.3. Attribute (H5A) FUNCLION SUMMANIES ...\ttt et et ettt et ettt 309
8.4. Working with Attributes e 312
8.4.1. The Structure of an Attribute i i e 312
8.4.2. Creating, Writing, and Reading Attributes i 312
8.4.3. Accessing Attributes by NameorIndex i e 313
8.4.4. Obtaining Information Regarding an Object’s Attributes 313
8.4.5. Iterating across an Object’s Attributes i i 314
8.4.6. Deleting an Attribute e 314
8.4.7.Closing an AttribuULe i e 315
8.5, SPECIAl ISSUBS . . oottt e e e e 315
9. HDFS Error Handling oo et e e e e e e e e 321
9. L. INtrodUCHION . . .ottt e e e 321
9.2. Programming Model for Error Handling i e 321
9.3. Error Handling (H5E) Function SUmMMariesttt ittt i i 321
9.4. Basic Error Handling Operationsttt it it e et e et 323

xii

The HDF Group

HDF5 User’s Guide Table of Contents

9.4.1. Error Stack and Error MeSSageo vttt it ettt et et et e 323

9.4.2. Printand Clear an Error Stack . ..ot e e 324

9.4.3. MUEE Error Stack.ot e 325

9.4.4. Customized Printingof an ErrorStack 326

9.4.5. Walk through the Error Stack i e et e e 327

9.4.6. Traverse an Error Stack with a Callback Function, 327

9.5. Advanced Error Handling Operationsttt et i i 329
9.5.1. More Error API FUNCHIONS. oo e e ettt 331

9.5.2. Pushing an Application Error Message onto Error Stack. 333

10. Properties and Property Lists in HDFS i e ettt et e 337
10. 2. INtrodUCHiON . . .ot e e e e e 337
10.2. Property List Classes, Property Lists, and Properties. ..., 338
10.2.1. Property List Classes. . .. vttt et e ettt e e e e e e 339
10.2.2. Property ListS . .ovi e e e e e e 340
10,23, ProPerieS . vttt e e 341

10.3. Programming Model for Properties and Property Lists.......... ..., 343
10.3.1. Using Default Property Listst e e e e et n 343
10.3.2. Basic Steps of the Programming Model i 344
10.3.3. Additional Property List Operationsttt e e et e e 346

10.4. Generic Properties Interface and User-defined Properties............. 347
10.5. Property List FUNCtiON SUMMaAries. it e e et e e e et et e 347
10.6. Additional Property List RESOUICES . ..o\ttt ettt e e ettt et et et et et e s 350
10. 7. NOTES . ottt e 351
11, Additional RESOUICES vt ittt ettt e e e e e e e e e e 353
0T = 355

The HDF Group xiii

Table of Contents HDF5 User’s Guide

xiv The HDF Group

HDF5 User’s Guide List of Figures

List of Figures

Figure 1-1. HDF5 models and implementations i i e e 1
Figure 1-2. The library, the application program, and othermodules 2
Figure 1-3. Data structures in different layers i i i e 4
Figure 1-4. The HDFS file e e e e e e e e e e e 6
Figure 1-5. Group membership via link objects i e 7
Figure 1-6. Classes of named 0bjects i e e e e e e 8
Figure 1-7. The datasetot e e e et e e e e e e e 9
Figure 1-8. The dataspaceottt it e e et e e ettt et et e e e 10
Figure 1-9. Datatype classifications i e e et et e e 11
Figure 1-10. Attribute data elements ... i i e 12
Figure 1-11. The property list oot e e et e et et et 13
Figure 1-12. An HDF5 file with one datasett it 17
Figure 1-13. ABNF grammar for pathnames i i i 18
Figure 1-14. An HDF5 file structure With groupst e et e e 19
Figure 1-15. An HDF5 file structure with groupsandadataset i, 19
Figure 1-16. An HDF5 file structure with groups and datasets i ., 20
Figure 1-17. Anot HDF5 file structure with groupsand datasets i, 20
Figure 2-1. Dataset selections it e e e 27
Figure 2-2. A one-dimensional arrayttt e 30
Figure 2-3. Extending adataset i e 35
Figure 2-4. A data transfer from storage to memory it i e e e 43
Figure 3-1. UML model for an HDF5 file and its property lists, 47
Figure 3-2. 1/0 path from application to VFL and low-level driverstostorage 62
Figure 3-3. Two separate files o e et e e e e e e 76
Figure 3-4. File2 mounted on Filel i e et et et e e 77
Figure 4-1. A file with a strictly hierarchical group structure 79
Figure 4-2. Afile with acircularreference i e 80
Figure 4-3. A file with one groupasa member ofitself i i, 80
Figure 4-4. Abstract model of the HDF5 group object i i 81
Figure 4-5. Classes of named objects i e e e e e 82
Figure 4-6. The group ObjeCt oot e e e et ettt e e et et 82
Figure 4-7. ABNF grammar for HDF5 pathnames i i 84
Figure 4-8. Afile with a circularreference i i i 85
Figure 4-9. Some file struCtUres i e e ettt et et et et et 98
Figure 4-10. More sample file structures i i i e e 99
Figure 4-11. Hard and soft links i e e et e et e e 100
Figure 5-1. Application view of adataset i i e e e 103
Figure 5-2. Dataset programming SEQUENCEt i ittt it ettt et ettt et e 111
Figure 5-3. AWrite Operation i e e e e e 116
Figure 5-4. Data layouts inan application i i e 123
Figure 5-5. The processing order in the data pipeline i i ... 125
Figure 5-6. Contiguous data Storageu ittt e e e it e e e e 129

The HDF Group XV

List of Figures

HDF5 User’s Guide

Figure 5-7. Chunked data storageco ittt e e et e e e e 130
Figure 5-8. Compact data storageottt i e e e e e 131
Figure 5-9. A two dimensional array stored as a contiguous dataset 133
Figure 5-10. A two dimensional array storedinchunks i i 134
Figure 5-11. External file storagettt e e e e e e 141
Figure 5-12. Partitioning a 2-D dataset for externalstorage 142
Figure 5-13. HST_NATIVE _INT in MemoOry ..ottt e et ettt ettt e e e 145
Figure 5-14. Passed to the n-bitfilter i e 145
Figure 5-15. H5T_NATIVE _FLOAT iIN MeMOIY . .ttt et et e e ettt et e e e 146
Figure 5-16. Passed to the n-bit filter i 146
Figure 6-1. Datatypes, dataspaces, and datasets ...t 173
Figure 6-2. The datatype model i e e e e e e 176
Figure 6-3. Composite datatypest e e e 176
Figure 6-4. Datatype Classes . ..ot i i e e e e e 177
Figure 6-5. The datatype object i e e e et e e et e e 193
Figure 6-6. The storage layout for a new 128-bit little-endian signed integer datatype 205
Figure 6-7. Memory Layout for a 32-bit unsigned integer i, 206
Figure 6-8. A user-defined integer datatype with a range of -1,048,583t0 1,048,584 207
Figure 6-9. A user-defined floating point datatype i, 208
Figure 6-10. Layout of a compound datatype i e e 210
Figure 6-11. Layout of a compound datatype nested in a compound datatype 211
Figure 6-12. Memory layout of a compound datatype that requires padding 213
Figure 6-13. Representing data with multiple measurements 226
Figure 6-14. Memory layout of a two-dimensional array datatype 228
Figure 6-15. Memory layout of a VL datatypeottt 231
Figure 6-16. A string stored as one-character elements in a one-dimensionalarray 233
Figure 6-17. STOriNg an €NUM arTay . ..ottt ettt et et et e et ettt et et 237
Figure 6-18. A compound datatype built with different datatypes 242
Figure 6-19. Logical tree for the compound datatype with four members 245
Figure 6-20. The storage layout for the four member datatypes, 246
Figure 6-21. The storage layout of the combined four members 247
Figure 6-22. The layout of the dataset i et 248
Figure 6-23. Life cycle of adatatype ...t e e e e e 251
Figure 6-24. Transient datatype states: modifiable, read-only, and immutable 252
Figure 6-25. Layout of a datatype conversioniiiiiinin i 255
Figure 6-26. An enum datatype CONVEISION ittt it ettt et et ettt e 256
Figure 6-27. Alignment of a compound datatype 258
Figure 6-28. Layout when an elementisskipped i 260
Figure 7-1. A simple dataspaceco.i ittt e e e e 269
Figure 7-2. Comparing Cand Fortran dataspacesov ittt i et ettt en 275
Figure 7-3. Data layout before and afteraread operation i iiiiinnn... 277
Figure 7-4. Moving data from disk to memory e e 277
Figure 7-5. Access a sub-set of datawitha hyperslab i L. 279
Figure 7-6. Build complex regions with hyperslabunions 280
Figure 7-7. Use hyperslabs to combine ordispersedata 280
Figure 7-8. Point seleCtion it e e 281
Figure 7-9. Selecting a hyperslab 282
Figure 7-10. Write from a one dimensional array to a two dimensionalarray 285
xvi The HDF Group

HDF5 User’s Guide List of Figures

Figure 7-11. Transferring hyperslab unions i i i 287
Figure 7-12. Write datato separate points i e e e e e 290
Figure 7-13. Featuresindexed by atable i e 293
Figure 7-14. Storing the table with a compound datatype 294
Figure 7-15. Afile with three datasets i i e e 295
Figure 8-1. The UML model for an HDF5 attribute o i e 308
Figure 8-2. A large or shared HDF5 attribute and its associated dataset(s) 318
Figure 10-1. The HDF5 property environmentttt ittt et et e e aenenn 337
Figure 10-2. HDF5 property list class inheritance hierarchy i i ... 340

The HDF Group xvii

List of Figures HDF5 User’s Guide

xviii The HDF Group

HDF5 User’s Guide List of Tables

List

of Tables

Table 1-1. Property list classes and their usage. i i e e i 13
Table 2-1. The HDF5 APl naming scheme. i e e e et et e e 21
Table 2-2. Hyperslab parameterst e e 28
Table 2-3. Compound datatype member propertieso it i 33
Table 3-1. Access flags and MoOdes it 46
Table 3-2. Supported file drivers. e e 63
Table 3-3. Logging levels oo e e 67
Table 5-1. Required INPULSttt e e et et et e e e e et e e e e 113
Table 5-2. Optional INPUESot e e e e e e 113
Table 5-3. Categories of transfer properties e e e e e 117
Table 5-4. Stages of the data pipeline i e e e e 124
Table 5-5. Data pipeline filters e 126
Table 5-6. 1/O file driVers.ot e e 127
Table 5-7. Dataset storage strategies. . .. oottt e e e e e e 129
Table 5-8. Initial dataset Size.ottt e 132
Table 5-9. Metadata storage Sizes oottt e e e e 132
Table 5-10. File storage allocation options i e e 135
Table 5-11. Default storage Options i e e e e e 136
Table 5-12. When towrite fill valueso i e e e e e e 136
Table 5-13. Fill values to WIiteottt e e e e e e e e e e 137
Table 5-14. Storage allocation and fill summary i 137
Table 5-15. HoDread SUMMaryottt et et e et ettt ettt ettt et e 138
Table 5-16. External storage APl. e 140
Table 6-1. Datatype classes and their propertiesc it i 178
Table 6-2. Architectures used in predefined datatypes, 179
Table 6-3. Base LY PeS . o ottt et e e e e e 180
Table 6-4. Byte Order. ..o e e e e e 180
Table 6-5. Some predefined datatypes e e 181
Table 6-6. Native and 32-bit Cdatatypes. ... e e e 181
Table 6-7. DatatyPe USES . . vttt ittt et e e et e e e 183
Table 6-8. General operations on datatype objects i e 193
Table 6-9. Functions to discover properties of atomicdatatypes, 195
Table 6-10. Functions to discover properties of atomic numeric datatypes. 196
Table 6-11. Functions to discover properties of atomic string datatypes.......................... 198
Table 6-12. Functions to discover properties of atomic opaque datatypes 198
Table 6-13. Functions to discover properties of composite datatypes 198
Table 6-14. Functions to create each datatype classco i 200
Table 6-15. API methods that set properties of atomic datatypes i, 201
Table 6-16. API methods that set properties of numericdatatypes, 202
Table 6-17. APl methods that set properties of string datatypes 203
Table 6-18. APl methods that set properties of opaque datatypes., 204
Table 6-19. Memory Layout for a 32-bit unsignedinteger........., 205

The HDF Group xix

List of Tables HDF5 User’s Guide

Table 6-20. Representing data with multiple measurements i iiinnn... 225
Table 6-21. Storage method advantages and disadvantages. 227
Table 6-22. An enumeration with five elements. i i e 236
Table 6-23. Datatype APISo e 253
Table 6-24. Default actions for datatype conversion exceptions.t .. 254
Table 7-1. Hyperslab elementso i e e 279
Table 7-2. Selection operations i e e 291
Table 7-3. The inquiry fUNCLIONSo e e e e e e 299
Table 10-1. Property list classes iNn HDFSo i e e et e e e e en 339
Table 11-1. Additional reSOUICES . .. v\ttt e e e e e ettt e e e e 353

XX The HDF Group

HDF5 User’s Guide List of Code Examples
[]

List of Code Examples

Code Example 2-1. Creating and closingan HDF5file. i 23
Code Example 2-2. Create adataset.ottt e e et e e e e 24
Code Example 2-3. Close an object. i e e 24
Code Example 2-4. Writing adataset.ottt e e 25
Code Example 2-5. Define the selection to be read fromstorage............ 29
Code Example 2-6. Define the memory dataspace and selection i iion... 30
Code Example 2-7. The destination selection i e 31
Code Example 2-8. Routines to get dataset parametersi ittt 32
Code Example 2-9. A compound datatype for complex numbers........... 34
Code Example 2-10. Declaring a dataspace with unlimited dimensions. 36
Code Example 2-11. Enable chunking. i e e e e e 36
Code Example 2-12. Create a dataselottt i i et 36
Code Example 2-13. Extend the dataset by seven rows i i e 37
Code Example 2-14. Create @ BroUD . . vt i ettt ettt ettt et ettt ettt e 37
Code Example 2-15. Create a group withina group e e et e e 38
Code Example 2-16. Create a dataset within a group using an absolutename 39
Code Example 2-17. Create a dataset within a group using arelativename 39
Code Example 2-18. Accessing a group using its absolute name. 40
Code Example 2-19. Accessing a group using itsrelative name. i i, 40
Code Example 2-20. Create an attribute i e e 41
Code Example 2-21. Read a known attribute i 42
Code Example 2-22. Read an unknown attribute e 42
Code Example 3-1. Creating an HDFS5 file using property listdefaults 48
Code Example 3-2. Creating an HDFS5 file using property lists. ... i 48
Code Example 3-3. Opening an HDFS file.o e e et et 49
Code Example 3-4. Closingan HDFS5 file. oo e e e e e 49
Code Example 3-5. Identifying a driver i i e e 65
Code Example 3-6. Using the POSIX, aka SEC2, driverouiuirini ittt et iieaens 66
Code Example 3-7. Using the Direct driverttt e e e et et et e e e 66
Code Example 3-8. Logging file acCessttt e 67
Code Example 3-9. Using the Windows driver. i e et et et 68
Code Example 3-10. Using the STDIO drivert e e et et et et e 68
Code Example 3-11. Managing file access forin-memoryfiles 69
Code Example 3-12. Managing file family properties. i i 70
Code Example 3-13. Managing access properties for multiplefiles 72
Code Example 3-14. Managing access properties for splitfiles......... 72
Code Example 3-15. Managing parallel file access properties., 73
Code Example 3-16. Creating a file with default creation and access properties 74
Code Example 3-17. Creating a file with 64-bitoffsets. i i i, 75
Code Example 3-18. Opening an existing file for parallel I/O. 75
Code Example 3-19. Using HoFMOUNTottt et e et et et et et et et et eae s 77
Code Example 4-1. Creating three Nnew groupsottt e e et et et et et 92
Code Example 4-2. Open a dataset with relative and absolute paths.............................. 93
Code Example 4-3. Create a dataset with absolute and relativepaths. 93
The HDF Group xxi

List of Code Examples HDFS5 User’s Guide

Code EXample 4-4. CloSE @ BrOUD . v o v vttt ettt et e e e e et ettt et e e 94
Code Example 4-5. Create a hard link. o i e e e e e 95
Code Example 4-6. Delete a link e e 95
Code Example 4-7. Finding the number of linkstoanobject............. 95
Code Example 4-8. Create asoft link ot e e e e 96
Code Example 5-1. Create an empty dataset.t e et 114
Code Example 5-2. Create a dataset withfillvalueset............ i i i, 115
Code Example 5-3. Write an array of integers.t et et e 118
Code Example 5-4. Write an array usinga property list. i i 119
Code Example 5-5. Read anarray fromadataset.ttt e 121
Code Example 5-6. Retrieve dataset.ot i i e 122
Code Example 5-7. Using H5Dset_extent to increase the sizeofadataset 134
Code Example 5-8. External storage.ottt e e e e 141
Code Example 5-9. Partitioning a 2-D dataset for external storage. 142
Code Example 5-10. N-bit compression forintegerdata 152
Code Example 5-11. N-bit compression for floating-pointdata................ 156
Code Example 5-12. Scale-offset compressionintegerdata 165
Code Example 5-13. Scale-offset compression floating-pointdata............................... 169
Code Example 6-1. Using a datatype tocreateadataset.c i, 183
Code Example 6-2. Writingto adataset. i i e e e e e 184
Code Example 6-3. Reading from adataset.ttt e et e 184
Code Example 6-4. Discovering datatype propertiescoo ittt 185
Code Example 6-5. Create a new datatypeottt i e et et et e e 200
Code Example 6-6. Create a new 128-bit little-endian signed integer datatype 204
Code Example 6-7. A user-defined datatype with a 24-bit signedinteger 207
Code Example 6-8. A user-defined 24-bit floating pointdatatype 207
Code Example 6-9. A compound datatype for complex numbersinC co... 209
Code Example 6-10. A compound datatype for complex numbersinFortran...................... 210
Code Example 6-11. Code for a compound datatype nested in a compound datatype 211
Code Example 6-12. Another compound datatype nested in a compound datatype 212
Code Example 6-13. A compound datatype that requirespadding............... 213
Code Example 6-14. Create a packed compound datatypein C 214
Code Example 6-15. Create a packed compound datatypeinFortran 214
Code Example 6-16. Create and write a dataset with a compound datatypeinC................... 215
Code Example 6-17. Create and write a little-endian dataset with a compound datatypeinC........ 216
Code Example 6-18. Writing floats and doublestoadataset 217
Code Example 6-19. Writing floats and doubles to a dataset on a little-endian system 218
Code Example 6-20. Create and write a dataset with a compound datatype in Fortran.............. 219
Code Example 6-21. Read a dataset usinga memory datatype.......... ..., 222
Code Example 6-22. Read a dataset using H5Tget_native_type 223
Code Example 6-23. Read one floating point member of a compound datatype 224
Code Example 6-24. Read float and double members of a compound datatype.................... 225
Code Example 6-25. Create a two-dimensional array datatype., 227
Code Example 6-26. Create a variable-length datatype of unsignedintegers 229
Code Example 6-27. Data element storage for members of the VL datatype 229
Code Example 6-28. Write VL data.ttt i e e et e e e e 230
Code Example 6-29. Read VL datao it e e e e e e e 230
Code Example 6-30. Set the string datatype sizeto H5T VARIABLE 234

xxii The HDF Group

HDF5 User’s Guide List of Code Examples
Code Example 6-31. Read variable-length stringsinto Cstrings 234
Code Example 6-32. Create object references and writetoadataset 235
Code Example 6-33. Read a dataset with a referencedatatype 235
Code Example 6-34. Create an enumeration with fiveelements. 236
Code Example 6-35. Create a dataset with afillvalueof -1. i i, 239
Code Example 6-36. Create a fill value for a compound datatype............ it 239
Code Example 6-37. Retrieve afillvalue i e 240
Code Example 6-38. Read the fill value for a compound datatype 240
Code Example 6-39. Create a compound datatype with fourmembers........................... 243
Code Example 6-40. Output from h5dump for the compound datatype 245
Code Example 6-41. Analyzing a compound datatype and itsmembers 249
Code Example 6-42. Create a shareable datatype i i 252
Code Example 6-43. Specify the destination datatype withH5Dread. 254
Code Example 6-44. Create an aligned and packed compound datatype.......................... 257
Code Example 6-45. Transfer some fields of a compound datatype.............................. 259
Code Example 6-46. The definition of HDF5 datatypes fromthe HDF5DDL 261
Code Example 6-47. Old definitions of the opaque and compound datatypes 263

Code Example 6-48. Creating a variable-length string datatype from a text description 263
Code Example 6-49. Creating a complex array datatype from a text description 264
Code Example 7-1. Selecting a hyperslab. i e e e 283
Code Example 7-2. Defining the destination memory i i 284
Code Example 7-3. A sample read specifying source and destination dataspaces................... 284
Code Example 7-4. Write from a one dimensional array to a two dimensionalarray................ 285
Code Example 7-5. Select source hyperslabs. i i e 288
Code Example 7-6. Select destination hyperslabs. i i 289
Code Example 7-7. Write data to separate points i i i 290
Code Example 7-8. Create an array of region references.t ittt e et 296
Code Example 7-9. Write the array of referencestoadataset 297
Code Example 7-10. Read an array of region references; read from the first selection 298
Code Example 8-1. Create a large attribute indensestorage 316
Code Example 9-1. AN @rror FEPOIt. . oottt ittt ettt ettt et et et e e 324
Code Example 9-2. Turn off error messages while probingafunction............................ 325
Code Example 9-3. Disable automatic printing and explicitly print error messages 326
Code Example 9-4. Defining a function to print a simple errormessageccouuuin.. 326
Code Example 9-5. The user-defined errorhandler i 326
Code Example 9-6. A user-defined callback function i i i 328
Code Example 9-7. AN @rror FEP Ot . . oottt ittt et ettt et et et et et e e 329
Code Example 9-8. Defining an error Class.o vt it i e e e e e 330
Code Example 9-9. Create an error class and error Messageso vttt ie it i it eeeaeeennn 332
Code Example 9-10. Closing error messages and unregistering theerrorclass..................... 332
Code Example 9-11. Pushing an error messagetoanerrorstack 334
Code Example 9-12. Registering the errorstack i i e i 334
The HDF Group xxiii

List of Code Examples HDFS5 User’s Guide

xxiv The HDF Group

HDF5 User’s Guide List of Function Listings

List of Function Listings

Function Listing 3-1. General library functions and macros (H5)., 50
Function Listing 3-2. File functions (H5F) oo e e et et e et e e 51
Function Listing 3-3. File creation property list functions (H5P), 53
Function Listing 3-4. File access property list functions (H5P) it 54
Function Listing 3-5. File driver functions (H5P) it et 55
Function Listing 4-1. Group functions (H5G)o ittt e e et et et e 87
Function Listing 4-2. Link (H5L) and object (H50) functions, 88
Function Listing 4-3. Group creation property list functions (H5P) it 90
Function Listing 4-4. Other external link functions. i i 91
Function Listing 5-1. Dataset functions (H5D)ottt e e et en 105
Function Listing 5-2. Dataset creation property list functions (H5P). 106
Function Listing 5-3. Dataset access property list functions (H5P) 108
Function Listing 5-4. Retrieve dataset information. i i, 121
Function Listing 5-5. Data transfer property list functions. 128
Function Listing 5-6. File driver property list functions i ... 128
Function Listing 6-1. General datatype operations. e i 186
Function Listing 6-2. Conversion functions i et e 187
Function Listing 6-3. Atomic datatype properties. ...t i et 188
Function Listing 6-4. Enumeration datatypest i e 189
Function Listing 6-5. Compound datatype propertiescouiiiiiiiiii i, 190
Function Listing 6-6. Array datatypes.ottt e e e e e 191
Function Listing 6-7. Variable-length datatypes i i i 191
Function Listing 6-8. Opaque datatypes.ottt e e et e e e 191
Function Listing 6-9. Conversions between datatypeandtext, 192
Function Listing 6-10. Datatype creation property list functions (H5P) 192
Function Listing 6-11. Datatype access property list functions (H5P) oo, 192
Function Listing 7-1. Dataspace management functions i nnn.n. 265
Function Listing 7-2. Dataspace query functions. it i i et e i e 266
Function Listing 7-3. Dataspace selection functions: hyperslabs. 267
Function Listing 7-4. Dataspace selection functions: points. 267
Function Listing 8-1. Attribute functions (H5A) i e e e e 309
Function Listing 8-2. Attribute creation property list functions (H5P) 311
Function Listing 9-1. Error handling functions (H5E). it e 322
Function Listing 10-1. General property list functions (H5P) i 348
Function Listing 10-2. Object property functions (H5P) e 348
Function Listing 10-3. Link creation property functions (H5P). 350

The HDF Group XXV

List of Function Listings HDFS5 User’s Guide

xxvi The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

1. The HDF5 Data Model and File
Structure

1.1. Introduction

The Hierarchical Data Format (HDF) implements a model for managing and storing data. The model
includes an abstract data model and an abstract storage model (the data format), and libraries to imple-
ment the abstract model and to map the storage model to different storage mechanisms. The HDF5
Library provides a programming interface to a concrete implementation of the abstract models. The
library also implements a model of data transfer, an efficient movement of data from one stored represen-
tation to another stored representation. The figure below illustrates the relationships between the mod-
els and implementations. This chapter explains these models in detail.

| 1
manipulates

<4 chjects From Frogramming il te
Model Library

HDFE APIs
2hstract
Data Model layoutData transferDatsa
o irplements
Bt Model
N i Stored Data
o ropresents (Format)
objects Of

Figure 1-1. HDF5 models and implementations

The Abstract Data Model is a conceptual model of data, data types, and data organization. The abstract
data model is independent of storage medium or programming environment. The Storage Model is a stan-
dard representation for the objects of the abstract data model. The HDF5 File Format Specification defines
the storage model.

The HDF Group 1

http://www.hdfgroup.org/HDF5/doc/H5.format.html

The HDF5 Data Model and File Structure HDF5 User’s Guide

The Programming Model is a model of the computing environment and includes platforms from small sin-
gle systems to large multiprocessors and clusters. The programming model manipulates (instantiates, pop-
ulates, and retrieves) objects from the abstract data model.

The Library is the concrete implementation of the programming model. The Library exports the HDF5 APIs
as its interface. In addition to implementing the objects of the abstract data model, the Library manages
data transfers from one stored form to another. Data transfer examples include reading from disk to mem-
ory and writing from memory to disk.

Stored Data is the concrete implementation of the storage model. The storage model is mapped to several
storage mechanisms including single disk files, multiple files (family of files), and memory representations.

The HDF5 Library is a C module that implements the programming model and abstract data model. The
HDFS5 Library calls the operating system or other storage management software (for example, the MPI/IO
Library) to store and retrieve persistent data. The HDF5 Library may also link to other software such as fil-
ters for compression. The HDF5 Library is linked to an application program which may be written in C, C++,
Fortran, or Java. The application program implements problem specific algorithms and data structures and
calls the HDF5 Library to store and retrieve data. The figure below shows the dependencies of these mod-
ules.

Application
Brogram

il

Pr—

HDF5

Filt
Libhrary S B

0
i

T
i
]
i

h 4

Operating

'\.‘
System E Syatem

T

Figure 1-2. The library, the application program, and other modules

It is important to realize that each of the software components manages data using models and data
structures that are appropriate to the component. When data is passed between layers (during storage or

2 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

retrieval), it is transformed from one representation to another. The figure below suggests some of the
kinds of data structures used in the different layers.

The Application Program uses data structures that represent the problem and algorithms including vari-
ables, tables, arrays, and meshes among other data structures. Depending on its design and function, an
application may have quite a few different kinds of data structures and different numbers and sizes of
objects.

The HDF5 Library implements the objects of the HDF5 abstract data model. Some of these objects include
groups, datasets, and attributes. The application program maps the application data structures to a hier-
archy of HDF5 objects. Each application will create a mapping best suited to its purposes.

The objects of the HDF5 abstract data model are mapped to the objects of the HDF5 storage model, and

stored in a storage medium. The stored objects include header blocks, free lists, data blocks, B-trees, and
other objects. Each group or dataset is stored as one or more header and data blocks. See the HDF5 File

Format Specification for more information on how these objects are organized. The HDF5 Library can also
use other libraries and modules such as compression.

The HDF Group 3

http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html

The HDF5 Data Model and File Structure HDF5 User’s Guide

Application
Variable Mesh
Application
Data
Structures
Array Table

Application
Program

X

F5

Library -—’-II : Filter

;

!
4

\‘\
\ 4 A
Operating f Storage
% Syatem Syatem

Storage System API
Storage System

Header Fr_ae S;Tl:d
List HDF5
Storage
Data Model
ftiee Block

Figure 1-3. Data structures in different layers

The important point to note is that there is not necessarily any simple correspondence between the
objects of the application program, the abstract data model, and those of the Format Specification. The
organization of the data of application program, and how it is mapped to the HDF5 abstract data model is
up to the application developer. The application program only needs to deal with the library and the

The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

abstract data model. Most applications need not consider any details of the HDF5 File Format Specifica-
tion or the details of how objects of abstract data model are translated to and from storage.

1.2. The Abstract Data Model

The abstract data model (ADM) defines concepts for defining and describing complex data stored in files.
The ADM is a very general model which is designed to conceptually cover many specific models. Many dif-
ferent kinds of data can be mapped to objects of the ADM, and therefore stored and retrieved using HDF5.
The ADM is not, however, a model of any particular problem or application domain. Users need to map
their data to the concepts of the ADM.

The key concepts include:
e File - a contiguous string of bytes in a computer store (memory, disk, etc.), and the bytes repre-
sent zero or more objects of the model
* Group - a collection of objects (including groups)
e Dataset - a multidimensional array of data elements with attributes and other metadata
e Dataspace - a description of the dimensions of a multidimensional array

e Datatype - a description of a specific class of data element including its storage layout as a pattern
of bits

e Attribute - a named data value associated with a group, dataset, or named datatype

e Property List - a collection of parameters (some permanent and some transient) controlling
options in the library

e Link - the way objects are connected

These key concepts are described in more detail below.

1.2.1. File

Abstractly, an HDF5 file is a container for an organized collection of objects. The objects are groups, data-
sets, and other objects as defined below. The objects are organized as a rooted, directed graph. Every
HDF5 file has at least one object, the root group. See the figure below. All objects are members of the root
group or descendants of the root group.

The HDF Group 5

http://www.hdfgroup.org/HDF5/doc/H5.format.html
http://www.hdfgroup.org/HDF5/doc/H5.format.html

The HDF5 Data Model and File Structure HDF5 User’s Guide

File

superkblock wvers:int

global freelist vers:int
symtable vers:int
sharedobjectheader vers:int
ugerblock:size t

sizeof addr:size ¢

3izeof size:size ¢
symtable tree rank:int
symtakle node size:int
btree istore size:int

Group

Root Group

Figure 1-4. The HDEF5 file

HDF5 objects have a unique identity within a single HDF5 file and can be accessed only by their names
within the hierarchy of the file. HDF5 objects in different files do not necessarily have unique identities,
and it is not possible to access a permanent HDF5 object except through a file. For more information, see
"The Structure of an HDF5 File" on page 16.

When the file is created, the file creation properties specify settings for the file. The file creation proper-
ties include version information and parameters of global data structures. When the file is opened, the file
access properties specify settings for the current access to the file. File access properties include parame-
ters for storage drivers and parameters for caching and garbage collection. The file creation properties are
set permanently for the life of the file, and the file access properties can be changed by closing and
reopening the file.

An HDFS5 file can be “mounted” as part of another HDF5 file. This is analogous to Unix file system mounts.
The root of the mounted file is attached to a group in the mounting file, and all the contents can be
accessed as if the mounted file were part of the mounting file.

6 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

1.2.2. Group

An HDF5 group is analogous to a file system directory. Abstractly, a group contains zero or more objects,
and every object must be a member of at least one group. The root group is a special case; it may not be a
member of any group.

Group membership is actually implemented via link objects. See the figure below. A link object is owned
by a group and points to a named object. Each link has a name, and each link points to exactly one object.
Each named object has at least one and possibly many links to it.

Group
1 0,.*
size:size t » Attribute
1
0..*
Link

name:string

Figure 1-5. Group membership via link objects

There are three classes of named objects: group, dataset, and committed (named) datatype. See the fig-
ure below. Each of these objects is the member of at least one group, and this means there is at least one
link to it.

The HDF Group 7

The HDF5 Data Model and File Structure HDF5 User’s Guide

MNamed Object

obj_id:cbj_id

A

Named

Group Dataset
Datatype

Figure 1-6. Classes of named objects

1.2.3. Dataset

An HDF5 dataset is a multidimensional (rectangular) array of data elements. See the figure below. The
shape of the array (number of dimensions, size of each dimension) is described by the dataspace object
(described in the next section below).

A data element is a single unit of data which may be a number, a character, an array of numbers or charac-
ters, or a record of heterogeneous data elements. A data element is a set of bits. The layout of the bits is
described by the datatype (see below).

The dataspace and datatype are set when the dataset is created, and they cannot be changed for the life
of the dataset. The dataset creation properties are set when the dataset is created. The dataset creation
properties include the fill value and storage properties such as chunking and compression. These proper-
ties cannot be changed after the dataset is created.

The dataset object manages the storage and access to the data. While the data is conceptually a contigu-
ous rectangular array, it is physically stored and transferred in different ways depending on the storage
properties and the storage mechanism used. The actual storage may be a set of compressed chunks, and
the access may be through different storage mechanisms and caches. The dataset maps between the con-
ceptual array of elements and the actual stored data.

8 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

Filter ExternalFile
filter H5Z filter t Attribute name:string
flags:unsigned int offset:off t
cd nelmts:size t 0..« size:hsize t
CI:'_‘JElL‘EE:LD‘E.g]‘ETmt M1

1

A

requiredInPipeline

Dataset A
storedIn

layout:HSD layout t

chunk ndims:int

O chunk dims:hsize t[] o * 1
Datatype |Q—< p—p Dataspace
P 1:} deflate lewel:int P

£ill wvalue type:hid t

£ill wvalue:void*

Data
describesOneElement 4 describesArrayOfElements

Figure 1-7. The dataset

1.2.4. Dataspace

The HDF5 dataspace describes the layout of the elements of a multidimensional array. Conceptually, the
array is a hyper-rectangle with one to 32 dimensions. HDF5 dataspaces can be extendable. Therefore,
each dimension has a current size and a maximum size, and the maximum may be unlimited. The

dataspace describes this hyper-rectangle: it is a list of dimensions with the current and maximum (or
unlimited) sizes. See the figure below.

The HDF Group

The HDF5 Data Model and File Structure HDF5 User’s Guide

Dataspace

rank:int
current sizerhsize t[rank]
maximum s2ize:thsize t] rank]

Figure 1-8. The dataspace

Dataspace objects are also used to describe hyperslab selections from a dataset. Any subset of the ele-
ments of a dataset can be selected for read or write by specifying a set of hyperslabs. A non-rectangular
region can be selected by the union of several (rectangular) dataspaces.

1.2.5. Datatype

The HDF5 datatype object describes the layout of a single data element. A data element is a single ele-
ment of the array; it may be a single number, a character, an array of numbers or carriers, or other data.
The datatype object describes the storage layout of this data.

Data types are categorized into 11 classes of datatype. Each class is interpreted according to a set of rules
and has a specific set of properties to describe its storage. For instance, floating point numbers have expo-
nent position and sizes which are interpreted according to appropriate standards for number representa-
tion. Thus, the datatype class tells what the element means, and the datatype describes how it is stored.

The figure below shows the classification of datatypes. Atomic datatypes are indivisible. Each may be a
single object such as a number or a string. Composite datatypes are composed of multiple elements of
atomic datatypes. In addition to the standard types, users can define additional datatypes such as a 24-bit
integer or a 16-bit float.

A dataset or attribute has a single datatype object associated with it. See Figure 7 above. The datatype
object may be used in the definition of several objects, but by default, a copy of the datatype object will
be private to the dataset.

Optionally, a datatype object can be stored in the HDF5 file. The datatype is linked into a group, and there-
fore given a name. A committed datatype (formerly called a named datatype) can be opened and used in
any way that a datatype object can be used.

For more information, see "HDF5 Datatypes" on page 173.

10 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

Datatype Class

Btomic Datatypes Composite Datatypes

X X

Time Btring Opague Float
Bitfield Reference Integer
Array Variable Length
Enumeration Compound

Figure 1-9. Datatype classifications

1.2.6. Attribute

Any HDF5 named data object (group, dataset, or named datatype) may have zero or more user defined
attributes. Attributes are used to document the object. The attributes of an object are stored with the
object.

An HDF5 attribute has a name and data. The data portion is similar in structure to a dataset: a dataspace
defines the layout of an array of data elements, and a datatype defines the storage layout and interpreta-
tion of the elements See the figure below.

The HDF Group 11

The HDF5 Data Model and File Structure HDF5 User’s Guide

Named Object

0..1
0..*
L J
Attributa
1 0..* 0..* 1
Datatype f—— 4 name:string P Dataspace
1
Data
describesOneElement b 4 describesArrayOfElements

Figure 1-10. Attribute data elements

In fact, an attribute is very similar to a dataset with the following limitations:

e An attribute can only be accessed via the object
e Attribute names are significant only within the object
e An attribute should be a small object

¢ The data of an attribute must be read or written in a single access (partial reading or writing is not
allowed)

e Attributes do not have attributes

Note that the value of an attribute can be an object reference. A shared attribute or an attribute that is a
large array can be implemented as a reference to a dataset.

The name, dataspace, and datatype of an attribute are specified when it is created and cannot be changed
over the life of the attribute. An attribute can be opened by name, by index, or by iterating through all the
attributes of the object.

12 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

1.2.7. Property List

HDF5 has a generic property list object. Each list is a collection of name-value pairs. Each class of property
list has a specific set of properties. Each property has an implicit name, a datatype, and a value. See the
figure below. A property list object is created and used in ways similar to the other objects of the HDF5
Library.

Property Lists are attached to the object in the library, they can be used by any part of the library. Some
properties are permanent (for example, the chunking strategy for a dataset), others are transient (for
example, buffer sizes for data transfer). A common use of a Property List is to pass parameters from the
calling program to a VFL driver or a module of the pipeline.

Property lists are conceptually similar to attributes. Property lists are information relevant to the behavior
of the library while attributes are relevant to the user’s data and application.

| Property List

class:HSF class t

create (class)
get class()

Property

name:string
value:H5TDatatype

Figure 1-11. The property list

Property lists are used to control optional behavior for file creation, file access, dataset creation, dataset
transfer (read, write), and file mounting. Some property list classes are shown in the table below. Details
of the different property lists are explained in the relevant sections of this document.

Table 1-1. Property list classes and their usage

Property List Class Used Examples
H5P_FILE_CREATE Properties for file creation. Set size of user block.
H5P_FILE_ACCESS Properties for file access. Set parameters for VFL driver.

An example is MPI 1/0.

The HDF Group 13

The HDF5 Data Model and File Structure HDF5 User’s Guide

Table 1-1. Property list classes and their usage

Property List Class Used Examples
H5P_DATASET_ CREATE Properties for dataset cre- Set chunking, compression,
ation. or fill value.
H5P_DATASET_XFER Properties for raw data trans- Tune buffer sizes or memory
fer (read and write). management.
H5P_FILE_MOUNT Properties for file mounting.
1.2.8. Link

This section is under construction.

1.3. The HDF5 Storage Model

1.3.1. The Abstract Storage Model: the HDF5 Format Specification

The HDF5 File Format Specification defines how HDF5 objects and data are mapped to a linear address
space. The address space is assumed to be a contiguous array of bytes stored on some random access
medium.! The format defines the standard for how the objects of the abstract data model are mapped to
linear addresses. The stored representation is self-describing in the sense that the format defines all the
information necessary to read and reconstruct the original objects of the abstract data model.

The HDF5 File Format Specification is organized in three parts:

1. Level O: File signature and super block

2. Level 1: File infrastructure

a.
b.

- o o o

Level 1A: B-link trees and B-tree nodes
Level 1B: Group

Level 1C: Group entry

Level 1D: Local heaps

Level 1E: Global heap

Level 1F: Free-space index

1. HDF5 requires random access to the linear address space. For this reason it is not well suited for some
data media such as streams.

14

The HDF Group

http://www.hdfgroup.org/HDF5/doc/H5.format.html

HDF5 User’s Guide The HDF5 Data Model and File Structure

3. Level 2: Data object
a. Level 2A: Data object headers
b. Level 2B: Shared data object headers

c. Level 2C: Data object data storage

The Level 0 specification defines the header block for the file. Header block elements include a signature,
version information, key parameters of the file layout (such as which VFL file drivers are needed), and
pointers to the rest of the file. Level 1 defines the data structures used throughout the file: the B-trees,
heaps, and groups. Level 2 defines the data structure for storing the data objects and data. In all cases, the
data structures are completely specified so that every bit in the file can be faithfully interpreted.

It is important to realize that the structures defined in the HDFS file format are not the same as the
abstract data model: the object headers, heaps, and B-trees of the file specification are not represented in
the abstract data model. The format defines a number of objects for managing the storage including
header blocks, B-trees, and heaps. The HDF5 File Format Specification defines how the abstract objects
(for example, groups and datasets) are represented as headers, B-tree blocks, and other elements.

The HDF5 Library implements operations to write HDF5 objects to the linear format and to read from the
linear format to create HDF5 objects. It is important to realize that a single HDF5 abstract object is usually
stored as several objects. A dataset, for example, might be stored in a header and in one or more data
blocks, and these objects might not be contiguous on the hard disk.

1.3.2. Concrete Storage Model

The HDFS5 file format defines an abstract linear address space. This can be implemented in different stor-
age media such as a single file or multiple files on disk or in memory. The HDF5 Library defines an open
interface called the Virtual File Layer (VFL). The VFL allows different concrete storage models to be
selected.

The VFL defines an abstract model, an API for random access storage, and an API to plug in alternative VFL
driver modules. The model defines the operations that the VFL driver must and may support, and the
plug-in APl enables the HDF5 Library to recognize the driver and pass it control and data.

A number of VFL drivers have been defined in the HDF5 Library. Some work with a single file, and some
work with multiple files split in various ways. Some work in serial computing environments, and some
work in parallel computing environments. Most work with disk copies of HDF5 files, but one works with a
memory copy. These drivers are listed in the “Supported file drivers” table. For more information, see
"Alternate File Storage Layouts and Low-level File Drivers" on page 61.

Each driver isolates the details of reading and writing storage so that the rest of the HDF5 Library and user
program can be almost the same for different storage methods. The exception to this rule is that some VFL
drivers need information from the calling application. This information is passed using property lists. For

example, the Parallel driver requires certain control information that must be provided by the application.

The HDF Group 15

The HDF5 Data Model and File Structure HDF5 User’s Guide

1.4. The Structure of an HDF5 File

1.4.1. Overall File Structure

An HDFS5 file is organized as a rooted, directed graph. Named data objects are the nodes of the graph, and
links are the directed arcs. Each arc of the graph has a name, and the root group has the name “/”. Objects
are created and then inserted into the graph with the link operation which creates a named link from a
group to the object. For example, the figure below illustrates the structure of an HDF5 file when one data-
set is created. An object can be the target of more than one link. The names on the links must be unique
within each group, but there may be many links with the same name in different groups. Link names are
unambiguous: some ancestor will have a different name, or they are the same object. The graph is navi-
gated with path names similar to Unix file systems. An object can be opened with a full path starting at the
root group or with a relative path and a starting node (group). Note that all paths are relative to a single
HDFS5 file. In this sense, an HDF5 file is analogous to a single Unix file system.?

2. It could be said that HDF5 extends the organizing concepts of a file system to the internal structure of a
single file.

16 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

dsetl

Figure 1-12. An HDF?5 file with one dataset

Note: In the figure above are two figures. The top figure represents a newly created file with one group, /. In the bot-
tom figure, a dataset called /dset1 has been created.

It is important to note that, just like the Unix file system, HDF5 objects do not have names. The names are
associated with paths. An object has a unique (within the file) object identifier, but a single object may
have many names because there may be many paths to the same object. An object can be renamed
(moved to another group) by adding and deleting links. In this case, the object itself never moves. For that
matter, membership in a group has no implication for the physical location of the stored object.

Deleting a link to an object does not necessarily delete the object. The object remains available as long as
there is at least one link to it. After all the links to an object are deleted, it can no longer be opened
although the storage may or may not be reclaimed.3

It is important to realize that the linking mechanism can be used to construct very complex graphs of
objects. For example, it is possible for an object to be shared between several groups and even to have
more than one name in the same group. It is also possible for a group to be a member of itself or to be in
a “cycle” in the graph. An example of a cycle is where a child is the parent of one of its own ancestors.

3. As of HDF5-1.4, the storage used for an object is reclaimed, even if all links are deleted.

The HDF Group 17

The HDF5 Data Model and File Structure HDF5 User’s Guide

1.4.2. HDF5 Path Names and Navigation

The structure of the file constitutes the name space for the objects in the file. A path name is a string of
components separated by ‘/’. Each component is the name of a link or the special character “” for the cur-
rent group. Link names (components) can be any string of ASCII characters not containing ‘/’ (except the
string “” which is reserved). However, users are advised to avoid the use of punctuation and non-printing
characters because they may create problems for other software. The figure below gives a BNF grammar
for HDF5 path names.

PathName ::= AbsolutePathName | RelativePathName

Separator ::= "/" ['"'/"]*

AbsolutePathName ::= Separator [RelativePathName]
RelativePathName ::= Component [Separator RelativePathName]*
Component :-:= "_." | Name

Name ::= Character+ - {"."}

Character ::= {c: c in {{ legal ASCII characters } - {°/"}}

Figure 1-13. A BNF grammar for path names

An object can always be addressed by a full or absolute path which would start at the root group. As
already noted, a given object can have more than one full path name. An object can also be addressed by
a relative path which would start at a group and include the path to the object.

The structure of an HDFS5 file is “self-describing.” This means that it is possible to navigate the file to dis-
cover all the objects in the file. Basically, the structure is traversed as a graph starting at one node and
recursively visiting the nodes of the graph.

1.4.3. Examples of HDF5 File Structures

The figures below show some possible HDF5 file structures with groups and datasets. The first figure
shows the structure of a file with three groups. The second shows a dataset created in “/group1”. The third
figure shows the structure after a dataset called dset2 has been added to the root group. The fourth figure
shows the structure after another group and dataset have been added.

18 The HDF Group

HDF5 User’s Guide The HDF5 Data Model and File Structure

groupl

Figure 1-14. An HDF5 file structure with groups

Note: The figure above shows three groups; /group1 and /group2 are members of the root group.

groupl group2

dsetl

Figure 1-15. An HDF5 file structure with groups and a dataset

Note: The figure above shows that a dataset has been created in /groupl: /group1/dset1.

The HDF Group 19

The HDF5 Data Model and File Structure HDF5 User’s Guide

groupl group?

dsetl

Figure 1-16. An HDF5 file structure with groups and datasets

Note: In the figure above, another dataset has been added as a member of the root group: /dset2.

Figure 1-17. Anot HDF5 file structure with groups and datasets

Note: In the figure above, another group and dataset have been added reusing object names: /group2/group2/dset2.

20 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

2. The HDF5 Library and Programming
Model

2.1. Introduction

The HDF5 Library implements the HDF5 abstract data model and storage model. These models were
described in the preceding chapter.

Two major objectives of the HDF5 products are to provide tools that can be used on as many computa-
tional platforms as possible (portability), and to provide a reasonably object-oriented data model and pro-
gramming interface.

To be as portable as possible, the HDF5 Library is implemented in portable C. Cis not an object-oriented
language, but the library uses several mechanisms and conventions to implement an object model.

One mechanism the HDF5 Library uses is to implement the objects as data structures. To refer to an
object, the HDF5 Library implements its own pointers. These pointers are called identifiers. An identifier is
then used to invoke operations on a specific instance of an object. For example, when a group is opened,
the API returns a group identifier. This identifier is a reference to that specific group and will be used to
invoke future operations on that group. The identifier is valid only within the context it is created and
remains valid until it is closed or the file is closed. This mechanism is essentially the same as the mecha-
nism that C++ or other object-oriented languages use to refer to objects except that the syntax is C.

Similarly, object-oriented languages collect all the methods for an object in a single name space. An exam-
ple is the methods of a C++ class. The C language does not have any such mechanism, but the HDF5 Library
simulates this through its APl naming convention. APl function names begin with a common prefix that is
related to the class of objects that the function operates on. The table below lists the HDF5 objects and
the standard prefixes used by the corresponding HDF5 APls. For example, functions that operate on data-
type objects all have names beginning with H5T.

Table 2-1. The HDF5 API naming scheme

Prefix Operates on
H5A Attributes
H5D Datasets

H5E Error reports
H5F Files

H5G Groups

The HDF Group 21

The HDF5 Library and Programming Model HDFS5 User’s Guide

Table 2-1. The HDF5 API naming scheme

Prefix Operates on
H51 Identifiers
H5L Links

H50 Objects

H5P Property lists
H5R References
H5S Dataspaces
H5T Datatypes
H5Z Filters

2.2. The HDF5 Programming Model

In this section we introduce the HDF5 programming model by means of a series of short code samples.
These samples illustrate a broad selection of common HDF5 tasks. More details are provided in the follow-
ing chapters and in the HDF5 Reference Manual.

2.2.1. Creating an HDF?5 File

Before an HDF5 file can be used or referred to in any manner, it must be explicitly created or opened.
When the need for access to a file ends, the file must be closed. The example below provides a C code
fragment illustrating these steps. In this example, the values for the file creation property list and the file
access property list are set to the defaults HSP_DEFAULT.

22 The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

HDF5 User’s Guide The HDF5 Library and Programming Model

hid_t file; /* declare file identifier */
/*

* Create a new file using H5F _ACC_TRUNC

* to truncate and overwrite any Ffile of the same name,

* default file creation properties, and

* default file access properties.

* Then close the file.

*/

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT, HS5P_DEFAULT);
status = H5Fclose(file);

Code Example 2-1. Creating and closing an HDF?5 file

Note: If there is a possibility that a file of the declared name already exists and you wish to open a new file
regardless of that possibility, the flag HSF_ACC_TRUNC will cause the operation to overwrite the previous
file. If the operation should fail in such a circumstance, use the flag H5SF_ACC_EXCL instead.

2.2.2. Creating and Initializing a Dataset

The essential objects within a dataset are datatype and dataspace. These are independent objects and are
created separately from any dataset to which they may be attached. Hence, creating a dataset requires, at
a minimum, the following steps:

1. Create and initialize a dataspace for the dataset

2. Define a datatype for the dataset

3. Create and initialize the dataset

The code in the example below illustrates the execution of these steps.

The HDF Group 23

The HDF5 Library and Programming Model HDFS5 User’s Guide

hid_t dataset, datatype, dataspace; /* declare identifiers */

/*
* Create a dataspace: Describe the size of the array and
* create the dataspace for a fixed-size dataset.

*/
dimsf[0] = NX;
dimsf[1] = NY;

dataspace = H5Screate_simple(RANK, dimsf, NULL);

/*

* Define a datatype for the data in the dataset.
* We will store little endian integers.

*/

datatype = H5Tcopy(H5T_NATIVE_INT);

status = H5Tset_order(datatype, H5T ORDER_LE);

/*

* Create a new dataset within the file using the defined

* dataspace and datatype and default dataset creation

* properties.

* NOTE: H5T_NATIVE_INT can be used as the datatype if

* conversion to little endian is not needed.

*/

dataset = H5Dcreate(file, DATASETNAME, datatype, dataspace,
H5P_DEFAULT, H5P_DEFAULT, HS5P_DEFAULT);

Code Example 2-2. Create a dataset

2.2.3. Closing an Object

An application should close an object such as a datatype, dataspace, or dataset once the object is no lon-
ger needed. Since each is an independent object, each must be released (or closed) separately. This action
is frequently referred to as releasing the object’s identifier. The code in the example below closes the
datatype, dataspace, and dataset that were created in the preceding section.

H5Tclose(datatype);
H5Dclose(dataset);
H5Sclose(dataspace);

Code Example 2-3. Close an object

24 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

There is a long list of HDF5 Library items that return a unique identifier when the item is created or
opened. Each time that one of these items is opened, a unique identifier is returned. Closing a file does
not mean that the groups, datasets, or other open items are also closed. Each opened item must be closed
separately.

For more information, see “Using Identifiers” in the “Advanced Topics” page.

How Closing a File Effects Other Open Structural Elements

Every structural element in an HDF5 file can be opened, and these elements can be opened more than
once. Elements range in size from the entire file down to attributes. When an element is opened, the
HDF5 Library returns a unique identifier to the application. Every element that is opened must be closed.
If an element was opened more than once, each identifier that was returned to the application must be
closed. For example, if a dataset was opened twice, both dataset identifiers must be released (closed)
before the dataset can be considered closed. Suppose an application has opened a file, a group in the file,
and two datasets in the group. In order for the file to be totally closed, the file, group, and datasets must
each be closed. Closing the file before the group or the datasets will not effect the state of the group or
datasets: the group and datasets will still be open.

There are several exceptions to the above general rule. One is when the H5close function is used.
H5close causes a general shutdown of the library: all data is written to disk, all identifiers are closed, and
all memory used by the library is cleaned up. Another exception occurs on parallel processing systems.
Suppose on a parallel system an application has opened a file, a group in the file, and two datasets in the
group. If the application uses the H5Fclose function to close the file, the call will fail with an error. The
open group and datasets must be closed before the file can be closed. A third exception is when the file
access property list includes the property HSF_CLOSE_STRONG. This property closes any open elements
when the file is closed with H5SFclose. For more information, see the H5Pset_fclose_degree func-
tion in the HDF5 Reference Manual.

2.2.4. Writing or Reading a Dataset to or from a File

Having created the dataset, the actual data can be written with a call to H5Dwr i te. See the example
below.

/*

* Write the data to the dataset using default transfer

* properties.

*/

status = H5Dwrite(dataset, HS5T_NATIVE_INT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, data);

Code Example 2-4. Writing a dataset

The HDF Group 25

http://www.hdfgroup.org/HDF5/doc/Advanced/UsingIdentifers/index.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetFcloseDegree

The HDF5 Library and Programming Model HDFS5 User’s Guide

Note that the third and fourth H5Dwr i te parameters in the above example describe the dataspaces in
memory and in the file, respectively. For now, these are both set to H5S_ALL which indicates that the
entire dataset is to be written. The selection of partial datasets and the use of differing dataspaces in
memory and in storage will be discussed later in this chapter and in more detail elsewhere in this guide.

Reading the dataset from storage is similar to writing the dataset to storage. To read an entire dataset,
substitute H5Dread for H5SDwrite in the above example.

2.2.5. Reading and Writing a Portion of a Dataset

The previous section described writing or reading an entire dataset. HDF5 also supports access to portions
of a dataset. These parts of datasets are known as selections.

The simplest type of selection is a simple hyperslab. This is an n-dimensional rectangular sub-set of a
dataset where n is equal to the dataset’s rank. Other available selections include a more complex hyper-
slab with user-defined stride and block size, a list of independent points, or the union of any of these.

The figure below shows several sample selections.

26 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

2 hyperslab from a 2D array to the
corner of a smaller 20 array.

,,f""!-l regular series of
~ blocks from a 20 array to a
contiguous seguence at a certain
ocffset in a 1D array.

L seguence of points with no regular
pattern from a 2D array to a seguence
of points with no regular pattern in a

30 array

=" "Unicn of hyperslabks in file dataspace

to union of hyperslabs in memory dataspace._
Total number of data =lements must be egqual;
number and shape of hyperslabs can differ.

Eeyr: Dal:::pal:e Selection m or * (mingle point)

Figure 2-1. Dataset selections

Note: In the figure above, selections can take the form of a simple hyperslab, a hyperslab with user-defined stride and
block, a selection of points, or a union of any of these forms.

The HDF Group 27

The HDF5 Library and Programming Model HDFS5 User’s Guide

Selections and hyperslabs are portions of a dataset. As described above, a simple hyperslab is a rectangu-
lar array of data elements with the same rank as the dataset’s dataspace. Thus, a simple hyperslab is a log-
ically contiguous collection of points within the dataset.

The more general case of a hyperslab can also be a regular pattern of points or blocks within the
dataspace. Four parameters are required to describe a general hyperslab: the starting coordinates, the
block size, the stride or space between blocks, and the number of blocks. These parameters are each
expressed as a one-dimensional array with length equal to the rank of the dataspace and are described in
the table below.

Table 2-2. Hyperslab parameters

Parameter Definition

start The coordinates of the starting location of the hyperslab in the dataset’s
dataspace.
block The size of each block to be selected from the dataspace. If the block param-

eter is set to NULL, the block size defaults to a single element in each dimen-
sion, as if the block array was set to all 1s (all ones). This will result in the
selection of a uniformly spaced set of count points starting at start and on
the interval defined by stride.

stride The number of elements separating the starting point of each element or
block to be selected. If the stride parameter is set to NULL, the stride size
defaults to 1 (one) in each dimension and no elements are skipped.

count The number of elements or blocks to select along each dimension.

Reading Data into a Differently Shaped Memory Block

For maximum flexibility in user applications, a selection in storage can be mapped into a differently-
shaped selection in memory. All that is required is that the two selections contain the same number of
data elements. In this example, we will first define the selection to be read from the dataset in storage,
and then we will define the selection as it will appear in application memory.

Suppose we want to read a 3 x 4 hyperslab from a two-dimensional dataset in a file beginning at the data-
set element <1,2>. The first task is to create the dataspace that describes the overall rank and dimensions
of the dataset in the file and to specify the position and size of the in-file hyperslab that we are extracting
from that dataset. See the code below.

28 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

/*

* Define dataset dataspace in file.

*/

dataspace = H5Dget_space(dataset); /* dataspace identifier */
rank = H5Sget_simple_extent ndims(dataspace);

status_ n = H5Sget _simple_extent dims(dataspace, dims_out, NULL);
/*

* Define hyperslab in the dataset.

*/

offset[0] = 1;

offset[1l] = 2;

count[0] = 3;

count[1l] = 4;

status = H5Sselect_hyperslab(dataspace, H5S SELECT SET, offset,
NULL, count, NULL);

Code Example 2-5. Define the selection to be read from storage

The next task is to define a dataspace in memory. Suppose that we have in memory a three-dimensional 7
x 7 x 3 array into which we wish to read the two-dimensional 3 x 4 hyperslab described above and that we
want the memory selection to begin at the element <3,0,0> and reside in the plane of the first two dimen-
sions of the array. Since the in-memory dataspace is three-dimensional, we have to describe the in-mem-
ory selection as three-dimensional. Since we are keeping the selection in the plane of the first two

dimensions of the in-memory dataset, the in-memory selection will be a 3 x 4 x 1 array defined as <3,4,1>.

Notice that we must describe two things: the dimensions of the in-memory array, and the size and posi-
tion of the hyperslab that we wish to read in. The code below illustrates how this would be done.

The HDF Group 29

The HDF5 Library and Programming Model HDFS5 User’s Guide

/*

* Define memory dataspace.
*/

dimsm[0] = 7;

dimsm[1] = 7;

dimsm[2] = 3;

memspace = H5Screate_simple(RANK OUT,dimsm,NULL);
/*

* Define memory hyperslab.
*/

offset_out[0] = 3;
offset_out[1] = O;
offset_out[2] = O;
count_out[0] = 3;
count_out[1l] = 4;

count_out[2] = 1;
status = H5Sselect_hyperslab(memspace, H5S SELECT_SET,
offset_out, NULL, count_out, NULL);

Code Example 2-6. Define the memory dataspace and selection

The hyperslab defined in the code above has the following parameters: start=(3,0,0),
count=(3,4,1), stride and block size are NULL.

Writing Data into a Differently Shaped Disk Storage Block

Now let’s consider the opposite process of writing a selection from memory to a selection in a dataset in
a file. Suppose that the source dataspace in memory is a 50-element, one-dimensional array called vec-
tor and that the source selection is a 48-element simple hyperslab that starts at the second element of
vector. See the figure below.

[z =] e [0 2]

Figure 2-2. A one-dimensional array

Further suppose that we wish to write this data to the file as a series of 3 x 2-element blocks in a two-
dimensional dataset, skipping one row and one column between blocks. Since the source selection con-
tains 48 data elements and each block in the destination selection contains 6 data elements, we must

30 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

define the destination selection with 8 blocks. We will write 2 blocks in the first dimension and 4 in the
second. The code below shows how to achieve this objective.

/* Select the hyperslab for the dataset in the file, using
* 3 x 2 blocks, a (4,3) stride, a (2,4) count, and starting
* at the position (0,1).

*/

start[0] = 0; start[1l] = 1;
stride[0] = 4; stride[l] = 3;
count[0] = 2; count[1] ;

block[0] = 3; block[1] =
ret = H5Sselect _hyperslab(f
count, block);

d, H5S SELECT SET, start, stride,

Il
- AW R

/*

* Create dataspace for the first dataset.

*/

midl = H5Screate_simple(MSPACE1l RANK, diml, NULL);

/*
* Select hyperslab.
We will use 48 elements of the vector buffer starting at the

*

* second element. Selected elements are 1 2 3 . . . 48
*/

start[0] = 1;

stride[0] = 1;

count[0] = 48;

block[0] = 1;

ret = H5Sselect_hyperslab(midl, H5S SELECT_SET, start, stride,
count, block);

/*

* Write selection from the vector buffer to the dataset in the

* File.

*

ret = H5Dwrite(dataset, H5T _NATIVE_ INT, midl, fid, H5P_DEFAULT,
vector)

Code Example 2-7. The destination selection

The HDF Group 31

The HDF5 Library and Programming Model HDFS5 User’s Guide

2.2.6. Getting Information about a Dataset

Although reading is analogous to writing, it is often first necessary to query a file to obtain information
about the dataset to be read. For instance, we often need to determine the datatype associated with a
dataset, or its dataspace (in other words, rank and dimensions). As illustrated in the code example below,
there are several get routines for obtaining this information.

/*

* Get datatype and dataspace identifiers,

* then query datatype class, order, and size, and
* then query dataspace rank and dimensions.

*/

datatype = H5Dget_type (dataset); /* datatype identifier */
class = H5Tget _class (datatype);

if (class == H5T_INTEGER) printf(‘'Dataset has INTEGER type \n'");
order = H5Tget order (datatype);

if (order == H5T _ORDER_LE) printf('Little endian order \n");

size = H5Tget_size (datatype);
printf ('Size is %d \n", size);
dataspace = H5Dget space (dataset); /* dataspace identifier */

/* Find rank and retrieve current and maximum dimension
* sizes.

*/

rank = H5Sget _simple_extent dims (dataspace, dims, max_dims);

Code Example 2-8. Routines to get dataset parameters

2.2.7. Creating and Defining Compound Datatypes

A compound datatype is a collection of one or more data elements. Each element might be an atomic
type, a small array, or another compound datatype.

The provision for nested compound datatypes allows these structures to become quite complex. An HDF5
compound datatype has some similarities to a C struct or a Fortran common block. Though not originally
designed with databases in mind, HDF5 compound datatypes are sometimes used in a way that is similar
to a database record. Compound datatypes can become either a powerful tool or a complex and difficult-
to-debug construct. Reasonable caution is advised.

32 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

To create and use a compound datatype, you need to create a datatype with class compound (H5T_COM-
POUND) and specify the total size of the data element in bytes. A compound datatype consists of zero or
more uniquely named members. Members can be defined in any order but must occupy non-overlapping
regions within the datum. The table below lists the properties of compound datatype members.

Table 2-3. Compound datatype member properties

Parameter Definition

Index An index number between zero and N-1, where N is the number of
members in the compound. The elements are indexed in the order of
their location in the array of bytes.

Name A string that must be unique within the members of the same datatype.
Datatype An HDF5 datatype.
Offset A fixed byte offset which defines the location of the first byte of that

member in the compound datatype.

Properties of the members of a compound datatype are defined when the member is added to the com-
pound type. These properties cannot be modified later.

Defining Compound Datatypes

Compound datatypes must be built out of other datatypes. To do this, you first create an empty com-
pound datatype and specify its total size. Members are then added to the compound datatype in any
order.

Each member must have a descriptive name. This is the key used to uniquely identify the member within
the compound datatype. A member name in an HDF5 datatype does not necessarily have to be the same
as the name of the corresponding member in the C struct in memory although this is often the case. You
also do not need to define all the members of the C struct in the HDF5 compound datatype (or vice versa).

Usually a C struct will be defined to hold a data point in memory, and the offsets of the members in mem-
ory will be the offsets of the struct members from the beginning of an instance of the struct. The library
defines the macro that computes the offset of member m within a struct variable s:

HOFFSET(s,m)

The code below shows an example in which a compound datatype is created to describe complex num-
bers whose type is defined by the complex_t struct.

The HDF Group 33

The HDF5 Library and Programming Model HDFS5 User’s Guide

Typedef struct {
double re; /*real part */
double im; /*imaginary part */
} complex_t;

complex_t tmp; /*used only to compute offsets */

hid_t complex_id = H5Tcreate (H5T_COMPOUND, sizeof tmp);

H5Tinsert (complex_id, "real'™, HOFFSET(tmp,re),
H5T_NATIVE_DOUBLE);

H5Tinsert (complex_id, "imaginary', HOFFSET(tmp,im),
HST_NATIVE_DOUBLE);

Code Example 2-9. A compound datatype for complex numbers

2.2.8. Creating and Writing Extendable Datasets

An extendable dataset is one whose dimensions can grow. One can define an HDF5 dataset to have certain
initial dimensions with the capacity to later increase the size of any of the initial dimensions. For example,
the figure below shows a 3 x 3 dataset (a) which is later extended to be a 10 x 3 dataset by adding 7 rows
(b), and further extended to be a 10 x 5 dataset by adding two columns (c).

34 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

[2 2]«
[2[a][x]
nnn AR
a) Initially, 3 x 2 EE’E
nno Bon
i [2]2]2]
Boo Gl
Al ABE
[2]2]2] !_ITI_
[2][2]2] (2] 2]2]
e noAnon
IT’TIT c) Extend to 10x 5
ann

b) Extend to 10x 3

oo o] = =]
JeleleTeTeTe]

]
|
o]
o]
B

Figure 2-3. Extending a dataset

HDF5 requires the use of chunking when defining extendable datasets. Chunking makes it possible to
extend datasets efficiently without having to reorganize contiguous storage excessively.

To summarize, an extendable dataset requires two conditions:

1. Define the dataspace of the dataset as unlimited in all dimensions that might eventually be
extended
2. Enable chunking in the dataset creation properties

For example, suppose we wish to create a dataset similar to the one shown in the figure above. We want
to start with a 3 x 3 dataset, and then later we will extend it. To do this, go through the steps below.

First, declare the dataspace to have unlimited dimensions. See the code shown below. Note the use of the
predefined constant H5S_UNLIMITED to specify that a dimension is unlimited.

The HDF Group 35

The HDF5 Library and Programming Model HDFS5 User’s Guide

/* dataset dimensions at creation time */
Hsize t dims[2] = {3, 3};
hsize_t maxdims[2] = {H5S_UNLIMITED, H5S_UNLIMITED};

/*
* Create the data space with unlimited dimensions.
*/
dataspace = H5Screate_simple(RANK, dims, maxdims);

Code Example 2-10. Declaring a dataspace with unlimited dimensions

Next, set the dataset creation property list to enable chunking. See the code below.

hid_t cparms;

hsize_t chunk_dims[2] ={2, 5};

/*

* Modify dataset creation properties to enable chunking.
*

/

cparms = H5Pcreate (H5P_DATASET CREATE);

status H5Pset_chunk(cparms, RANK, chunk dims);

Code Example 2-11. Enable chunking

The next step is to create the dataset. See the code below.

/*

* Create a new dataset within the file using cparms

* creation properties.

*/

dataset = H5Dcreate(file, DATASETNAME, HS5T_NATIVE_INT, dataspace,
H5P_DEFAULT, cparms, H5P_DEFAULT);

Code Example 2-12. Create a dataset

Finally, when the time comes to extend the size of the dataset, invoke H5Dextend. Extending the dataset
along the first dimension by seven rows leaves the dataset with new dimensions of <10,3>. See the code
below.

36 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

/*

* Extend the dataset. Dataset becomes 10 x 3.
*/

dims[0] = dims[0] + 7;

size[0] = dims[0];

size[1] = dims[1];

status = H5Dextend (dataset, size);

Code Example 2-13. Extend the dataset by seven rows

2.2.9. Creating and Working with Groups

Groups provide a mechanism for organizing meaningful and extendable sets of datasets within an HDF5
file. The H5G API provides several routines for working with groups.

Creating a Group

With no datatype, dataspace, or storage layout to define, creating a group is considerably simpler than
creating a dataset. For example, the following code creates a group called Data in the root group of file.

/*

* Create a group in the file.

*/

grp = H5Gcreate(file, '"/Data", H5P_DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);

Code Example 2-14. Create a group

A group may be created within another group by providing the absolute name of the group to the
H5Gcreate function or by specifying its location. For example, to create the group Data_new in the
group Data, you might use the sequence of calls shown below.

The HDF Group 37

The HDF5 Library and Programming Model HDFS5 User’s Guide

/*

* Create group ""Data_new' in the group "Data"™ by specifying

* absolute name of the group.

*/

grp_new = H5Gcreate(file, '/Data/Data new', HS5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

or

/*

* Create group "Data_new" in the "Data" group.

*/

grp_new = H5Gcreate(grp, "Data _new', H5P DEFAULT, H5P_DEFAULT,
H5P_DEFAULT);

Code Example 2-15. Create a group within a group

This first parameter of H5Gcreate is a location identifier. Fi le in the first example specifies only the file.
grp in the second example specifies a particular group in a particular file. Note that in this instance, the
group identifier grp is used as the first parameter in the H5Gcreate call so that the relative name of
Data_new can be used.

The third parameter of H5Gcreate optionally specifies how much file space to reserve to store the names
of objects that will be created in this group. If a non-positive value is supplied, the library provides a
default size.

Use H5Gclose to close the group and release the group identifier.

Creating a Dataset within a Group

As with groups, a dataset can be created in a particular group by specifying either its absolute name in the
file or its relative name with respect to that group. The next code excerpt uses the absolute name.

38 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

*

Create the dataset 'Compressed_Data™ in the group Data using
the absolute name. The dataset creation property list is
modified to use GZIP compression with the compression

effort set to 6. Note that compression can be used only when
the dataset is chunked.

LA I B I BN

*/

dims[0] = 1000;
dims[1] = 20;
cdims[0] = 20;
cdims[1] = 20;
dataspace = H5Screate_simple(RANK, dims, NULL);
plist = H5Pcreate(H5P_DATASET_CREATE);
H5Pset chunk(plist, 2, cdims);
H5Pset _deflate(plist, 6);
dataset = H5Dcreate(file, "/Data/Compressed Data",
H5T_NATIVE_INT, dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);

Code Example 2-16. Create a dataset within a group using an absolute name

Alternatively, you can first obtain an identifier for the group in which the dataset is to be created, and then
create the dataset with a relative name.

/*

* Open the group.

*/

grp = H5Gopen(Ffile, "Data', H5P_DEFAULT);

/*

* Create the dataset '"'Compressed_Data'" in the 'Data' group

* by providing a group identifier and a relative dataset

* name as parameters to the H5Dcreate function.

*/

dataset = H5Dcreate(grp, ""Compressed Data', HS5T_NATIVE_INT,
dataspace, H5P_DEFAULT, plist, H5P_DEFAULT);

Code Example 2-17. Create a dataset within a group using a relative name

The HDF Group 39

The HDF5 Library and Programming Model HDFS5 User’s Guide

Accessing an Object in a Group

Any object in a group can be accessed by its absolute or relative name. The first code snippet below illus-
trates the use of the absolute name to access the dataset Compressed_Data in the group Data created
in the examples above. The second code snippet illustrates the use of the relative name.

/*

* Open the dataset "Compressed Data'™ in the "Data' group.

*/

dataset = H5Dopen(file, '/Data/Compressed_Data', H5P_DEFAULT);

Code Example 2-18. Accessing a group using its absolute name

/*

* Open the group "data"™ in the file.

*/

grp = H5Gopen(file, "Data', H5P_DEFAULT);

/*

* Access the "Compressed_Data™ dataset in the group.
*/

dataset = H5Dopen(grp, "‘Compressed_Data', H5P_ DEFAULT);

Code Example 2-19. Accessing a group using its relative name

2.2.10. Working with Attributes

An attribute is a small dataset that is attached to a normal dataset or group. Attributes share many of the
characteristics of datasets, so the programming model for working with attributes is similar in many ways
to the model for working with datasets. The primary differences are that an attribute must be attached to
a dataset or a group and sub-setting operations cannot be performed on attributes.

To create an attribute belonging to a particular dataset or group, first create a dataspace for the attribute
with the call to H5Screate, and then create the attribute using HSAcreate. For example, the code
shown below creates an attribute called Integer_attribute thatis a member of a dataset whose iden-
tifier is dataset. The attribute identifier is attr2. H5Awr i te then sets the value of the attribute of that
of the integer variable point. H5SAclose then releases the attribute identifier.

40 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

Int point = 1; /* Value of the scalar attribute */

/*

* Create scalar attribute.

*/

aid2 = H5Screate(H5S_SCALAR);

attr2 = HS5Acreate(dataset, "Integer attribute'™, H5T NATIVE_INT,
aid2, H5P _DEFAULT, H5P_DEFAULT);

/*

* Write scalar attribute.

*/

ret = HSAwrite(attr2, H5T_NATIVE INT, &point);

/*

* Close attribute dataspace.
*/

ret = H5Sclose(aid2);

/*

* Close attribute.

*/

ret = H5Aclose(attr2);

Code Example 2-20. Create an attribute

To read a scalar attribute whose name and datatype are known, first open the attribute using HSAop-
en_by name, and then use H5Aread to get its value. For example, the code shown below reads a scalar
attribute called Integer_attribute whose datatype is a native integer and whose parent dataset has
the identifier dataset.

The HDF Group 41

The HDF5 Library and Programming Model HDFS5 User’s Guide

/*

* Attach to the scalar attribute using attribute name, then

* read and display its value.

*/

attr = H5Aopen_by name(file_id, dataset _name,
"Integer attribute', HS5P_DEFAULT, HS5P_DEFAULT);

ret = HS5Aread(attr, H5T _NATIVE_INT, &point _out);
printf("'The value of the attribute \"Integer attribute\”
is %d \n', point_out);

ret = H5Aclose(attr);

Code Example 2-21. Read a known attribute

To read an attribute whose characteristics are not known, go through these steps. First, query the file to

obtain information about the attribute such as its name, datatype, rank, and dimensions, and then read

the attribute. The following code opens an attribute by its index value using H5Aopen_by_idx, and then
it reads in information about the datatype with H5Aread.

/*

* Attach to the string attribute using its index, then read and

* display the value.

*/

attr = H5Aopen_by idx(File_id, dataset _name, index_type,
iter_order, 2, H5P_DEFAULT, H5P_DEFAULT);

atype = H5Tcopy(H5T_C _S1);
H5Tset_size(atype, 4);

ret = H5Aread(attr, atype, string_out);

printfF(""The value of the attribute with the index 2 is %s \n",
string_out);

Code Example 2-22. Read an unknown attribute

In practice, if the characteristics of attributes are not known, the code involved in accessing and process-
ing the attribute can be quite complex. For this reason, HDF5 includes a function called HSAi terate. This
function applies a user-supplied function to each of a set of attributes. The user-supplied function can
contain the code that interprets, accesses, and processes each attribute.

42 The HDF Group

HDF5 User’s Guide The HDF5 Library and Programming Model

2.3. The Data Transfer Pipeline

The HDF5 Library implements data transfers between different storage locations. At the lowest levels, the
HDF5 Library reads and writes blocks of bytes to and from storage using calls to the virtual file layer (VFL)
drivers. In addition to this, the HDF5 Library manages caches of metadata and a data I/O pipeline. The data
I/0 pipeline applies compression to data blocks, transforms data elements, and implements selections.

A substantial portion of the HDF5 Library’s work is in transferring data from one environment or media to
another. This most often involves a transfer between system memory and a storage medium. Data trans-
fers are affected by compression, encryption, machine-dependent differences in numerical representa-
tion, and other features. So, the bit-by-bit arrangement of a given dataset is often substantially different in
the two environments.

Consider the representation on disk of a compressed and encrypted little-endian array as compared to the
same array after it has been read from disk, decrypted, decompressed, and loaded into memory on a big-
endian system. HDF5 performs all of the operations necessary to make that transition during the 1/0 pro-
cess with many of the operations being handled by the VFL and the data transfer pipeline.

The figure below provides a simplified view of a sample data transfer with four stages. Note that the mod-
ules are used only when needed. For example, if the data is not compressed, the compression stage is
omitted.

Storage Memory

; A
HDFS Library Flow

flow

Scatter/

gather Transform | |—

] VFL Decompress

flow flow e flow

Figure 2-4. A data transfer from storage to memory

For a given I/0 request, different combinations of actions may be performed by the pipeline. The library
automatically sets up the pipeline and passes data through the processing steps. For example, for a read
request (from disk to memory), the library must determine which logical blocks contain the requested

The HDF Group 43

The HDF5 Library and Programming Model HDFS5 User’s Guide

data elements and fetch each block into the library’s cache. If the data needs to be decompressed, then
the compression algorithm is applied to the block after it is read from disk. If the data is a selection, the
selected elements are extracted from the data block after it is decompressed. If the data needs to be
transformed (for example, byte swapped), then the data elements are transformed after decompression
and selection.

While an application must sometimes set up some elements of the pipeline, use of the pipeline is nor-
mally transparent to the user program. The library determines what must be done based on the metadata
for the file, the object, and the specific request. An example of when an application might be required to
set up some elements in the pipeline is if the application used a custom error-checking algorithm.

In some cases, it is necessary to pass parameters to and from modules in the pipeline or among other
parts of the library that are not directly called through the programming API. This is accomplished through
the use of dataset transfer and data access property lists.

The VFL provides an interface whereby user applications can add custom modules to the data transfer
pipeline. For example, a custom compression algorithm can be used with the HDF5 Library by linking an
appropriate module into the pipeline through the VFL. This requires creating an appropriate wrapper for
the compression module and registering it with the library with H5Zregister. The algorithm can then be
applied to a dataset with an H5Pset_Fi lter call which will add the algorithm to the selected dataset’s
transfer property list.

44 The HDF Group

HDF5 User’s Guide The HDFS5 File

3. The HDF5 File

3.1. Introduction

The purpose of this chapter is to describe how to work with HDF5 data files.

If HDF5 data is to be written to or read from a file, the file must first be explicitly created or opened with
the appropriate file driver and access privileges. Once all work with the file is complete, the file must be
explicitly closed.

This chapter discusses the following:

¢ File access modes

e Creating, opening, and closing files

¢ The use of file creation property lists
e The use of file access property lists

¢ The use of low-level file drivers

This chapter assumes an understanding of the material presented in the data model chapter. For more
information, see "The HDF5 Data Model and File Structure" on page 1.

3.2. File Access Modes

There are two issues regarding file access:

¢ What should happen when a new file is created but a file of the same name already exists?
Should the create action fail, or should the existing file be overwritten?

¢ s afile to be opened with read-only or read-write access?

Four access modes address these concerns. Two of these modes can be used with HSFcreate, and two
modes can be used with HSFopen.

e H5Fcreate accepts H5F_ACC_EXCL or H5F_ACC_TRUNC
e HS5Fopen accepts H5F_ACC_RDONLY or H5F_ACC_RDWR

The access modes are described in the table below.

The HDF Group 45

HDF5 User’s Guide The HDFS5 File

Table 3-1. Access flags and modes

Access Flag Resulting Access Mode

H5F ACC_EXCL If the file already exists, HSFcreate fails. If the file does not
exist, it is created and opened with read-write access. (Default)

H5F ACC_TRUNC If the file already exists, the file is opened with read-write access,
and new data will overwrite any existing data. If the file does not
exist, it is created and opened with read-write access.

H5F ACC_RDONLY An existing file is opened with read-only access. If the file does
not exist, H5Fopen fails. (Default)

H5F_ACC_RDWR An existing file is opened with read-write access. If the file does
not exist, H5Fopen fails.

By default, HSFopen opens a file for read-only access; passing HSF_ACC_RDWR allows read-write access to
the file.

By default, H5Fcreate fails if the file already exists; only passing HSF_ACC_TRUNC allows the truncating
of an existing file.

3.3. File Creation and File Access Properties

File creation and file access property lists control the more complex aspects of creating and accessing files.

File creation property lists control the characteristics of a file such as the size of the userblock, a user-
definable data block; the size of data address parameters; properties of the B-trees that are used to man-
age the data in the file; and certain HDF5 Library versioning information.

For more information, see "File Creation Properties" on page 58. This section has a more detailed discus-
sion of file creation properties. If you have no special requirements for these file characteristics, you can
simply specify H5SP_DEFAULT for the default file creation property list when a file creation property list is
called for.

File access property lists control properties and means of accessing a file such as data alignment charac-

teristics, metadata block and cache sizes, data sieve buffer size, garbage collection settings, and parallel I/
O. Data alighment, metadata block and cache sizes, and data sieve buffer size are factors in improving I/0

performance.

For more information, see "File Access Properties" on page 60. This section has a more detailed discussion
of file access properties. If you have no special requirements for these file access characteristics, you can
simply specify H5P_DEFAULT for the default file access property list when a file access property list is
called for.

The HDF Group 46

HDFS5 User’s Guide The HDFS5 File

HDFS file

t0..* to.*

vl

File access properties

vl
File creation properties

Figure 3-1. UML model for an HDF5 file and its property lists

3.4. Low-level File Drivers

The concept of an HDF5 file is actually rather abstract: the address space for what is normally thought of
as an HDF5 file might correspond to any of the following at the storage level:

Single file on a standard file system

Multiple files on a standard file system

Multiple files on a parallel file system

Block of memory within an application’s memory space

More abstract situations such as virtual files

This HDF5 address space is generally referred to as an HDF5 file regardless of its organization at the stor-
age level.

HDF5 accesses a file (the address space) through various types of low-level file drivers. The default HDF5
file storage layout is as an unbuffered permanent file which is a single, contiguous file on local disk. Alter-
native layouts are designed to suit the needs of a variety of systems, environments, and applications.

The HDF Group 47

HDF5 User’s Guide The HDFS5 File

3.5. Programming Model for Files

Programming models for creating, opening, and closing HDF5 files are described in the sub-sections
below.

3.5.1. Creating a New File

The programming model for creating a new HDF5 file can be summarized as follows:

¢ Define the file creation property list
e Define the file access property list
¢ C(Create the file

First, consider the simple case where we use the default values for the property lists. See the example
below.

file_id = H5Fcreate (‘'SampleFile.h5", H5F_ACC_EXCL,
H5P_DEFAULT, H5P_DEFAULT)

Code Example 3-1. Creating an HDF5 file using property list defaults
Note: The example above specifies that HSFcreate should fail if SampleFi le_h5 already exists.

A more complex case is shown in the example below. In this example, we define file creation and access
property lists (though we do not assign any properties), specify that H5Fcreate should fail if Sample-
File.h5 already exists, and create a new file named SampleFile.h5. The example does not specify a
driver, so the default driver, HSFD_SEC2, will be used.

fcplist_id = H5Pcreate (H5P_FILE _CREATE)

<...set desired file creation properties...>

faplist_id = H5Pcreate (H5P_FILE_ACCESS)

<...set desired file access properties...>

file_id = H5Fcreate (“'SampleFile.h5", H5F _ACC _EXCL,
fcplist_id, faplist_id)

Code Example 3-2. Creating an HDF?5 file using property lists

Notes:
A root group is automatically created in a file when the file is first created.

File property lists, once defined, can be reused when another file is created within the same application.

The HDF Group 48

HDF5 User’s Guide The HDFS5 File

3.5.2. Opening an Existing File

The programming model for opening an existing HDF5 file can be summarized as follows:

e Define or modify the file access property list including a low-level file driver (optional)

¢ Open the file

The code in the example below shows how to open an existing file with read-only access.

faplist_id = H5Pcreate (H5P_FILE_ACCESS)

status = H5Pset_fapl _stdio (faplist id)

file_id = H5Fopen ('SampleFile.h5", H5F ACC_RDONLY,
faplist_id)

Code Example 3-3. Opening an HDF?5 file

3.5.3. Closing a File

The programming model for closing an HDF5 file is very simple:

e Close file

We close SampleFi le.h5 with the code in the example below.

status = H5Fclose (Ffile_id)

Code Example 3-4. Closing an HDF?5 file

Note that H5Fclose flushes all unwritten data to storage and that file_id is the identifier returned for
SampleFile.h5 by H5Fopen.

More comprehensive discussions regarding all of these steps are provided below.

3.6. Using h5dump to View a File

h5dump is a command-line utility that is included in the HDF5 distribution. This program provides a
straight-forward means of inspecting the contents of an HDF5 file. You can use h5dump to verify that a
program is generating the intended HDF5 file. h5dump displays ASCII output formatted according to the
HDF5 DDL grammar.

The HDF Group 49

HDFS5 User’s Guide The HDFS5 File

The following h5dump command will display the contents of SampleFile.h5:
h5dump SampleFile.h5

If no datasets or groups have been created in and no data has been written to the file, the output will look
something like the following:

HDF5 "SampleFile.h5" {
GROUP "/ {

}
}

Note that the root group, indicated above by /, was automatically created when the file was created.

h5dump is described on the Tools page of the HDF5 Reference Manual. The HDF5 DDL grammar is
described in the document DDL in BNF for HDF5.

3.7. File Function Summaries

General library functions and macros (H5), file functions (H5F), file related property list functions (H5P),
and file driver functions (H5P) are listed below.

Function Listing 3-1. General library functions and macros (H5)

C Function Purpose
Fortran Function

H5check_version Verifies that HDF5 Library versions are consis-
h5check _version_f tent.

H5close Flushes all data to disk, closes all open identi-
h5close_f fiers, and cleans up memory.
H5dont_atexit Instructs the library not to install the atexit
h5dont_atexit_f cleanup routine.

H5garbage collect Garbage collects on all free-lists of all types.

h5garbage_collect_f

H5get_libversion Returns the HDF library release number.
h5get_libversion_f

H50pen Initializes the HDF5 Library.
h5open_*F
H5set free_list_limits Sets free-list size limits.

h5set_free_ list_limits_F

The HDF Group 50

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/RM/Tools.html
http://www.hdfgroup.org/HDF5/doc/ddl.html

HDFS5 User’s Guide

The HDFS5 File

Function Listing 3-1. General library functions and macros (H5)

C Function
Fortran Function

Purpose

H5_VERSION_GE
(no Fortran subroutine)

Determines whether the version of the library
being used is greater than or equal to the
specified version.

H5 VERSION_LE
(no Fortran subroutine)

Determines whether the version of the library
being used is less than or equal to the speci-
fied version.

Function Listing 3-2. File functions (H5F)

C Function
Fortran Function

Purpose

H5Fclear_elink Ffile_cache
(no Fortran subroutine)

Clears the external link open file cache for a
file.

H5Fclose Closes HDF5 file.
h5fclose_ T
H5Fcreate Creates new HDFS5 file.

h5fcreate_ f

H5FFlush
h5fflush_f

Flushes data to HDF5 file on storage medium.

H5Fget_access_plist
h5fget_access_plist_f

Returns a file access property list identifier.

H5Fget_create_plist
h5fget _create_plist_F

Returns a file creation property list identifier.

H5Fget_file_image
h5fget_file_image f

Retrieves a copy of the image of an existing,
open file.

H5Fget_filesize
h5fget_filesize f

Returns the size of an HDF5 file.

H5Fget_freespace
h5fget_freespace_ T

Returns the amount of free space in a file.

H5Fget_info
(no Fortran subroutine)

Returns global information for a file.

H5Fget_intent
(no Fortran subroutine)

Determines the read/write or read-only status
of a file.

The HDF Group

51

HDFS5 User’s Guide

The HDFS5 File

Function Listing 3-2. File functions (H5F)

C Function
Fortran Function

Purpose

H5Fget_mdc_config
(no Fortran subroutine)

Obtain current metadata cache configuration
for target file.

H5Fget _mdc_hit_rate
(no Fortran subroutine)

Obtain target file’s metadata cache hit rate.

H5Fget _mdc_size
(no Fortran subroutine)

Obtain current metadata cache size data for
specified file.

H5Fget _mpi_atomicity
h5fget_mpi_atomicity_ F

Retrieves the atomicity mode in use.

H5Fget_name
h5fget _name_F

Retrieves the name of the file to which the
object belongs.

H5Fget _obj count
h5fget _obj count f

Returns the number of open object identifiers
for an open file.

H5Fget _obj ids
h5fget _obj ids F

Returns a list of open object identifiers.

H5Fget_vfd_handle
(no Fortran subroutine)

Returns pointer to the file handle from the
virtual file driver.

H5Fis_hdf5
hSfis_hdf5_f

Determines whether a file is in the HDF5 for-
mat.

H5Fmount Mounts a file.

h5fmount_f

H5Fopen Opens existing HDF5 file.

h5fopen_Tf

H5Freopen Returns a new identifier for a previously-

h5freopen_f

opened HDFS5 file.

H5Freset _mdc_hit rate_ stats
(no Fortran subroutine)

Reset hit rate statistics counters for the target
file.

H5Fset_mdc_config
(no Fortran subroutine)

Use to configure metadata cache of target
file.

HS5Fset_mpi_atomicity
h5fset_mpi_atomicity f

Use to set the MPI atomicity mode.

H5Funmount
h5funmount_f

Unmounts a file.

The HDF Group

52

HDFS5 User’s Guide

The HDFS5 File

Function Listing 3-3. File creation property list functions (H5P)

C Function
Fortran Function

Purpose

H5Pset/get_userblock
h5pset/get_userblock F

Sets/retrieves size of userblock.

H5Pset/get_sizes
h5pset/get_sizes F

Sets/retrieves byte size of offsets and lengths
used to address objects in HDF5 file.

H5Pset/get_sym_k
h5pset/get_sym k F

Sets/retrieves size of parameters used to con-
trol symbol table nodes.

H5Pset/get_istore k
h5pset/get_istore k F

Sets/retrieves size of parameter used to con-
trol B-trees for indexing chunked datasets.

H5Pget_file_image
h5pget_file _image F

Retrieves a copy of the file image designated
as the initial content and structure of a file.

H5Pset_file_image
h5pset_file _image F

Sets an initial file image in a memory buffer.

H5Pset_shared_mesg_nindexes
h5pset_shared_mesg_nindexes_f

Sets number of shared object header mes-
sage indexes.

H5Pget_shared_mesg_nindexes
(no Fortran subroutine)

Retrieves number of shared object header
message indexes in file creation property list.

H5Pset_shared_mesg_index
h5pset_shared_mesg_index_ F

Configures the specified shared object header
message index.

H5Pget_shared_mesg_index
(no Fortran subroutine)

Retrieves the configuration settings for a
shared message index.

H5Pset_shared_mesg_phase_change
(no Fortran subroutine)

Sets shared object header message storage
phase change thresholds.

H5Pget_shared_mesg_phase_change
(no Fortran subroutine)

Retrieves shared object header message
phase change information.

H5Pget_version
h5pget_version_F

Retrieves version information for various
objects for file creation property list.

The HDF Group

53

HDFS5 User’s Guide

The HDFS5 File

Function Listing 3-4. File access property list functions (H5P)

C Function
Fortran Function

Purpose

H5Pset/get_alignment
h5pset/get_alignment F

Sets/retrieves alignment properties.

H5Pset/get_cache
h5pset/get_cache F

Sets/retrieves metadata cache and raw data
chunk cache parameters.

H5Pset/get_elink file_cache_size
(no Fortran subroutine)

Sets/retrieves the size of the external link
open file cache from the specified file access
property list.

H5Pset/get_fclose degree
h5pset/get_fclose degree F

Sets/retrieves file close degree property.

H5Pset/get_gc_references
h5pset/get_gc references F

Sets/retrieves garbage collecting references
flag.

H5Pset_ family_ offset
h5pset_family offset f

Sets offset property for low-level access to a
file in a family of files.

H5Pget_ family_ offset
(no Fortran subroutine)

Retrieves a data offset from the file access
property list.

H5Pset/get_meta_ block_size
h5pset/get_meta_block size f

Sets the minimum metadata block size or
retrieves the current metadata block size set-
ting.

H5Pset_mdc_config
(no Fortran subroutine)

Set the initial metadata cache configuration in
the indicated File Access Property List to the
supplied value.

H5Pget_mdc_config
(no Fortran subroutine)

Get the current initial metadata cache config-
uration from the indicated File Access Prop-
erty List.

H5Pset/get_sieve buf _size
h5pset/get_sieve buf _size f

Sets/retrieves maximum size of data sieve
buffer.

H5Pset_libver_bounds
h5pset_libver_bounds_f

Sets bounds on library versions, and indirectly
format versions, to be used when creating
objects.

H5Pget_libver_bounds
(no Fortran subroutine)

Retrieves library version bounds settings that
indirectly control the format versions used
when creating objects.

The HDF Group

54

HDFS5 User’s Guide

The HDFS5 File

Function Listing 3-4. File access property list functions (H5P)

C Function
Fortran Function

Purpose

H5Pset _small_data block_size
h5pset_small_data_block_size f

Sets the size of a contiguous block reserved
for small data.

H5Pget small_data block_size
h5pget_small_data_block_size f

Retrieves the current small data block size
setting.

Function Listing 3-5. File driver functions (H5P)

C Function
Fortran Function

Purpose

H5Pset_driver
(no Fortran subroutine)

Sets a file driver.

H5Pget _driver
h5pget_driver_f

Returns the identifier for the driver used to
create a file.

H5Pget_driver_info
(no Fortran subroutine)

Returns a pointer to file driver information.

H5Pset/get_fapl_core
h5pset/get_fapl core F

Sets the driver for buffered memory files (in
RAM) or retrieves information regarding the
driver.

H5Pset_ fapl _direct
h5pset_fapl _direct_f

Sets up use of the direct I/O driver.

H5Pget_ fapl_direct
h5pget_fapl _direct_f

Retrieves the direct I/O driver settings.

H5Pset/get_fapl_family
h5pset/get_fapl family F

Sets driver for file families, designed for sys-
tems that do not support files larger than 2
gigabytes, or retrieves information regarding
driver.

H5Pset_fapl log
(no Fortran subroutine)

Sets logging driver.

H5Pset/get_fapl _mpio
h5pset/get_fapl_mpio_F

Sets driver for files on parallel file systems
(MPI1/0) or retrieves information regarding
the driver.

H5Pset_fapl_mpiposix
h5pset_fapl _mpiposix_F

No longer available.

The HDF Group

55

HDFS5 User’s Guide The HDFS5 File

Function Listing 3-5. File driver functions (H5P)

C Function Purpose
Fortran Function

H5Pget fapl _mpiposix No longer available.
h5pget_fapl _mpiposix_F

H5Pset/get_fapl_multi
h5pset/get_fapl multi_f

Sets driver for multiple files, separating cate-

gories of metadata and raw data, or retrieves
information regarding driver.

H5Pset_ fapl_sec2
h5pset_fapl_sec2 f

Sets driver for unbuffered permanent files or
retrieves information regarding driver.

H5Pset fapl _split
h5pset_fapl_split_f

Sets driver for split files, a limited case of mul-
tiple files with one metadata file and one raw
data file.

H5Pset_fapl_stdio
H5Pset_fapl_stdio_ T

Sets driver for buffered permanent files.

H5Pset_fapl_windows
(no Fortran subroutine)

Sets the Windows I/O driver.

H5Pset multi_type
(no Fortran subroutine)

Specifies type of data to be accessed via the
MULTI driver enabling more direct access.

H5Pget multi_type

Retrieves type of data property for MULTI

(no Fortran subroutine) driver.

3.8. Creating or Opening an HDF5 File

This section describes in more detail how to create and how to open files.

New HDFS5 files are created and opened with HSFcreate; existing files are opened with H5Fopen. Both
functions return an object identifier which must eventually be released by calling H5Fclose.

To create a new file, call H5SFcreate:

hid_t H5Fcreate (const char *name, unsigned flags, hid_t fcpl_id,
hid_t fapl_id)

H5Fcreate creates a new file named name in the current directory. The file is opened with read and write
access; if the H5F_ACC_TRUNC flag is set, any pre-existing file of the same name in the same directory is
truncated. If HSF_ACC_TRUNC is not set or H5F_ACC_EXCL is set and if a file of the same name exists,
H5Fcreate will fail.

The HDF Group 56

HDF5 User’s Guide The HDFS5 File

The new file is created with the properties specified in the property lists fcpl_id and fapl_id. fcpl is
short for file creation property list. fapl is short for file access property list. Specifying H5P_DEFAULT for
either the creation or access property list calls for the library’s default creation or access properties.

If HSFcreate successfully creates the file, it returns a file identifier for the new file. This identifier will be
used by the application any time an object identifier, an OID, for the file is required. Once the application
has finished working with a file, the identifier should be released and the file closed with H5SFclose.

To open an existing file, call H5Fopen:
hid_t H5Fopen (const char *name, unsigned flags, hid_t fapl_id)

H5Fopen opens an existing file with read-write access if H5F_ACC_RDWR is set and read-only access if
H5F ACC_RDONLY is set.

fapl_idis the file access property list identifier. Alternatively, H5P_DEFAULT indicates that the applica-
tion relies on the default I/O access parameters. Creating and changing access property lists is docu-
mented further below.

A file can be opened more than once via multiple H5Fopen calls. Each such call returns a unique file iden-
tifier and the file can be accessed through any of these file identifiers as long as they remain valid. Each of
these file identifiers must be released by calling HSFclose when it is no longer needed.

For more information, see "File Access Modes" on page 45.

For more information, see "File Property Lists" on page 58.

3.9. Closing an HDF?5 File

H5Fclose both closes a file and releases the file identifier returned by H5SFopen or H5Fcreate. H5F-
close must be called when an application is done working with a file; while the HDF5 Library makes every
effort to maintain file integrity, failure to call HSFclose may result in the file being abandoned in an
incomplete or corrupted state.

To close a file, call HSFclose:
herr_t H5Fclose (hid_t file_ id)

This function releases resources associated with an open file. After closing a file, the file identifier,
file_1id, cannot be used again as it will be undefined.

H5Fclose fulfills three purposes: to ensure that the file is left in an uncorrupted state, to ensure that all
data has been written to the file, and to release resources. Use H5Fflush if you wish to ensure that all
data has been written to the file but it is premature to close it.

Note regarding serial mode behavior: When H5Fclose is called in serial mode, it closes the file and termi-
nates new access to it, but it does not terminate access to objects that remain individually open within the
file. That is, if HSFclose is called for a file but one or more objects within the file remain open, those
objects will remain accessible until they are individually closed. To illustrate, assume that a file, FileA,
contains a dataset, data_setA, and that both are open when H5Fclose is called for FileA. data_setA

The HDF Group 57

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html#File-Flush

HDF5 User’s Guide The HDFS5 File

will remain open and accessible, including writable, until it is explicitly closed. The file will be automati-
cally and finally closed once all objects within it have been closed.

Note regarding parallel mode behavior: Once H5SFclose has been called in parallel mode, access is no
longer available to any object within the file.

3.10. File Property Lists

Additional information regarding file structure and access are passed to H5Fcreate and H5Fopen
through property list objects. Property lists provide a portable and extensible method of modifying file
properties via simple API functions. There are two kinds of file-related property lists:

¢ File creation property lists

¢ File access property lists
In the following sub-sections, we discuss only one file creation property, userblock size, in detail as a
model for the user. Other file creation and file access properties are mentioned and defined briefly, but
the model is not expanded for each; complete syntax, parameter, and usage information for every prop-
erty list function is provided in the "H5P: Property List Interface" section of the HDF5 Reference Manual.
For more information, see "Properties and Property Lists in HDF5" on page 337.

3.10.1. Creating a Property List
If you do not wish to rely on the default file creation and access properties, you must first create a prop-
erty list with HSPcreate.

hid_t H5Pcreate (hid_t cls_id)

type is the type of property list being created. In this case, the appropriate values are H5P_FI1LE_CRE-
ATE for a file creation property list and H5P_FILE_ACCESS for a file access property list.

Thus, the following calls create a file creation property list and a file access property list with identifiers
fcpl _id and fapl_id, respectively:

fcpl_id = H5Pcreate (H5P_FILE_CREATE)
fapl_id H5Pcreate (H5P_FILE_ACCESS)

Once the property lists have been created, the properties themselves can be modified via the functions
described in the following sub-sections.

3.10.2. File Creation Properties

File creation property lists control the file metadata, which is maintained in the superblock of the file.
These properties are used only when a file is first created.

The HDF Group 58

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

HDF5 User’s Guide The HDFS5 File

Userblock Size
herr_t H5Pset_userblock (hid_t plist, hsize t size)
herr_t H5Pget_userblock (hid_t plist, hsize t *size)

The userblock is a fixed-length block of data located at the beginning of the file and is ignored by the HDF5
Library. This block is specifically set aside for any data or information that developers determine to be use-
ful to their applications but that will not be used by the HDF5 Library. The size of the userblock is defined
in bytes and may be set to any power of two with a minimum size of 512 bytes. In other words, userblocks
might be 512, 1024, or 2048 bytes in size.

This property is set with H5Pset_userblock and queried via H5Pget_userblock. For example, if an
application needed a 4K userblock, then the following function call could be used:

status = H5Pset_userblock(fcpl_id, 4096)
The property list could later be queried with
status = H5Pget_userblock(fcpl _id, size)
and the value 4096 would be returned in the parameter size.
Other properties, described below, are set and queried in exactly the same manner. Syntax and usage are
detailed in the "H5P: Property List Interface" section of the HDF5 Reference Manual.
Offset and Length Sizes

This property specifies the number of bytes used to store the offset and length of objects in the HDF5 file.
Values of 2, 4, and 8 bytes are currently supported to accommodate 16-bit, 32-bit, and 64-bit file address
spaces.

These properties are set and queried via H5SPset_sizes and H5Pget_sizes.

Symbol Table Parameters

The size of symbol table B-trees can be controlled by setting the 1/2-rank and 1/2-node size parameters of
the B-tree.

These properties are set and queried via H5Pset_sym_k and H5Pget_sym_ k.

Indexed Storage Parameters

The size of indexed storage B-trees can be controlled by setting the 1/2-rank and 1/2-node size parameters
of the B-tree.

These properties are set and queried via H5Pset_istore_k and H5Pget_istore k.

Version Information

Various objects in an HDF5 file may over time appear in different versions. The HDF5 Library keeps track of
the version of each object in the file.

Version information is retrieved via H5Pget_version.

The HDF Group 59

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

HDF5 User’s Guide The HDFS5 File

3.10.3. File Access Properties

This section discusses file access properties that are not related to the low-level file drivers. File drivers are
discussed separately later in this chapter. For more information, see "Alternate File Storage Layouts and
Low-level File Drivers" on page 61.

File access property lists control various aspects of file I/O and structure.

Data Alignment

Sometimes file access is faster if certain data elements are aligned in a specific manner. This can be con-
trolled by setting alignment properties via the H5Pset_al ignment function. There are two values
involved:

e Athreshold value

¢ Analignment interval

Any allocation request at least as large as the threshold will be aligned on an address that is a multiple of
the alignment interval.
Metadata Block Allocation Size

Metadata typically exists as very small chunks of data; storing metadata elements in a file without block-
ing them can result in hundreds or thousands of very small data elements in the file. This can result in a
highly fragmented file and seriously impede 1/0. By blocking metadata elements, these small elements
can be grouped in larger sets, thus alleviating both problems.

H5Pset _meta_block_ size sets the minimum size in bytes of metadata block allocations.
H5Pget _meta_block_size retrieves the current minimum metadata block allocation size.

Metadata Cache

Metadata and raw data I/O speed are often governed by the size and frequency of disk reads and writes.
In many cases, the speed can be substantially improved by the use of an appropriate cache.

H5Pset cache sets the minimum cache size for both metadata and raw data and a preemption value for
raw data chunks. H5Pget_cache retrieves the current values.
Data Sieve Buffer Size

Data sieve buffering is used by certain file drivers to speed data I/O and is most commonly when working
with dataset hyperslabs. For example, using a buffer large enough to hold several pieces of a dataset as it
is read in for hyperslab selections will boost performance noticeably.

H5Pset _sieve_ buf size sets the maximum size in bytes of the data sieve buffer.
H5Pget_sieve_ buf_size retrieves the current maximum size of the data sieve buffer.
Garbage Collection References

Dataset region references and other reference types use space in an HDF5 file’s global heap. If garbage
collection is on (1) and the user passes in an uninitialized value in a reference structure, the heap might

The HDF Group 60

HDF5 User’s Guide The HDFS5 File

become corrupted. When garbage collection is off (0), however, and the user re-uses a reference, the pre-
vious heap block will be orphaned and not returned to the free heap space. When garbage collection is
on, the user must initialize the reference structures to O or risk heap corruption.

H5Pset_gc_references sets the garbage collecting references flag.

3.11. Alternate File Storage Layouts and Low-level File

Drivers

The concept of an HDF5 file is actually rather abstract: the address space for what is normally thought of
as an HDF5 file might correspond to any of the following:

¢ Single file on standard file system

e Multiple files on standard file system

e Multiple files on parallel file system

¢ Block of memory within application’s memory space

e More abstract situations such as virtual files

This HDF5 address space is generally referred to as an HDF5 file regardless of its organization at the stor-
age level.

HDF5 employs an extremely flexible mechanism called the virtual file layer, or VFL, for file I/0. A full
understanding of the VFL is only necessary if you plan to write your own drivers (see "Virtual File Layer"
and "List of VFL Functions" in the HDF5 Technical Notes). For our purposes here, it is sufficient to know
that the low-level drivers used for file I/O reside in the VFL, as illustrated in the following figure. Note that
H5FD_STREAM is not available with 1.8.x and later versions of the library.

The HDF Group 61

http://www.hdfgroup.org/HDF5/doc/TechNotes/VFL.html
http://www.hdfgroup.org/HDF5/doc/TechNotes/VFLfunc.html

HDFS5 User’s Guide

The HDF5 File
HDF5 application+—
—___HHH
)
o
Virtual file layer WFLJ-"’/ Memory Network
File drivers File drivers driver driver
! ST, .
HSFD SEC? ps0 MiLTI) ((ESPDMPD) (EsFD_ConE) (lsED_sreza)
[] []
HSED STDIO HSED SPLIT

"Storage” level

Network

Files Memory

Figure 3-2. I/O path from application to VFL and low-level drivers to storage

As mentioned above, HDF5 applications access HDF5 files through various low-level file drivers. The
default driver for that layout is the POSIX driver (also known as the SEC2 driver), HSFD_SEC2. Alternative

layouts and drivers are designed to suit the needs of a variety of systems, environments, and applications.
The drivers are listed in the table below.

The HDF Group 62

HDFS5 User’s Guide The HDFS5 File

Table 3-2. Supported file drivers

Driver Driver Description Related API
Name Identifier
POSIX H5FD_SEC2 This driver uses POSIX H5Pset_fapl_sec2

file-system functions
like read and write to
perform 1/0 to a single,
permanent file on local
disk with no system
buffering. This driver is
POSIX-compliant and is
the default file driver
for all systems.

Direct H5FD_DIRECT This is the H5FD_SEC2 H5Pset_fapl_direct
driver except data is
written to or read from
the file synchronously
without being cached by

the system.

Log HSFD_LOG This is the HSFD_SEC2 ~ H5Pset_fapl_log
driver with logging
capabilities.

Windows HS5FD_WINDOWS This driver was modified H5Pset_fapl_windows

in HDF5-1.8.8 to be a
wrapper of the POSIX
driver, HSFD_SEC2. This
change should not
affect user applications.

STDIO H5FD_STDIO This driver uses func- H5Pset_fapl_stdio
tions from the standard
Cstdio.hto perform
I/0 to a single, perma-
nent file on local disk
with additional system
buffering.

The HDF Group 63

HDFS5 User’s Guide The HDFS5 File

Table 3-2. Supported file drivers

Driver Driver Description Related API
Name Identifier
Memory H5FD_CORE With this driver, an H5Pset_fapl_core

application can work
with a file in memory
for faster reads and
writes. File contents are
kept in memory until
the file is closed. At clos-
ing, the memory version
of the file can be writ-
ten back to disk or
abandoned.

Family H5FD_FAMILY With this driver, the H5Pset_fapl_family
HDF5 file’s address
space is partitioned into
pieces and sent to sepa-
rate storage files using
an underlying driver of
the user’s choice. This
driver is for systems that
do not support files
larger than 2 gigabytes.

Multi H5FD_MULTI With this driver, data H5Pset_fapl_multi
can be stored in multi-
ple files according to the
type of the data. I/0
might work better if
data is stored in sepa-
rate files based on the
type of data. The Split
driver is a special case
of this driver.

Split H5FD_SPLIT This file driver splits a H5Pset_fapl_split
file into two parts. One
part stores metadata,
and the other part
stores raw data. This
splitting a file into two
parts is a limited case of
the Multi driver.

The HDF Group 64

HDFS5 User’s Guide The HDFS5 File

Table 3-2. Supported file drivers

Driver Driver Description Related API
Name Identifier
Parallel H5FD_MPIO This is the standard H5Pset_fapl_mpio

HDF5 file driver for par-
allel file systems. This
driver uses the MPI
standard for both com-
munication and file 1/0.

Parallel H5FD_MPIPOSIX This driver is no longer

POSIX available.

Stream H5FD_STREAM This driver is no longer
available.

For more information, see the HDF5 Reference Manual entries for the function calls shown in the column
on the right in the table above.

Note that the low-level file drivers manage alternative file storage layouts. Dataset storage layouts (chunk-
ing, compression, and external dataset storage) are managed independently of file storage layouts.

If an application requires a special-purpose low-level driver, the VFL provides a public API for creating one.
For more information on how to create a driver, see “Virtual File Layer” and “List of VFL Functions” in the
HDF5 Technical Notes.

3.11.1. Identifying the Previously-used File Driver
When creating a new HDF?5 file, no history exists, so the file driver must be specified if it is to be other than
the default.

When opening existing files, however, the application may need to determine which low-level driver was
used to create the file. The function H5Pget _driver is used for this purpose. See the example below.

hid_t H5Pget driver (hid_t fapl_id)

Code Example 3-5. Identifying a driver

H5Pget_driver returns a constant identifying the low-level driver for the access property list fapl_id.
For example, if the file was created with the POSIX (aka SEC2) driver, H5Pget_driver returns H5F-
D_SEC2.

The HDF Group 65

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/TechNotes/VFL.html
http://www.hdfgroup.org/HDF5/doc/TechNotes/VFLfunc.html

HDF5 User’s Guide The HDFS5 File

If the application opens an HDF5 file without both determining the driver used to create the file and set-
ting up the use of that driver, the HDF5 Library will examine the superblock and the driver definition block
to identify the driver. See the HDF5 File Format Specification for detailed descriptions of the superblock
and the driver definition block.

3.11.2. The POSIX (aka SEC2) Driver

The POSIX driver, HSFD_SEC2, uses functions from section 2 of the POSIX manual to access unbuffered
files stored on a local file system. This driver is also known as the SEC2 driver. The HDF5 Library buffers
metadata regardless of the low-level driver, but using this driver prevents data from being buffered again
by the lowest layers of the library.

The function H5Pset_fTapl_sec?2 sets the file access properties to use the POSIX driver. See the example
below.

herr_t H5Pset_fapl_sec2 (hid_t fapl_id)

Code Example 3-6. Using the POSIX, aka SEC2, driver

Any previously-defined driver properties are erased from the property list.

Additional parameters may be added to this function in the future. Since there are no additional variable
settings associated with the POSIX driver, there is no H5Pget_fapl_sec2 function.

3.11.3. The Direct Driver

The Direct driver, HSFD_DIRECT, functions like the POSIX driver except that data is written to or read from
the file synchronously without being cached by the system.

The functions H5Pset_fapl_direct and H5Pget_fapl_direct are used to manage file access prop-
erties. See the example below.

herr_t H5Pset_fapl _direct(hid_t fapl _id, size_t alignment,
size_t block_size, size_t cbuf _size)

herr_t H5Pget_fapl _direct(hid_t fapl_id, size t *alignment,
size_t *block size, size t *cbuf _size)

Code Example 3-7. Using the Direct driver

The HDF Group 66

http://www.hdfgroup.org/HDF5/doc/H5.format.html

HDFS5 User’s Guide The HDFS5 File

H5Pset_ fapl_direct sets the file access properties to use the Direct driver; any previously defined
driver properties are erased from the property list. H5Pget_fapl direct retrieves the file access prop-
erties used with the Direct driver. fapl_id is the file access property list identifier. al ignment is the
memory alighment boundary. block_size is the file system block size. cbuf_size is the copy buffer
size.

Additional parameters may be added to this function in the future.

3.11.4. The Log Driver

The Log driver, HSFD_LOG, is designed for situations where it is necessary to log file access activity.

The function H5Pset_fapl_log is used to manage logging properties. See the example below.

herr_t H5Pset_fapl _log (hid_t fapl_id, const char *logfile,
unsigned int flags, size_t buf _size)

Code Example 3-8. Logging file access

H5Pset_fapl_log sets the file access property list to use the Log driver. File access characteristics are
identical to access via the POSIX driver. Any previously defined driver properties are erased from the prop-
erty list.

Log records are written to the file logfile.

The logging levels set with the verbosity parameter are shown in the table below.

Table 3-3. Logging levels

Level Comments

0 Performs no logging.

1 Records where writes and reads occur in the file.

2 Records where writes and reads occur in the file and what kind of data is writ-

ten at each location. This includes raw data or any of several types of metadata
(object headers, superblock, B-tree data, local headers, or global headers).

There is no H5Pget_fapl_log function.

Additional parameters may be added to this function in the future.

The HDF Group 67

HDF5 User’s Guide The HDFS5 File

3.11.5. The Windows Driver

The Windows driver, HSFD_WINDOWS, was modified in HDF5-1.8.8 to be a wrapper of the POSIX driver,
H5FD_SEC2. In other words, if the Windows drivers is used, any file I/0 will instead use the functionality
of the POSIX driver. This change should be transparent to all user applications. The Windows driver used
to be the default driver for Windows systems. The POSIX driver is now the default.

The function H5Pset_fapl_windows sets the file access properties to use the Windows driver. See the
example below.

herr_t H5Pset_fapl_windows (hid_t fapl _id)

Code Example 3-9. Using the Windows driver

Any previously-defined driver properties are erased from the property list.

Additional parameters may be added to this function in the future. Since there are no additional variable
settings associated with the POSIX driver, there is no H5Pget_fapl_windows function.

3.11.6. The STDIO Driver

The STDIO driver, HSFD_STDIO, accesses permanent files in a local file system like the POSIX driver does.
The STDIO driver also has an additional layer of buffering beneath the HDF5 Library.

The function H5Pset_fapl_stdio sets the file access properties to use the STDIO driver. See the exam-
ple below.

herr_t H5Pset_fapl_stdio (hid_t fapl_id)

Code Example 3-10. Using the STDIO driver

Any previously defined driver properties are erased from the property list.

Additional parameters may be added to this function in the future. Since there are no additional variable
settings associated with the STDIO driver, there is no H5Pget_ fapl_stdio function.

3.11.7. The Memory (aka Core) Driver

There are several situations in which it is reasonable, sometimes even required, to maintain a file entirely
in system memory. You might want to do so if, for example, either of the following conditions apply:

The HDF Group 68

HDF5 User’s Guide The HDFS5 File

¢ Performance requirements are so stringent that disk latency is a limiting factor

¢ You are working with small, temporary files that will not be retained and, thus, need not be writ-
ten to storage media

The Memory driver, HSFD_CORE, provides a mechanism for creating and managing such in-memory files.
The functions H5Pset_fapl_core and H5Pget fapl_core manage file access properties. See the
example below.

herr_t H5Pset_fapl_core (hid_t access_properties,
size_t block_size, hbool_t backing store)

herr_t H5Pget_fapl _core (hid_t access_properties,
size_t *block _size), hbool _t *backing store)

Code Example 3-11. Managing file access for in-memory files

H5Pset_fapl_core sets the file access property list to use the Memory driver; any previously defined
driver properties are erased from the property list.

Memory for the file will always be allocated in units of the specified block_size.

The backing_store Boolean flag is set when the in-memory file is created. backing_store indicates
whether to write the file contents to disk when the file is closed. If backing_storeis setto 1 (TRUE), the
file contents are flushed to a file with the same name as the in-memory file when the file is closed or
access to the file is terminated in memory. If backing_store is set to 0 (FALSE), the file is not saved.

The application is allowed to open an existing file with the HSFD_CORE driver. While using H5Fopen to
open an existing file, if backing_store is set to 1 and the flag for H5Fopen is set to H5F_ACC_RDWR,
changes to the file contents will be saved to the file when the file is closed. If backing_store is set to O
and the flag for H5Fopen is set to H5F_ACC_RDWR, changes to the file contents will be lost when the file
is closed. If the Flag for HSFopen is set to HSF_ACC_RDONLY, no change to the file will be allowed either
in memory or on file.

If the file access property list is set to use the Memory driver, HSPget_fapl_core will return block_-
size and backing_store with the relevant file access property settings.

Note the following important points regarding in-memory files:

e Local temporary files are created and accessed directly from memory without ever being written
to disk
¢ Total file size must not exceed the available virtual memory

¢ Only one HDF5 file identifier can be opened for the file, the identifier returned by H5Fcreate or
H5Fopen

¢ The changes to the file will be discarded when access is terminated unless backing_store is set
tol

Additional parameters may be added to these functions in the future.

The HDF Group 69

The HDFS5 File HDF5 User’s Guide

See the "HDF5 File Image Operations" section for information on more advanced usage of the Memory file
driver, and see the "Modified Region Writes" section for information on how to set write operations so
that only modified regions are written to storage.

3.11.8. The Family Driver

HDFS5 files can become quite large, and this can create problems on systems that do not support files
larger than 2 gigabytes. The HDF5 file family mechanism is designed to solve the problems this creates by
splitting the HDFS5 file address space across several smaller files. This structure does not affect how meta-
data and raw data are stored: they are mixed in the address space just as they would be in a single, contig-
uous file.

HDF5 applications access a family of files via the Family driver, HSFD_FAMILY. The functions H5Pset -
fapl_family and H5Pget_fapl_family are used to manage file family properties. See the example
below.

herr_t H5Pset_fapl_family (hid_t fapl_id,
hsize_t memb_size, hid_t member_properties)

herr_t H5Pget_fapl_ family (hid_t fapl_id,
hsize_t *memb_size, hid_t *member_properties)

Code Example 3-12. Managing file family properties

Each member of the family is the same logical size though the size and disk storage reported by file system
listing tools may be substantially smaller. Examples of file system listing tools are >1s -1~ on a Unix sys-
tem or the detailed folder listing on an Apple Macintosh or Microsoft Windows system. The name passed
to H5Fcreate or H5Fopen should include a printf(3c)-style integer format specifier which will be
replaced with the family member number. The first family member is numbered zero (0).

H5Pset_fapl_family sets the access properties to use the Family driver; any previously defined driver
properties are erased from the property list. nember_properties will serve as the file access property
list for each member of the file family. memb_size specifies the logical size, in bytes, of each family mem-
ber. memb_size is used only when creating a new file or truncating an existing file; otherwise the mem-
ber size is determined by the size of the first member of the family being opened. Note: If the size of the
off_t type is four bytes, the maximum family member size is usually 2731-1 because the byte at offset
2,147,483,647 is generally inaccessible.

H5Pget fapl_ family is used to retrieve file family properties. If the file access property list is set to use
the Family driver, member_properties will be returned with a pointer to a copy of the appropriate
member access property list. If memb_size is non-null, it will contain the logical size, in bytes, of family
members.

Additional parameters may be added to these functions in the future.

70 The HDF Group

http://www.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/ModifiedRegionWrites/ModifiedRegionWrites.pdf

HDF5 User’s Guide The HDFS5 File

3.11.8.1. Unix Tools and an HDF5 Utility

It occasionally becomes necessary to repartition a file family. A command-line utility for this purpose,
h5repart, is distributed with the HDF5 Library.

hSrepart [-v] [-b block_size[suffix]] [-m member_size[suffix]] source
destination

h5repart repartitions an HDF5 file by copying the source file or file family to the destination file or file
family, preserving holes in the underlying UNIX files. Families are used for the source and/or destination if
the name includes a printf-style integer format such as %d. The -v switch prints input and output file
names on the standard error stream for progress monitoring, -b sets the I/0 block size (the default is
1KB), and -m sets the output member size if the destination is a family name (the default is 1GB).
block_size and member_size may be suffixed with the letters g, m, or k for GB, MB, or KB respectively.

The h5repart utility is described on the Tools page of the HDF5 Reference Manual.

An existing HDFS5 file can be split into a family of files by running the file through split(1) on a UNIX sys-
tem and numbering the output files. However, the HDF5 Library is lazy about extending the size of family
members, so a valid file cannot generally be created by concatenation of the family members.

Splitting the file and rejoining the segments by concatenation (split(1) and cat(l) on UNIX systems)
does not generate files with holes; holes are preserved only through the use of h5repart.

3.11.9. The Multi Driver

In some circumstances, it is useful to separate metadata from raw data and some types of metadata from
other types of metadata. Situations that would benefit from use of the Multi driver include the following:

¢ In networked situations where the small metadata files can be kept on local disks but larger raw
data files must be stored on remote media

¢ In cases where the raw data is extremely large

¢ Insituations requiring frequent access to metadata held in RAM while the raw data can be effi-
ciently held on disk

In either case, access to the metadata is substantially easier with the smaller, and possibly more localized,
metadata files. This often results in improved application performance.

The Multi driver, HSFD_MULTI, provides a mechanism for segregating raw data and different types of
metadata into multiple files. The functions H5Pset_fapl_multi and H5Pget_fapl multi are used to
manage access properties for these multiple files. See the example below.

The HDF Group 71

http://www.hdfgroup.org/HDF5/doc/RM/Tools.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

The HDFS5 File HDF5 User’s Guide

herr_t H5Pset_fapl _multi (hid_t fapl _id,
const H5FD_mem_t *memb_map,
const hid_t *memb_fapl,
const char * const *memb_name,
const haddr_t *memb_addr,
hbool_t relax)
herr_t H5Pget_fapl _multi (hid_t fapl _id,
const H5FD_mem_t *memb_map,
const hid_t *memb_fapl,
const char **memb_name,
const haddr_t *memb_addr,
hbool_t *relax)

Code Example 3-13. Managing access properties for multiple files

H5Pset_ fapl_multi sets the file access properties to use the Multi driver; any previously defined driver
properties are erased from the property list. With the Multi driver invoked, the application will provide a
base name to H5Fopen or H5Fcreate. The files will be named by that base name as modified by the rule
indicated in memb_name. File access will be governed by the file access property list memb_properties.

See H5Pset_fapl_multi and H5Pget_fapl_multi in the HDF5 Reference Manual for descriptions of
these functions and their usage.

Additional parameters may be added to these functions in the future.

3.11.10. The Split Driver

The Split driver, HSFD_SPLIT, is a limited case of the Multi driver where only two files are created. One
file holds metadata, and the other file holds raw data.

The function H5Pset_fTapl_splitis used to manage Split file access properties. See the example below.

herr_t H5Pset_fapl _split (hid_t access properties,
const char *meta_extension, hid_t meta_properties,
const char *raw_extension, hid_t raw_properties

Code Example 3-14. Managing access properties for split files

H5Pset_ fapl_splitsets the file access properties to use the Split driver; any previously defined driver
properties are erased from the property list.

72 The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetFaplMulti
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-GetFaplMulti

HDF5 User’s Guide The HDFS5 File

With the Split driver invoked, the application will provide a base file name such as file_name to H5F-
create or H5Fopen. The metadata and raw data files in storage will then be named
file_name.meta_extension and file_name.raw_extension, respectively. For example, if
meta_extension is defined as .meta and raw_extension is defined as . raw, the final filenames will
be File_name.metaand file_name.raw.

Each file can have its own file access property list. This allows the creative use of other low-level file driv-
ers. For instance, the metadata file can be held in RAM and accessed via the Memory driver while the raw
data file is stored on disk and accessed via the POSIX driver. Metadata file access will be governed by the
file access property list in meta_properties. Raw data file access will be governed by the file access
property list in raw_properties.

Additional parameters may be added to these functions in the future. Since there are no additional vari-
able settings associated with the Split driver, there is no H5Pget_fapl _split function.

3.11.11. The Parallel Driver

Parallel environments require a parallel low-level driver. HDF5's default driver for parallel systems is called
the Parallel driver, HSFD_MP10. This driver uses the MPI standard for both communication and file 1/0.

The functions H5Pset_fapl mpio and H5Pget fapl_mpio are used to manage file access properties
for the HSFD_MP10 driver. See the example below.

herr_t H5Pset_fapl_mpio (hid_t fapl_id, MP1_Comm comm,
MP1_info info)

herr_t H5Pget_fapl_mpio (hid_t fapl_id, MPI_Comm *comm,
MPI_info *info)

Code Example 3-15. Managing parallel file access properties

The file access properties managed by H5Pset_fapl_mpio and retrieved by H5Pget_fapl_mpio are
the MPI communicator, comm, and the MPI info object, info. comm and info are used for file open. info
is an information object much like an HDF5 property list. Both are defined in MP1_FILE_OPEN of MPI-2.

The communicator and the info object are saved in the file access property list fapl__id. fapl_id can
then be passed to MP1_FILE_OPEN to create and/or open the file.

H5Pset_fapl_mpioand H5Pget fapl_mpio are available only in the parallel HDF5 Library and are not
collective functions. The Parallel driver is available only in the parallel HDF5 Library.

Additional parameters may be added to these functions in the future.

The HDF Group 73

The HDFS5 File HDF5 User’s Guide

3.12. Code Examples for Opening and Closing Files

3.12.1. Example Using the H5F_ACC_TRUNC Flag

The following example uses the H5F_ACC_TRUNC flag when it creates a new file. The default file creation
and file access properties are also used. Using HSF_ACC_TRUNC means the function will look for an exist-
ing file with the name specified by the function. In this case, that name is FILE. If the function does not
find an existing file, it will create one. If it does find an existing file, it will empty the file in preparation for
a new set of data. The identifier for the "new" file will be passed back to the application program. For
more information, see "File Access Modes" on page 45.

hid_t file; /* identifier */

/* Create a new file using H5F _ACC_TRUNC access, default

* file creation properties, and default file access

*/ properties.

file = H5Fcreate(FILE, H5F_ACC_TRUNC, H5P_DEFAULT,
H5P_DEFAULT);

/* Close the file. */
status = H5Fclose(file);

Code Example 3-16. Creating a file with default creation and access properties

3.12.2. Example with the File Creation Property List

The example below shows how to create a file with 64-bit object offsets and lengths.

74 The HDF Group

HDF5 User’s Guide The HDFS5 File

hid_t create plist;

hid_t file_id;

create plist = H5Pcreate(H5P_FILE_CREATE);

H5Pset_sizes(create plist, 8, 8);

file_id = H5Fcreate(*“test.h5”, H5F ACC_TRUNC,
create plist, H5P_DEFAULT);

HS5Fclose(file_id);

Code Example 3-17. Creating a file with 64-bit offsets

3.12.3. Example with the File Access Property List

This example shows how to open an existing file for independent datasets access by MPI parallel 1/0:

hid_t access plist;

hid_t file_id;

access _plist = H5Pcreate(H5P_FILE_ACCESS);

H5Pset_fapl_mpi(access _plist, MP1_COMM_WORLD,
MPI_INFO_NULL);

/* H5Fopen must be called collectively */
file_id = H5Fopen(““test.h5”, H5F_ACC_RDWR, access_plist);

/* H5Fclose must be called collectively */
H5Fclose(file_id);

Code Example 3-18. Opening an existing file for parallel I/O

The HDF Group 75

The HDFS5 File HDF5 User’s Guide

3.13. Working with Multiple HDF5 Files

Multiple HDFS files can be associated so that the files can be worked with as though all the information is
in a single HDF5 file. A temporary association can be set up by means of the H5Fmount function. A perma-
nent association can be set up by means of the external link function H5Lcreate_external.

The purpose of this section is to describe what happens when the H5SFmount function is used to mount
one file on another.

When a file is mounted on another, the mounted file is mounted at a group, and the root group of the
mounted file takes the place of that group until the mounted file is unmounted or until the files are closed.

The figure below shows two files before one is mounted on the other. Filel has two groups and three
datasets. The group that is the target of the A link has links, Z and Y, to two of the datasets. The group that
is the target of the B link has a link, W, to the other dataset. File2 has three groups and three datasets. The
groups in File2 are the targets of the AA, BB, and CC links. The datasets in File2 are the targets of the ZZ,
YY, and WW links.

File1.h5 File2.h5

Root group Root group

Figure 3-3. Two separate files

The figure below shows the two files after File2 has been mounted Filel at the group that is the target of
the B link.

76 The HDF Group

HDF5 User’s Guide The HDFS5 File

File1l.h5

Root group

File2.h5

Figure 3-4. File2 mounted on Filel

Note: In the figure above, the dataset that is the target of the W link is not shown. That dataset is masked by the
mounted file.

If a file is mounted on a group that has members, those members are hidden until the mounted file is
unmounted. There are two ways around this if you need to work with a group member. One is to mount
the file on an empty group. Another is to open the group member before you mount the file. Opening the
group member will return an identifier that you can use to locate the group member.

The example below shows how H5Fmount might be used to mount File2 onto Filel.

status = H5Fmount(loc_id, "/B", child_id, plist_id)

Code Example 3-19. Using H5Fmount

Note: In the code example above, loc_id is the file identifier for Filel, /B is the link path to the group where File2 is
mounted, child_id is the file identifier for File2, and plist_id is a property list identifier.

For more information, see "HDF5 Groups" on page 79. See the entries for H5SFmount, HSFunmount, and
H5Lcreate external in the HDF5 Reference Manual.

The HDF Group 77

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html#File-Mount
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html#File-Unmount
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html#Link-CreateExternal

The HDFS5 File HDF5 User’s Guide

78 The HDF Group

HDF5 User’s Guide HDF5 Groups

4. HDF5 Groups

4.1. Introduction

As suggested by the name Hierarchical Data Format, an HDF5 file is hierarchically structured. The HDF5
group and link objects implement this hierarchy.

In the simple and most common case, the file structure is a tree structure; in the general case, the file
structure may be a directed graph with a designated entry point. The tree structure is very similar to the
file system structures employed on UNIX systems, directories and files, and on Apple Macintosh and Mic-
rosoft Windows systems, folders and files. HDF5 groups are analogous to the directories and folders; HDF5
datasets are analogous to the files.

The one very important difference between the HDFS5 file structure and the above-mentioned file system
analogs is that HDF5 groups are linked as a directed graph, allowing circular references; the file systems
are strictly hierarchical, allowing no circular references. The figures below illustrate the range of possibili-
ties.

In the first figure below, the group structure is strictly hierarchical, identical to the file system analogs.

In the next two figures below, the structure takes advantage of the directed graph’s allowance of circular
references. In the second figure, GroupA is not only a member of the root group, /, but a member of
GroupC. Since Group Cis a member of Group B and Group B is a member of Group A, Datasetl can be
accessed by means of the circular reference /Group A/Group B/Group C/Group A/Datasetl.The
third figure below illustrates an extreme case in which GroupB is a member of itself, enabling a reference
to a member dataset such as /Group A/Group B/Group B/Group B/Dataset2.

FileA.hS

o | root group

Y

Groupd

Datasat2

w

Datasat3

Figure 4-1. A file with a strictly hierarchical group structure

The HDF Group 79

HDF5 User’s Guide HDF5 Groups

FileB.h5

Grouph Datasetl

Figure 4-2. A file with a circular reference

Groupl

FileC.hS
L
Iy
L
Groupd

GroupB

Figure 4-3. A file with one group as a member of itself

As becomes apparent upon reflection, directed graph structures can become quite complex; caution is
advised!

The balance of this chapter discusses the following topics:

e The HDF5 group object (or a group) and its structure in more detail
e HDF5 link objects (or links)

e The programming model for working with groups and links

The HDF Group 80

HDF5 User’s Guide HDF5 Groups

e HDF5 functions provided for working with groups, group members, and links
e Retrieving information about objects in a group
¢ Discovery of the structure of an HDF5 file and the contained objects

e Examples of file structures

4.2. Description of the Group Object

4.2.1. The Group Object

Abstractly, an HDF5 group contains zero or more objects and every object must be a member of at least
one group. The root group, the sole exception, may not belong to any group.

Group

size: size t Attribute

Link

name: string

B

¥ 1
Object

Figure 4-4. Abstract model of the HDF5 group object

Group membership is actually implemented via link objects. See the figure above. A link object is owned
by a group and points to a named object. Each link has a name, and each link points to exactly one object.
Each named object has at least one and possibly many links to it.

There are three classes of named objects: group, dataset, and committed datatype (formerly called
named datatype). See the figure below. Each of these objects is the member of at least one group, which
means there is at least one link to it.

The HDF Group 81

HDFS5 User’s Guide

HDF5 Groups

Named Object

A

Group

Dataset

Named Datatype

Figure 4-5. Classes of named objects

The primary operations on a group are to add and remove members and to discover member objects.
These abstract operations, as listed in the figure below, are implemented in the H5G APIs. For more infor-
mation, see "Group Function Summaries" on page 87.

To add and delete members of a group, links from the group to existing objects in the file are created and
deleted with the Iink and unlink operations. When a new named object is created, the HDF5 Library
executes the link operation in the background immediately after creating the object (in other words, a
new object is added as a member of the group in which it is created without further user intervention).

Given the name of an object, the get_object _info method retrieves a description of the object, including
the number of references to it. The iterate method iterates through the members of the group, returning

the name and type of each object.

| Group

|size:size_t

create ()
open)
claose ()

link()
unlink()
move ()

iterate ()
get_object _infof()
get_link infof)

Figure 4-6. The group object

The HDF Group

82

HDF5 User’s Guide HDF5 Groups

Every HDF5 file has a single root group, with the name /. The root group is identical to any other HDF5
group, except:

e The root group is automatically created when the HDF5 file is created (HS5Fcreate).
e The root group has no parent, but by convention has a reference count of 1.

e The root group cannot be deleted (in other words, unlinked)!

4.2.2. The Hierarchy of Data Objects

An HDF5 file is organized as a rooted, directed graph using HDF5 group objects. The named data objects
are the nodes of the graph, and the links are the directed arcs. Each arc of the graph has a name, with the
special name / reserved for the root group. New objects are created and then inserted into the graph with
a link operation that is automatically executed by the library; existing objects are inserted into the graph
with a link operation explicitly called by the user, which creates a named link from a group to the object.

An object can be the target of more than one link.

The names on the links must be unique within each group, but there may be many links with the same
name in different groups. These are unambiguous, because some ancestor must have a different name, or
else they are the same object. The graph is navigated with path names, analogous to Unix file systems. For
more information, see "HDF5 Path Names" on page 84. An object can be opened with a full path starting
at the root group, or with a relative path and a starting point. That starting point is always a group, though
it may be the current working group, another specified group, or the root group of the file. Note that all
paths are relative to a single HDFS5 file. In this sense, an HDFS5 file is analogous to a single UNIX file system.*

It is important to note that, just like the UNIX file system, HDF5 objects do not have names, the names are
associated with paths. An object has an object identifier that is unique within the file, but a single object
may have many names because there may be many paths to the same object. An object can be renamed,
or moved to another group, by adding and deleting links. In this case, the object itself never moves. For
that matter, membership in a group has no implication for the physical location of the stored object.

Deleting a link to an object does not necessarily delete the object. The object remains available as long as
there is at least one link to it. After all links to an object are deleted, it can no longer be opened, and the
storage may be reclaimed.

It is also important to realize that the linking mechanism can be used to construct very complex graphs of
objects. For example, it is possible for an object to be shared between several groups and even to have
more than one name in the same group. It is also possible for a group to be a member of itself, or to create
other cycles in the graph, such as in the case where a child group is linked to one of its ancestors.

HDFS5 also has soft links similar to UNIX soft links. A soft link is an object that has a name and a path name
for the target object. The soft link can be followed to open the target of the link just like a regular or hard
link. The differences are that the hard link cannot be created if the target object does not exist and it

always points to the same object. A soft link can be created with any path name, whether or not the object

4. It could be said that HDF5 extends the organizing concepts of a file system to the internal structure of a
single file.

The HDF Group 83

HDF5 User’s Guide HDF5 Groups

exists; it may or may not, therefore, be possible to follow a soft link. Furthermore, a soft link’s target
object may be changed.

4.2.3. HDF5 Path Names

The structure of the HDFS5 file constitutes the name space for the objects in the file. A path name is a string
of components separated by slashes (/). Each component is the name of a hard or soft link which points to
an object in the file. The slash not only separates the components, but indicates their hierarchical relation-
ship; the component indicated by the link name following a slash is a always a member of the component
indicated by the link name preceding that slash.

The first component in the path name may be any of the following:

e The special character dot (., a period), indicating the current group

e The special character slash (/), indicating the root group

e Any member of the current group
Component link names may be any string of ASCII characters not containing a slash or a dot (/ and .,
which are reserved as noted above). However, users are advised to avoid the use of punctuation and non-

printing characters, as they may create problems for other software. The figure below provides a BNF
grammar for HDF5 path names.

PathName ::= AbsolutePathName | RelativePathName

Separator :-:= /" ['"'/"]*

AbsolutePathName ::= Separator [RelativePathName]
RelativePathName ::= Component [Separator RelativePathName]*
Component ::= "." | Characters

Characters ::= Character+ - {"."}

Character ::= {c: c T { { legal ASCII characters } - {*/"} }

Figure 4-7. A BNF grammar for HDF5 path names

An object can always be addressed by a either a full or absolute path name, starting at the root group, or
by a relative path name, starting in a known location such as the current working group. As noted else-
where, a given object may have multiple full and relative path names.

Consider, for example, the file illustrated in the figure below. Datasetl can be identified by either of
these absolute path names:

/GroupA/Datasetl
/GroupA/GroupB/GroupC/Datasetl

Since an HDF?5 file is a directed graph structure, and is therefore not limited to a strict tree structure, and
since this illustrated file includes the sort of circular reference that a directed graph enables, Datasetl
can also be identified by this absolute path name:

The HDF Group 84

HDF5 User’s Guide HDF5 Groups

/GroupA/GroupB/GroupC/GroupA/Datasetl

Alternatively, if the current working location is GroupB, Datasetl can be identified by either of these rel-
ative path names:

GroupC/Datasetl
GroupC/GroupA/Datasetl

Note that relative path names in HDF5 do not employ the . ./ notation, the UNIX notation indicating a
parent directory, to indicate a parent group.

FileB.h5

Grouph Datasetl

Groupl

Figure 4-8. A file with a circular reference

4.2.4. Group Implementations in HDF5

The original HDF5 group implementation provided a single indexed structure for link storage. A new group
implementation, in HDF5 Release 1.8.0, enables more efficient compact storage for very small groups,
improved link indexing for large groups, and other advanced features.

e The original indexed format remains the default. Links are stored in a B-tree in the group’s local
heap.

e Groups created in the new compact-or-indexed format, the implementation introduced with
Release 1.8.0, can be tuned for performance, switching between the compact and indexed for-
mats at thresholds set in the user application.

e The compact format will conserve file space and processing overhead when working with
small groups and is particularly valuable when a group contains no links. Links are stored as a
list of messages in the group’s header.

The HDF Group 85

HDF5 User’s Guide HDF5 Groups

e The indexed format will yield improved performance when working with large groups. A large
group may contain thousands to millions of members. Links are stored in a fractal heap and
indexed with an improved B-tree.

e The new implementation also enables the use of link names consisting of non-ASCll character
sets (see H5Pset_char_encoding) and is required for all link types other than hard or soft
links; the link types other than hard or soft links are external links and user-defined links (see the
H5L APIs).

The original group structure and the newer structures are not directly interoperable. By default, a group
will be created in the original indexed format. An existing group can be changed to a compact-or-indexed
format if the need arises; there is no capability to change back. As stated above, once in the compact-or-
indexed format, a group can switch between compact and indexed as needed.

Groups will be initially created in the compact-or-indexed format only when one or more of the following
conditions is met:

e The low version bound value of the library version bounds property has been set to Release 1.8.0
or later in the file access property list (see H5Pset_libver_bounds). Currently, that would
require an H5Pset_libver_bounds call with the Jow parameter set to H5F_LIBVER_LATEST.

When this property is set for an HDF5 file, all objects in the file will be created using the latest
available format; no effort will be made to create a file that can be read by older libraries.

e The creation order tracking property, H5P_CRT_ORDER_TRACKED, has been set in the group cre-
ation property list (see H5Pset_link creation_order).

An existing group, currently in the original indexed format, will be converted to the compact-or-indexed
format upon the occurrence of any of the following events:

e An external or user-defined link is inserted into the group.

e Alink named with a string composed of non-ASCII characters is inserted into the group.

The compact-or-indexed format offers performance improvements that will be most notable at the
extremes (for example, in groups with zero members and in groups with tens of thousands of members).
But measurable differences may sometimes appear at a threshold as low as eight group members. Since
these performance thresholds and criteria differ from application to application, tunable settings are pro-
vided to govern the switch between the compact and indexed formats (see
H5Pset_link_phase_change). Optimal thresholds will depend on the application and the operating
environment.

Future versions of HDF5 will retain the ability to create, read, write, and manipulate all groups stored in
either the original indexed format or the compact-or-indexed format.

4.3. Using h5dump

You can use h5dump, the command-line utility distributed with HDF5, to examine a file for purposes either
of determining where to create an object within an HDFS5 file or to verify that you have created an object
in the intended place.

The HDF Group 86

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetCharEncoding
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5L.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetLibverBounds
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetLinkCreationOrder
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetLinkPhaseChange

HDF5 User’s Guide HDF5 Groups

In the case of the new group created later in this chapter, the following h5dump command will display the
contents of FileA.h5:

h5dump FileA.h5
For more information, see "Creating a Group" on page 92.

Assuming that the discussed objects, GroupA and GroupB are the only objects that exist in FileA.h5,
the output will look something like the following:

HDF5 "FileA.h5" {
GROUP "'/* {

GROUP GroupA {
GROUP GroupB {

}

3

s

s

h5dump is described on the “HDF5 Tools” page of the HDF5 Reference Manual.

The HDF5 DDL grammar is described in the document DDL in BNF for HDF5.

4.4. Group Function Summaries

Functions that can be used with groups (H5G functions) and property list functions that can used with
groups (H5P functions) are listed below. A number of group functions have been deprecated. Most of
these have become link (H5L) or object (H50) functions. These replacement functions are also listed
below.

Function Listing 4-1. Group functions (H5G)

C Function Purpose
Fortran Subroutine

H5Gcreate Creates a new empty group and gives it a
h5gcreate_f name. The C function is a macro: see “AP/
Compatibility Macros in HDF5."

H5Gcreate_anon Creates a new empty group without linking it
h5gcreate_anon_*f into the file structure.

H5Gopen Opens an existing group for modification and
h5gopen_f returns a group identifier for that group. The

C function is a macro: see “API Compatibility
Macros in HDF5.”

The HDF Group 87

http://www.hdfgroup.org/HDF5/doc/RM/Tools.html
http://www.hdfgroup.org/HDF5/doc/ddl.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDFS5 User’s Guide

HDF5 Groups

Function Listing 4-1. Group functions (H5G)

C Function
Fortran Subroutine

Purpose

H5Gclose
h5gclose T

Closes the specified group.

H5Gget create plist
h5gget create plist f

Gets a group creation property list identifier.

H5Gget_info
h5gget_info_ f

Retrieves information about a group. Use
instead of H5Gget_num_objs.

H5Gget_info_by idx
h5gget_info by idx_f

Retrieves information about a group accord-
ing to the group’s position within an index.

H5Gget_info_by name
h5gget_info by name f

Retrieves information about a group.

(no C function)
h5gget_obj_info_idx_TF

Returns name and type of the group member
identified by its index. Use with the
h5gn_members_f function. h5gget_ob-
jJj_info_idx_fand h5gn_members_f are
the Fortran equivalent of the C function
HS5Literate.

(no C function)
h5gn_members_f

Returns the number of group members. Use
with the h5gget_obj info_idx_f func-
tion.

Function Listing 4-2. Link (H5L) and object (H50) functions

C Function
Fortran Subroutine

Purpose

H5Lcreate_hard
h5lcreate_hard_f

Creates a hard link to an object. Replaces
H5Glink and H5Glink2.

H5Lcreate_soft
h5lcreate_soft_f

Creates a soft link to an object. Replaces
H5Glink and H5Glink2.

H5Lcreate_external
h5lcreate_external_f

Creates a soft link to an object in a different
file. Replaces H5Glink and H5GI ink2.

H5Lcreate_ud
(no Fortran subroutine)

Creates a link of a user-defined type.

H5Lget val
(no Fortran subroutine)

Returns the value of a symbolic link. Replaces
H5Gget_linkval.

The HDF Group

88

HDFS5 User’s Guide

HDF5 Groups

Function Listing 4-2. Link (H5L) and object (H50) functions

C Function
Fortran Subroutine

Purpose

H5Literate
hS5literate_ T

Iterates through links in a group. Replaces
H5Giterate. See also H50visit and
H5Lvisit.

H5Literate_by name
hS5literate_by name_f

Iterates through links in a group.

H5Lvisit
(no Fortran subroutine)

Recursively visits all links starting from a spec-
ified group.

H50visit
h5ovisit_F

Recursively visits all objects accessible from a
specified object.

H5Lget_info
h5lget_info_f

Returns information about a link. Replaces
H5Gget_objinfo.

H50get_info
(no Fortran subroutine)

Retrieves the metadata for an object specified
by an identifier. Replaces H5Gget_obj info.

H5Lget name_ by idx
h5lget_name_by idx_F

Retrieves name of the nth link in a group,
according to the order within a specified field
or index. Replaces H5Gget_ob-

Jname_by idx.

H50get_info_by idx
(no Fortran subroutine)

Retrieves the metadata for an object, identi-
fying the object by an index position.
Replaces H5Gget_objtype by idx.

H50get_info_by name
h5oget_info_by name F

Retrieves the metadata for an object, identi-
fying the object by location and relative
name.

H50set_comment
(no Fortran subroutine)

Sets the comment for specified object.
Replaces H5Gset comment.

H50get_comment
(no Fortran subroutine)

Gets the comment for specified object.
Replaces H5Gget comment.

H5Ldelete
h5ldelete_F

Removes a link from a group. Replaces
H5Gunlink.

H5Lmove
h5Imove_ F

Renames a link within an HDF5 file. Replaces
H5Gmove and H5Gmove2.

The HDF Group

89

HDFS5 User’s Guide

HDF5 Groups

Function Listing 4-3. Group creation property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pall_filters_avail
(no Fortran subroutine)

Verifies that all required filters are available.

H5Pget_ filter
h5pget_filter_f

Returns information about a filter in a pipe-
line. The C function is a macro: see “AP| Com-
patibility Macros in HDF5.”

H5Pget filter_by id
h5pget_filter_by id_f

Returns information about the specified filter.
The C function is a macro: see “AP/ Compati-
bility Macros in HDF5."

H5Pget_nfilters
h5pget_nfilters f

Returns the number of filters in the pipeline.

H5Pmodify_ filter
hS5pmodify filter_ T

Modifies a filter in the filter pipeline.

H5Premove_filter
h5premove filter_f

Deletes one or more filters in the filter pipe-
line.

H5Pset_deflate
h5pset_deflate f

Sets the deflate (GNU gzip) compression
method and compression level.

H5Pset_filter
h5pset_filter_f

Adds a filter to the filter pipeline.

H5Pset_fletcher32
h5pset_fletcher32 f

Sets up use of the Fletcher32 checksum filter.

H5Pset_fletcher32
h5pset_fletcher32_ f

Sets up use of the Fletcher32 checksum filter.

H5Pset_link phase change
h5pset_link phase change f

Sets the parameters for conversion between
compact and dense groups.

H5Pget_link phase change
h5pget_link_phase_change_T

Queries the settings for conversion between
compact and dense groups.

H5Pset _est link_info
h5pset_est_link_info_f

Sets estimated number of links and length of
link names in a group.

H5Pget_est_link_info
h5pget_est_link_info_f

Queries data required to estimate required
local heap or object header size.

H5Pset _nlinks
h5pset_nlinks_f

Sets maximum number of soft or user-defined
link traversals.

The HDF Group

90

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDFS5 User’s Guide

HDF5 Groups

Function Listing 4-3. Group creation property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pget _nlinks
h5pget_nlinks_f

Retrieves the maximum number of link tra-
versals.

H5Pset link creation_order
h5pset_link _creation_order_f

Sets creation order tracking and indexing for
links in a group.

H5Pget link creation_order
h5pget_link creation_order_f

Queries whether link creation order is tracked
and/or indexed in a group.

H5Pset create_intermediate_group
h5pset_create_inter_group_f

Specifies in the property list whether to cre-
ate missing intermediate groups.

H5Pget create_intermediate_group
(no Fortran subroutine)

Determines whether the property is set to
enable creating missing intermediate groups.

H5Pset_char_encoding
h5pset_char_encoding_f

Sets the character encoding used to encode a
string. Use to set ASCIl or UTF-8 character
encoding for object names.

H5Pget_char_encoding
h5pget_char_encoding_Tf

Retrieves the character encoding used to cre-
ate a string.

Function Listing 4-4. Other external link functions

C Function
Fortran Subroutine

Purpose

H5Pset/get_elink file_cache_size
(no Fortran subroutine)

Sets/retrieves the size of the external link
open file cache from the specified file access
property list.

H5Fclear_elink_Ffile_cache
(no Fortran subroutine)

Clears the external link open file cache for a
file.

4.5. Programming Model for Groups

The programming model for working with groups is as follows:

1. Create a new group or open an existing one.

The HDF Group

91

HDF5 User’s Guide HDF5 Groups

2. Perform the desired operations on the group.
e Create new objects in the group.
¢ Insert existing objects as group members.
¢ Delete existing members.
¢ Open and close member objects.
e Access information regarding member objects.
e Iterate across group members.
e Manipulate links.

3. Terminate access to the group (Close the group).

4.5.1. Creating a Group

To create a group, use H5Gcreate, specifying the location and the path of the new group. The location is
the identifier of the file or the group in a file with respect to which the new group is to be identified. The
path is a string that provides wither an absolute path or a relative path to the new group. For more infor-
mation, see "HDF5 Path Names" on page 84. A path that begins with a slash (/) is an absolute path indi-
cating that it locates the new group from the root group of the HDF5 file. A path that begins with any other
character is a relative path. When the location is a file, a relative path is a path from that file’s root group;
when the location is a group, a relative path is a path from that group.

The sample code in the example below creates three groups. The group Data is created in the root direc-
tory; two groups are then created in /Data, one with absolute path, the other with a relative path.

hid_t Ffile;
file = H5Fopen(....);

group = H5Gcreate(file, '/Data', H5P_DEFAULT, H5P_DEFAULT,
HS5P_DEFAULT);

group_newl = H5Gcreate(file, '/Data/Data newl', H5P_ DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

group_new2 = H5Gcreate(group, "Data _new2', H5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

Code Example 4-1. Creating three new groups

The third H5Gcreate parameter optionally specifies how much file space to reserve to store the names
that will appear in this group. If a non-positive value is supplied, a default size is chosen.

The HDF Group 92

HDF5 User’s Guide HDF5 Groups

4.5.2. Opening a Group and Accessing an Object in that Group

Though it is not always necessary, it is often useful to explicitly open a group when working with objects in
that group. Using the file created in the example above, the example below illustrates the use of a previ-
ously-acquired file identifier and a path relative to that file to open the group Data.

Any object in a group can be also accessed by its absolute or relative path. To open an object using a rela-
tive path, an application must first open the group or file on which that relative path is based. To open an
object using an absolute path, the application can use any location identifier in the same file as the target
object; the file identifier is commonly used, but object identifier for any object in that file will work. Both
of these approaches are illustrated in the example below.

Using the file created in the examples above, the example below provides sample code illustrating the use
of both relative and absolute paths to access an HDF5 data object. The first sequence (two function calls)
uses a previously-acquired file identifier to open the group Data, and then uses the returned group iden-
tifier and a relative path to open the dataset CData. The second approach (one function call) uses the
same previously-acquired file identifier and an absolute path to open the same dataset.

group = H5Gopen(file, "Data', H5P_DEFAULT);
datasetl = H5Dopen(group, 'CData', H5P_DEFAULT);

dataset2 = H5Dopen(file, "/Data/CData'", H5P_DEFAULT);

Code Example 4-2. Open a dataset with relative and absolute paths

4.5.3. Creating a Dataset in a Specific Group

Any dataset must be created in a particular group. As with groups, a dataset may be created in a particular
group by specifying its absolute path or a relative path. The example below illustrates both approaches to
creating a dataset in the group /Data.

dataspace = H5Screate_simple(RANK, dims, NULL);
datasetl = H5Dcreate(file, "/Datas/CData’, HS5T_NATIVE_INT,
dataspace, H5P_DEFAULT, H5P_DEFAULT, HS5P_DEFAULT);

group = H5Gopen(file, "Data', H5P_DEFAULT);
dataset2 = H5Dcreate(group, ""Cdata2', H5T_NATIVE_INT,
dataspace, HS5P_DEFAULT, H5P_DEFAULT, HS5P_DEFAULT);

Code Example 4-3. Create a dataset with absolute and relative paths

The HDF Group 93

HDF5 User’s Guide HDF5 Groups

4.5.4. Closing a Group

To ensure the integrity of HDF5 objects and to release system resources, an application should always call
the appropriate close function when it is through working with an HDF5 object. In the case of groups,
H5Gclose ends access to the group and releases any resources the HDF5 Library has maintained in sup-
port of that access, including the group identifier.

As illustrated in the example below, all that is required for an H5Gclose call is the group identifier
acquired when the group was opened; there are no relative versus absolute path considerations.

herr_t status;
status = H5Gclose(group);

Code Example 4-4. Close a group

A non-negative return value indicates that the group was successfully closed and the resources released; a
negative return value indicates that the attempt to close the group or release resources failed.

4.5.5. Creating Links

As previously mentioned, every object is created in a specific group. Once created, an object can be made
a member of additional groups by means of links created with one of the H5Lcreate_* functions.

Alink is, in effect, a path by which the target object can be accessed; it therefore has a name which func-
tions as a single path component. A link can be removed with an H5Lde l ete call, effectively removing the
target object from the group that contained the link (assuming, of course, that the removed link was the

only link to the target object in the group).

Hard Links

There are two kinds of links, hard links and symbolic links. Hard links are reference counted; symbolic
links are not. When an object is created, a hard link is automatically created. An object can be deleted
from the file by removing all the hard links to it.

Working with the file from the previous examples, the code in the example below illustrates the creation
of a hard link, named Data_link, in the root group, /, to the group Data. Once that link is created, the
dataset Cdata can be accessed via either of two absolute paths, /Data/Cdata or /Data_Link/Cdata.

The HDF Group 94

HDF5 User’s Guide HDF5 Groups

status = H5Lcreate_hard(Data_loc_id, "Data'", DataLink loc_id,
“Data_link'", HS5P_DEFAULT, H5P_DEFAULT)

datasetl
dataset2

H5Dopen(file, "'/Data_link/CData', H5P_DEFAULT);
H5Dopen(file, "'/Data/CData', H5P_DEFAULT);

Code Example 4-5. Create a hard link

The example below shows example code to delete a link, deleting the hard link Data from the root group.
The group /Data and its members are still in the file, but they can no longer be accessed via a path using
the component /Data.

status = H5Ldelete(Data_loc_id, "Data", H5P_DEFAULT);

datasetl = H5Dopen(file, "/Data_link/CData'", H5P_DEFAULT);
/* This call should succeed; all path components
* still exist
*/
dataset2 = H5Dopen(file, *"/Datas/CData’, H5P_DEFAULT);
/* This call will fail; the path component */Data*
* has been deleted.
*/

Code Example 4-6. Delete a link

When the last hard link to an object is deleted, the object is no longer accessible. H5Lde lete will not pre-
vent you from deleting the last link to an object. To see if an object has only one link, use the
H50get_info function. If the value of the rc (reference count) field in the is greater than 1, then the link
can be deleted without making the object inaccessible.

The example below shows H50get__info to the group originally called Data.

status = H50get_info(Data_loc_id, object_info);

Code Example 4-7. Finding the number of links to an object

It is possible to delete the last hard link to an object and not make the object inaccessible. Suppose your
application opens a dataset, and then deletes the last hard link to the dataset. While the dataset is open,

The HDF Group 95

HDF5 User’s Guide HDF5 Groups

your application still has a connection to the dataset. If your application creates a hard link to the dataset
before it closes the dataset, then the dataset will still be accessible.

Symbolic Links

Symbolic links are objects that assign a name in a group to a path. Notably, the target object is determined
only when the symbolic link is accessed, and may, in fact, not exist. Symbolic links are not reference
counted, so there may be zero, one, or more symbolic links to an object.

The major types of symbolic links are soft links and external links. Soft links are symbolic links within an
HDF5 file and are created with the H5Lcreate_soft function. Symbolic links to objects located in exter-
nal files, in other words external links, can be created with the HSLcreate external function. Symbolic
links are removed with the H5Ldelete function.

The example below shows the creating two soft links to the group /Data.

status = H5Lcreate_soft(path_to target, link_loc_id, "Soft2",
H5P_DEFAULT, H5P_DEFAULT);

status = H5Lcreate_soft(path_to_target, link_loc_id, "Soft3",
H5P_DEFAULT, H5P_DEFAULT);

dataset = H5Dopen(file, '"/Soft2/CData', H5P_DEFAULT);

Code Example 4-8. Create a soft link

With the soft links defined in the example above, the dataset CData in the group /Data can now be
opened with any of the names /Data/CData, /Soft2/CData, or /Soft3/CData.

In release 1.8.7, a cache was added to hold the names of files accessed via external links. The size of this
cache can be changed to help improve performance. For more information, see the entry in the HDF5 Ref-
erence Manual for the H5Pset_elink_file_cache_size function call.

Note Regarding Hard Links and Soft Links

Note that an object’s existence in a file is governed by the presence of at least one hard link to that object.
If the last hard link to an object is removed, the object is removed from the file and any remaining soft link
becomes a dangling link, a link whose target object does not exist.

Moving or Renaming Objects, and a Warning

An object can be renamed by changing the name of a link to it with H5SLmove. This has the same effect as
creating a new link with the new name and deleting the link with the old name.

Exercise caution in the use of H5SLmove and H5Lde lete as these functions each include a step that
unlinks a pointer to an HDF5 object. If the link that is removed is on the only path leading to an HDF5
object, that object will become permanently inaccessible in the file.

The HDF Group 96

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html

HDF5 User’s Guide HDF5 Groups

Scenario 1: Removing the Last Link

To avoid removing the last link to an object or otherwise making an object inaccessible, use the
H50get_info function. Make sure that the value of the reference count field (rc) is greater than 1.

Scenario 2: Moving a Link that Isolates an Object

Consider the following example: assume that the group group2 can only be accessed via the following
path, where top_group is a member of the file’s root group:

/top_group/groupl/group2/

Using H5Lmove, top_group is renamed to be a member ofgroup?2. At this point, since top_group was
the only route from the root group to groupl, there is no longer a path by which one can access groupl,
group2, or any member datasets. And since top_group is now a member of group2, top_group itself
and any member datasets have thereby also become inaccessible.

Mounting a File

An external link is a permanent connection between two files. A temporary connection can be set up with
the H5Fmount function. For more information, see "The HDF5 File" on page 45. For more information, see
the H5Fmount function in the HDF5 Reference Manual.

4.5.6. Discovering Information about Objects

There is often a need to retrieve information about a particular object. The H5Lget_info and
H50get_info functions fill this niche by returning a description of the object or link inan H5L_info_t
or H50 _info_t structure.

4.5.7. Discovering Objects in a Group

To examine all the objects or links in a group, use the H5Literate or H50visit functions to examine the
objects, and use the H5Lvisit function to examine the links. H5Literate is useful both with a single
group and in an iterative process that examines an entire file or section of a file (such as the contents of a
group or the contents of all the groups that are members of that group) and acts on objects as they are
encountered. H50visit recursively visits all objects accessible from a specified object. H5Lvisit recur-
sively visits all the links starting from a specified group.

4.5.8. Discovering All of the Objects in the File

The structure of an HDF5 file is self-describing, meaning that an application can navigate an HDF5 file to
discover and understand all the objects it contains. This is an iterative process wherein the structure is tra-
versed as a graph, starting at one node and recursively visiting linked nodes. To explore the entire file, the
traversal should start at the root group.

The HDF Group 97

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5F.html#File-Mount

HDF5 User’s Guide HDF5 Groups

4.6. Examples of File Structures

This section presents several samples of HDF5 file structures.

groupl group2 groupl
a) The file contains three groups: the root b) The dataset dsetl (or /groupl/dsetl)is
group, /groupl, and /group?2. created in /groupl.
groupl group2 groupl group2
dsetl dset2

dset2

c) A link named dset2 to the same datasetis d) The link from /group1 to dsetl is removed.
created in /group?2. The dataset is still in the file, but can be
accessed only as /group2/dset2.

Figure 4-9. Some file structures

The figure above shows examples of the structure of a file with three groups and one dataset. The file in
part a contains three groups: the root group and two member groups. In part b, the dataset dset1 has
been created in /groupl. In part c, a link named dset2 from /group?2 to the dataset has been added.

Note that there is only one copy of the dataset; there are two links to it and it can be accessed either as /
groupl/dsetl or as /group2/dset?2.

The HDF Group 98

HDF5 User’s Guide HDF5 Groups

The figure in part d above illustrates that one of the two links to the dataset can be deleted. In this case,
the link from /group1 has been removed. The dataset itself has not been deleted; it is still in the file but
can only be accessed as /groupl/dset2.

groupl group2 groupl

GXX

dset2

dsetl

a) dsetl has two names: /group2/dsetl and b) dsetl again has two names: /groupl/

/groupl/GXX/dsetl. dsetl and /groupl/dset2.
groupl group2 groupl group2
GYY
GXX GXX
dsetl dset2 dsetl dset2

c) dsetl has three names: /groupl/dsetl, / d) dsetl has an infinite number of available
group2/dset2, and /groupl/GXX/dset2. path names.

Figure 4-10. More sample file structures

The figure above illustrates loops in an HDFS5 file structure. The file in part a contains three groups and a
dataset; group2 is a member of the root group and of the root group’s other member group, group1.
group?2 thus can be accessed by either of two paths: /group2 or /groupl/GXX. Similarly, the dataset
can be accessed either as /group2/dsetl or as /groupl/GXX/dsetl.

Part b illustrates a different case: the dataset is a member of a single group but with two links, or names,
in that group. In this case, the dataset again has two names, /groupl/dsetl and /groupl/dset2.

The HDF Group 99

HDF5 User’s Guide HDF5 Groups

In part c, the dataset dsetl is a member of two groups, one of which can be accessed by either of two
names. The dataset thus has three path names: /groupl/dsetl, /group2/dset2, and /groupl/GXX/

dset2.

And in part d, two of the groups are members of each other and the dataset is a member of both groups.
In this case, there are an infinite number of paths to the dataset because GXX and GYY can be traversed
any number of times on the way from the root group, /, to the dataset. This can yield a path name such as
/groupl/GXX/GYY/GXX/GYY/GXX/dset2.

groupl

groupl

a) The file contains only hard links. b) A soft link is added from group2 to
/groupl/dsetl.

groupl group2

groupl

CATR
J dset2 \\dset:'l

‘\
4

dsetl EdsetE

c) A soft link named dset3 is added with a tar- d) The target of the soft link is created or linked.
get that does not yet exist.

Figure 4-11. Hard and soft links

The figure above takes us into the realm of soft links. The original file, in part a, contains only three hard
links. In part b, a soft link named dset2 from group2 to /groupl/dsetl has been created, making this
dataset accessible as /group2/dset2.

The HDF Group 100

HDF5 User’s Guide HDF5 Groups

In part c, another soft link has been created in group2. But this time the soft link, dset3, points to a tar-
get object that does not yet exist. That target object, dset, has been added in part d and is now accessible
as either /group2/dset or /group2/dset3.

The HDF Group 101

HDF5 User’s Guide HDF5 Groups

The HDF Group 102

HDF5 User’s Guide HDF5 Datasets

5. HDF5 Datasets

5.1. Introduction

An HDF5 dataset is an object composed of a collection of data elements, or raw data, and metadata that
stores a description of the data elements, data layout, and all other information necessary to write, read,
and interpret the stored data. From the viewpoint of the application the raw data is stored as a one-
dimensional or multi-dimensional array of elements (the raw data), those elements can be any of several
numerical or character types, small arrays, or even compound types similar to C structs. The dataset
object may have attribute objects. See the figure below.

Attribute

&y w

Datatype 1—(:31 Dataset l@—>» Data space

Data
describesOneElement P 4] describesArrayOfElements

Figure 5-1. Application view of a dataset

A dataset object is stored in a file in two parts: a header and a data array. The header contains information
that is needed to interpret the array portion of the dataset, as well as metadata (or pointers to metadata)
that describes or annotates the dataset. Header information includes the name of the object, its dimen-
sionality, its number-type, information about how the data itself is stored on disk (the storage layout), and
other information used by the library to speed up access to the dataset or maintain the file’s integrity.

The HDF5 dataset interface, comprising the H5D functions, provides a mechanism for managing HDF5
datasets including the transfer of data between memory and disk and the description of dataset proper-
ties.

The HDF Group 103

HDF5 User’s Guide HDF5 Datasets

A dataset is used by other HDF5 APlIs, either by name or by an identifier. For more information, see “Using
Identifiers.”

Link/Unlink

A dataset can be added to a group with one of the H5Lcreate calls, and deleted from a group with
H5Ldelete. The link and unlink operations use the name of an object, which may be a dataset. The data-
set does not have to open to be linked or unlinked.

Object Reference

A dataset may be the target of an object reference. The object reference is created by H5Rcreate with
the name of an object which may be a dataset and the reference type H5R_OBJECT. The dataset does not
have to be open to create a reference to it.

An object reference may also refer to a region (selection) of a dataset. The reference is created with
H5Rcreate and a reference type of HSR_DATASET REGION.

An object reference can be accessed by a call to HSRdereference. When the reference is to a dataset or
dataset region, the H5SRdeference call returns an identifier to the dataset just as if HSDopen has been
called.

Adding Attributes

A dataset may have user-defined attributes which are created with H5Acreate and accessed through the
H5A API. To create an attribute for a dataset, the dataset must be open, and the identifier is passed to
H5Acreate. The attributes of a dataset are discovered and opened using H5Aopen_name, H5Aop-
en_idx, or H5Ai terate; these functions use the identifier of the dataset. An attribute can be deleted
with H5Ade lete which also uses the identifier of the dataset.

5.2. Dataset Function Summaries

Functions that can be used with datasets (H5D functions) and property list functions that can used with
datasets (H5P functions) are listed below.

The HDF Group 104

http://www.hdfgroup.org/HDF5/doc/Advanced/UsingIdentifers/index.html
http://www.hdfgroup.org/HDF5/doc/Advanced/UsingIdentifers/index.html

HDFS5 User’s Guide

HDF5 Datasets

Function Listing 5-1. Dataset functions (H5D)

C Function
Fortran Subroutine

Purpose

H5Dcreate
h5dcreate f

Creates a dataset at the specified location.
The C function is a macro: see “AP/ Compati-
bility Macros in HDF5.”

H5Dcreate_anon
h5dcreate_anon_f

Creates a dataset in a file without linking it
into the file structure.

H5Dopen Opens an existing dataset. The C function is a

h5dopen_f macro: see “APl Compatibility Macros in
HDF5.

H5Dclose Closes the specified dataset.

h5dclose f

H5Dget_space
h5dget_space_ T

Returns an identifier for a copy of the
dataspace for a dataset.

H5Dget_space_status
hb5dget_space_status_fT

Determines whether space has been allo-
cated for a dataset.

H5Dget_type
hb5dget_type f

Returns an identifier for a copy of the data-
type for a dataset.

H5Dget create plist
hbdget_create_plist_f

Returns an identifier for a copy of the dataset
creation property list for a dataset.

H5Dget _access_plist
(no Fortran subroutine)

Returns the dataset access property list asso-
ciated with a dataset.

H5Dget_offset
hbdget_offset f

Returns the dataset address in a file.

H5Dget_storage size
h5dget_storage_size T

Returns the amount of storage required for a
dataset.

H5Dvlen _get buf size
h5dvlen_get max_len_f

Determines the number of bytes required to
store variable-length (VL) data.

H5Dvlen_reclaim
h5dvlen_reclaim_f

Reclaims VL datatype memory buffers.

H5Dread Reads raw data from a dataset into a buffer.
h5dread_f

H5Dwrite Writes raw data from a buffer to a dataset.
h5dwrite_T

The HDF Group

105

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDFS5 User’s Guide

HDF5 Datasets

Function Listing 5-1. Dataset functions (H5D)

C Function
Fortran Subroutine

Purpose

H5Diterate
(no Fortran subroutine)

Iterates over all selected elements in a
dataspace.

H5Dgather
(no Fortran subroutine)

Gathers data from a selection within a mem-
ory buffer.

H5Dscatter
(no Fortran subroutine)

Scatters data into a selection within a mem-
ory buffer.

H5DTi I
hsdfill_f

Fills dataspace elements with a fill value in a
memory buffer.

H5Dset_extent
hbdset_extent f

Changes the sizes of a dataset’s dimensions.

Function Listing 5-2. Dataset creation property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pset_layout
h5pset_layout_f

Sets the type of storage used to store the raw
data for a dataset.

H5Pget_layout
h5pget_layout_f

Returns the layout of the raw data for a data-
set.

H5Pset _chunk
h5pset_chunk Ff

Sets the size of the chunks used to store a
chunked layout dataset.

H5Pget_chunk
h5pget_chunk_Tf

Retrieves the size of chunks for the raw data
of a chunked layout dataset.

H5Pset_deflate
h5pset_deflate f

Sets compression method and compression
level.

H5Pset_fill_value
h5pset_fill_value_f

Sets the fill value for a dataset.

H5Pget_fill_value
h5pget_Ffill_value_f

Retrieves a dataset fill value.

H5PFill_value_defined
(no Fortran subroutine)

Determines whether the fill value is defined.

H5Pset_fill_time
hS5pset_fill_time_F

Sets the time when fill values are written to a
dataset.

The HDF Group

106

HDFS5 User’s Guide

HDF5 Datasets

Function Listing 5-2. Dataset creation property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pget Fill_time
h5pget_fill_time_F

Retrieves the time when fill value are written
to a dataset.

H5Pset_alloc_time
h5pset_alloc_time_f

Sets the timing for storage space allocation.

H5Pget_alloc_time
h5pget_alloc_time F

Retrieves the timing for storage space alloca-
tion.

H5Pset_filter
h5pset_filter_f

Adds a filter to the filter pipeline.

H5Pall_filters_avail
(no Fortran subroutine)

Verifies that all required filters are available.

H5Pget nfilters
h5pget nfilters F

Returns the number of filters in the pipeline.

H5Pget_filter
h5pget_filter_f

Returns information about a filter in a pipe-
line. The C function is a macro: see “API Com-
patibility Macros in HDF5.”

H5Pget filter_by id

h5pget filter_by id f

Returns information about the specified filter.
The C function is a macro: see “API Compati-
bility Macros in HDF5.”

H5Pmodify filter
hS5pmodify filter_ f

Modifies a filter in the filter pipeline.

H5Premove_filter
h5premove filter_F

Deletes one or more filters in the filter pipe-
line.

H5Pset_fletcher32
h5pset_fletcher32 f

Sets up use of the Fletcher32 checksum filter.

H5Pset _nbit
h5pset_nbit_f

Sets up use of the n-bit filter.

H5Pset _scaleoffset
h5pset_scaleoffset_f

Sets up use of the scale-offset filter.

H5Pset_shuffle
h5pset_shuffle_F

Sets up use of the shuffle filter.

H5Pset_szip
h5pset_szip_f

Sets up use of the Szip compression filter.

H5Pset_external
h5pset_external_f

Adds an external file to the list of external
files.

The HDF Group

107

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDFS5 User’s Guide

HDF5 Datasets

Function Listing 5-2. Dataset creation property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pget external _count
h5pget_external_count_f

Returns the number of external files for a
dataset.

H5Pget_external
h5pget_external_f

Returns information about an external file.

H5Pset_char_encoding
h5pset_char_encoding_f

Sets the character encoding used to encode a
string. Use to set ASCII or UTF-8 character
encoding for object names.

H5Pget _char_encoding
h5pget_char_encoding_f

Retrieves the character encoding used to cre-
ate a string.

Function Listing 5-3. Dataset access property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pset_buffer
h5pset_buffer_f

Sets type conversion and background buffers.

H5Pget_buffer
h5pget_buffer_f

Reads buffer settings.

H5Pset _chunk cache
h5pset_chunk_cache_f

Sets the raw data chunk cache parameters.

H5Pget_chunk_cache
h5pget_chunk_cache_f

Retrieves the raw data chunk cache parame-
ters.

H5Pset_edc_check
h5pset_edc_check F

Sets whether to enable error-detection when
reading a dataset.

H5Pget_edc_check
h5pget_edc_check F

Determines whether error-detection is
enabled for dataset reads.

H5Pset_filter_callback
(no Fortran subroutine)

Sets user-defined filter callback function.

H5Pset_data_ transform
h5pset_data_transform_f

Sets a data transform expression.

H5Pget_data_ transform
h5pget_data_transform_f

Retrieves a data transform expression.

The HDF Group

108

HDFS5 User’s Guide

HDF5 Datasets

Function Listing 5-3. Dataset access property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pset_type _conv_cb
(no Fortran subroutine)

Sets user-defined datatype conversion call-
back function.

H5Pget_type _conv_cb
(no Fortran subroutine)

Gets user-defined datatype conversion call-
back function.

H5Pset_hyper_vector_size
h5pset_hyper_vector_size f

Sets number of I/O vectors to be read/written
in hyperslab 1/0.

H5Pget _hyper_vector_size
h5pget_hyper_vector_size f

Retrieves number of I/O vectors to be read/
written in hyperslab I/0.

H5Pset _btree_ ratios
h5pset_btree_ratios_fT

Sets B-tree split ratios for a dataset transfer
property list.

H5Pget btree_ ratios
h5pget_btree_ratios_fT

Gets B-tree split ratios for a dataset transfer
property list.

H5Pset_vlen_mem_manager
(no Fortran subroutine)

Sets the memory manager for variable-length
datatype allocation in H5Dread and H5Dv-
len_reclaim.

H5Pget_vlen_mem_manager
(no Fortran subroutine)

Gets the memory manager for variable-length
datatype allocation in H5Dread and H5Dv-
len_reclaim.

H5Pset_dxpl_mpio
h5pset_dxpl_mpio_F

Sets data transfer mode.

H5Pget_dxpl_mpio
h5pget_dxpl_mpio_F

Returns the data transfer mode.

H5Pset_dxpl_mpio_chunk_opt
(no Fortran subroutine)

Sets a flag specifying linked-chunk 1/0 or
multi-chunk 1/0.

H5Pset_dxpl_mpio_chunk_opt_num
(no Fortran subroutine)

Sets a numeric threshold for linked-chunk 1/0.

H5Pset_dxpl_mpio_chunk_opt_ratio
(no Fortran subroutine)

Sets a ratio threshold for collective 1/0.

H5Pset_dxpl_mpio_collective_opt
(no Fortran subroutine)

Sets a flag governing the use of independent
versus collective I/0.

H5Pset_multi_type
(no Fortran subroutine)

Sets the type of data property for the MULTI
driver.

The HDF Group

109

HDF5 User’s Guide HDF5 Datasets

Function Listing 5-3. Dataset access property list functions (H5P)

C Function Purpose
Fortran Subroutine

H5Pget multi_type Retrieves the type of data property for the
(no Fortran subroutine) MULTI driver.

H5Pset _small_data block_size Sets the size of a contiguous block reserved
h5pset_small_data block_size f for small data.
H5Pget_small_data_block_size Retrieves the current small data block size
h5pget _small _data block _size f setting.

5.3. Programming Model for Datasets

This section explains the programming model for datasets.

5.3.1. General Model

The programming model for using a dataset has three main phases:

e Obtain access to the dataset
e Operate on the dataset using the dataset identifier returned at access

¢ Release the dataset
These three phases or steps are described in more detail below the figure.

A dataset may be opened several times and operations performed with several different identifiers to the
same dataset. All the operations affect the dataset although the calling program must synchronize if nec-
essary to serialize accesses.

Note that the dataset remains open until every identifier is closed. The figure below shows the basic
sequence of operations.

The HDF Group 110

HDF5 User’s Guide HDF5 Datasets

/

File File
Creation Access

& - EEEE———
Properties Properties C HEDwrite)
[exists] H
no ;S

HiDcreate

i | HSDread —
]

ne op

H
» —_——
+ »(HEDclose \,—r©
HSDgEt_space\'

>

(N
H5Dget_type —

reference -
H5Rdereference

Figure 5-2. Dataset programming sequence

Creation and data access operations may have optional parameters which are set with property lists. The
general programming model is:

e Create property list of appropriate class (dataset create, dataset transfer)
e Set properties as needed; each type of property has its own format and datatype

e Pass the property list as a parameter of the API call

The steps below describe the programming phases or steps for using a dataset.

Step 1. Obtain Access

A new dataset is created by a call to H5Dcreate. If successful, the call returns an identifier for the newly
created dataset.

Access to an existing dataset is obtained by a call to H5Dopen. This call returns an identifier for the existing
dataset.

An object reference may be dereferenced to obtain an identifier to the dataset it points to.

In each of these cases, the successful call returns an identifier to the dataset. The identifier is used in sub-
sequent operations until the dataset is closed.

Step 2. Operate on the Dataset

The dataset identifier can be used to write and read data to the dataset, to query and set properties, and
to perform other operations such as adding attributes, linking in groups, and creating references.

The HDF Group 111

HDF5 User’s Guide HDF5 Datasets

The dataset identifier can be used for any number of operations until the dataset is closed.

Step 3. Close the Dataset
When all operations are completed, the dataset identifier should be closed. This releases the dataset.

After the identifier is closed, it cannot be used for further operations.

5.3.2. Create Dataset

A dataset is created and initialized with a call to H5Dcreate. The dataset create operation sets permanent
properties of the dataset:

e Name

e Dataspace

e Datatype

e Storage properties

These properties cannot be changed for the life of the dataset, although the dataspace may be expanded
up to its maximum dimensions.

Name

A dataset name is a sequence of alphanumeric ASCII characters. The full name would include a tracing of
the group hierarchy from the root group of the file. An example is /rootGroup/groupA/subgroup23/
datasetl. The local name or relative name within the lowest-level group containing the dataset would
include none of the group hierarchy. An example is Datasetl.

Dataspace

The dataspace of a dataset defines the number of dimensions and the size of each dimension. The
dataspace defines the number of dimensions, and the maximum dimension sizes and current size of each
dimension. The maximum dimension size can be a fixed value or the constant HSD_UNL IMITED, in which
case the actual dimension size can be changed with calls to H5SDset_extent, up to the maximum set with
the maxdims parameter in the H5Screate_simple call that established the dataset’s original dimen-
sions. The maximum dimension size is set when the dataset is created and cannot be changed.

Datatype

Raw data has a datatype which describes the layout of the raw data stored in the file. The datatype is set
when the dataset is created and can never be changed. When data is transferred to and from the dataset,
the HDF5 Library will assure that the data is transformed to and from the stored format.

Storage Properties

Storage properties of the dataset are set when it is created. The required inputs table below shows the
categories of storage properties. The storage properties cannot be changed after the dataset is created.

The HDF Group 112

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5S.html#Dataspace-CreateSimple

HDF5 User’s Guide HDF5 Datasets

Filters

When a dataset is created, optional filters are specified. The filters are added to the data transfer pipeline
when data is read or written. The standard library includes filters to implement compression, data shuf-
fling, and error detection code. Additional user-defined filters may also be used.

The required filters are stored as part of the dataset, and the list may not be changed after the dataset is
created. The HDF5 Library automatically applies the filters whenever data is transferred.
Summary

A newly created dataset has no attributes and no data values. The dimensions, datatype, storage proper-
ties, and selected filters are set. The table below lists the required inputs, and the second table below lists
the optional inputs.

Table 5-1. Required inputs

Required Inputs Description

Dataspace The shape of the array.

Datatype The layout of the stored elements.
Name The name of the dataset in the group.

Table 5-2. Optional inputs

Optional Inputs Description

Storage Layout How the data is organized in the file including chunking.

Fill Value The behavior and value for uninitialized data.

External Storage Option to store the raw data in an external file.

Filters Select optional filters to be applied. One of the filters that might be

applied is compression.

Example
To create a new dataset, go through the following general steps:

e Set dataset characteristics (optional where default settings are acceptable)
e Datatype
e Dataspace
e Dataset creation property list

e (Create the dataset

The HDF Group 113

HDF5 User’s Guide HDF5 Datasets

¢ Close the datatype, dataspace, and property list (as necessary)
¢ Close the dataset
Example 1 below shows example code to create an empty dataset. The dataspace is 7 x 8, and the data-

type is a big-endian integer. The dataset is created with the name “dset1” and is a member of the root
group, “/".

hid_t dataset, datatype, dataspace;

/*

* Create dataspace: Describe the size of the array and
* create the dataspace for fixed-size dataset.

*/

dimsf[0] = 7;

dimsf[1] = 8;

dataspace = H5Screate_simple(2, dimsf, NULL);

/*

* Define datatype for the data in the file.

* For this example, store little-endian integer numbers.
*/

datatype = H5Tcopy(H5T_NATIVE_INT);

status = H5Tset_order(datatype, H5T ORDER_LE);

/*

* Create a new dataset within the file using defined

* dataspace and datatype. No properties are set.

*/

dataset = H5Dcreate(file, '/dset', datatype, dataspace,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

H5Dclose(dataset);
H5Sclose(dataspace);
H5Tclose(datatype);

Code Example 5-1. Create an empty dataset

Example 2 below shows example code to create a similar dataset with a fill value of *-1’. This code has the
same steps as in the example above, but uses a non-default property list. A file creation property list is cre-
ated, and then the fill value is set to the desired value. Then the property list is passed to the HSDcreate
call.

The HDF Group 114

HDF5 User’s Guide HDF5 Datasets

dt dataset, datatype, dataspace;

d t plist; /* property list */

int fillval = -1;

dimsf[0] = 7;

dimsf[1] = 8;

dataspace = H5Screate_simple(2, dimsf, NULL);

[R
-

datatype = H5Tcopy(H5T_NATIVE_INT);
status = H5Tset_order(datatype, H5T ORDER_LE);

/*

* Example of Dataset Creation property list: set fill value
* to "-1°

*/

plist = H5Pcreate(H5P_DATASET_CREATE);
status = H5Pset_fill_value(plist, datatype, &fillval);

/* Same as above, but use the property list */
dataset = H5Dcreate(file, '/dset', datatype, dataspace,
H5P_DEFAULT, plist, H5P_DEFAULT);

H5Dclose(dataset);
H5Sclose(dataspace);
H5Tclose(datatype);
H5Pclose(plist);

Code Example 5-2. Create a dataset with fill value set

After this code is executed, the dataset has been created and written to the file. The data array is uninitial-
ized. Depending on the storage strategy and fill value options that have been selected, some or all of the
space may be allocated in the file, and fill values may be written in the file.

5.3.3. Data Transfer Operations on a Dataset

Data is transferred between memory and the raw data array of the dataset through H5Dwrite and
H5Dread operations. A data transfer has the following basic steps:

1. Allocate and initialize memory space as needed

2. Define the datatype of the memory elements

3. Define the elements to be transferred (a selection, or all the elements)

4

Set data transfer properties (including parameters for filters or file drivers) as needed

The HDF Group 115

HDF5 User’s Guide HDF5 Datasets

5. Call the H5D API

Note that the location of the data in the file, the datatype of the data in the file, the storage properties,
and the filters do not need to be specified because these are stored as a permanent part of the dataset. A
selection of elements from the dataspace is specified; the selected elements may be the whole dataspace.

The figure below shows a diagram of a write operation which transfers a data array from memory to a
dataset in the file (usually on disk). A read operation has similar parameters with the data flowing the
other direction.

Calling Program | HDF5 Library | HDF5 File
Dataspace j f
ndims=<<rank>> ¥etadaia
i = = :
dins X el dataspace -
H ",
Data in memory - : API : datatype)
selection ™ : o : [creation properties \
|:| |:| |:| in dest:.nat:.o:\.;‘ | \
™) 5 | |
—_— : : layout, |
———— | adta £i11, stc)
: | element —
/; ,.-E" i in'file e _d#imensions
data =7 5 4 in file
element = - a’ _}» H | |:||:||:|
; A :
, e “‘E’fi i s Data File |:
selaction - S oia Pipeline || Driver |- >
in source - / / A H
Dataspace Datatype | : : Data in file
ndims=<<rank>>| [size= ;J
dims= <x,v,..>| |order= i transform,
gj. scatter gather,
glr filter, etc
!
I
AR .

Transfer 4
Properties [

Figure 5-3. A write operation

Memory Space

The calling program must allocate sufficient memory to store the data elements to be transferred. For a
write (from memory to the file), the memory must be initialized with the data to be written to the file. For
a read, the memory must be large enough to store the elements that will be read. The amount of storage
needed can be computed from the memory datatype (which defines the size of each data element) and
the number of elements in the selection.

Memory Datatype

The memory layout of a single data element is specified by the memory datatype. This specifies the size,
alignment, and byte order of the element as well as the datatype class. Note that the memory datatype

The HDF Group 116

HDF5 User’s Guide HDF5 Datasets

must be the same datatype class as the file, but may have different byte order and other properties. The
HDF5 Library automatically transforms data elements between the source and destination layouts. For
more information, see "HDF5 Datatypes" on page 173.

For a write, the memory datatype defines the layout of the data to be written; an example is IEEE floating-
point numbers in native byte order. If the file datatype (defined when the dataset is created) is different
but compatible, the HDF5 Library will transform each data element when it is written. For example, if the
file byte order is different than the native byte order, the HDF5 Library will swap the bytes.

For a read, the memory datatype defines the desired layout of the data to be read. This must be compati-
ble with the file datatype, but should generally use native formats such as byte orders. The HDF5 Library
will transform each data element as it is read.

Selection

The data transfer will transfer some or all of the elements of the dataset depending on the dataspace
selection. The selection has two dataspace objects: one for the source, and one for the destination. These
objects describe which elements of the dataspace to be transferred. Some (partial I/0) or all of the data
may be transferred. Partial 1/0 is defined by defining hyperslabs or lists of elements in a dataspace object.

The dataspace selection for the source defines the indices of the elements to be read or written. The two
selections must define the same number of points, but the order and layout may be different. The HDF5
Library automatically selects and distributes the elements according to the selections. It might, for exam-
ple, perform a scatter-gather or sub-set of the data.

Data Transfer Properties

For some data transfers, additional parameters should be set using the transfer property list. The table
below lists the categories of transfer properties. These properties set parameters for the HDF5 Library and
may be used to pass parameters for optional filters and file drivers. For example, transfer properties are
used to select independent or collective operation when using MPI-1/0.

Table 5-3. Categories of transfer properties

Properties Description

Library parameters Internal caches, buffers, B-Trees, etc.

Memory management Variable-length memory management, data overwrite
File driver management Parameters for file drivers

Filter management Parameters for filters

The HDF Group 117

HDF5 User’s Guide HDF5 Datasets

Data Transfer Operation (Read or Write)

The data transfer is done by calling H5SDread or H5Dwr i te with the parameters described above. The
HDF5 Library constructs the required pipeline, which will scatter-gather, transform datatypes, apply the
requested filters, and use the correct file driver.

During the data transfer, the transformations and filters are applied to each element of the data in the
required order until all the data is transferred.

Summary

To perform a data transfer, it is necessary to allocate and initialize memory, describe the source and desti-
nation, set required and optional transfer properties, and call the H5D API.

Examples
The basic procedure to write to a dataset is the following:

¢ Open the dataset.
e Set the dataset dataspace for the write (optional if dataspace is H5S_SELECT ALL).
e Write data.
¢ Close the datatype, dataspace, and property list (as necessary).
¢ Close the dataset.
Example 3 below shows example code to write a 4 x 6 array of integers. In the example, the data is initial-

ized in the memory array dset_data. The dataset has already been created in the file, so it is opened with
H5Dopen.

The data is written with H5Dwrite. The arguments are the dataset identifier, the memory datatype
(HS5T_NATIVE_INT), the memory and file selections (H5S_ALL in this case: the whole array), and the
default (empty) property list. The last argument is the data to be transferred.

hid_t file_id, dataset_id; /* identifiers */
herr_t status;
int i, j, dset_data[4][6];

/* Initialize the dataset. */
for (i = 0; 1 < 4; i++)
for g =0; J < 6; j++)
dset data[i][j] =1 *6 + j + 1;

Code Example 5-3. Write an array of integers

The HDF Group 118

HDF5 User’s Guide HDF5 Datasets

/* Open an existing file. */
file_id = H5Fopen(*'dset.h5", H5F ACC_RDWR, H5P_DEFAULT);

/* Open an existing dataset. */
dataset_id = H5Dopen(file_id, '"/dset', H5P_DEFAULT);

/* Write the entire dataset, using "dset_data“:
memory type is "native int”
write the entire dataspace to the entire dataspace,
no transfer properties,

*/

status = H5Dwrite(dataset_id, H5T_NATIVE_INT, H5S_ALL,
H5S ALL, H5P DEFAULT, dset_data);

status = H5Dclose(dataset_id);

Code Example 5-3. Write an array of integers

Example 4 below shows a similar write except for setting a non-default value for the transfer buffer. The
code is the same as Example 3, but a transfer property list is created, and the desired buffer size is set. The
H5Dwr i te function has the same arguments, but uses the property list to set the buffer.

hid_t file_id, dataset id;
hid_t xFerplist;

herr_t status;

int i, j, dset_data[4][6];

file_id = H5Fopen(‘'dset.h5", H5F ACC_RDWR, H5P_DEFAULT);
dataset_id = H5Dopen(file_id, '"/dset", H5P_DEFAULT);
/*

* Example: set type conversion buffer to 64MB
*/

Code Example 5-4. Write an array using a property list

The HDF Group 119

HDF5 User’s Guide HDF5 Datasets

xFerplist = H5Pcreate(H5P_DATASET_ XFER);
status = H5Pset_buffer(xferplist, 64 * 1024 *1024, NULL, NULL);

/* Write the entire dataset, using "dset_data“:
memory type is "native int”
write the entire dataspace to the entire dataspace,
set the buffer size with the property list,

*/

status = H5Dwrite(dataset_id, H5T_NATIVE INT, H5S _ALL,
H5S ALL, xferplist, dset data);

status = H5Dclose(dataset_id);

Code Example 5-4. Write an array using a property list

The basic procedure to read from a dataset is the following:

¢ Define the memory dataspace of the read (optional if dataspace is H5S SELECT_ALL).
e Open the dataset.
e Get the dataset dataspace (if using H5S_SELECT_ALL above).

Else define dataset dataspace of read.

¢ Define the memory datatype (optional).

¢ Define the memory buffer.

e Open the dataset.

¢ Read data.

e Close the datatype, dataspace, and property list (as necessary).

¢ Close the dataset.
The example below shows code that reads a 4 x 6 array of integers from a dataset called “dset1”. First, the
dataset is opened. The H5Dread call has parameters:

¢ The dataset identifier (from H5Dopen)

e The memory datatype (H5T_NATVE_INT)

¢ The memory and file dataspace (H5S_ALL, the whole array)

e Adefault (empty) property list

e The memory to be filled

The HDF Group 120

HDF5 User’s Guide HDF5 Datasets

hid_t file_id, dataset id;
herr_t status;
int i, j, dset_data[4][6];

/* Open an existing file. */
file_id = H5Fopen(“dset.h5", H5F_ACC_RDWR, H5P_DEFAULT);

/* Open an existing dataset. */
dataset_id = H5Dopen(file_id, "/dset', H5P_DEFAULT);

/* read the entire dataset, into “"dset data“":
memory type is "native int”
read the entire dataspace to the entire dataspace,
no transfer properties,

*/
status = H5Dread(dataset_id, H5T _NATIVE_INT, H5S ALL,
H5S_ALL, H5P_DEFAULT, dset_data);

status = H5Dclose(dataset_id);

Code Example 5-5. Read an array from a dataset

5.3.4. Retrieve the Properties of a Dataset

The functions listed below allow the user to retrieve information regarding a dataset including the data-
type, the dataspace, the dataset creation property list, and the total stored size of the data.

Function Listing 5-4. Retrieve dataset information

Query Function Description

H5Dget_space Retrieve the dataspace of the dataset as stored in
the file.

H5Dget_type Retrieve the datatype of the dataset as stored in
the file.

H5Dget create_plist Retrieve the dataset creation properties.

The HDF Group 121

HDF5 User’s Guide HDF5 Datasets

Function Listing 5-4. Retrieve dataset information

Query Function Description

H5Dget_storage_size Retrieve the total bytes for all the data of the
dataset.

H5Dvlen_get buf_size Retrieve the total bytes for all the variable-length

data of the dataset.

The example below illustrates how to retrieve dataset information.

hid_t file_id, dataset id;
hid_t dspace_id, dtype id, plist_id;
herr_t status;

/* Open an existing file. */
file_id = H5Fopen(‘'dset.h5", H5F ACC_RDWR, H5P_DEFAULT);

/* Open an existing dataset. */
dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

dspace_id = H5Dget_space(dataset_id);
dtype_id = H5Dget_type(dataset_id);
plist_id H5Dget_create_ plist(dataset_id);

/* use the objects to discover the properties of the dataset */

status = H5Dclose(dataset_id);

Code Example 5-6. Retrieve dataset

5.4. Data Transfer

The HDF5 Library implements data transfers through a pipeline which implements data transformations
(according to the datatype and selections), chunking (as requested), and 1/O operations using different
mechanisms (file drivers). The pipeline is automatically configured by the HDF5 Library. Metadata is stored
in the file so that the correct pipeline can be constructed to retrieve the data. In addition, optional filters
such as compression may be added to the standard pipeline.

The HDF Group 122

HDF5 User’s Guide HDF5 Datasets

The figure below illustrates data layouts for different layers of an application using HDF5. The application
data is organized as a multidimensional array of elements. The HDF5 format specification defines the
stored layout of the data and metadata. The storage layout properties define the organization of the
abstract data. This data is written and read to and from some storage medium.

-

Appliation Daia HDFS Format (absiract) Stomge Layout Physicel Sioroge

i Header Contigraus : Q
Single disk file

. : g o LT -

| Header Chuked i
: :I:I:D Qemmwmcﬁan
(T (7). 5
Header Compact Mitiple flles
L 5
: |

Figure 5-4. Data layouts in an application

The last stage of a write (and first stage of a read) is managed by an HDF5 file driver module. The virtual
file layer of the HDF5 Library implements a standard interface to alternative 1/0 methods, including mem-

ory (AKA “core”) files, single serial file I/O, multiple file 1/O, and parallel I/O. The file driver maps a simple
abstract HDFS5 file to the specific access methods.

The raw data of an HDF5 dataset is conceived to be a multidimensional array of data elements. This array
may be stored in the file according to several storage strategies:

e Contiguous
e Chunked
e Compact

The storage strategy does not affect data access methods except that certain operations may be more or
less efficient depending on the storage strategy and the access patterns.

Overall, the data transfer operations (H5Dread and H5Dwr i te) work identically for any storage method,
for any file driver, and for any filters and transformations. The HDF5 Library automatically manages the

The HDF Group 123

HDF5 User’s Guide HDF5 Datasets

data transfer process. In some cases, transfer properties should or must be used to pass additional param-
eters such as MPI/IO directives when using the parallel file driver.

5.4.1. The Data Pipeline

When data is written or read to or from an HDF5 file, the HDF5 Library passes the data through a sequence
of processing steps which are known as the HDF5 data pipeline. This data pipeline performs operations on
the data in memory such as byte swapping, alignment, scatter-gather, and hyperslab selections. The HDF5
Library automatically determines which operations are needed and manages the organization of memory
operations such as extracting selected elements from a data block. The data pipeline modules operate on
data buffers: each module processes a buffer and passes the transformed buffer to the next stage.

The table below lists the stages of the data pipeline. The figure below the table shows the order of pro-
cessing during a read or write.

Table 5-4. Stages of the data pipeline

Layers Description

I/O initiation Initiation of HDF5 1/0 activities (H5Dwrite and H5Dread) in a
user’s application program.

Memory hyperslab opera- Data is scattered to (for read), or gathered from (for write) the

tion application’s memory buffer (bypassed if no datatype conversion
is needed).

Datatype conversion Datatype is converted if it is different between memory and stor-

age (bypassed if no datatype conversion is needed).

File hyperslab operation Data is gathered from (for read), or scattered to (for write) to file
space in memory (bypassed if no datatype conversion is
needed).

Filter pipeline Data is processed by filters when it passes. Data can be modified

and restored here (bypassed if no datatype conversion is
needed, no filter is enabled, or dataset is not chunked).

Virtual File Layer Facilitate easy plug-in file drivers such as MPI1O or POSIX I/O.

Actual I/O Actual file driver used by the library such as MPIO or STDIO.

The HDF Group 124

HDF5 User’s Guide HDF5 Datasets

I/0 Initiation

H5Dread HEDwrite

T !

Memory Hyperslabk Opesration

Scatter Gather

~

Datatype Conversion

PN

File Hyperslab Operation

Gather Scatter

;

Filter Pipeline

;

Virtual File Driwver

Gl laldsD

Figure 5-5. The processing order in the data pipeline

The HDF5 Library automatically applies the stages as needed.

When the memory dataspace selection is other than the whole dataspace, the memory hyperslab stage
scatters/gathers the data elements between the application memory (described by the selection) and a
contiguous memory buffer for the pipeline. On a write, this is a gather operation; on a read, this is a scat-
ter operation.

When the memory datatype is different from the file datatype, the datatype conversion stage transforms
each data element. For example, if data is written from 32-bit big-endian memory, and the file datatype is
32-bit little-endian, the datatype conversion stage will swap the bytes of every elements. Similarly, when
data is read from the file to native memory, byte swapping will be applied automatically when needed.

The HDF Group 125

HDF5 User’s Guide HDF5 Datasets

The file hyperslab stage is similar to the memory hyperslab stage, but is managing the arrangement of the
elements according to the dataspace selection. When data is read, data elements are gathered from the
data blocks from the file to fill the contiguous buffers which are then processed by the pipeline. When
data is read, the elements from a buffer are scattered to the data blocks of the file.

5.4.2. Data Pipeline Filters

In addition to the standard pipeline, optional stages, called filters, can be inserted in the pipeline. The
standard distribution includes optional filters to implement compression and error checking. User applica-
tions may add custom filters as well.

The HDF5 Library distribution includes or employs several optional filters. These are listed in the table
below. The filters are applied in the pipeline between the virtual file layer and the file hyperslab operation.
See the figure above. The application can use any number of filters in any order.

Table 5-5. Data pipeline filters

Filter Description
gzip compression Data compression using zlib.
Szip compression Data compression using the Szip library. See The HDF Group

website for more information regarding the Szip filter.

N-bit compression Data compression using an algorithm specialized for n-bit
datatypes.

Scale-offset compression Data compression using a “scale and offset” algorithm.

Shuffling To improve compression performance, data is regrouped by

its byte position in the data unit. In other words, the 15t, 2nd,

374 and 4" bytes of integers are stored together respectively.

Fletcher32 Fletcher32 checksum for error-detection.

Filters may be used only for chunked data and are applied to chunks of data between the file hyperslab
stage and the virtual file layer. At this stage in the pipeline, the data is organized as fixed-size blocks of ele-
ments, and the filter stage processes each chunk separately.

Filters are selected by dataset creation properties, and some behavior may be controlled by data transfer
properties. The library determines what filters must be applied and applies them in the order in which
they were set by the application. That is, if an application calls HSPset_shuffle and then H5Pset_de-
flate when creating a dataset’s creation property list, the library will apply the shuffle filter first and
then the deflate filter.

For more information, see "Using the N-bit Filter" on page 143. For more information, see "Using the
Scale-offset Filter" on page 160.

The HDF Group 126

http://www.hdfgroup.org/doc_resource/SZIP/

HDF5 User’s Guide HDF5 Datasets

5.4.3. File Drivers

I/0 is performed by the HDF5 virtual file layer. The file driver interface writes and reads blocks of data;
each driver module implements the interface using different I/O mechanisms. The table below lists the file
drivers currently supported. Note that the I/0O mechanisms are separated from the pipeline processing:
the pipeline and filter operations are identical no matter what data access mechanism is used.

Table 5-6. I/O file drivers

File Driver Description

H5FD_CORE Store in memory (optional backing store to disk file).
H5FD_FAMILY Store in a set of files.

H5FD_LOG Store in logging file.

H5FD_MPIO Store using MPI/IO.

H5FD_MULTI Store in multiple files. There are several options to control layout.
H5FD_SEC2 Serial 1/0 to file using Unix “section 2” functions.

H5FD_STDIO Serial 1/0 to file using Unix “stdio” functions.

Each file driver writes/reads contiguous blocks of bytes from a logically contiguous address space. The file
driver is responsible for managing the details of the different physical storage methods.

In serial environments, everything above the virtual file layer tends to work identically no matter what
storage method is used.

Some options may have substantially different performance depending on the file driver that is used. In
particular, multi-file and parallel I/O may perform considerably differently from serial drivers depending
on chunking and other settings.

5.4.4. Data Transfer Properties to Manage the Pipeline

Data transfer properties set optional parameters that control parts of the data pipeline. The function list-
ing below shows transfer properties that control the behavior of the library.

The HDF Group 127

HDF5 Datasets HDF5 User’s Guide

Function Listing 5-5. Data transfer property list functions

C Function Purpose

H5Pset_buffer Maximum size for the type conversion buffer and the back-
ground buffer. May also supply pointers to application-allo-
cated buffers.

H5Pset_hyper_cache Whether to cache hyperslab blocks during 1/0.

H5Pset _btree_ratios Set the B-tree split ratios for a dataset transfer property list.
The split ratios determine what percent of children go in the
first node when a node splits.

Some filters and file drivers require or use additional parameters from the application program. These can
be passed in the data transfer property list. The table below shows file driver property list functions.

Function Listing 5-6. File driver property list functions

C Function Purpose

H5Pset_dxpl_mpio Control the MPI 1/0 transfer mode (independent
or collective) during data I/O operations.

H5Pset_small_data block_size Reserves blocks of size bytes for the contiguous
storage of the raw data portion of small datasets.
The HDF5 Library then writes the raw data from
small datasets to this reserved space which
reduces unnecessary discontinuities within blocks
of metadata and improves I/0 performance.

H5Pset_edc_check Disable/enable EDC checking for read. When
selected, EDC is always written.

The transfer properties are set in a property list which is passed as a parameter of the H5Dread or
H5Dwr i te call. The transfer properties are passed to each pipeline stage. Each stage may use or ignore
any property in the list. In short, there is one property list that contains all the properties.

128 The HDF Group

HDF5 User’s Guide HDF5 Datasets

5.4.5. Storage Strategies
The raw data is conceptually a multi-dimensional array of elements that is stored as a contiguous array of

bytes. The data may be physically stored in the file in several ways. The table below lists the storage strat-
egies for a dataset.

Table 5-7. Dataset storage strategies

Storage Strategy Description

Contiguous The dataset is stored as one continuous array of bytes.
Chunked The dataset is stored as fixed-size chunks.

Compact A small dataset is stored in the metadata header.

The different storage strategies do not affect the data transfer operations of the dataset: reads and writes
work the same for any storage strategy.

These strategies are described in the following sections.

Contiguous

A contiguous dataset is stored in the file as a header and a single continuous array of bytes. See the figure
below. In the case of a multi-dimensional array, the data is serialized in row major order. By default, data
is stored contiguously.

Contiguous

Figure 5-6. Contiguous data storage

Contiguous storage is the simplest model. It has several limitations. First, the dataset must be a fixed-size:
it is not possible to extend the limit of the dataset or to have unlimited dimensions. In other words, if the
number of dimensions of the array might change over time, then chunking storage must be used instead
of contiguous. Second, because data is passed through the pipeline as fixed-size blocks, compression and
other filters cannot be used with contiguous data.

The HDF Group 129

HDF5 Datasets HDF5 User’s Guide

Chunked

The data of a dataset may be stored as fixed-size chunks. See the figure below. A chunk is a hyper-rectan-
gle of any shape. When a dataset is chunked, each chunk is read or written as a single /O operation, and
individually passed from stage to stage of the data pipeline.

Header Chunked

[[[1]

Figure 5-7. Chunked data storage

Chunks may be any size and shape that fits in the dataspace of the dataset. For example, a three dimen-
sional dataspace can be chunked as 3-D cubes, 2-D planes, or 1-D lines. The chunks may extend beyond
the size of the dataspace. For example, a 3 x 3 dataset might by chunked in 2 x 2 chunks. Sufficient chunks
will be allocated to store the array, and any extra space will not be accessible. So, to store the 3 x 3 array,
four 2 x 2 chunks would be allocated with 5 unused elements stored.

Chunked datasets can be unlimited in any direction and can be compressed or filtered.

Since the data is read or written by chunks, chunking can have a dramatic effect on performance by opti-
mizing what is read and written. Note, too, that for specific access patterns such as parallel I/0, decompo-
sition into chunks can have a large impact on performance.

Two restrictions have been placed on chunk shape and size:

¢ The rank of a chunk must be less than or equal to the rank of the dataset

e Chunk size cannot exceed the size of a fixed-size dataset; for example, a dataset consisting of a 5 x
4 fixed-size array cannot be defined with 10 x 10 chunks

Compact

For contiguous and chunked storage, the dataset header information and data are stored in two (or more)
blocks. Therefore, at least two 1/O operations are required to access the data: one to access the header,
and one (or more) to access data. For a small dataset, this is considerable overhead.

A small dataset may be stored in a continuous array of bytes in the header block using the compact stor-
age option. This dataset can be read entirely in one operation which retrieves the header and data. The
dataset must fit in the header. This may vary depending on the metadata that is stored. In general, a com-
pact dataset should be approximately 30 KB or less total size. See the figure below.

130 The HDF Group

HDF5 User’s Guide HDF5 Datasets

Header Compact

Figure 5-8. Compact data storage

5.4.6. Partial I/O Sub-setting and Hyperslabs

Data transfers can write or read some of the data elements of the dataset. This is controlled by specifying
two selections: one for the source and one for the destination. Selections are specified by creating a
dataspace with selections.

Selections may be a union of hyperslabs or a list of points. A hyperslab is a contiguous hyper-rectangle
from the dataspace. Selected fields of a compound datatype may be read or written. In this case, the
selection is controlled by the memory and file datatypes.

Summary of procedure:

1. Open the dataset

2. Define the memory datatype

3. Define the memory dataspace selection and file dataspace selection
4. Transfer data (H5Dread or H5Dwrite)

For more information, see "HDF5 Dataspaces and Partial I/0" on page 265.

5.5. Allocation of Space in the File

When a dataset is created, space is allocated in the file for its header and initial data. The amount of space
allocated when the dataset is created depends on the storage properties. When the dataset is modified
(data is written, attributes added, or other changes), additional storage may be allocated if necessary.

The HDF Group 131

HDF5 Datasets HDF5 User’s Guide

Table 5-8. Initial dataset size

Object Size

Header Variable, but typically around 256 bytes at the creation of a simple dataset
with a simple datatype.

Data Size of the data array (humber of elements x size of element). Space allocated
in the file depends on the storage strategy and the allocation strategy.

Header

A dataset header consists of one or more header messages containing persistent metadata describing var-
ious aspects of the dataset. These records are defined in the HDF5 File Format Specification. The amount
of storage required for the metadata depends on the metadata to be stored. The table below summarizes
the metadata.

Table 5-9. Metadata storage sizes

Header Information Approximate Storage Size

Datatype (required) Bytes or more. Depends on type.

Dataspace (required) Bytes or more. Depends on number of dimensions and hsize_t.
Layout (required) Points to the stored data. Bytes or more. Depends on hsize_t and

number of dimensions.

Filters Depends on the number of filters. The size of the filter message
depends on the name and data that will be passed.

The header blocks also store the name and values of attributes, so the total storage depends on the num-
ber and size of the attributes.

In addition, the dataset must have at least one link, including a name, which is stored in the file and in the
group it is linked from.

The different storage strategies determine when and how much space is allocated for the data array. See
the discussion of fill values below for a detailed explanation of the storage allocation.
Contiguous Storage

For a continuous storage option, the data is stored in a single, contiguous block in the file. The data is
nominally a fixed-size, (number of elements x size of element). The figure below shows an example of a
two dimensional array stored as a contiguous dataset.

132 The HDF Group

http://www.hdfgroup.org/HDF5/doc/H5.format.html

HDF5 User’s Guide HDF5 Datasets

Depending on the fill value properties, the space may be allocated when the dataset is created or when
first written (default), and filled with fill values if specified. For parallel I/0, by default the space is allo-
cated when the dataset is created.

Memory File

Figure 5-9. A two dimensional array stored as a contiguous dataset

Chunked Storage

For chunked storage, the data is stored in one or more chunks. Each chunk is a continuous block in the file,
but chunks are not necessarily stored contiguously. Each chunk has the same size. The data array has the
same nominal size as a contiguous array (number of elements x size of element), but the storage is allo-
cated in chunks, so the total size in the file can be larger that the nominal size of the array. See the figure
below.

If a fill value is defined, each chunk will be filled with the fill value. Chunks must be allocated when data is
written, but they may be allocated when the file is created, as the file expands, or when data is written.

For serial 1/0, by default chunks are allocated incrementally, as data is written to the chunk. For a sparse
dataset, chunks are allocated only for the parts of the dataset that are written. In this case, if the dataset
is extended, no storage is allocated.

For parallel 1/0, by default chunks are allocated when the dataset is created or extended with fill values
written to the chunk.

In either case, the default can be changed using fill value properties. For example, using serial 1/0, the
properties can select to allocate chunks when the dataset is created.

The HDF Group 133

HDEF5 Datasets

HDF5 User’s Guide

Memory

File

3 x 3 chunks

[T
[

EIIT
I

Figure 5-10. A two dimensional array stored in chunks

Changing Dataset Dimensions

H5Dset_extent is used to change the current dimensions of the dataset within the limits of the
dataspace. Each dimension can be extended up to its maximum or unlimited. Extending the dataspace
may or may not allocate space in the file and may or may not write fill values, if they are defined. See the

example code below.

The dimensions of the dataset can also reduced. If the sizes specified are smaller than the dataset’s cur-
rent dimension sizes, H5Dset_extent will reduce the dataset’s dimension sizes to the specified values. It
is the user’s responsibility to ensure that valuable data is not lost; H5Dset_extent does not check.

hid_t file_id, dataset id;
Herr_t status;
size_t newdims[2];

/* Open an existing file. */
file_id = H5Fopen(*'dset.h5", H5F ACC_RDWR, H5P_DEFAULT);

Code Example 5-7. Using H5Dset_extent to increase the size of a dataset

134

The HDF Group

HDF5 User’s Guide HDF5 Datasets

/* Open an existing dataset. */
dataset_id = H5Dopen(file_id, "/dset", H5P_DEFAULT);

/* Example: dataset is 2 x 3, each dimension is UNLIMITED */
/* extend to 2 x 7 */

newdims[0] 2;

newdims[1] 7;

status = H5Dset_extent(dataset _id, newdims);
/* dataset is now 2 X 7 */

status = H5Dclose(dataset_id);

Code Example 5-7. Using H5Dset_extent to increase the size of a dataset

5.5.1. Storage Allocation in the File: Early, Incremental, Late

The HDF5 Library implements several strategies for when storage is allocated if and when it is filled with
fill values for elements not yet written by the user. Different strategies are recommended for different
storage layouts and file drivers. In particular, a parallel program needs storage allocated during a collective
call (for example, create or extend) while serial programs may benefit from delaying the allocation until
the data is written.

Two file creation properties control when to allocate space, when to write the fill value, and the actual fill
value to write.
When to Allocate Space

The table below shows the options for when data is allocated in the file. Early allocation is done during the
dataset create call. Certain file drivers (especially MPI-I/O and MPI-POSIX) require space to be allocated
when a dataset is created, so all processors will have the correct view of the data.

Table 5-10. File storage allocation options

Strategy Description

Early Allocate storage for the dataset immediately when the dataset is cre-
ated.

Late Defer allocating space for storing the dataset until the dataset is written.

The HDF Group 135

HDF5 Datasets HDF5 User’s Guide

Table 5-10. File storage allocation options

Strategy Description
Incremental Defer allocating space for storing each chunk until the chunk is written.
Default Use the strategy (Early, Late, or Incremental) for the storage method and

access method. This is the recommended strategy.

Late allocation is done at the time of the first write to dataset. Space for the whole dataset is allocated at
the first write.

Incremental allocation (chunks only) is done at the time of the first write to the chunk. Chunks that have
never been written are not allocated in the file. In a sparsely populated dataset, this option allocates
chunks only where data is actually written.

The “Default” property selects the option recommended as appropriate for the storage method and
access method. The defaults are shown in the table below. Note that Early allocation is recommended for
all Parallel 1/0, while other options are recommended as the default for serial 1/O cases.

Table 5-11. Default storage options

Storage Type Serial I/O Parallel I/O
Contiguous Late Early
Chunked Incremental Early
Compact Early Early

When to Write the Fill Value

The second property is when to write the fill value. The possible values are “Never” and “Allocation”. The
table below shows these options.

Table 5-12. When to write fill values

When Description
Never Fill value will never be written.
Allocation Fill value is written when space is allocated. (Default for chunked and contigu-

ous data storage.)

136 The HDF Group

HDF5 User’s Guide HDF5 Datasets

What Fill Value to Write

The third property is the fill value to write. The table below shows the values. By default, the data is filled
with zeros. The application may choose no fill value (Undefined). In this case, uninitialized data may have
random values. The application may define a fill value of an appropriate type. For more information, see
"Fill Values" on page 238.

Table 5-13. Fill values to write

What to Write Description
Default By default, the library fills allocated space with zeros.
Undefined Allocated space is filled with random values.

User-defined

The application specifies the fill value.

Together these three

properties control the library’s behavior. The table below summarizes the possibili-

ties during the dataset create-write-close cycle.

Table 5-14. Storage allocation and fill summary

When to When to What fill Library create-write-close behavior

allocate write fill value to

space value write

Early Never - Library allocates space when dataset is cre-
ated, but never writes a fill value to dataset. A
read of unwritten data returns undefined val-
ues.

Late Never - Library allocates space when dataset is writ-
ten to, but never writes a fill value to the
dataset. A read of unwritten data returns
undefined values.

Incremental Never - Library allocates space when a dataset or

chunk (whichever is the smallest unit of
space) is written to, but it never writes a fill
value to a dataset or a chunk. A read of
unwritten data returns undefined values.

Allocation Undefined Error on creating the dataset. The dataset is
not created.

The HDF Group

137

HDF5 Datasets

HDF5 User’s Guide

Table 5-14. Storage allocation and fill summary

When to When to What fill Library create-write-close behavior
allocate write fill value to
space value write
Early Allocation Default or Allocate space for the dataset when the data-
User-defined set is created. Write the fill value (default or
user-defined) to the entire dataset when the
dataset is created.
Late Allocation Default or Allocate space for the dataset when the appli-
User-defined cation first writes data values to the dataset.
Write the fill value to the entire dataset
before writing application data values.
Incremental Allocation Default or Allocate space for the dataset when the appli-

User-defined

cation first writes data values to the dataset
or chunk (whichever is the smallest unit of
space). Write the fill value to the entire data-
set or chunk before writing application data
values.

During the H5Dread function call, the library behavior depends on whether space has been allocated,
whether the fill value has been written to storage, how the fill value is defined, and when to write the fill
value. The table below summarizes the different behaviors.

Table 5-15. H5Dread summary

Is space What is the When to Library read behavior
allocatedin fill value? write the
the file? fill value?
No Undefined <<any>> Error. Cannot create this dataset.
No Default or <<any>> Fill the memory buffer with the fill value.
User-defined
Yes Undefined <<any>> Return data from storage (dataset). Trash is
possible if the application has not written
data to the portion of the dataset being read.
Yes Default or Never Return data from storage (dataset). Trash is
User-defined possible if the application has not written
data to the portion of the dataset being read.
Yes Default or Allocation Return data from storage (dataset).

User-defined

138

The HDF Group

HDF5 User’s Guide HDF5 Datasets

There are two cases to consider depending on whether the space in the file has been allocated before the
read or not. When space has not yet been allocated and if a fill value is defined, the memory buffer will be
filled with the fill values and returned. In other words, no data has been read from the disk. If space has
been allocated, the values are returned from the stored data. The unwritten elements will be filled accord-
ing to the fill value.

5.5.2. Deleting a Dataset from a File and Reclaiming Space

HDF5 does not at this time provide an easy mechanism to remove a dataset from a file or to reclaim the
storage space occupied by a deleted object.

Removing a dataset and reclaiming the space it used can be done with the H5Ldelete function and the
h5repack utility program. With the H5Lde lete function, links to a dataset can be removed from the file
structure. After all the links have been removed, the dataset becomes inaccessible to any application and
is effectively removed from the file. The way to recover the space occupied by an unlinked dataset is to
write all of the objects of the file into a new file. Any unlinked object is inaccessible to the application and
will not be included in the new file. Writing objects to a new file can be done with a custom program or
with the h5repack utility program.

For more information, see "HDF5 Groups" on page 79.

5.5.3. Releasing Memory Resources

The system resources required for HDF5 objects such as datasets, datatypes, and dataspaces should be
released once access to the object is no longer needed. This is accomplished via the appropriate close
function. This is not unique to datasets but a general requirement when working with the HDF5 Library;
failure to close objects will result in resource leaks.

In the case where a dataset is created or data has been transferred, there are several objects that must be
closed. These objects include datasets, datatypes, dataspaces, and property lists.

The application program must free any memory variables and buffers it allocates. When accessing data
from the file, the amount of memory required can be determined by calculating the size of the memory
datatype and the number of elements in the memory selection.

Variable-length data are organized in two or more areas of memory. For more information, see "Variable-
length Datatypes" on page 228. When writing data, the application creates an array of vl_info_t which
contains pointers to the elements. The elements might be, for example, strings. In the file, the variable-
length data is stored in two parts: a heap with the variable-length values of the data elements and an array
of vl_info_t elements. When the data is read, the amount of memory required for the heap can be
determined with the H5Dget_vlen_buf_size call.

The data transfer property may be used to set a custom memory manager for allocating variable-length
data for a H5Dread. This is set with the H5Pset_vlen_mem_manager call.

The HDF Group 139

http://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack

HDF5 Datasets HDF5 User’s Guide

To free the memory for variable-length data, it is necessary to visit each element, free the variable-length
data, and reset the element. The application must free the memory it has allocated. For memory allocated
by the HDF5 Library during a read, the H5DvIlen_reclaim function can be used to perform this opera-
tion.

5.5.4. External Storage Properties

The external storage format allows data to be stored across a set of non-HDF5 files. A set of segments (off-
sets and sizes) in one or more files is defined as an external file list, or EFL, and the contiguous logical
addresses of the data storage are mapped onto these segments. Currently, only the H5D_CONT IGUOUS
storage format allows external storage. External storage is enabled by a dataset creation property. The
table below shows the API.

Table 5-16. External storage API

Function Description

herr_t H5Pset_external (hid_t This function adds a new segment to the end
plist, const char *name, off_t of the external file list of the specified dataset
offset, hsize_t size) creation property list. The segment begins a

byte offset of file name and continues for size
bytes. The space represented by this segment
is adjacent to the space already represented
by the external file list. The last segmentin a
file list may have the size HSF_UNLIMITED, in
which case the external file may be of unlim-
ited size and no more files can be added to
the external files list.

int H5Pget_external count (hid_t Calling this function returns the number of

plist) segments in an external file list. If the dataset
creation property list has no external data,
then zero is returned.

herr_t H5Pget_external (hid_t This is the counterpart for the H5Pset_ex-
plist, int idx, size_t name_size, ternal () function. Given a dataset creation
char *name, off_t *offset, hsize_t property list and a zero-based index into that
*size) list, the file name, byte offset, and segment
size are returned through non-null argu-
ments. At most name_size characters are
copied into the name argument which is not
null terminated if the file name is longer than
the supplied name buffer (this is similar to

strncpy(Q)).

140 The HDF Group

HDF5 User’s Guide HDF5 Datasets

The figure below shows an example of how a contiguous, one-dimensional dataset is partitioned into
three parts and each of those parts is stored in a segment of an external file. The top rectangle represents
the logical address space of the dataset while the bottom rectangle represents an external file.

Figure 5-11. External file storage

The example below shows code that defines the external storage for the example. Note that the segments
are defined in order of the logical addresses they represent, not their order within the external file. It
would also have been possible to put the segments in separate files. Care should be taken when setting up
segments in a single file since the library does not automatically check for segments that overlap.

Plist = H5Pcreate (H5P_DATASET CREATE);

H5Pset _external (plist, "velocity.data", 3000, 1000);
H5Pset_external (plist, "velocity.data™, 0, 2500);
H5Pset_external (plist, "velocity.data™, 4500, 1500);

Code Example 5-8. External storage

The figure below shows an example of how a contiguous, two-dimensional dataset is partitioned into
three parts and each of those parts is stored in a separate external file. The top rectangle represents the
logical address space of the dataset while the bottom rectangles represent external files.

The HDF Group 141

HDF5 Datasets HDF5 User’s Guide

.
S/

P-Z

18sE1E(]

7
///////-/

scanl.data

scand.data

scand.data

Figure 5-12. Partitioning a 2-D dataset for external storage

The example below shows code for the partitioning described above. In this example, the library maps the
multi-dimensional array onto a linear address space as defined by the HDF5 format specification, and then
maps that address space into the segments defined in the external file list.

Plist = H5Pcreate (H5P_DATASET_CREATE);

H5Pset_external (plist, "scanl.data'™, 0, 24);
H5Pset_external (plist, "scan2.data', 0, 24);
H5Pset_external (plist, "scan3.data', 0, 16);

Code Example 5-9. Partitioning a 2-D dataset for external storage

The segments of an external file can exist beyond the end of the (external) file. The library reads that part
of a segment as zeros. When writing to a segment that exists beyond the end of a file, the external file is
automatically extended. Using this feature, one can create a segment (or set of segments) which is larger
than the current size of the dataset. This allows the dataset to be extended at a future time (provided the
dataspace also allows the extension).

142 The HDF Group

HDF5 User’s Guide HDF5 Datasets

All referenced external data files must exist before performing raw data 1/O on the dataset. This is nor-
mally not a problem since those files are being managed directly by the application or indirectly through
some other library. However, if the file is transferred from its original context, care must be taken to assure
that all the external files are accessible in the new location.

5.6. Using HDF5 Filters

This section describes in detail how to use the n-bit and scale-offset filters.

5.6.1. Using the N-bit Filter

N-bit data has n significant bits, where n may not correspond to a precise number of bytes. On the other
hand, computing systems and applications universally, or nearly so, run most efficiently when manipulat-
ing data as whole bytes or multiple bytes.

Consider the case of 12-bit integer data. In memory, that data will be handled in at least 2 bytes, or 16 bits,
and on some platforms in 4 or even 8 bytes. The size of such a dataset can be significantly reduced when
written to disk if the unused bits are stripped out.

The n-bit filter is provided for this purpose, packing n-bit data on output by stripping off all unused bits
and unpacking on input, restoring the extra bits required by the computational processor.

N-bit Datatype

An n-bit datatype is a datatype of n significant bits. Unless it is packed, an n-bit datatype is presented as an
n-bit bitfield within a larger-sized value. For example, a 12-bit datatype might be presented as a 12-bit
field in a 16-bit, or 2-byte, value.

Currently, the datatype classes of n-bit datatype or n-bit field of a compound datatype or an array data-
type are limited to integer or floating-point.

The HDF5 user can create an n-bit datatype through a series of of function calls. For example, the follow-
ing calls create a 16-bit datatype that is stored in a 32-bit value with a 4-bit offset:

hid_t nbit_datatype = H5Tcopy(H5T_STD 132LE);
H5Tset_precision(nbit_datatype, 16);
H5Tset_offset(nbit_datatype, 4);

In memory, one value of the above example n-bit datatype would be stored on a little-endian machine as
follows:

The HDF Group 143

HDF5 Datasets HDF5 User’s Guide

byte 3 byte 2 byte 1 byte 0

272272772 2722?SPPP PPPPPPPP PPPP?77?

Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

N-bit Filter

When data of an n-bit datatype is stored on disk using the n-bit filter, the filter packs the data by stripping
off the padding bits; only the significant bits are retained and stored. The values on disk will appear as fol-
lows:

1st value 2nd value

SPPPPPPP PPPPPPPP SPPPPPPP PPPPPPPP ...

Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

The n-bit filter can be used effectively for compressing data of an n-bit datatype, including arrays and the
n-bit fields of compound datatypes. The filter supports complex situations where a compound datatype
contains member(s) of a compound datatype or an array datatype has a compound datatype as the base

type.

At present, the n-bit filter supports all datatypes. For datatypes of class time, string, opaque, reference,
ENUM, and variable-length, the n-bit filter acts as a no-op which is short for no operation. For conve-
nience, the rest of this section refers to such datatypes as no-op datatypes.

As is the case with all HDFS5 filters, an application using the n-bit filter must store data with chunked stor-
age.

How Does the N-bit Filter Work?

The n-bit filter always compresses and decompresses according to dataset properties supplied by the
HDFS5 Library in the datatype, dataspace, or dataset creation property list.

The dataset datatype refers to how data is stored in an HDF5 file while the memory datatype refers to how
data is stored in memory. The HDF5 Library will do datatype conversion when writing data in memory to
the dataset or reading data from the dataset to memory if the memory datatype differs from the dataset
datatype. Datatype conversion is performed by HDF5 Library before n-bit compression and after n-bit
decompression.

The following sub-sections examine the common cases:

144 The HDF Group

HDF5 User’s Guide HDF5 Datasets

¢ N-bit integer conversions

¢ N-bit floating-point conversions

N-bit Integer Conversions

Integer data with a dataset of integer datatype of less than full precision and a memory datatype of
H5T_NATIVE_INT, provides the simplest application of the n-bit filter.

The precision of H5ST_NATIVE_ INT is 8 multiplied by sizeof(int). This value, the size of an intin
bytes, differs from platform to platform; we assume a value of 4 for the following illustration. We further
assume the memory byte order to be little-endian.

In memory, therefore, the precision of HST_NATIVE_INT is 32 and the offset is 0. One value of H5T_NA-
TIVE_INT is laid out in memory as follows:

| byte 3 | byte 2 | byte 1 | byte 0 |

| SEFEEFEFF | FEEEFFFF | FEEFFFFEPEFE | FFFEPEEEF |

Figure 5-13. H5T_NATIVE_INT in memory
Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

Suppose the dataset datatype has a precision of 16 and an offset of 4. After HDF5 converts values from the
memory datatype to the dataset datatype, it passes something like the following to the n-bit filter for
compression:

| bycte 3 | byte 2 | byte 1 | byte 0 |
l l

truncated bits

Figure 5-14. Passed to the n-bit filter
Note: Key: S - sign bit, P - significant bit, ? - padding bit. Sign bit is included in signed integer datatype precision.

Notice that only the specified 16 bits (15 significant bits and the sign bit) are retained in the conversion. All
other significant bits of the memory datatype are discarded because the dataset datatype calls for only 16
bits of precision. After n-bit compression, none of these discarded bits, known as padding bits will be
stored on disk.

The HDF Group 145

HDF5 Datasets HDF5 User’s Guide

N-bit Floating-point Conversions

Things get more complicated in the case of a floating-point dataset datatype class. This sub-section pro-
vides an example that illustrates the conversion from a memory datatype of H5T_NATIVE_FLOAT to a
dataset datatype of class floating-point.

As before, let the H5T_NATIVE_FLOAT be 4 bytes long, and let the memory byte order be little-endian.
Per the IEEE standard, one value of H5T_NATIVE_FLOAT is laid out in memory as follows:

| byte 3 | byte 2 | byte 1 | byte 0 |

| SEEEEEEE | EMMMMMMM | MDD | DM |

Figure 5-15. H5ST_NATIVE_FLOAT in memory

Note: Key: S - sign bit, E - exponent bit, M - mantissa bit, ? - padding bit. Sign bit is included in floating-point datatype
precision.

Suppose the dataset datatype has a precision of 20, offset of 7, mantissa size of 13, mantissa position of 7,
exponent size of 6, exponent position of 20, and sign position of 26. For more information, see "Definition
of Datatypes" on page 199.

After HDF5 converts values from the memory datatype to the dataset datatype, it passes something like
the following to the n-bit filter for compression:

| byte 3 | byte 2 | byte 1 | byte 0O |
| |

truncated mantissa

Figure 5-16. Passed to the n-bit filter

Note: Key: S - sign bit, E - exponent bit, M - mantissa bit, ? - padding bit. Sign bit is included in floating-point datatype
precision.

The sign bit and truncated mantissa bits are not changed during datatype conversion by the HDF5 Library.
On the other hand, the conversion of the 8-bit exponent to a 6-bit exponent is a little tricky:

The bias for the new exponent in the n-bit datatype is:
2(-1_1
The following formula is used for this exponent conversion:

exp8 - (2 D_1) = exp6 - (2¢¢-D_-1) = actual exponent value

146 The HDF Group

HDF5 User’s Guide HDF5 Datasets

where exp8 is the stored decimal value as represented by the 8-bit exponent, and exp6 is the
stored decimal value as represented by the 6-bit exponent.

In this example, caution must be taken to ensure that, after conversion, the actual exponent value is
within the range that can be represented by a 6-bit exponent. For example, an 8-bit exponent can repre-
sent values from -127 to 128 while a 6-bit exponent can represent values only from -31 to 32.

N-bit Filter Behavior

The n-bit filter was designed to treat the incoming data byte by byte at the lowest level. The purpose was
to make the n-bit filter as generic as possible so that no pointer cast related to the datatype is needed.

Bitwise operations are employed for packing and unpacking at the byte level.

Recursive function calls are used to treat compound and array datatypes.

N-bit Compression

The main idea of n-bit compression is to use a loop to compress each data element in a chunk. Depending
on the datatype of each element, the n-bit filter will call one of four functions. Each of these functions per-
forms one of the following tasks:

e Compress a data element of a no-op datatype
e Compress a data element of an atomic datatype
e Compress a data element of a compound datatype

e Compress a data element of an array datatype

No-op datatypes: The n-bit filter does not actually compress no-op datatypes. Rather, it copies the data
buffer of the no-op datatype from the non-compressed buffer to the proper location in the compressed
buffer; the compressed buffer has no holes. The term “compress” is used here simply to distinguish this
function from the function that performs the reverse operation during decompression.

Atomic datatypes: The n-bit filter will find the bytes where significant bits are located and try to compress
these bytes, one byte at a time, using a loop. At this level, the filter needs the following information:

¢ The byte offset of the beginning of the current data element with respect to the beginning of the
input data buffer

e Datatype size, precision, offset, and byte order

The n-bit filter compresses from the most significant byte containing significant bits to the least significant
byte. For big-endian data, therefore, the loop index progresses from smaller to larger while for little-
endian, the loop index progresses from larger to smaller.

In the extreme case of when the n-bit datatype has full precision, this function copies the content of the
entire non-compressed datatype to the compressed output buffer.

Compound datatypes: The n-bit filter will compress each data member of the compound datatype. If the
member datatype is of an integer or floating-point datatype, the n-bit filter will call the function described
above. If the member datatype is of a no-op datatype, the filter will call the function described above. If
the member datatype is of a compound datatype, the filter will make a recursive call to itself. If the mem-
ber datatype is of an array datatype, the filter will call the function described below.

The HDF Group 147

HDF5 Datasets HDF5 User’s Guide

Array datatypes: The n-bit filter will use a loop to compress each array element in the array. If the base
datatype of array element is of an integer or floating-point datatype, the n-bit filter will call the function
described above. If the base datatype is of a no-op datatype, the filter will call the function described
above. If the base datatype is of a compound datatype, the filter will call the function described above. If
the member datatype is of an array datatype, the filter will make a recursive call of itself.

N-bit Decompression

The n-bit decompression algorithm is very similar to n-bit compression. The only difference is that at the
byte level, compression packs out all padding bits and stores only significant bits into a continuous buffer
(unsigned char) while decompression unpacks significant bits and inserts padding bits (zeros) at the
proper positions to recover the data bytes as they existed before compression.

Storing N-bit Parameters to Array cd_valuel]

All of the information, or parameters, required by the n-bit filter are gathered and stored in the array
cd_values][] by the private function H5Z set local _nbit and are passed to another private func-
tion, H5Z_filter_nbit, by the HDF5 Library.

These parameters are as follows:

e Parameters related to the datatype
¢ The number of elements within the chunk

e Aflagindicating whether compression is needed
The first and second parameters can be obtained using the HDF5 dataspace and datatype interface calls.

A compound datatype can have members of array or compound datatype. An array datatype’s base data-
type can be a complex compound datatype. Recursive calls are required to set parameters for these com-
plex situations.

Before setting the parameters, the number of parameters should be calculated to dynamically allocate the
array cd_values[], which will be passed to the HDF5 Library. This also requires recursive calls.

For an atomic datatype (integer or floating-point), parameters that will be stored include the datatype’s
size, endianness, precision, and offset.

For a no-op datatype, only the size is required.

For a compound datatype, parameters that will be stored include the datatype’s total size and number of
members. For each member, its member offset needs to be stored. Other parameters for members will
depends on the respective datatype class.

For an array datatype, the total size parameter should be stored. Other parameters for the array’s base
type depend on the base type’s datatype class.

Further, to correctly retrieve the parameter for use of n-bit compression or decompression later, parame-
ters for distinguishing between datatype classes should be stored.
Implementation

Three filter callback functions were written for the n-bit filter:

148 The HDF Group

HDF5 User’s Guide HDF5 Datasets

e H5Z can_apply_nbit
e H5Z set _local_nbit
e H5Z filter_nbit

These functions are called internally by the HDF5 Library. A number of utility functions were written for
the function H5Z set_local _nbit. Compression and decompression functions were written and are
called by function H5Z_filter_nbit. All these functions are included in the file H5Znbit.c.

The public function H5Pset_nbit is called by the application to set up the use of the n-bit filter. This
function is included in the file H5Pdcpl . c. The application does not need to supply any parameters.

How N-bit Parameters are Stored

A scheme of storing parameters required by the n-bit filter in the array cd_values[] was developed uti-
lizing recursive function calls.

Four private utility functions were written for storing the parameters associated with atomic (integer or
floating-point), no-op, array, and compound datatypes:

H5Z set parms_atomic
e H5Z set parms_array
e H5Z_set_parms_nooptype

H5Z set parms_compound
The scheme is briefly described below.

First, assign a numeric code for datatype class atomic (integer or float), no-op, array, and compound data-
type. The code is stored before other datatype related parameters are stored.

The first three parameters of cd_values[] are reserved for:

1. The number of valid entries in the array cd_values[]
2. Aflagindicating whether compression is needed
3. The number of elements in the chunk
Throughout the balance of this explanation, i represents the index of cd_values[].
In the function H5Z_set_local_nbit:
1. 1=2
2. Get the number of elements in the chunk and store in cd_value[i]; increment i
3. Get the class of the datatype:
e For an integer or floating-point datatype, call H5Z_set_parms_atomic
e For an array datatype, call H5Z_set_parms_array
e For a compound datatype, call H5Z_set_parms_compound
e For none of the above, call H5Z_ set parms_noopdatatype
4. Store i in cd_value[0] and flagin cd_values[1]

In the function H5Z set parms_atomic:

1. Store the assigned numeric code for the atomic datatype in cd_value[i]; increment i

The HDF Group 149

HDF5 Datasets HDF5 User’s Guide

Get the size of the atomic datatype and store in cd_value[i]; increment i
Get the order of the atomic datatype and store in cd_value[i]; increment i
Get the precision of the atomic datatype and store in cd_value[i]; increment i

Get the offset of the atomic datatype and store in cd_value[i]; increment i

o v A~ wN

Determine the need to do compression at this point
In the function H5Z_set_parms_nooptype:

1. Store the assigned numeric code for the no-op datatype in cd_value[i]; increment i

2. Get the size of the no-op datatype and store in cd_value[i]; increment i

In the function H5Z_set_parms_array:

1. Store the assigned numeric code for the array datatype in cd_value[i]; increment i
2. Get the size of the array datatype and store in cd_value[i]; increment i
3. Get the class of the array’s base datatype.

e For an integer or floating-point datatype, call H5Z_set_parms_atomic

e Foran array datatype, call H5Z set_parms_array

e For a compound datatype, call H5Z_set_parms_compound

¢ If none of the above, call H5Z set_parms_noopdatatype

In the function H5Z_set_parms_compound:

1. Store the assigned numeric code for the compound datatype in cd_value[i]; increment i
2. Get the size of the compound datatype and store in cd_value[i]; increment i
3. Get the number of members and store in cd_values]i]; increment i
4. For each member
e Get the member offset and store in cd_values[i]; increment i
e Get the class of the member datatype
e For aninteger or floating-point datatype, call H5Z_set_parms_atomic
e For an array datatype, call H5Z_set_parms_array
e For a compound datatype, call H5Z_set_parms_compound

¢ If none of the above, call H5Z set_parms_noopdatatype

N-bit Compression and Decompression Functions

The n-bit compression and decompression functions above are called by the private HDF5 function H5Z -
filter_nbit. The compress and decompress functions retrieve the n-bit parameters from cd_val-
ues|[] as it was passed by H5Z Filter_nbit. Parameters are retrieved in exactly the same order in
which they are stored and lower-level compression and decompression functions for different datatype
classes are called.

N-bit compression is not implemented in place. Due to the difficulty of calculating actual output buffer
size after compression, the same space as that of the input buffer is allocated for the output buffer as
passed to the compression function. However, the size of the output buffer passed by reference to the
compression function will be changed (smaller) after the compression is complete.

150 The HDF Group

HDF5 User’s Guide HDF5 Datasets

Usage Examples

The following code example illustrates the use of the n-bit filter for writing and reading n-bit integer data.

The HDF Group 151

HDF5 Datasets HDF5 User’s Guide

#include "hdf5.h"
#include "stdlib.h"
#include "math.h"

#define
#define
#define
#define
#define
#define

HSFILE_NAME "nbit_test_int.h5"
DATASET NAME “nbit_int"

NX 200

NY 300

CH_NX 10

CH_NY 15

int main(void)

{

hid_t

file, dataspace, dataset, datatype, mem_datatype,

dset_create_props;
hsize_t dims[2], chunk size[2];

int
int
int

orig_data[NX][NY];
new_data[NX][NY];
i, J;

size_t precision, offset;

/* Define dataset datatype (integer), and set precision,
* offset

*/

datatype = H5Tcopy(H5T_NATIVE_INT);

precision = 17; /* precision includes sign bit */

if(H5Tset _precision(datatype,precision)<0) {
printf("Error: fail to set precision\n');
return -1;

}

offset = 4;

if(H5Tset_offset(datatype,offset)<0) {
printf("Error: fail to set offset\n");
return -1;

}

/* Copy to memory datatype */
mem_datatype = H5Tcopy(datatype);

Code Example 5-10. N-bit compression for integer data

152

The HDF Group

HDF5 User’s Guide HDF5 Datasets

/* Set order of dataset datatype */

if(H5Tset_order(datatype, H5T_ORDER_BE)<0) {
printfF("Error: fail to set endianness\n');
return -1;

}

/* Initialize data buffer with random data within correct
* range corresponding to the memory datatype®s precision
* and offset.
*/
for (i=0; i < NX; i++)
for (J=0; j < NY; j++)
orig_data[i][j] = randQ % (int)pow(2, precision-1)
<<offset;

/* Describe the size of the array. */

dims[0] = NX;

dims[1] = NY;

if((dataspace = H5Screate_simple (2, dims, NULL))<0) {
printfF("Error: fail to create dataspace\n');
return -1;

}

/*
* Create a new file using read/write access, default file
* creation properties, and default file access properties.
*/

if((File = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,
HS5P_DEFAULT, H5P_DEFAULT))<0) {
printfF("Error: fail to create file\n™);
return -1;

}

/*

* Set the dataset creation property list to specify that
* the raw data is to be partitioned into 10 x 15 element
* chunks and that each chunk Is to be compressed.

*/

chunk_size[O0] CH_NX;

chunk_size[1] = CH_NY;

Code Example 5-10. N-bit compression for integer data

The HDF Group 153

HDF5 Datasets HDF5 User’s Guide

if((dset_create_props = H5Pcreate (H5P_DATASET CREATE))<0) {
printfF("Error: fail to create dataset property\n');
return -1;

}

if(H5Pset_chunk (dset_create props, 2, chunk size)<0) {
printfF("Error: fail to set chunk\n'™);
return -1;

}

/*

* Set parameters for n-bit compression; check the description
of the H5Pset_nbit function in the HDF5 Reference Manual

* for more information.

*/

*

if(H5Pset_nbit (dset_create props)<0) {
printf("Error: fail to set nbit Filter\n);
return -1;

}

/*

* Create a new dataset within the file. The datatype

* and dataspace describe the data on disk, which may

* be different from the format used in the application®s
* memory.

*/

if((dataset = H5Dcreate(file, DATASET_NAME, datatype,
dataspace, H5P_DEFAULT,
dset_create props, H5P_DEFAULT))<0) {
printF("Error: fail to create dataset\n');
return -1;

}

/*

* Write the array to the file. The datatype and dataspace

* describe the format of the data in the "orig_data®™ buffer.
* The raw data is translated to the format required on disk,
* as defined above. We use default raw data transfer

* properties.

*/

Code Example 5-10. N-bit compression for integer data

154 The HDF Group

HDF5 User’s Guide HDF5 Datasets

if(H5Dwrite (dataset, mem_datatype, H5S ALL, H5S_ALL,
H5P_DEFAULT, orig_data)<0) {
printf("Error: fail to write to dataset\n');
return -1;

}

H5Dclose (dataset);

if((dataset = H5Dopen(file, DATASET_NAME, H5P_DEFAULT))<0) {
printfF("Error: fail to open dataset\n');
return -1;

}

/*

* Read the array. This is similar to writing data,
* except the data flows in the opposite direction.
* Note: Decompression is automatic.

*/

if(H5Dread (dataset, mem_datatype, H5S ALL, H5S_ALL,
H5P_DEFAULT, new_data)<0) {
printF("Error: fail to read from dataset\n');
return -1;

}

H5Tclose (datatype);
H5Tclose (mem_datatype);
H5Dclose (dataset);

H5Sclose (dataspace);
H5Pclose (dset_create_props);
H5Fclose (File);

return O;

Code Example 5-10. N-bit compression for integer data

Note: The code example above illustrates the use of the n-bit filter for writing and reading n-bit integer data.

The following code example illustrates the use of the n-bit filter for writing and reading n-bit floating-point
data.

The HDF Group 155

HDF5 Datasets HDF5 User’s Guide

#include ""hdf5.h"

#define HS5FILE_NAME ™“nbit_test float.h5"
#define DATASET NAME "nbit_ float"

#define NX 2

#define NY 5

#define CH_NX 2

#define CH_NY 5

int main(void)
{
hid_t file, dataspace, dataset, datatype, dset_create_props;
hsize_t dims[2], chunk_size[2];
/* orig_data[] are initialized to be within the range that
* can be represented by dataset datatype (no precision
* loss during datatype conversion)
*/

float orig_data[NX][NY] = {{188384.00, 19.103516,
-1.0831790e9, -84.242188, 5.2045898}, {-49140.000,
2350.2500, -3.2110596e-1, 6.4998865e-5, -0.0000000}};
float new_data[NX][NY];

size_t precision, offset;

/* Define single-precision floating-point type for dataset
*

* size=4 byte, precision=20 bits, offset=7 bits,
* mantissa size=13 bits, mantissa position=7,

* exponent size=6 bits, exponent position=20,

* exponent bias=31.

* It can be illustrated in little-endian order as:

* (S - sign bit, E - exponent bit, M - mantissa bit,
* ? - padding bit)

*

* 3 2 1 0

* ?2????SEE EEEEMMMM MMMMMMMM M??7???7?7?

* To create a new floating-point type, the following
properties must be set in the order of
* set Fields -> set offset -> set precision -> set size.

*

Code Example 5-11. N-bit compression for floating-point data

156 The HDF Group

HDF5 User’s Guide HDF5 Datasets

All these properties must be set before the type can
function. Other properties can be set anytime. Derived
type size cannot be expanded bigger than original size
but can be decreased. There should be no holes

among the significant bits. Exponent bias usually

is set 2~(n-1)-1, where n is the exponent size.

* ok X ok % X ok

datatype = H5Tcopy(H5T _IEEE F32BE);
if(H5Tset_fields(datatype, 26, 20, 6, 7, 13)<0) {
printf("Error: fail to set fields\n");
return -1;

}

offset = 7;

if(H5Tset_offset(datatype,offset)<0) {
printF("Error: fail to set offset\n");
return -1;

}

precision = 20;
if(H5Tset_precision(datatype,precision)<0) {
printF("Error: fail to set precision\n");

return -1;

}

if(H5Tset_size(datatype, 4)<0) {
printfF("Error: fail to set size\n");
return -1;

}

if(H5Tset_ebias(datatype, 31)<0) {
printF("Error: fail to set exponent bias\n');
return -1;

}

/* Describe the size of the array. */

dims[0] = NX;

dims[1] = NY;

if((dataspace = H5Screate_simple (2, dims, NULL))<0) {
printf("'Error: fail to create dataspace\n');
return -1;

}

/*
* Create a new file using read/write access, default file
* creation properties, and default file access properties.
*/

Code Example 5-11. N-bit compression for floating-point data

The HDF Group 157

HDF5 Datasets HDF5 User’s Guide

iT((file = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,
H5P_DEFAULT, H5P_DEFAULT))<0) {
printfF("Error: fail to create file\n");
return -1;

}

/*

* Set the dataset creation property list to specify that
* the raw data is to be partitioned into 2 x 5 element

* chunks and that each chunk Is to be compressed.

*/
chunk_size[0] = CH_NX;
chunk_size[1] = CH_NY;

iT((dset_create_props = H5Pcreate (H5P_DATASET_CREATE))<0) {
printfF("Error: fail to create dataset property\n');
return -1;

}

if(H5Pset_chunk (dset_create props, 2, chunk _size)<0) {
printf("Error: fail to set chunk\n'™);
return -1;

}

/*
* Set parameters for n-bit compression; check the description
* of the H5Pset _nbit function in the HDF5 Reference Manual
* for more information.
*/
if(H5Pset_nbit (dset_create props)<0) {
printfF("Error: fail to set nbit filter\n");
return -1;

}

/*

* Create a new dataset within the file. The datatype

* and dataspace describe the data on disk, which may

* be different from the format used in the application®s
* memory.

*/

Code Example 5-11. N-bit compression for floating-point data

158 The HDF Group

HDF5 User’s Guide HDF5 Datasets

if((dataset = H5Dcreate(file, DATASET _NAME, datatype,
dataspace, H5P_DEFAULT,
dset_create plists, H5P_DEFAULT))<0) {
printfF("Error: fail to create dataset\n');
return -1;

}

/*

* Write the array to the file. The datatype and dataspace

* describe the format of the data in the "orig_data® buffer.
* The raw data is translated to the format required on disk,
* as defined above. We use default raw data transfer

* properties.

*/

if(H5Dwrite (dataset, H5T NATIVE_FLOAT, H5S ALL, H5S ALL,
H5P_DEFAULT, orig_data)<0) {
printF("Error: fail to write to dataset\n");
return -1;

}

H5Dclose (dataset);

if((dataset = H5Dopen(file, DATASET NAME, H5P_DEFAULT))<0) {
printfF("Error: fail to open dataset\n');
return -1;

}

/*

* Read the array. This is similar to writing data,
* except the data flows in the opposite direction.
Note: Decompression is automatic.

*

*/

Code Example 5-11. N-bit compression for floating-point data

The HDF Group 159

HDF5 Datasets HDF5 User’s Guide

iT(H5Dread (dataset, HS5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, new_data)<0) {
printf("Error: fail to read from dataset\n');
return -1;

}

H5Tclose (datatype);

H5Dclose (dataset);

H5Sclose (dataspace);
H5Pclose (dset _create_props);
H5Fclose (File);

return O;

Code Example 5-11. N-bit compression for floating-point data

Note: The code example above illustrates the use of the n-bit filter for writing and reading n-bit floating-point data.

Limitations

Because the array cd_values[] has to fit into an object header message of 64K, the n-bit filter has an
upper limit on the number of n-bit parameters that can be stored in it. To be conservative, a maximum of
4K is allowed for the number of parameters.

The n-bit filter currently only compresses n-bit datatypes or fields derived from integer or floating-point
datatypes. The n-bit filter assumes padding bits of zero. This may not be true since the HDF5 user can set
padding bit to be zero, one, or leave the background alone. However, it is expected the n-bit filter will be
modified to adjust to such situations.

The n-bit filter does not have a way to handle the situation where the fill value of a dataset is defined and
the fill value is not of an n-bit datatype although the dataset datatype is.

5.6.2. Using the Scale-offset Filter

Generally speaking, scale-offset compression performs a scale and/or offset operation on each data value
and truncates the resulting value to a minimum number of bits (minimum-bits) before storing it.

The current scale-offset filter supports integer and floating-point datatypes only. For the floating-point
datatype, float and double are supported, but long double is not supported.

Integer data compression uses a straight-forward algorithm. Floating-point data compression adopts the
GRiB data packing mechanism which offers two alternate methods: a fixed minimum-bits method, and a
variable minimum-bits method. Currently, only the variable minimum-bits method is implemented.

Like other 1/0 filters supported by the HDF5 Library, applications using the scale-offset filter must store
data with chunked storage.

160 The HDF Group

HDF5 User’s Guide HDF5 Datasets

Integer type: The minimum-bits of integer data can be determined by the filter. For example, if the maxi-
mum value of data to be compressed is 7065 and the minimum value is 2970. Then the “span” of dataset
values is equal to (max-min+1), which is 4676. If no fill value is defined for the dataset, the minimum-bits
is:ceiling(log2(span)) = 12. With fill value set, the minimum-bits is: cei ling(log2(span+1))

= 13.

HDF5 users can also set the minimum-bits. However, if the user gives a minimume-bits that is less than that
calculated by the filter, the compression will be lossy.

Floating-point type: The basic idea of the scale-offset filter for the floating-point type is to transform the
data by some kind of scaling to integer data, and then to follow the procedure of the scale-offset filter for
the integer type to do the data compression. Due to the data transformation from floating-point to inte-
ger, the scale-offset filter is lossy in nature.

Two methods of scaling the floating-point data are used: the so-called D-scaling and E-scaling. D-scaling is
more straightforward and easy to understand. For HDF5 1.8 release, only the D-scaling method has been
implemented.

Design

Before the filter does any real work, it needs to gather some information from the HDF5 Library through
API calls. The parameters the filter needs are:

e The minimum-bits of the data value
e The number of data elements in the chunk

e The datatype class, size, sign (only for integer type), byte order, and fill value if defined

Size and sign are needed to determine what kind of pointer cast to use when retrieving values from the
data buffer.

The pipeline of the filter can be divided into four parts: (1)pre-compression; (2)compression; (3)decom-
pression; (4)post-decompression.

Depending on whether a fill value is defined or not, the filter will handle pre-compression and post-
decompression differently.

The scale-offset filter only needs the memory byte order, size of datatype, and minimum-bits for compres-
sion and decompression.

Since decompression has no access to the original data, the minimum-bits and the minimum value need
to be stored with the compressed data for decompression and post-decompression.

Integer Type

Pre-compression: During pre-compression minimum-bits is calculated if it is not set by the user. For more
information on how minimum-bits are calculated, see section 6.1. “The N-bit Filter.”

If the fill value is defined, finding the maximum and minimum values should ignore the data element
whose value is equal to the fill value.

If no fill value is defined, the value of each data element is subtracted by the minimum value during this
stage.

The HDF Group 161

HDF5 Datasets HDF5 User’s Guide

If the fill value is defined, the fill value is assigned to the maximum value. In this way minimum-bits can
represent a data element whose value is equal to the fill value and subtracts the minimum value from a
data element whose value is not equal to the fill value.

The fill value (if defined), the number of elements in a chunk, the class of the datatype, the size of the
datatype, the memory order of the datatype, and other similar elements will be stored in the HDF5 object
header for the post-decompression usage.

After pre-compression, all values are non-negative and are within the range that can be stored by mini-
mum-bits.

Compression: All modified data values after pre-compression are packed together into the compressed
data buffer. The number of bits for each data value decreases from the number of bits of integer (32 for
most platforms) to minimum-bits. The value of minimum-bits and the minimum value are added to the
data buffer and the whole buffer is sent back to the library. In this way, the number of bits for each modi-
fied value is no more than the size of minimum-bits.

Decompression: In this stage, the number of bits for each data value is resumed from minimume-bits to the
number of bits of integer.

Post-decompression: For the post-decompression stage, the filter does the opposite of what it does during
pre-compression except that it does not calculate the minimume-bits or the minimum value. These values
were saved during compression and can be retrieved through the resumed data buffer. If no fill value is
defined, the filter adds the minimum value back to each data element.

If the fill value is defined, the filter assigns the fill value to the data element whose value is equal to the
maximum value that minimume-bits can represent and adds the minimum value back to each data element
whose value is not equal to the maximum value that minimum-bits can represent.

Floating-point Type

The filter will do data transformation from floating-point type to integer type and then handle the data by
using the procedure for handling the integer data inside the filter. Insignificant bits of floating-point data
will be cut off during data transformation, so this filter is a lossy compression method.

There are two scaling methods: D-scaling and E-scaling. The HDF5 1.8 release only supports D-scaling. D-
scaling is short for decimal scaling. E-scaling should be similar conceptually. In order to transform data
from floating-point to integer, a scale factor is introduced. The minimum value will be calculated. Each
data element value will subtract the minimum value. The modified data will be multiplied by 10 (Decimal)
to the power of scale_factor, and only the integer part will be kept and manipulated through the rou-
tines for the integer type of the filter during pre-compression and compression. Integer data will be
divided by 10 to the power of scale_factor to transform back to floating-point data during decompres-
sion and post-decompression. Each data element value will then add the minimum value, and the floating-
point data are resumed. However, the resumed data will lose some insignificant bits compared with the
original value.

For example, the following floating-point data are manipulated by the filter, and the D-scaling factor is 2.

{104.561, 99.459, 100.545, 105.644}

The minimum value is 99.459, each data element subtracts 99.459, the modified data is

162 The HDF Group

HDF5 User’s Guide HDF5 Datasets

{5.102, 0, 1.086, 6.185}

Since the D-scaling factor is 2, all floating-point data will be multiplied by 1012 with this result:
{510.2, 0, 108.6, 618.5}

The digit after decimal point will be rounded off, and then the set looks like:

{510, 0, 109, 619}
After decompression, each value will be divided by 1072 and will be added to the offset 99.459.
The floating-point data becomes

{104.559, 99.459, 100.549, 105.649}.

The relative error for each value should be no more than 5* (10~(D-scaling factor +1)). D-scaling some-
times is also referred as a variable minimum-bits method since for different datasets the minimum-bits to
represent the same decimal precision will vary. The data value is modified to 2 to power of scale_fac-
tor for E-scaling. E-scaling is also called fixed-bits method since for different datasets the minimume-bits
will always be fixed to the scale factor of E-scaling. Currently, HDF5 ONLY supports the D-scaling (variable
minimum-bits) method.

Implementation

The scale-offset filter implementation was written and included in the file H5Zscaleoffset.c. Function
H5Pset_scaleoffset was written and included in the file “H5Pdcpl . c”. The HDF5 user can supply
minimum-bits by calling function H5Pset_scaleoffset.

The scale-offset filter was implemented based on the design outlined in this section. However, the follow-
ing factors need to be considered:

The filter needs the appropriate cast pointer whenever it needs to retrieve data values.

2. The HDF5 Library passes to the filter the to-be-compressed data in the format of the dataset data-
type, and the filter passes back the decompressed data in the same format. If a fill value is
defined, it is also in dataset datatype format. For example, if the byte order of the dataset data-
type is different from that of the memory datatype of the platform, compression or decompres-
sion performs an endianness conversion of data buffer. Moreover, it should be aware that
memory byte order can be different during compression and decompression.

3. The difference of endianness and datatype between file and memory should be considered when
saving and retrieval of minimum-bits, minimum value, and fill value.

4. If the user sets the minimum-bits to full precision of the datatype, no operation is needed at the
filter side. If the full precision is a result of calculation by the filter, then the minimum-bits needs
to be saved for decompression but no compression or decompression is needed (only a copy of
the input buffer is needed).

5. If by calculation of the filter, the minimume-bits is equal to zero, special handling is needed. Since
it means all values are the same, no compression or decompression is needed. But the minimum-
bits and minimum value still need to be saved during compression.

6. For floating-point data, the minimum value of the dataset should be calculated at first. Each data
element value will then subtract the minimum value to obtain the “offset” data. The offset data

The HDF Group 163

HDF5 Datasets HDF5 User’s Guide

will then follow the steps outlined above in the discussion of floating-point types to do data trans-
formation to integer and rounding. For more information, see "Floating-point Type" on page 162.

Usage Examples

The following code example illustrates the use of the scale-offset filter for writing and reading integer
data.

164 The HDF Group

HDF5 User’s Guide

HDF5 Datasets

#include "hdf5.h"
#include "stdlib.h"

#define HS5FILE_NAME ‘"'scaleoffset test int.h5"

#define DATASET NAME "scaleoffset int"
#define NX 200

#define NY 300

#define CH_NX 10

#define CH_NY 15

int main(void)

{

hid_t file, dataspace, dataset, datatype, dset_create_props;

hsize_t dims[2], chunk_size[2];

int orig_data[NX][NY];
int new_data[NX][NY];
int i, j, fill_val;

/* Define dataset datatype */
datatype = H5Tcopy(H5T_NATIVE_INT);

/* Initiliaze data buffer */
for (i=0; i < NX; i++)
for (3J=0; j < NY; j++)
orig_data[i][j] = rand() % 10000;

/* Describe the size of the array. */
dims[0] = NX;
dims[1] = NY;

if((dataspace = H5Screate_simple (2, dims, NULL))<0) {
printf("Error: fail to create dataspace\n™);

return -1;

}

/*

* Create a new file using read/write access, default Ffile
* creation properties, and default file access properties.

*/

if((file = H5Fcreate (HS5FILE_NAME, H5F_ACC_TRUNC,

H5P_DEFAULT, HS5P_DEFAULT))<0) {
printf("Error: fail to create file\n");
return -1;

}

Code Example 5-12. Scale-offset compression integer data

The HDF Group

165

HDF5 Datasets HDF5 User’s Guide

/*
* Set the dataset creation property list to specify that
* the raw data is to be partitioned into 10 x 15 element
* chunks and that each chunk is to be compressed.

*/
chunk_size[0]
chunk_size[1]

CH_NX;
CH_NY;

if((dset_create _props = H5Pcreate (H5P_DATASET CREATE))<0) {
printF("Error: fail to create dataset property\n');
return -1;

}

if(H5Pset_chunk (dset_create props, 2, chunk size)<0) {
printf("Error: fail to set chunk\n'™);
return -1;

}

/* Set the fill value of dataset */
fill_val = 10000;
ifT (H5Pset_fill_value(dset _create_props, HS5T _NATIVE_INT,
&Fill_val)<0) {
printfF("Error: can not set fill value for dataset\n™);
return -1;

}

/*

* Set parameters for scale-offset compression. Check the
* description of the H5Pset scaleoffset function in the
* HDF5 Reference Manual for more information [3].

*/

if(H5Pset_scaleoffset (dset_create props, H5Z SO_INT,
H5Z_SO_INT_MINIMUMBITS_DEFAULT)<0) {
printfF("Error: fail to set scaleoffset Filter\n™);
return -1;

}

*

Create a new dataset within the file. The datatype
and dataspace describe the data on disk, which may
or may not be different from the format used in the
application®s memory. The link creation and
dataset access property list parameters are passed
with default values.

*/

ok X ok X XN\

Code Example 5-12. Scale-offset compression integer data

166 The HDF Group

HDF5 User’s Guide HDF5 Datasets

if((dataset = H5Dcreate (file, DATASET_NAME, datatype,
dataspace, H5P_DEFAULT,
dset_create props, H5P_DEFAULT))<0) {
printfF("Error: fail to create dataset\n');
return -1;

}

/*

* Write the array to the file. The datatype and dataspace

* describe the format of the data in the "orig_data® buffer.
* We use default raw data transfer properties.

*/

iT(H5Dwrite (dataset, HS5T_NATIVE_INT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, orig_data)<0) {
printf("Error: fail to write to dataset\n');
return -1;

}

H5Dclose (dataset);

if((dataset = H5Dopen(file, DATASET_NAME, H5P_DEFAULT))<0) {
printfF("Error: fail to open dataset\n');
return -1;

}

/*

* Read the array. This is similar to writing data,
* except the data flows in the opposite direction.
* Note: Decompression is automatic.

*/

Code Example 5-12. Scale-offset compression integer data

The HDF Group 167

HDF5 Datasets HDF5 User’s Guide

iT(H5Dread (dataset, HS5T_NATIVE_INT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, new_data)<0) {
printf("Error: fail to read from dataset\n');
return -1;

}

H5Tclose (datatype);

H5Dclose (dataset);

H5Sclose (dataspace);
H5Pclose (dset _create_props);
H5Fclose (File);

return O;

Code Example 5-12. Scale-offset compression integer data

Note: The code example above illustrates the use of the scale-offset filter for writing and reading integer data.

The following code example illustrates the use of the scale-offset filter (set for variable minimum-bits
method) for writing and reading floating-point data.

168 The HDF Group

HDF5 User’s Guide HDF5 Datasets

#include ""hdf5.h"

#include "stdlib.h"

#define HS5FILE_NAME ‘''scaleoffset test float Dscale.h5"
#define DATASET NAME "scaleoffset float Dscale™

#define NX 200

#define NY 300

#define CH_NX 10

#define CH_NY 15

int main(void)

{

hid_t file, dataspace, dataset, datatype, dset_create_props;
hsize_t dims[2], chunk_size[2];

float orig_data[NX][NY];

float new_data[NX][NY];

float Fill _val;

int i, J;

/* Define dataset datatype */
datatype = H5Tcopy(H5T_NATIVE_FLOAT);

/* Initiliaze data buffer */
for (i=0; 1 < NX; i++)
for (J=0; J < NY; j++)
orig_data[i][j] = (rand() % 10000) / 1000.0;

/* Describe the size of the array. */

dims[0] = NX;

dims[1] = NY;

if((dataspace = H5Screate_simple (2, dims, NULL))<0) {
printf("Error: fail to create dataspace\n');
return -1;

}

/*
* Create a new file using read/write access, default file
* creation properties, and default file access properties.
*/

Code Example 5-13. Scale-offset compression floating-point data

The HDF Group 169

HDF5 Datasets HDF5 User’s Guide

iT((file = H5Fcreate (H5FILE_NAME, H5F_ACC_TRUNC,
H5P_DEFAULT, H5P_DEFAULT))<0) {
printfF("Error: fail to create file\n");
return -1;

}

/*
* Set the dataset creation property list to specify that
* the raw data is to be partitioned into 10 x 15 element
* chunks and that each chunk Is to be compressed.

*/
chunk_size[O0]
chunk_size[1]

CH_NX;
CH_NY;

if((dset_create props = H5Pcreate (H5P_DATASET_CREATE))<0) {
printfF("Error: fail to create dataset property\n');
return -1;

}

if(H5Pset_chunk (dset_create props, 2, chunk size)<0) {
printfF("Error: fail to set chunk\n™);
return -1;

}

/* Set the fill value of dataset */
fill _val = 10000.0;
if (H5Pset_fill_value(dset_create props, H5T _NATIVE_FLOAT,
&Fill_val)<0) {
printF("'Error: can not set fill value for dataset\n');
return -1;

}

/*

* Set parameters for scale-offset compression; use variable
* minimum-bits method, set decimal scale factor to 3. Check
* the description of the H5Pset _scaleoffset function in the
* HDF5 Reference Manual for more information [3].

*/
if(H5Pset_scaleoffset (dset _create props, H5Z SO FLOAT DSCALE,
3)<0) {
printfF("Error: fail to set scaleoffset filter\n™);
return -1;

}

Code Example 5-13. Scale-offset compression floating-point data

170

The HDF Group

HDF5 User’s Guide HDF5 Datasets

/*

* Create a new dataset within the file. The datatype
and dataspace describe the data on disk, which may
or may not be different from the format used in the
application®s memory.

*

*

*

*/

if((dataset = H5Dcreate (Ffile, DATASET NAME, datatype,
dataspace, H5P_DEFAULT,
dset_create props, H5P_DEFAULT))<0) {
printfF("Error: fail to create dataset\n™);
return -1;

/*

* Write the array to the file. The datatype and dataspace

* describe the format of the data in the “orig_data®" buffer.
* We use default raw data transfer properties.

*/

if(H5Dwrite (dataset, H5T NATIVE_FLOAT, H5S ALL, H5S ALL,
H5P_DEFAULT, orig_data)<0) {
printfF("Error: fail to write to dataset\n');
return -1;

}
H5Dclose (dataset);
if((dataset = H5Dopen(Ffile, DATASET_NAME, H5P_DEFAULT))<0) {

printf("'Error: fail to open dataset\n');
return -1;

}

/*

*

Read the array. This is similar to writing data,
* except the data flows in the opposite direction.
Note: Decompression is automatic.

*

*/

Code Example 5-13. Scale-offset compression floating-point data

The HDF Group 171

HDF5 Datasets HDF5 User’s Guide

iT(H5Dread (dataset, HS5T_NATIVE_FLOAT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, new_data)<0) {
printf("Error: fail to read from dataset\n');
return -1;

}

H5Tclose (datatype);

H5Dclose (dataset);

H5Sclose (dataspace);
H5Pclose (dset _create_props);
H5Fclose (File);

return O;

Code Example 5-13. Scale-offset compression floating-point data

Note: The code example above illustrates the use of the scale-offset filter for writing and reading floating-point data.

Limitations

For floating-point data handling, there are some algorithmic limitations to the GRiB data packing mecha-

nism:
Both the E-scaling and D-scaling methods are lossy compression
2. Forthe D-scaling method, since data values have been rounded to integer values (positive) before
truncating to the minimum-bits, their range is limited by the maximum value that can be repre-
sented by the corresponding unsigned integer type (the same size as that of the floating-point
type)
Suggestions

The following are some suggestions for using the filter for floating-point data:

1.

It is better to convert the units of data so that the units are within certain common range (for
example, 1200m to 1.2km)

If data values to be compressed are very near to zero, it is strongly recommended that the user
sets the fill value away from zero (for example, a large positive number); if the user does nothing,
the HDF5 Library will set the fill value to zero, and this may cause undesirable compression results

Users are not encouraged to use a very large decimal scale factor (for example, 100) for the D-
scaling method; this can cause the filter not to ignore the fill value when finding maximum and
minimum values, and they will get a much larger minimum-bits (poor compression)

5.6.3. Using the Szip Filter

See The HDF Group website for further information regarding the Szip filter.

172

The HDF Group

http://www.hdfgroup.org/doc_resource/SZIP/

HDF5 User’s Guide HDF5 Datatypes

6. HDF5 Datatypes

6.1. Introduction and Definitions

An HDF5 dataset is an array of data elements, arranged according to the specifications of the dataspace. In
general, a data element is the smallest addressable unit of storage in the HDF5 file. (Compound datatypes
are the exception to this rule.) The HDF5 datatype defines the storage format for a single data element.
See the figure below.

The model for HDF5 attributes is extremely similar to datasets: an attribute has a dataspace and a data-
type, as shown in the figure below. The information in this chapter applies to both datasets and attributes.

o Dataset -

Dataspace Datatype
The dataspace The datatype
defines the defines the
organization of the format of a single
data elements. data element.

Figure 6-1. Datatypes, dataspaces, and datasets

Abstractly, each data element within the dataset is a sequence of bits, interpreted as a single value from a
set of values (for example, a number or a character). For a given datatype, there is a standard or conven-
tion for representing the values as bits, and when the bits are represented in a particular storage the bits
are laid out in a specific storage scheme such as 8-bit bytes with a specific ordering and alignment of bytes
within the storage array.

HDF5 datatypes implement a flexible, extensible, and portable mechanism for specifying and discovering
the storage layout of the data elements, determining how to interpret the elements (for example, as float-
ing point numbers), and for transferring data from different compatible layouts.

The HDF Group 173

HDF5 User’s Guide HDF5 Datatypes

An HDF5 datatype describes one specific layout of bits. A dataset has a single datatype which applies to
every data element. When a dataset is created, the storage datatype is defined. After the dataset or attri-
bute is created, the datatype cannot be changed.

¢ The datatype describes the storage layout of a single data element

¢ All elements of the dataset must have the same type

¢ The datatype of a dataset is immutable
When data is transferred (for example, a read or write), each end point of the transfer has a datatype,

which describes the correct storage for the elements. The source and destination may have different (but
compatible) layouts, in which case the data elements are automatically transformed during the transfer.

HDF5 datatypes describe commonly used binary formats for numbers (integers and floating point) and
characters (ASCII). A given computing architecture and programming language supports certain number
and character representations. For example, a computer may support 8-, 16-, 32-, and 64-bit signed inte-
gers, stored in memory in little-endian byte order. These would presumably correspond to the C program-
ming language types ‘char’, ‘short’, ‘int’, and ‘long’.

When reading and writing from memory, the HDF5 Library must know the appropriate datatype that
describes the architecture specific layout. The HDF5 Library provides the platform independent ‘NATIVE’
types, which are mapped to an appropriate datatype for each platform. So the type ‘H5T_NATIVE_INT’is
an alias for the appropriate descriptor for each platform.

Data in memory has a datatype:

e The storage layout in memory is architecture-specific

e The HDF5 ‘NATIVE’ types are predefined aliases for the architecture-specific memory layout

¢ The memory datatype need not be the same as the stored datatype of the dataset
In addition to numbers and characters, an HDF5 datatype can describe more abstract classes of types
including enumerations, strings, bit strings, and references (pointers to objects in the HDF5 file). HDF5
supports several classes of composite datatypes which are combinations of one or more other datatypes.

In addition to the standard predefined datatypes, users can define new datatypes within the datatype
classes.

The HDF5 datatype model is very general and flexible:

e For common simple purposes, only predefined types will be needed
e Datatypes can be combined to create complex structured datatypes
¢ If needed, users can define custom atomic datatypes

e Committed datatypes can be shared by datasets or attributes

The HDF Group 174

HDF5 User’s Guide HDF5 Datatypes

6.2. HDF5 Datatype Model

The HDF5 Library implements an object-oriented model of datatypes. HDF5 datatypes are organized as a
logical set of base types, or datatype classes. Each datatype class defines a format for representing logical
values as a sequence of bits. For example the H5T_INTEGER class is a format for representing twos com-
plement integers of various sizes.

A datatype class is defined as a set of one or more datatype properties. A datatype property is a property
of the bit string. The datatype properties are defined by the logical model of the datatype class. For exam-
ple, the integer class (twos complement integers) has properties such as “signed or unsigned”, “length”,
and “byte-order”. The float class (IEEE floating point numbers) has these properties, plus “exponent bits”,
“exponent sign”, etc.

A datatype is derived from one datatype class: a given datatype has a specific value for the datatype prop-
erties defined by the class. For example, for 32-bit signed integers, stored big-endian, the HDF5 datatype
is a sub-type of integer with the properties set to signed=1, size=4 (bytes), and byte-order=BE.

The HDF5 datatype API (H5T functions) provides methods to create datatypes of different datatype
classes, to set the datatype properties of a new datatype, and to discover the datatype properties of an
existing datatype.

The datatype for a dataset is stored in the HDF5 file as part of the metadata for the dataset.

A datatype can be shared by more than one dataset in the file if the datatype is saved to the file with a
name. This shareable datatype is known as a committed datatype. In the past, this kind of datatype was
called a named datatype.

When transferring data (for example, a read or write), the data elements of the source and destination
storage must have compatible types. As a general rule, data elements with the same datatype class are
compatible while elements from different datatype classes are not compatible. When transferring data of
one datatype to another compatible datatype, the HDF5 Library uses the datatype properties of the
source and destination to automatically transform each data element. For example, when reading from
data stored as 32-bit signed integers, big-endian into 32-bit signed integers, little-endian, the HDF5 Library
will automatically swap the bytes.

Thus, data transfer operations (H5Dread, H5Dwr i te, H5Aread, HS5Awr i te) require a datatype for both
the source and the destination.

The HDF Group 175

HDF5 User’s Guide HDF5 Datatypes

l1.n
Datatype
Datatype Class [Property
A i
: seftin
‘,ES
l.n
Datatype
Datatype - Property

Figure 6-2. The datatype model

The HDF5 Library defines a set of predefined datatypes, corresponding to commonly used storage for-
mats, such as twos complement integers, IEEE Floating point numbers, etc., 4- and 8-byte sizes, big-endian
and little-endian byte orders. In addition, a user can derive types with custom values for the properties.
For example, a user program may create a datatype to describe a 6-bit integer, or a 600-bit floating point
number.

In addition to atomic datatypes, the HDF5 Library supports composite datatypes. A composite datatype is
an aggregation of one or more datatypes. Each class of composite datatypes has properties that describe
the organization of the composite datatype. See the figure below. Composite datatypes include:

¢ Compound datatypes: structured records

e Array: a multidimensional array of a datatype

e \Variable-length: a one-dimensional array of a datatype

lL.n
Datatype
&
Composite | , :
el e Bl B
Properties

Figure 6-3. Composite datatypes

The HDF Group 176

HDF5 User’s Guide HDF5 Datatypes

6.2.1. Datatype Classes and Properties

The figure below shows the HDF5 datatype classes. Each class is defined to have a set of properties which
describe the layout of the data element and the interpretation of the bits. The table below lists the prop-
erties for the datatype classes.

Datatype Class

Atomic Composite

Time String Opague Float
Bitfield Reference Integer
Array Variable Length
Enumeration Compound

Figure 6-4. Datatype classes

The HDF Group 177

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-1. Datatype classes and their properties

Class Description Properties Notes
Integer Twos complement Size (bytes), precision
integers (bits), offset (bits), pad,
byte order, signed/
unsigned
Float Floating Point Size (bytes), precision See IEEE 754 for a defini-
numbers (bits), offset (bits), pad, tion of these properties.
byte order, sign position, These properties describe
exponent position, expo- non-lEEE 754 floating
nent size (bits), exponent point formats as well.
sign, exponent bias, man-
tissa position, mantissa
(size) bits, mantissa sign,
mantissa normalization,
internal padding
Character Array of 1-byte Size (characters), Charac- Currently, ASCIl and UTF-8
character encoding ter set, byte order, pad/no are supported.
pad, pad character
Bitfield String of bits Size (bytes), precision A sequence of bit values
(bits), offset (bits), pad, packed into one or more
byte order bytes.
Opaque Uninterpreted data Size (bytes), precision A sequence of bytes,

(bits), offset (bits), pad,
byte order, tag

stored and retrieved as a
block. The ‘tag’ is a string
that can be used to label
the value.

Enumeration

A list of discrete
values, with sym-
bolic names in the
form of strings.

Number of elements, ele-
ment names, element val-
ues

Enumeration is a list of
pairs (name, value). The
name is a string; the value
is an unsigned integer.

Reference Reference to See the Reference API,
object or region H5R
within the HDF5
file

Array Array (1-4 dimen- Number of dimensions, The array is accessed

sions) of data ele-
ments

dimension sizes, base
datatype

atomically: no selection or
sub-setting.

The HDF Group

178

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-1. Datatype classes and their properties

Class Description Properties Notes
Variable- A variable-length Current size, base type
length 1-dimensional
array of data ele-
ments
Compound A Datatype of a Number of members,

sequence of Data-
types

member names, member
types, member offset,
member class, member
size, byte order

6.2.2. Predefined Datatypes

The HDF5 Library predefines a modest number of commonly used datatypes. These types have standard
symbolic names of the form H5T_arch_base where arch is an architecture name and base is a pro-
gramming type name (Table 2). New types can be derived from the predefined types by copying the pre-
defined type (see H5Tcopy()) and then modifying the result.

The base name of most types consists of a letter to indicate the class (Table 3), a precision in bits, and an
indication of the byte order (Table 4).

Table 5 shows examples of predefined datatypes. The full list can be found in the “HDF5 Predefined Data-
types” section of the HDF5 Reference Manual.

Table 6-2. Architectures used in predefined datatypes

Architecture Name Description

IEEE IEEE-754 standard floating point types in various byte orders.

STD This is an architecture that contains semi-standard datatypes like
signed two’s complement integers, unsigned integers, and bitfields in
various byte orders.

C Types which are specific to the C or Fortran programming languages

FORTRAN are defined in these architectures. For instance, H5T_C_S1 defines a

base string type with null termination which can be used to derive
string types of other lengths.

The HDF Group

179

http://www.hdfgroup.org/HDF5/doc/RM/PredefDTypes.html
http://www.hdfgroup.org/HDF5/doc/RM/PredefDTypes.html

HDF5 User’s Guide HDF5 Datatypes

Table 6-2. Architectures used in predefined datatypes

Architecture Name Description

NATIVE This architecture contains C-like datatypes for the machine on which
the library was compiled. The types were actually defined by running
the H5detect program when the library was compiled. In order to be
portable, applications should almost always use this architecture to
describe things in memory.

CRAY Cray architectures. These are word-addressable, big-endian systems
with non-IEEE floating point.

INTEL All Intel and compatible CPU’s including 80286, 80386, 80486, Pen-
tium, Pentium-Pro, and Pentium-Il. These are little-endian systems
with |IEEE floating-point.

MIPS All MIPS CPU’s commonly used in SGI systems. These are big-endian
systems with IEEE floating-point.

ALPHA All DEC Alpha CPU’s, little-endian systems with IEEE floating-point.

Table 6-3. Base types

B Bitfield

F Floating point

I Signed integer

R References
S Character string
u Unsigned integer

Table 6-4. Byte order

BE Big-endian

LE Little-endian

The HDF Group 180

HDF5 User’s Guide HDF5 Datatypes

Table 6-5. Some predefined datatypes

Example Description

H5T IEEE_F64LE Eight-byte, little-endian, IEEE floating-point

H5T IEEE_F32BE Four-byte, big-endian, IEEE floating point

H5T STD 132LE Four-byte, little-endian, signed two’s complement integer
H5T STD U16BE Two-byte, big-endian, unsigned integer

H5T C S1 One-byte, null-terminated string of eight-bit characters
H5T_INTEL_B64 Eight-byte bit field on an Intel CPU

H5T_CRAY_F64 Eight-byte Cray floating point

H5T_STD_ROBJ Reference to an entire object in a file

The HDF5 Library predefines a set of NAT I VE datatypes which are similar to C type names. The native
types are set to be an alias for the appropriate HDF5 datatype for each platform. For example, H5T_NA-
TIVE_INT corresponds to a C int type. On an Intel based PC, this type is the same as H5T_STD_132LE,
while on a MIPS system this would be equivalent to H5T_STD_132BE. Table 6 shows examples of NATIVE
types and corresponding C types for a common 32-bit workstation.

Table 6-6. Native and 32-bit C datatypes

Example Corresponding C Type
HS5T_NATIVE_CHAR char
H5T_NATIVE_SCHAR signed char
H5T_NATIVE_UCHAR unsigned char
H5T_NATIVE_SHORT short
H5T_NATIVE_USHORT unsigned short
H5T_NATIVE_INT int
H5T_NATIVE_UINT unsigned
H5T_NATIVE_LONG long
H5T_NATIVE_ULONG unsigned long
H5T_NATIVE_LLONG long long

The HDF Group 181

HDF5 User’s Guide HDF5 Datatypes

Table 6-6. Native and 32-bit C datatypes

Example Corresponding C Type

H5T_NATIVE_ULLONG unsigned long long

H5T_NATIVE_FLOAT float

H5T_NATIVE_DOUBLE double

H5T_NATIVE_LDOUBLE long double

H5T_NATIVE_HSIZE hsize_t

H5T_NATIVE_HSSIZE hssize_t

H5T_NATIVE_HERR herr_t

H5T_NATIVE_HBOOL hbool_t

H5T NATIVE_BS8 8-bit unsigned integer or 8-bit buffer in memory
H5T _NATIVE_B16 16-bit unsigned integer or 16-bit buffer in memory
H5T_NATIVE_B32 32-bit unsigned integer or 32-bit buffer in memory
H5T_NATIVE_B64 64-bit unsigned integer or 64-bit buffer in memory

6.3. How Datatypes are Used

6.3.1. The Datatype Object and the HDF5 Datatype API

The HDFS5 Library manages datatypes as objects. The HDF5 datatype APl manipulates the datatype objects
through C function calls. New datatypes can be created from scratch or copied from existing datatypes.
When a datatype is no longer needed its resources should be released by calling H5Tclose ().

The datatype object is used in several roles in the HDF5 data model and library. Essentially, a datatype is
used whenever the format of data elements is needed. There are four major uses of datatypes in the HDF5
Library: at dataset creation, during data transfers, when discovering the contents of a file, and for specify-
ing user-defined datatypes. See the table below.

The HDF Group 182

HDF5 User’s Guide HDF5 Datatypes

Table 6-7. Datatype uses

Use Description

Dataset creation The datatype of the data elements must be declared
when the dataset is created.

Data transfer The datatype (format) of the data elements must be
defined for both the source and destination.

Discovery The datatype of a dataset can be interrogated to
retrieve a complete description of the storage layout.

Creating user-defined datatypes Users can define their own datatypes by creating
datatype objects and setting their properties.

6.3.2. Dataset Creation

All the data elements of a dataset have the same datatype. When a dataset is created, the datatype for the
data elements must be specified. The datatype of a dataset can never be changed. The example below
shows the use of a datatype to create a dataset called “/dset”. In this example, the dataset will be stored
as 32-bit signed integers in big-endian order.

hid_t dt;

dt = H5Tcopy(H5T_STD_I132BE);

dataset_id = H5Dcreate(file_id, “/dset”, dt, dataspace_id,
H5P_DEFAULT, HS5P_DEFAULT, HS5P_DEFAULT);

Code Example 6-1. Using a datatype to create a dataset

6.3.3. Data Transfer (Read and Write)

Probably the most common use of datatypes is to write or read data from a dataset or attribute. In these
operations, each data element is transferred from the source to the destination (possibly rearranging the
order of the elements). Since the source and destination do not need to be identical (in other words, one
is disk and the other is memory), the transfer requires both the format of the source element and the des-
tination element. Therefore, data transfers use two datatype objects, for the source and destination.

The HDF Group 183

HDF5 User’s Guide HDF5 Datatypes

When data is written, the source is memory and the destination is disk (file). The memory datatype
describes the format of the data element in the machine memory, and the file datatype describes the
desired format of the data element on disk. Similarly, when reading, the source datatype describes the
format of the data element on disk, and the destination datatype describes the format in memory.

In the most common cases, the file datatype is the datatype specified when the dataset was created, and
the memory datatype should be the appropriate NATIVE type.

The examples below show samples of writing data to and reading data from a dataset. The data in mem-
ory is declared C type ‘int’, and the datatype H5ST_NATIVE_INT corresponds to this type. The datatype of
the dataset should be of datatype class H5T_INTEGER.

int dset_data[DATA_SI1ZE];

status = H5Dwrite(dataset_id, HS5T_NATIVE_INT, H5S_ALL, H5S ALL,
H5P_DEFAULT, dset data);

Code Example 6-2. Writing to a dataset

int dset_data[DATA_SIZE];

status = H5Dread(dataset_id, HS5T_NATIVE_INT, H5S_ALL, H5S_ALL,
H5P_DEFAULT, dset _data);

Code Example 6-3. Reading from a dataset

6.3.4. Discovery of Data Format

The HDF5 Library enables a program to determine the datatype class and properties for any datatype. In
order to discover the storage format of data in a dataset, the datatype is obtained, and the properties are
determined by queries to the datatype object. The example below shows code that analyzes the datatype
for an integer and prints out a description of its storage properties (byte order, signed, size).

The HDF Group 184

HDF5 User’s Guide HDF5 Datatypes

switch (H5Tget class(type)) {
case HS5T_INTEGER:

ord = H5Tget_order(type);

sgn = H5Tget_sign(type);
printf(“Integer ByteOrder= ");
switch (ord) {

case H5T_ORDER_LE:
printfF(“LE™);
break;

case H5T_ORDER_BE:
printf(“BE”);
break;

}

printf(*“ Sign=);

switch (sgn) {

case H5T_SGN_NONE:
printf(“false™);
break;

case H5T_SGN_2:
printf(“true™);
break;

}

printf(*“ Size= 7);

sz = H5Tget_size(type);
printf(“%d”, sz);
printf(*\n”);

break;

Code Example 6-4. Discovering datatype properties

6.3.5. Creating and Using User-defined Datatypes

Most programs will primarily use the predefined datatypes described above, possibly in composite data-
types such as compound or array datatypes. However, the HDF5 datatype model is extremely general; a
user program can define a great variety of atomic datatypes (storage layouts). In particular, the datatype
properties can define signed and unsigned integers of any size and byte order, and floating point numbers
with different formats, size, and byte order. The HDF5 datatype API provides methods to set these proper-
ties.

The HDF Group 185

HDF5 User’s Guide HDF5 Datatypes

User-defined types can be used to define the layout of data in memory; examples might include to match
some platform specific number format or application defined bit-field. The user-defined type can also
describe data in the file such as an application-defined format. The user-defined types can be translated to
and from standard types of the same class, as described above.

6.4. Datatype (H5T) Function Summaries

Functions that can be used with datatypes (H5T functions) and property list functions that can be used
with datatypes (H5P functions) are listed below.

Function Listing 6-1. General datatype operations

C Function
Fortran Subroutine

Purpose

H5Tcreate
h5tcreate_F

Creates a new datatype.

H5Topen Opens a committed datatype. The C function

h5topen_*T is a macro: see “API Compatibility Macros in
HDF5”

H5Tcommit Commits a transient datatype to a file. The

h5tcommit_f

datatype is now a committed datatype. The C
function is a macro: see “API Compatibility
Macros in HDF5.”

H5Tcommit_anon
h5tcommit_anon_F

Commits a transient datatype to a file. The
datatype is now a committed datatype, but it
is not linked into the file structure.

H5Tcommitted
h5tcommitted_f

Determines whether a datatype is a commit-
ted or a transient type.

H5Tcopy Copies an existing datatype.

h5tcopy_f

H5Tequal Determines whether two datatype identifiers
h5tequal_f refer to the same datatype.

H5Tlock Locks a datatype.

(no Fortran subroutine)

H5Tget class
h5tget_class_ T

Returns the datatype class identifier.

The HDF Group

186

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDFS5 User’s Guide

HDEF5 Datatypes

Function Listing 6-1. General datatype operations

C Function
Fortran Subroutine

Purpose

H5Tget create plist
h5tget_create_plist_f

Returns a copy of a datatype creation prop-
erty list.

H5Tget_size
hbtget_size f

Returns the size of a datatype.

H5Tget_super
h5tget_super_TF

Returns the base datatype from which a data-
type is derived.

H5Tget native_type
h5tget _native_type f

Returns the native datatype of a specified
datatype.

H5Tdetect _class
(no Fortran subroutine)

Determines whether a datatype is of the
given datatype class.

H5Tget order
h5tget _order_TF

Returns the byte order of a datatype.

H5Tset_order
h5tset_order_T

Sets the byte ordering of a datatype.

H5Tdecode
h5tdecode_F

Decode a binary object description of data-
type and return a new object identifier.

H5Tencode Encode a datatype object description into a
h5tencode binary buffer.
H5Tclose Releases a datatype.
h5tclose_T
Function Listing 6-2. Conversion functions
C Function Purpose

Fortran Subroutine

H5Tconvert
h5tconvert_f

Converts data between specified datatypes.

H5Tcompiler_conv
h5tcompiler_conv_f

Check whether the library’s default conver-
sion is hard conversion.

H5Tfind
(no Fortran subroutine)

Finds a conversion function.

The HDF Group

187

HDF5 User’s Guide HDF5 Datatypes

Function Listing 6-2. Conversion functions

C Function Purpose
Fortran Subroutine

H5Tregister Registers a conversion function.
(no Fortran subroutine)

H5Tunregister Removes a conversion function from all con-
(no Fortran subroutine) version paths.

Function Listing 6-3. Atomic datatype properties

C Function Purpose
Fortran Subroutine

H5Tset_size Sets the total size for an atomic datatype.
h5tset_size f

H5Tget _precision Returns the precision of an atomic datatype.
h5tget_precision_Ff

H5Tset_precision Sets the precision of an atomic datatype.
h5tset_precision_Ff

H5Tget offset Retrieves the bit offset of the first significant
h5tget_offset_f bit.

H5Tset offset Sets the bit offset of the first significant bit.
h5tset _offset f

H5Tget pad Retrieves the padding type of the least and
h5tget_pad_f most-significant bit padding.

H5Tset_ pad Sets the least and most-significant bits pad-
h5tset_pad_f ding types.

H5Tget_sign Retrieves the sign type for an integer type.
h5tget_sign_¥F

H5Tset_sign Sets the sign property for an integer type.
hbtset_sign_f

H5Tget fields Retrieves floating point datatype bit field
h5tget_fields_f information.

H5Tset_ fields Sets locations and sizes of floating point bit
h5tset_fields_f fields.

H5Tget _ebias Retrieves the exponent bias of a floating-
h5tget_ebias F point type.

The HDF Group 188

HDFS5 User’s Guide

HDEF5 Datatypes

Function Listing 6-3. Atomic datatype properties

C Function

Fortran Subroutine

Purpose

H5Tset _ebias
hbtset_ebias_F

Sets the exponent bias of a floating-point
type.

H5Tget_norm
h5tget_norm_f

Retrieves mantissa normalization of a float-
ing-point datatype.

H5Tset_norm
h5tset_norm_f

Sets the mantissa normalization of a floating-
point datatype.

H5Tget_ inpad
h5tget_inpad_f

Retrieves the internal padding type for
unused bits in floating-point datatypes.

H5Tset_inpad
h5tset_inpad_f

Fills unused internal floating point bits.

H5Tget_cset
h5tget cset f

Retrieves the character set type of a string
datatype.

H5Tset_cset
h5tset_cset f

Sets character set to be used.

H5Tget_strpad
h5tget_strpad f

Retrieves the storage mechanism for a string
datatype.

H5Tset_strpad
h5tset_strpad f

Defines the storage mechanism for character
strings.

Function Listing 6-4. Enumeration datatypes

C Function

Fortran Subroutine

Purpose

H5Tenum_create

h5tenum_create_¥F

Creates a new enumeration datatype.

H5Tenum_insert

h5tenum_insert_ f

Inserts a new enumeration datatype member.

H5Tenum_nameof

h5tenum_nameof_ F

Returns the symbol name corresponding to a
specified member of an enumeration data-

type.

H5Tenum_valueof

h5tenum valueof f

Returns the value corresponding to a speci-
fied member of an enumeration datatype.

The HDF Group

189

HDFS5 User’s Guide

HDEF5 Datatypes

Function Listing 6-4. Enumeration datatypes

C Function
Fortran Subroutine

Purpose

H5Tget _member_value
h5tget_member_value_f

Returns the value of an enumeration data-
type member.

H5Tget _nmembers
h5tget_nmembers_f

Retrieves the number of elements in a com-
pound or enumeration datatype.

H5Tget _member_name
h5tget_member_name_F

Retrieves the name of a compound or enu-
meration datatype member.

H5Tget member_index
(no Fortran subroutine)

Retrieves the index of a compound or enu-
meration datatype member.

Function Listing 6-5. Compound datatype properties

C Function
Fortran Subroutine

Purpose

H5Tget _nmembers
h5tget _nmembers_ F

Retrieves the number of elements in a com-
pound or enumeration datatype.

H5Tget _member_class
h5tget _member_class f

Returns datatype class of compound datatype
member.

H5Tget _member_name
h5tget_member_name_f

Retrieves the name of a compound or enu-
meration datatype member.

H5Tget member_index
h5tget _member_index_ F

Retrieves the index of a compound or enu-
meration datatype member.

H5Tget member_offset
h5tget _member_offset f

Retrieves the offset of a field of a compound
datatype.

H5Tget _member_type
h5tget _member_type f

Returns the datatype of the specified mem-
ber.

H5Tinsert
h5tinsert_F

Adds a new member to a compound data-
type.

H5Tpack
h5tpack F

Recursively removes padding from within a
compound datatype.

The HDF Group

190

HDF5 User’s Guide HDF5 Datatypes

Function Listing 6-6. Array datatypes

C Function Purpose
Fortran Subroutine

H5Tarray_create Creates an array datatype object. The C func-

h5tarray_create f tion is a macro: see “API Compatibility Macros
in HDF5.”

H5Tget_array_ndims Returns the rank of an array datatype.

h5tget_array ndims_fF

H5Tget array_dims Returns sizes of array dimensions and dimen-
h5tget_array_dims_f sion permutations. The C function is a macro:
see “API Compatibility Macros in HDF5.”

Function Listing 6-7. Variable-length datatypes

C Function Purpose
Fortran Subroutine

H5Tvlen_create Creates a new variable-length datatype.
h5tvlen create f

H5Tis_variable_str Determines whether datatype is a variable-
h5tis_variable str_f length string.

Function Listing 6-8. Opaque datatypes

C Function Purpose
Fortran Subroutine

H5Tset_tag Tags an opaque datatype.

h5tset_tag_f

H5Tget tag Gets the tag associated with an opaque data-
h5tget_tag f type.

The HDF Group 191

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDF5 User’s Guide HDF5 Datatypes

Function Listing 6-9. Conversions between datatype and text

C Function Purpose
Fortran Subroutine

H5LTtext_to dtype Creates a datatype from a text description.
(no Fortran subroutine)

H5LTdtype to_ text Generates a text description of a datatype.
(no Fortran subroutine)

Function Listing 6-10. Datatype creation property list functions (H5P)

C Function Purpose
Fortran Subroutine

H5Pset _char_encoding Sets the character encoding used to encode a
h5pset_char_encoding f string. Use to set ASCIl or UTF-8 character

encoding for object names.
H5Pget_char_encoding Retrieves the character encoding used to cre-
h5pget_char_encoding_Tf ate a string.

Function Listing 6-11. Datatype access property list functions (H5P)

C Function Purpose
Fortran Subroutine

H5Pset_type_conv_cb Sets user-defined datatype conversion call-
(no Fortran subroutine) back function.
H5Pget_type_conv_cb Gets user-defined datatype conversion call-
(no Fortran subroutine) back function.

6.5. Programming Model for Datatypes

The HDF5 Library implements an object-oriented model of datatypes. HDF5 datatypes are organized as a
logical set of base types, or datatype classes. The HDF5 Library manages datatypes as objects. The HDF5

datatype API manipulates the datatype objects through C function calls. The figure below shows the

The HDF Group

HDF5 User’s Guide HDF5 Datatypes

abstract view of the datatype object. The table below shows the methods (C functions) that operate on
datatype objects. New datatypes can be created from scratch or copied from existing datatypes.

| Datatype

gize:inc?
byteOrder:BOtype

open(hid t loc, char *, name):return hid t
copy (hid £ tid) return hid t
create (hid class t clss, sgize € size) return hid t

Figure 6-5. The datatype object

Table 6-8. General operations on datatype objects

API Function Description

hid _t H5Tcreate (H5T _class_t class, Create a new datatype object of datatype
size_t size) class class. The following datatype
classes are supported with this function:
< H5T_COMPOUND
e H5T_OPAQUE
< H5T_ENUM
Other datatypes are created with
H5Tcopy ().

hid_t H5Tcopy (hid_t type) Obtain a modifiable transient datatype
which is a copy of type. If type is a data-
set identifier then the type returned is a
modifiable transient copy of the datatype
of the specified dataset.

hid_t H5Topen (hid_t location, const Openacommitted datatype. The commit-
char *name, H5P_DEFAULT) ted datatype returned by this function is
read-only.

htri_t H5Tequal (hid_t typel, hid_t Determines if two types are equal.
type2)

herr_t H5Tclose (hid_t type) Releases resources associated with a data-
type obtained from H5Tcopy, H5Topen,
or H5Tcreate. ltis illegal to close an
immutable transient datatype (for exam-
ple, predefined types).

The HDF Group 193

HDF5 User’s Guide HDF5 Datatypes

Table 6-8. General operations on datatype objects

API Function Description

herr_t H5Tcommit (hid_t location, Commit a transient datatype (not

const char *name, hid_t type, H5P_DE- immutable)to a file to become a commit-

FAULT, H5P_DEFAULT, H5P_DEFAULT) ted datatype. Committed datatypes can
be shared.

htri_t H5Tcommitted (hid_t type) Test whether the datatype is transient or

committed (named).

herr_t H5Tlock (hid_t type) Make a transient datatype immutable
(read-only and not closable). Predefined
types are locked.

In order to use a datatype, the object must be created (H5Tcreate), or a reference obtained by cloning
from an existing type (H5Tcopy), or opened (H5Topen). In addition, a reference to the datatype of a data-
set or attribute can be obtained with H5Dget_type or H5Aget_type. For composite datatypes a refer-
ence to the datatype for members or base types can be obtained (H5Tget_member_type,
H5Tget_super). When the datatype object is no longer needed, the reference is discarded with
H5Tclose.

Two datatype objects can be tested to see if they are the same with H5Tequal. This function returns true
if the two datatype references refer to the same datatype object. However, if two datatype objects define
equivalent datatypes (the same datatype class and datatype properties), they will not be considered
‘equal’.

A datatype can be written to the file as a first class object (H5Tcommi t). This is a committed datatype and
can be used in the same way as any other datatype.

6.5.1. Discovery of Datatype Properties

Any HDF5 datatype object can be queried to discover all of its datatype properties. For each datatype
class, there are a set of API functions to retrieve the datatype properties for this class.

6.5.1.1. Properties of Atomic Datatypes

Table 9 lists the functions to discover the properties of atomic datatypes. Table 10 lists the queries rele-
vant to specific numeric types. Table 11 gives the properties for atomic string datatype, and Table 12 gives
the property of the opaque datatype.

The HDF Group 194

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-9. Functions to discover properties of atomic datatypes

Functions

Description

H5T class_t H5Tget class (hid_t type)

The datatype class: H5T_INTEGER,
H5T_FLOAT, H5T_STRING, H5T_BIT-
FIELD, H5T_OPAQUE, H5T_COMPOUND,
H5T_REFERENCE, H5T_ENUM, H5T_VLEN,
H5T_ARRAY

size_t H5Tget_size (hid_t type)

The total size of the element in bytes,
including padding which may appear on
either side of the actual value.

H5T _order_t H5Tget order (hid_t type)

The byte order describes how the bytes of
the datatype are laid out in memory. If the
lowest memory address contains the least
significant byte of the datum then it is
said to be little-endian or
H5T_ORDER_LE. If the bytes are in the
opposite order then they are said to be
big-endian or H5T_ORDER_BE.

size_t H5Tget precision (hid_t type)

The precision property identifies the
number of significant bits of a datatype
and the offset property (defined below)
identifies its location. Some datatypes
occupy more bytes than what is needed to
store the value. For instance, a short on
a Cray is 32 significant bits in an eight-byte
field.

int H5Tget_offset (hid_t type)

The offset property defines the bit loca-
tion of the least significant bit of a bit field
whose length is precision.

herr_t H5Tget_pad (hid_t type,
H5T pad t *I/sb, H5T pad_t *msb)

Padding is the bits of a data element
which are not significant as defined by the
precision and offset properties. Pad-
ding in the low-numbered bits is /sb pad-
ding and padding in the high-numbered
bits is msb padding. Padding bits can be
set to zero (H5T_PAD_ZERO) or one
(H5T_PAD_ONE).

The HDF Group

195

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-10. Functions to discover properties of atomic numeric datatypes

Functions

Description

H5T _sign_t H5Tget _sign (hid_t type)

(INTEGER) Integer data can be signed
two’s complement (H5T_SGN_2) or
unsigned (H5T_SGN_NONE).

herr_t H5Tget fields (hid_t type,
size_t *spos, size_ t *epos, size_t
*esize, size_t *mpos, size_ t *msize)

(FLOAT) A floating-point data element has
bit fields which are the exponent and
mantissa as well as a mantissa sign bit.
These properties define the location (bit
position of least significant bit of the field)
and size (in bits) of each field. The sign bit
is always of length one and none of the
fields are allowed to overlap.

size_t H5Tget ebias (hid_t type)

(FLOAT) The exponent is stored as a non-
negative value which is ebias larger than
the true exponent.

The HDF Group

196

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-10. Functions to discover properties of atomic numeric datatypes

Functions

Description

H5T norm_t H5Tget norm (hid_t type)

(FLOAT) This property describes the nor-
malization method of the mantissa.

H5T_NORM_MSBSET: the mantissa
is shifted left (if non-zero) until
the first bit after the radix point is
set and the exponent is adjusted
accordingly. All bits of the man-
tissa after the radix point are
stored.

H5T _NORM_ IMPLIED: the man-
tissa is shifted left \ (if non-zero)
until the first bit after the radix
point is set and the exponent is
adjusted accordingly. The first bit
after the radix point is not stored
since it’s always set.

H5T_NORM_NONE: the fractional
part of the mantissa is stored
without normalizing it.

H5T pad_t H5Tget inpad (hid_t type)

(FLOAT) If any internal bits (that is, bits
between the sign bit, the mantissa field,
and the exponent field but within the pre-
cision field) are unused, then they will be
filled according to the value of this prop-
erty. The padding can be: H5T_PAD_ -
NONE, H5T_PAD_ZERO, or
H5T_PAD_ONE.

The HDF Group

197

HDF5 Datatypes HDFS5 User’s Guide

Table 6-11. Functions to discover properties of atomic string datatypes

Functions Description

H5T cset_t H5Tget cset (hid_t type) Two character sets are currently sup-
ported: ASCII (H5T_CSET_ASCI 1) and
UTF-8 (H5T_CSET_UTFS).

H5T_str_t H5Tget_strpad (hid_t type) The string datatype has a fixed length, but
the string may be shorter than the length.
This property defines the storage mecha-
nism for the left over bytes. The options
are: H5T_STR_NULLTERM,
H5T_STR_NULLPAD, or
H5T_STR_SPACEPAD.

Table 6-12. Functions to discover properties of atomic opaque datatypes

Functions Description

char *H5Tget_tag(hid_t type_id) A user-defined string.

6.5.1.2. Properties of Composite Datatypes

The composite datatype classes can also be analyzed to discover their datatype properties and the data-
types that are members or base types of the composite datatype. The member or base type can, in turn,
be analyzed. The table below lists the functions that can access the datatype properties of the different
composite datatypes.

Table 6-13. Functions to discover properties of composite datatypes

Functions Description

int H5Tget_nmembers(hid_t type_id) (COMPOUND) The number of fields in the
compound datatype.

H5T _class_t H5Tget _member_class (COMPOUND) The datatype class of com-

(hid_t cdtype_id, unsigned member_no) pound datatype member member_no.

char * H5Tget_member_name (hid_t (COMPOUND) The name of field

type_id, unsigned field_idx) field_idx of a compound datatype.

198 The HDF Group

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-13. Functions to discover properties of composite datatypes

Functions

Description

size_t H5Tget member_offset (hid_t
type_id, unsigned memb_no)

(COMPOUND) The byte offset of the
beginning of a field within a compound
datatype.

hid_t H5Tget member_type (hid_t
type_id, unsigned field_idx)

(COMPOUND) The datatype of the speci-
fied member.

int H5Tget array ndims (hid_t
adtype_id)

(ARRAY) The number of dimensions (rank)
of the array datatype object.

int H5Tget array dims (hid_t
adtype_id, hsize_t *dims[])

(ARRAY) The sizes of the dimensions and
the dimension permutations of the array
datatype object.

hid_t H5Tget super(hid_t type)

(ARRAY, VL, ENUM) The base datatype
from which the datatype type is derived.

herr_t H5Tenum_nameof(hid_t type void
*value, char *name, size t size)

(ENUM) The symbol name that corre-
sponds to the specified value of the enu-
meration datatype.

herr_t H5Tenum_valueof(hid_t type
char *name, void *value)

(ENUM) The value that corresponds to
the specified name of the enumeration
datatype.

herr_t H5Tget_member_value (hid_t
type unsigned memb_no, void *value)

(ENUM) The value of the enumeration
datatype member memb_no.

6.5.2. Definition of Datatypes

The HDF5 Library enables user programs to create and modify datatypes. The essential steps are:

1.

4.

datatype object

Set properties of the datatype object
Use the datatype object

Close the datatype object

Create a new datatype object of a specific composite datatype class, or copy an existing atomic

To create a user-defined atomic datatype, the procedure is to clone a predefined datatype of the appropri-
ate datatype class (H5Tcopy), and then set the datatype properties appropriate to the datatype class. The
table below shows how to create a datatype to describe a 1024-bit unsigned integer.

The HDF Group

199

HDF5 Datatypes HDFS5 User’s Guide

hid_t new_type = H5Tcopy (H5T_NATIVE INT);
H5Tset_precision(new_type, 1024);
H5Tset_sign(new_type, H5T_SGN_NONE);

Code Example 6-5. Create a new datatype

Composite datatypes are created with a specific API call for each datatype class. The table below shows
the creation method for each datatype class. A newly created datatype cannot be used until the datatype
properties are set. For example, a newly created compound datatype has no members and cannot be
used.

Table 6-14. Functions to create each datatype class

Datatype Class Function to Create
COMPOUND H5Tcreate
OPAQUE H5Tcreate

ENUM H5Tenum_create
ARRAY H5Tarray_create
VL H5Tvlen_create

Once the datatype is created and the datatype properties set, the datatype object can be used.

Predefined datatypes are defined by the library during initialization using the same mechanisms as
described here. Each predefined datatype is locked (H5T lock), so that it cannot be changed or destroyed.
User-defined datatypes may also be locked using H5T lock.

6.5.2.1. User-defined Atomic Datatypes

Table 15 summarizes the APl methods that set properties of atomic types. Table 16 shows properties spe-
cific to numeric types, Table 17 shows properties specific to the string datatype class. Note that offset,
pad, etc. do not apply to strings. Table 18 shows the specific property of the OPAQUE datatype class.

200 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

Table 6-15. API methods that set properties of atomic datatypes

Functions Description
herr_t H5Tset_size (hid_t type, Set the total size of the element in bytes.
size_t size) This includes padding which may appear

on either side of the actual value. If this
property is reset to a smaller value which
would cause the significant part of the
data to extend beyond the edge of the
datatype, then the offset property is dec-
remented a bit at a time. If the offset
reaches zero and the significant part of
the data still extends beyond the edge of
the datatype then the precision property
is decremented a bit at a time. Decreasing
the size of a datatype may fail if the
H5T_FLOAT bit fields would extend
beyond the significant part of the type.

herr_t H5Tset order (hid_t type, Set the byte order to little-endian
H5T order_t order) (H5T_ORDER_LE) or big-endian
(H5T_ORDER_BE).

herr_t H5Tset_precision (hid_t type, Set the number of significant bits of a

size_t precision) datatype. The offset property (defined
below) identifies its location. The size
property defined above represents the
entire size (in bytes) of the datatype. If the
precision is decreased then padding bits
are inserted on the MSB side of the signif-
icant bits (this will fail for H5T_FLOAT
types if it results in the sign, mantissa, or
exponent bit field extending beyond the
edge of the significant bit field). On the
other hand, if the precision is increased so
that it “hangs over” the edge of the total
size then the offset property is decre-
mented a bit at a time. If the offset
reaches zero and the significant bits still
hang over the edge, then the total size is
increased a byte at a time.

The HDF Group 201

HDF5 Datatypes

HDF5 User’s Guide

Table 6-15. API methods that set properties of atomic datatypes

Functions

Description

herr_t H5Tset_offset (hid_t type,

size_t offset)

Set the bit location of the least significant
bit of a bit field whose length is preci-
sion. The bits of the entire data are num-
bered beginning at zero at the least
significant bit of the least significant byte
(the byte at the lowest memory address
for a little-endian type or the byte at the
highest address for a big-endian type).
The offset property defines the bit loca-
tion of the least significant bit of a bit field
whose length is precision. If the offset is
increased so the significant bits “hang
over” the edge of the datum, then the
size property is automatically incre-
mented.

herr_t H5Tset_pad (hid_t type,
H5T pad_t Isb, H5T pad_t msb)

Set the padding to zeros (H5T_PAD_ZERO)
or ones (H5T_PAD_ONE). Padding is the
bits of a data element which are not sig-
nificant as defined by the precisionand
offset properties. Padding in the low-
numbered bits is Isb padding and pad-
ding in the high-numbered bits is msb
padding.

Table 6-16. API methods that set properties of numeric datatypes

Functions

Description

herr_t H5Tset_sign (hid_t type,
H5T sign_t sign)

(INTEGER) Integer data can be signed
two’s complement (H5T_SGN_2) or
unsigned (H5T_SGN_NONE).

herr_t H5Tset_fields (hid_t type,

size_t spos, size_t epos, size_t

esize, size_t mpos, size_ t msize)

(FLOAT) Set the properties define the
location (bit position of least significant
bit of the field) and size (in bits) of each
field. The sign bit is always of length one
and none of the fields are allowed to
overlap.

herr_t H5Tset_ebias (hid_t type,
size_t ebias)

(FLOAT) The exponent is stored as a non-
negative value which is ebias larger than
the true exponent.

202

The HDF Group

HDF5 User’s Guide HDF5 Datatypes

Table 6-16. API methods that set properties of numeric datatypes

Functions Description
herr_t H5Tset _norm (hid_t type, (FLOAT) This property describes the nor-
H5T_norm_t norm) malization method of the mantissa.

e H5T_NORM_MSBSET: the mantissa
is shifted left (if non-zero) until
the first bit after the radix point is
set and the exponent is adjusted
accordingly. All bits of the man-
tissa after the radix point are
stored.

e H5T NORM_IMPLIED: the man-
tissa is shifted left (if non-zero)
until the first bit after the radix
point is set and the exponent is
adjusted accordingly. The first bit
after the radix point is not stored
since it is always set.

e H5T _NORM_NONE: the fractional
part of the mantissa is stored
without normalizing it.

herr_t H5Tset inpad (hid_t type, (FLOAT) If any internal bits (that is, bits

H5T_pad_t inpad) between the sign bit, the mantissa field,
and the exponent field but within the pre-
cision field) are unused, then they will be
filled according to the value of this prop-
erty. The padding can be: H5T_PAD_ -
NONE, H5T _PAD_ZEROorH5T_PAD_ONE.

Table 6-17. API methods that set properties of string datatypes

Functions Description
herr_t H5Tset_size (hid_t type, Set the length of the string, in bytes. The
size_t size) precision is automatically set to 8*size.

herr_t H5Tset_precision (hid_t type, The precision must be a multiple of 8.
size_t precision)

The HDF Group 203

HDF5 Datatypes HDFS5 User’s Guide

Table 6-17. API methods that set properties of string datatypes

Functions Description
herr_t H5Tset_cset (hid_t type id, Two character sets are currently sup-
H5T_cset_t cset) ported: ASCII (H5T_CSET_ASCI 1) and

UTF-8 (H5T_CSET_UTF8).

herr_t H5Tset_strpad (hid_t type_id, The string datatype has a fixed length, but
H5T str_t strpad) the string may be shorter than the length.
This property defines the storage mecha-
nism for the left over bytes. The method
used to store character strings differs with
the programming language:
e Cusually null terminates strings
e Fortran left-justifies and space-
pads strings

Valid string padding values, as passed in
the parameter strpad, are as follows:

e H5T_STR_NULLTERM: Null termi-
nate (as C does)

e H5T_STR_NULLPAD: Pad with
zeros

e H5T_STR_SPACEPAD: Pad with
spaces (as FORTRAN does)

Table 6-18. API methods that set properties of opaque datatypes

Functions Description
herr_t H5Tset tag (hid_t type_id Tags the opaque datatype type_id with an
const char *tag) ASClII identifier tag.

Examples

The example below shows how to create a 128-bit little-endian signed integer type. Increasing the preci-
sion of a type automatically increases the total size. Note that the proper procedure is to begin from a
type of the intended datatype class which in this case is a NATIVE [INT.

hid_t new_type = H5Tcopy (H5T_NATIVE_INT);
H5Tset_precision (new_type, 128);
H5Tset_order (new_type, H5T_ORDER_LE);

Code Example 6-6. Create a new 128-bit little-endian signed integer datatype

204 The HDF Group

HDFS5 User’s Guide

HDEF5 Datatypes

The figure below shows the storage layout as the type is defined. The H5Tcopy creates a datatype that is
the same as H5T_NATIVE_INT. In this example, suppose this is a 32-bit big-endian number (Figure a). The
precision is set to 128 bits, which automatically extends the size to 8 bytes (Figure b). Finally, the byte

order is set to little-endian (Figure c).

| Byte O | Byte 1 | Byte 2 | Byte 3

[01234567[89012345 |67890123|(45678901

a) The HST NATIVE INT datatype

| Byte O | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte o | Byte & | Byte 7T

[01234567|[89012345 |676890123 [45678901/|23456769 (01234567 (89012345 67890123

b) Precision is extended to 128-bits, and the size is automatically adjusted.

| Byte 0O | Byte 1 | Byte 2 | Byte 3 | Byte 4 | Byte 5 | Byvte & | Byvte 7

[01234567|[89012345 67800123 [45678901/[23456789 (01234567 89012345 (67890123

¢} The byte order is switched.

Figure 6-6. The storage layout for a new 128-bit little-endian signed integer datatype

The significant bits of a data element can be offset from the beginning of the memory for that element by
an amount of padding. The offset property specifies the number of bits of padding that appear to the
“right of” the value. The table and figure below show how a 32-bit unsigned integer with 16-bits of preci-

sion having the value 0x1122 will be laid out in memory.

Table 6-19. Memory Layout for a 32-bit unsigned integer

Byte Position = Big-Endian

Big-Endian

Little-Endian

Little-Endian

Offset=0 Offset=16 Offset=0 Offset=16
0: [pad] [0x11] [0x22] [pad]
1: [pad] [0x22] [0x11] [pad]
2: [0x11] [pad] [pad] [0x22]
3: [0x22] [pad] [pad] [0x11]

The HDF Group

205

HDF5 Datatypes

HDF5 User’s Guide

Big-Endian: Offset=0

| Byte 0O | Byte 1 | Byte 2 | Byte 3
|[01234567||89012345(67830123|[45678901
| PEPPPPPP | PEPPPPPP (00010001 (00100010

Big-Endian: Offset = 16

| Byte 0O | Byte 1 | Byte 2 | Byte 3
|[01234567||89012345(67830123|[45678901
|00010001 (00100010 | PPPPPPPF | PPPPPPEF

Little-Endian: Offset =0

| Byte 0O | Byte 1 | Byte 2 | Byte 3
[01234567||89012345(67890123|[45678901
|00010001 (00100010 |PPPPPPPF | PPPPPPEF

Little-Endian: Offset = 16

| Byte 0O | Byte 1 | Byte 2 | Byte 3
|[01234567|[89012345(/67830123|[45678301
| PPPPPPPP | PEPPPPPP (00010001 (00100010

Figure 6-7. Memory Layout for a 32-bit unsigned integer

If the offset is incremented then the total size is incremented also if necessary to prevent significant bits of
the value from hanging over the edge of the datatype.

The bits of the entire data are numbered beginning at zero at the least significant bit of the least signifi-
cant byte (the byte at the lowest memory address for a little-endian type or the byte at the highest
address for a big-endian type). The offset property defines the bit location of the least significant bit of
a bit field whose length is precision. If the offset is increased so the significant bits “hang over” the
edge of the datum, then the size property is automatically incremented.

To illustrate the properties of the integer datatype class, the example below shows how to create a user-
defined datatype that describes a 24-bit signed integer that starts on the third bit of a 32-bit word. The
datatype is specialized from a 32-bit integer, the precision is set to 24 bits, and the offset is set to 3.

206

The HDF Group

HDF5 User’s Guide HDF5 Datatypes

hid_t dt;
dt = H5Tcopy(H5T_SDT_132LE);
H5Tset_precision(dt, 24);

H5Tset offset(dt,3);
H5Tset_pad(dt, H5T_PAD_ZERO, HS5T_PAD_ONE);

Code Example 6-7. A user-defined datatype with a 24-bit signed integer

The figure below shows the storage layout for a data element. Note that the unused bits in the offset will
be set to zero and the unused bits at the end will be set to one, as specified in the H5Tset_pad call.

| Byte 0O | Byte 1 | Byte 2 | Byte 3
| 01234567 | 89012345 | 67890123 | 45678901
| ooo00000 Q0000000 00000000 J0=pooDD
offset (3) precision (24} pad
sat to '0° user data walue sat to '1°

Figure 6-8. A user-defined integer datatype with a range of -1,048,583 to 1,048,584

To illustrate a user-defined floating point number, the example below shows how to create a 24-bit float-
ing point number that starts 5 bits into a 4 byte word. The floating point number is defined to have a man-
tissa of 19 bits (bits 5-23), an exponent of 3 bits (25-27), and the sign bit is bit 28. (Note that this is an
illustration of what can be done and is not necessarily a floating point format that a user would require.)

hid_t dt;
dt = H5Tcopy(H5T_IEEE_F32LE);

H5Tset precision(dt, 24);

H5Tset_fields (dt, 28, 25, 3, 5, 19);
H5Tset _pad(dt, H5T_PAD_ZERO, H5T_PAD_ONE);
H5Tset_inpad(dt, H5T_PAD ZERO);

Code Example 6-8. A user-defined 24-bit floating point datatype

The HDF Group 207

HDF5 Datatypes HDFS5 User’s Guide

| Byte 0O | Byte 1 | Byte 2 | Byte 3
| 01234567 | 89012345 | €7890123 || 45678901
| [a¥alalora B it | TOTOTOTRTATOTRTT | TOTOTOTOT AT AT | ieees ppp
mantissa pos [(5) exponent pos (25)
mantissa size {193) exponent size (3]
zign pos {(28)

Figure 6-9. A user-defined floating point datatype

The figure above shows the storage layout of a data element for this datatype. Note that there is an
unused bit (24) between the mantissa and the exponent. This bit is filled with the inpad value which in this
case is 0.

The sign bit is always of length one and none of the fields are allowed to overlap. When expanding a float-
ing-point type one should set the precision first; when decreasing the size one should set the field posi-
tions and sizes first.

6.5.2.2. Composite Datatypes

All composite datatypes must be user-defined; there are no predefined composite datatypes.

6.5.2.2.1. Compound Datatypes

The subsections below describe how to create a compound datatype and how to write and read data of a
compound datatype.

Defining Compound Datatypes

Compound datatypes are conceptually similar to a C struct or Fortran derived types. The compound data-
type defines a contiguous sequence of bytes, which are formatted using one up to 2716 datatypes (mem-
bers). A compound datatype may have any number of members, in any order, and the members may have
any datatype, including compound. Thus, complex nested compound datatypes can be created. The total
size of the compound datatype is greater than or equal to the sum of the size of its members, up to a max-
imum of 2”232 bytes. HDF5 does not support datatypes with distinguished records or the equivalent of C
unions or Fortran EQUIVALENCE statements.

Usually a C struct or Fortran derived type will be defined to hold a data point in memory, and the offsets
of the members in memory will be the offsets of the struct members from the beginning of an instance of

208 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

the struct. The HDF5 C library provides a macro HOFFSET (s, m) to calculate the member’s offset. The
HDF5 Fortran applications have to calculate offsets by using sizes of members datatypes and by taking in
consideration the order of members in the Fortran derived type.

HOFFSET(s,m)

This macro computes the offset of member m within a struct s

offsetof(s,m)
This macro defined in stddef.h does exactly the same thing as the HOFFSET () macro.

Note for Fortran users: Offsets of Fortran structure members correspond to the offsets within a packed
datatype (see explanation below) stored in an HDFS5 file.

Each member of a compound datatype must have a descriptive name which is the key used to uniquely
identify the member within the compound datatype. A member name in an HDF5 datatype does not nec-
essarily have to be the same as the name of the member in the C struct or Fortran derived type, although
this is often the case. Nor does one need to define all members of the C struct or Fortran derived type in
the HDF5 compound datatype (or vice versa).

Unlike atomic datatypes which are derived from other atomic datatypes, compound datatypes are created
from scratch. First, one creates an empty compound datatype and specifies its total size. Then members
are added to the compound datatype in any order. Each member type is inserted at a designated offset.
Each member has a name which is the key used to uniquely identify the member within the compound
datatype.

The example below shows a way of creating an HDF5 C compound datatype to describe a complex num-
ber. This is a structure with two components, “real” and “imaginary”, and each component is a double. An
equivalent C struct whose type is defined by the complex_t struct is shown.

typedef struct {
double re; /*real part*/
double im; /*imaginary part*/
} complex_t;

hid_t complex_id = H5Tcreate (H5T_COMPOUND, sizeof (complex t));

H5Tinsert (complex_id, “real”, HOFFSET(complex t,re),
H5T_NATIVE_DOUBLE) ;

H5Tinsert (complex_id, “imaginary”, HOFFSET(complex_ t,im),
H5T_NATIVE_DOUBLE);

Code Example 6-9. A compound datatype for complex numbers in C

The example below shows a way of creating an HDF5 Fortran compound datatype to describe a complex
number. This is a Fortran derived type with two components, “real” and “imaginary”, and each component
is DOUBLE PRECISION. An equivalent Fortran TYPE whose type is defined by the TYPE complex_t s
shown.

The HDF Group 209

HDF5 Datatypes HDFS5 User’s Guide

TYPE complex_t
DOUBLE PRECISION re I real part
DOUBLE PRECISION im; ! imaginary part
END TYPE complex_t

CALL h5tget_size F(H5T_NATIVE DOUBLE, re_size, error)

CALL h5tget_size F(H5T_NATIVE DOUBLE, im_size, error)

complex_t_size = re_size + im_size

CALL hb5tcreate T(H5T_COMPOUND_F, complex_t_size, type_id)

offset = 0

CALL h5tinsert_f(type_id, “real”, offset, H5T_NATIVE_DOUBLE,
error)

offset = offset + re_size

CALL h5tinsert_f(type_id, “imaginary”, offset, HS5T_NATIVE_DOUBLE,
error)

Code Example 6-10. A compound datatype for complex numbers in Fortran

Important Note: The compound datatype is created with a size sufficient to hold all its members. In the C
example above, the size of the C struct and the HOFFSET macro are used as a convenient mechanism to
determine the appropriate size and offset. Alternatively, the size and offset could be manually deter-
mined: the size can be set to 16 with “real” at offset 0 and “imaginary” at offset 8. However, different plat-
forms and compilers have different sizes for “double” and may have alignment restrictions which require
additional padding within the structure. It is much more portable to use the HOFFSET macro which
assures that the values will be correct for any platform.

The figure below shows how the compound datatype would be laid out assuming that NATIVE_DOUBLE
are 64-bit numbers and that there are no alighment requirements. The total size of the compound data-
type will be 16 bytes, the “real” component will start at byte 0, and “imaginary” will start at byte 8.

/'| Byte O | Byte 1 | Byte 2 | Byte 3

| rTrTrrrrr | ITrTTrrrr | FEFFEFEET. | TTITTTTICT

?_ifzﬂ B | Byte 4 | Byte 5 | Byte & | Byte 7
| ITITIrrrr | ITITrrrr | TFTITTLTICT | TFTTTLTTCT

/'| Byte 8 || Byte 9 || Byte 10 || Byte 11

cffset of | ddddiiidd || dddddiddd || dddidddd || ddddddid
ekt [Byte 12 || Byte 13 || Byte 14 || Byte 15
| ddddidididid || dddddddd || dddidddd || ddddddid

Total size of compound datatype is 16 bytes

Figure 6-10. Layout of a compound datatype

210 The HDF Group

HDFS5 User’s Guide

HDEF5 Datatypes

The members of a compound datatype may be any HDF5 datatype including the compound, array, and
variable-length (VL) types. The figure and example below show the memory layout and code which cre-
ates a compound datatype composed of two complex values, and each complex value is also a compound
datatype as in the figure above.

offset of "x* —* | Byte O | Byvte 1 | Byte 2 | Byte 3
= 0 | ITITICICT | ITITILCCICT | FEFFTEEET. | TLCITTLTCT
offset of "z_re® | Evte 4 | Evte 5 | Evte & | Byte 7T
is 0 | ITITIILIT | ITITIIIT | ITITTITILIT | IFTITITITILT

| Byte8 || Byte s | Byte 10 | Byte 11
S | 1iiiiididi || dddiidddd || dddddddd | dddddiid
is B | Byte 12 || Byte 13 || Byte 14 | Byte 15

| 1iiiiiii || ddiidddd || dddddddd | dddddiid
sttees of vy == | Byte 16 | Byte 17 | Byce 18 | Byte 19
is 16 / | ITIrrrrr | ITITTICIrTr | TTITTLCTICT | TFTTTTTLCT
S | Eyte 20 | Byte 21 | Byte 22 | Byte 23
is 16 | CTTTCCLT | CETTCCLT | TETTCCLT | CETTCCCT

| Byte 24 || Byte 25 || Byte 26 || Byte 27
offset of /| idiidddii || dddddddd || dddddddd || dddddddid
el [Byte 28 || Byte 29 | Byte 30 || Byte 31

| ddddiiidd || dddddiddd || dddidddd || ddddddid

Total size of compound datatype is 32 bytes.

Figure 6-11. Layout of a compound datatype nested in a compound datatype

typedef struct
complex_t X;
complex_t y;
} surf_t;

hid_t complex_id, surf_id; /*hdf5 datatypes*/

Code Example 6-11. Code for a compound datatype nested in a compound datatype

The HDF Group

211

HDF5 Datatypes HDFS5 User’s Guide

complex_id = H5Tcreate (H5T_COMPOUND, sizeof(complex_t));

H5Tinsert (complex_id, “re”, HOFFSET(complex_t,re),
H5T_NATIVE_DOUBLE);

H5Tinsert (complex_id, “im”, HOFFSET(complex_t,im),
H5T_NATIVE_DOUBLE) ;

surf_id = H5Tcreate (H5T_COMPOUND, sizeof(surf_t));
H5Tinsert (surf_id, “x”, HOFFSET(surf _t,x), complex id);
H5Tinsert (surf_id, “y”, HOFFSET(surf_t,y), complex_id);

Code Example 6-11. Code for a compound datatype nested in a compound datatype

Note that a similar result could be accomplished by creating a compound datatype and inserting four
fields. See the figure below. This results in the same layout as the figure above. The difference would be
how the fields are addressed. In the first case, the real part of ‘y’ is called ‘y.re’; in the second case it is ‘y-

7’

re.

typedef struct {
complex_t Xx;
complex_t y;
} surf_t;

hid_t surf_id = H5Tcreate (H5T_COMPOUND, sizeof(surf_t));

H5Tinsert (surf_id, “x-re”, HOFFSET(surf _t,x.re),
H5T_NATIVE_DOUBLE) ;

H5Tinsert (surf_id, “x-im”, HOFFSET(surf_t,x.im),
H5T_NATIVE_DOUBLE);

H5Tinsert (surf_id, “y-re”, HOFFSET(surf_t,y.re),
H5T_NATIVE_DOUBLE) ;

H5Tinsert (surf_id, “y-im”, HOFFSET(surf_t,y.im),
H5T_NATIVE_DOUBLE) ;

Code Example 6-12. Another compound datatype nested in a compound datatype

The members of a compound datatype do not always fill all the bytes. The HOFFSET macro assures that
the members will be laid out according to the requirements of the platform and language. The example
below shows an example of a C struct which requires extra bytes of padding on many platforms. The sec-
ond element, ‘b’, is a 1-byte character followed by an 8 byte double, ‘c’. On many systems, the 8-byte value
must be stored on a 4- or 8-byte boundary. This requires the struct to be larger than the sum of the size of
its elements.

212 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

In the example below, sizeof and HOFFSET are used to assure that the members are inserted at the cor-
rect offset to match the memory conventions of the platform. The figure below shows how this data ele-
ment would be stored in memory, assuming the double must start on a 4-byte boundary. Notice the extra
bytes between ‘b’ and ‘c’.

typedef struct s1_t {

int a;

char b;

double c;
} sl t;

sl _tid = H5Tcreate (H5T_COMPOUND, sizeof(sl _t));
HS5Tinsert(sl_tid, “a_name”, HOFFSET(sl1_t, a), H5T_NATIVE_INT);
H5Tinsert(sl_tid, “b_name”, HOFFSET(s1l_t, b), HS5T_NATIVE_CHAR);
H5Tinsert(sl_tid, “c_name”, HOFFSET(sl t, c), H5T_NATIVE DOUBLE);

Code Example 6-13. A compound datatype that requires padding

[Byt= 0 Byte 1 Byte 2 Byte 3
offset of "a”
iz 0 aaaaaaaa | aamsaaaaa | a’aaaaaaa | aaaaaaaa
f,f’ffﬁ Byvte 4 Byte & Byte & Byte T
bbbbbbbb |, 00000000 0Qoooooo 0Qooamoo
offset of "b”
is 4 Byte ﬁ// Byte 9 Byte 10 Byte 11
Ec?ﬁﬂécc cocococcoc | cococcocc | coocococoo
offsat of ™o !Bﬁte 1z Eyte 13 BEyte 14 Byte 15
is # CcooCoocoo cooCcoococ | ooooocoo coocoocoo
Total size of Compound Datatype is 16 bytes.

3 byvtes of padding
after “b¥, offset 5

Figure 6-12. Memory layout of a compound datatype that requires padding

However, data stored on disk does not require alignment, so unaligned versions of compound data struc-
tures can be created to improve space efficiency on disk. These unaligned compound datatypes can be
created by computing offsets by hand to eliminate inter-member padding, or the members can be packed
by calling H5Tpack (which modifies a datatype directly, so it is usually preceded by a call to H5Tcopy).

The example below shows how to create a disk version of the compound datatype from the figure above
in order to store data on disk in as compact a form as possible. Packed compound datatypes should gener-
ally not be used to describe memory as they may violate alignment constraints for the architecture being
used. Note also that using a packed datatype for disk storage may involve a higher data conversion cost.

The HDF Group 213

HDF5 Datatypes HDFS5 User’s Guide

hid_t s2_tid = H5Tcopy (sl1_tid);
H5Tpack (s2_tid);

Code Example 6-14. Create a packed compound datatype in C

The example below shows the sequence of Fortran calls to create a packed compound datatype. An HDF5
Fortran compound datatype never describes a compound datatype in memory and compound data is
ALWAYS written by fields as described in the next section. Therefore packing is not needed unless the off-
set of each consecutive member is not equal to the sum of the sizes of the previous members.

CALL h5tcopy_f(sl_id, s2_id, error)
CALL h5tpack f(s2_id, error)

Code Example 6-15. Create a packed compound datatype in Fortran

Creating and Writing Datasets with Compound Datatypes

Creating datasets with compound datatypes is similar to creating datasets with any other HDF5 datatypes.
But writing and reading may be different since datasets that have compound datatypes can be written or
read by a field (member) or subsets of fields (members). The compound datatype is the only composite
datatype that supports “sub-setting” by the elements the datatype is built from.

The example below shows a C example of creating and writing a dataset with a compound datatype.

214 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

typedef struct sl _t {
int a;
float b;
double c;

} sl t;

sl t data[LENGTH];

/* Initialize data */
for (i = 0; i < LENGTH; i++) {
data[i]-a = i

;
fl |

o QO
D QD
~ ~+
D QD
™= =
bl
O T
1
= =

~ v

i+1);

sl _tid = H5Tcreate (H5T_COMPOUND, sizeof(sl_t));

H5Tinsert(sl _tid, “a name”, HOFFSET(sl t, a),
H5T_NATIVE_INT);

H5Tinsert(sl_tid, “b_name”, HOFFSET(sl t, b),
H5T_NATIVE_FLOAT);

H5Tinsert(sl_tid, “c_name”, HOFFSET(sl t, c),
H5T_NATIVE_DOUBLE);

dataset_id = H5Dcreate(file_id, “SDScompound.h5”, sl t,
space_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

H5Dwrite (dataset_ id, sl _tid, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

Code Example 6-16. Create and write a dataset with a compound datatype in C

The example below shows the content of the file written on a little-endian machine.

The HDF Group 215

HDF5 Datatypes HDFS5 User’s Guide

HDF5 “SDScompound.h5” {
GROUP “/” {
DATASET “ArrayOfStructures” {
DATATYPE H5T_COMPOUND {
HS5T_STD_132LE “a_name’;
H5T_IEEE_F32LE “b_name™;
H5T_IEEE_F64LE “‘c_name™;

3
DATASPACE SIMPLE { (3) 7 (3) }

DATA {
©:{

o O

3}
- A{

}
@: {

-333333

Code Example 6-17. Create and write a little-endian dataset with a compound datatype in C

It is not necessary to write the whole data at once. Datasets with compound datatypes can be written by
field or by subsets of fields. In order to do this one has to remember to set the transfer property of the
dataset using the H5Pset_preserve call and to define the memory datatype that corresponds to a field.
The example below shows how float and double fields are written to the dataset.

216 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

typedef struct sb_t {

float b;
double c;
} sb_t;

typedef struct sc_t {

float b;
double c;
} sc_t;

sb_t datal[LENGTH];
sc_t data2[LENGTH];

/* Initialize data */

for (i = 0; i < LENGTH; i++) {
datal.b = i*i;
data2.c = 1./(i+1);

3

/* Create dataset as in example 15 */

/* Create memory datatypes corresponding to float */
/* and double datatype fields */

sb_tid = H5Tcreate (H5T_COMPOUND, sizeof(sb_t));

H5Tinsert(sb_tid, “b_name”, HOFFSET(sb_t, b),
H5T_NATIVE_FLOAT);

sc_tid = H5Tcreate (H5T_COMPOUND, sizeof(sc_t));

H5Tinsert(sc_tid, “c_name”, HOFFSET(sc_t, c),
H5T_NATIVE_DOUBLE) ;

/* Set transfer property */

xfer_id = H5Pcreate(H5P_DATASET_ XFER);

H5Pset preserve(xfer_id, 1);

H5Dwrite (dataset_id, sb_tid, H5S ALL, H5S ALL,
xfer_id, datal);

H5Dwrite (dataset id, sc_tid, H5S ALL, H5S ALL,
xfer_id, data2);

Code Example 6-18. Writing floats and doubles to a dataset

The figure below shows the content of the file written on a little-endian machine. Only float and double
fields are written. The default fill value is used to initialize the unwritten integer field.

The HDF Group 217

HDF5 Datatypes

HDF5 User’s Guide

HDF5 “SDScompound.h5” {
GROUP “/” {

+
}

DATASET “ArrayOfStructures” {

DATATYPE H5T_COMPOUND {
HS5T_STD_I132LE “a_name™;
H5T_IEEE_F32LE *“b_name™;
HS5T_I1EEE_F64LE “c_name™;

}

DATASPACE
DATA {

©@: {

SIMPLE { (3) 7 (3) }

Code Example 6-19. Writing floats and doubles to a dataset on a little-endian system

The example below contains a Fortran example that creates and writes a dataset with a compound data-
type. As this example illustrates, writing and reading compound datatypes in Fortran is always done by

fields. The content of the written file is the same as shown in the example above.

218

The HDF Group

HDF5 User’s Guide HDF5 Datatypes

I One cannot write an array of a derived datatype in
I Fortran.
TYPE s1_t
INTEGER a
REAL b
DOUBLE PRECISION c
END TYPE s1_t

TYPE(s1_t) d(LENGTH)

! Therefore, the following code initializes an array
I corresponding to each field in the derived datatype
I and writes those arrays to the dataset

INTEGER, DIMENSION(LENGTH) :: a
REAL, DIMENSION(LENGTH) :: b
DOUBLE PRECISION, DIMENSION(LENGTH) :: c

do = 1, LENGTH
a(i) = i-1
b(i) = (i-1) * (i-1)
c(i) = 1./71i

enddo

I Set dataset transfer property to preserve partially
I initialized fields during write/read to/from dataset
I with compound datatype.
!

CALL h5pcreate_ f(H5P_DATASET_XFER_F, plist_id, error)
CALL h5pset _preserve_f(plist_id, .TRUE., error)

! Create compound datatype.

!

I First calculate total size by calculating sizes of

I each member

!

CALL h5tget _size F(H5T_NATIVE_INTEGER, type sizei, error)
CALL h5tget_size F(HS5T_NATIVE_REAL, type_sizer, error)

CALL h5tget_size F(HS5T_NATIVE_DOUBLE, type_sized, error)
type_size = type_sizei + type_sizer + type_sized

CALL hb5tcreate_ f(H5T_COMPOUND_F, type_ size, dtype_id, error)

Code Example 6-20. Create and write a dataset with a compound datatype in Fortran

The HDF Group 219

HDF5 Datatypes HDFS5 User’s Guide

1
I Insert members
1
]

I INTEGER member

!

offset = 0

CALL h5tinsert_f(dtype_id, “a name”, offset,
HS5T_NATIVE_INTEGER, error)

1

I REAL member

!

offset = offset + type_sizei

CALL h5tinsert_f(dtype_id, “b_name”, offset, H5T NATIVE_ REAL,

error)
|

! DOUBLE PRECISION member

!

offset = offset + type_sizer

CALL h5tinsert_f(dtype_id, “c_name”, offset,
H5T_NATIVE_DOUBLE, error)

I Create the dataset with compound datatype.
!

CALL h5dcreate F(Ffile_id, dsetname, dtype_id, dspace_id, &
dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F,

H5P_DEFAULT_F)
!

! Create memory types. We have to create a compound

I datatype for each member we want to write.
!

CALL h5tcreate f(H5T_COMPOUND_F, type sizei, dtl _id, error)

offset = 0

CALL h5tinsert_f(dtl_id, “a _name”, offset,
H5T_NATIVE_INTEGER, error)

1

CALL h5tcreate f(H5T_COMPOUND_F, type sizer, dt2_id, error)

offset = 0O

Code Example 6-20. Create and write a dataset with a compound datatype in Fortran

220 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

CALL h5tinsert_f(dt2_id, “b_name”, offset, H5T NATIVE_REAL,
error)

CALL h5tcreate f(H5T_COMPOUND F, type sized, dt3 _id, error)

offset = 0

CALL h5tinsert f(dt3_id, “c_name”, offset, H5T _NATIVE DOUBLE,
error)

is not important.

!

I Write data by fields in the datatype. Fields order
!

!

CALL hb5dwrite_ f(dset_id, dt3_id, c, data dims, error,
xFer_prp = plist_id)

CALL h5dwrite f(dset_id, dt2_id, b, data dims, error,
xFer_prp = plist_id)

CALL hbdwrite_f(dset_id, dtl_id, a, data _dims, error,
xfer_prp = plist_id)

Code Example 6-20. Create and write a dataset with a compound datatype in Fortran

Reading Datasets with Compound Datatypes

Reading datasets with compound datatypes may be a challenge. For general applications there is no way
to know a priori the corresponding C structure. Also, C structures cannot be allocated on the fly during dis-
covery of the dataset’s datatype. For general C, C++, Fortran and Java application the following steps will
be required to read and to interpret data from the dataset with compound datatype:

1. Get the identifier of the compound datatype in the file with the H5Dget_type call

2. Find the number of the compound datatype members with the H5Tget_nmembers call

3. Iterate through compound datatype members

¢ Get member class with the H5Tget_member_class call

e Get member name with the H5Tget_member_name call

e Check class type against predefined classes

H5T _INTEGER
H5T_FLOAT
H5T_STRING
H5T_BITFIELD
H5T_OPAQUE
H5T_COMPOUND
H5T_REFERENCE
H5T_ENUM
H5T_VLEN
H5T_ARRAY

The HDF Group 221

HDF5 Datatypes HDFS5 User’s Guide

e If class is HST_COMPOUND, then go to step 2 and repeat all steps under step 3. If class is not
H5T_COMPOUND, then a member is of an atomic class and can be read to a corresponding buf-
fer after discovering all necessary information specific to each atomic type (for example, size
of the integer or floats, super class for enumerated and array datatype, and its sizes)

The examples below show how to read a dataset with a known compound datatype.

The first example below shows the steps needed to read data of a known structure. First, build a memory
datatype the same way it was built when the dataset was created, and then second use the datatype in a
H5Dread call.

typedef struct s1_t {
int a;
float b;
double c;

} sl t;

sl t *data;

sl _tid = H5Tcreate(H5T_COMPOUND, sizeof(sl_t));

H5Tinsert(sl _tid, “a name”, HOFFSET(sl t, a),
H5T_NATIVE_INT);

H5Tinsert(sl_tid, “b_name”, HOFFSET(sl t, b),
H5T_NATIVE_FLOAT);

H5Tinsert(sl_tid, “c_name”, HOFFSET(sl t, c),
H5T_NATIVE_DOUBLE);

dataset_id = H5Dopen(file_id, “SDScompound.h5”,
H5P_DEFAULT);

data = (s1_t *) malloc (sizeof(sl t)*LENGTH);

H5Dread(dataset_id, sl _tid, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

Code Example 6-21. Read a dataset using a memory datatype

Instead of building a memory datatype, the application could use the H5Tget_native_type function.
See the example below.

222 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

typedef struct sl _t {
int a;
float b;
double c;

} sl t;

sl t *data;

hid_t file_sl1_t, mem_sl1 t;

dataset_id = H5Dopen(file_id, “SDScompound.h5”,
H5P_DEFAULT);

/* Discover datatype in the file */

file_sl t = H5Dget_type(dataset_id);

/* Find corresponding memory datatype */

mem sl t = H5Tget_native_type(file_ sl t,
H5T_DIR_DEFAULT);

data = (s1_t *) malloc (sizeof(sl t)*LENGTH);

H5Dread (dataset_id, mem_sl1 tid, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

Code Example 6-22. Read a dataset using H5Tget_native_type

The example below shows how to read just one float member of a compound datatype.

The HDF Group 223

HDF5 Datatypes HDFS5 User’s Guide

typedef struct sl _t {
float b;
} st _t;

st _t *data;

st _tid = H5Tcreate(H5T_COMPOUND, sizeof(sf_t));

H5Tinsert(sl_tid, “b_name”, HOFFSET(sf_t, b),
H5T_NATIVE_FLOAT);

dataset_id = H5Dopen(file_id, “SDScompound.h5”,
H5P_DEFAULT);

data = (sf_t *) malloc (sizeof(sf_t)*LENGTH);

H5Dread(dataset_id, st _tid, H5S_ALL, H5S ALL,
H5P_DEFAULT, data);

Code Example 6-23. Read one floating point member of a compound datatype

The example below shows how to read float and double members of a compound datatype into a struc-
ture that has those fields in a different order. Please notice that H5Tinsert calls can be used in an order
different from the order of the structure’s members.

224

The HDF Group

HDF5 User’s Guide HDF5 Datatypes

typedef struct sl _t {

double c;
float b;
} sdf_t;

sdf_t *data;

sdf_tid = H5Tcreate(H5T_COMPOUND, sizeof(sdf_t));

H5Tinsert(sdf_tid, “b_name”, HOFFSET(sdf_t, b),
H5T_NATIVE_FLOAT);

H5Tinsert(sdf_tid, “c_name”, HOFFSET(sdf_t, c),
H5T_NATIVE_DOUBLE);

dataset_id = H5Dopen(file_id, “SDScompound.h5”,
H5P_DEFAULT);

data = (sdf_t *) malloc (sizeof(sdf t)*LENGTH);

H5Dread(dataset_id, sdf _tid, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

Code Example 6-24. Read float and double members of a compound datatype

6.5.2.2.2. Array

Many scientific datasets have multiple measurements for each point in a space. There are several natural
ways to represent this data, depending on the variables and how they are used in computation. See the
table and the figure below.

Table 6-20. Representing data with multiple measurements

Storage Strategy Stored as Remarks
Multiple planes Several datasets with This is optimal when variables are accessed
identical dataspaces individually, or when often uses only selected
variables.
Additional dimen- One dataset, the last This can give good performance, although
sion “dimension” is a vec- selecting only a few variables may be slow.
tor of variables This may not reflect the science.

The HDF Group 225

HDF5 Datatypes

HDF5 User’s Guide

Table 6-20. Representing data with multiple measurements

Storage Strategy Stored as

Remarks

Record with multi- One dataset with This enables the variables to be read all

ple values compound datatype together or selected. Also handles “vectors” of
heterogeneous data.

Vector or Tensor One dataset, each This uses the same amount of space as the

value data elementis a previous two, and may represent the science

small array of values.

model better.

ia

Datasatl
29

Datasek?
an

Datasatl

a) Thres dataseks

Datasetl

el el oed)| asb, bed,o=b | ..

gl tne dataset of Compound

Datasetl-30

B} fne dataset, extra dimemsion

Datasatl

r1,2,3)0% 8,01,

d) One dataset of Arrays

Figure 6-13. Representing data with multiple measurements

The HDF5 H5T_ARRAY datatype defines the data element to be a homogeneous, multi-dimensional array.
See Figure 13d above. The elements of the array can be any HDF5 datatype (including compound and
array), and the size of the datatype is the total size of the array. A dataset of array datatype cannot be sub-
divided for I/O within the data element: the entire array of the data element must be transferred. If the
data elements need to be accessed separately, for example, by plane, then the array datatype should not
be used. The table below shows advantages and disadvantages of various storage methods.

226

The HDF Group

HDFS5 User’s Guide

HDEF5 Datatypes

Table 6-21. Storage method advantages and disadvantages

Method

Advantages

Disadvantages

a) Multiple Datasets

Easy to access each plane, can
select any plane(s)

Less efficient to access a ‘col-
umn’ through the planes

b) N+1 Dimension

All access patterns supported

Must be homogeneous data-
type

The added dimension may not
make sense in the scientific
model

c) Compound Datatype

Can be heterogeneous datatype

Planes must be named, selec-
tion is by plane

Not a natural representation for
a matrix

d) Array

A natural representation for
vector or tensor data

Cannot access elements sepa-
rately (no access by plane)

An array datatype may be multi-dimensional with 1 to H5S_MAX_RANK (the maximum rank of a dataset is
currently 32) dimensions. The dimensions can be any size greater than 0, but unlimited dimensions are
not supported (although the datatype can be a variable-length datatype).

An array datatype is created with the H5Tarray_create call, which specifies the number of dimensions,
the size of each dimension, and the base type of the array. The array datatype can then be used in any way
that any datatype object is used. The example below shows the creation of a datatype that is a two-
dimensional array of native integers, and this is then used to create a dataset. Note that the dataset can be
a dataspace that is any number and size of dimensions. The figure below shows the layout in memory
assuming that the native integers are 4 bytes. Each data element has 6 elements, for a total of 24 bytes.

hid_t file, dataset;

hid_t datatype, dataspace;
hsize_t adims[] = {3, 2};

datatype = H5Tarray_create(H5T_NATIVE_INT, 2, adims,

NULL) ;

dataset = H5Dcreate(file, datasetname, datatype,
dataspace, H5P_DEFAULT, H5P_DEFAULT,

H5P_DEFAULT);

Code Example 6-25. Create a two-dimensional array datatype

The HDF Group

227

HDF5 Datatypes HDFS5 User’s Guide

0 1 2
Datatype is 0,0]=a 01]=b 0.2]=¢
3% 2 Array 0 [0.0] [0.1] (02
[1.0]1=d [11]1=¢e [1.2]=f1
offset of data
element is 0 \ Byte 0 Byte 1 Biyte 2 Byte 3
offset of daaaaaaajaaaaaaaajaaaaaaaalaaaaaaaa
[00iso —2 Byte 4 Byte 5 Byte 6 Byte 7
uffset of a bbbbbbbb | bbbbbbbb | bbbbbhbbbh | bbbbbbbb
[0, 1]is4 Byte & Byte 9 Byte 10 Byte 11
CCCECCECC|CCECCCCC|CCCECCECC|CECCECCC
Byte 12 Byte 13 Byte 14 Byte 15
dddddddd | dddddddd | dddddddd | dddddddd
Byte 16 Byte 17 Byte 18 Byte 19
eEEEEERER EEEEEEER EEEEEREEE EEEEEEER
Byte 20 Byte 21 Byte 22 Byte 23
fEFFFfvff FEFFFffff fEFFfrfff fIFFffff
offset of next Byte 24 Byte 25 Byte 26 Byte 27
data element g
is 24 Byte 28 Eyte 29 Byte 30 Byte 32
Total size of Array Datatype is 3 X 2 X 4 = 24 bytes. Note
that next element begins on byte 25,

Figure 6-14. Memory layout of a two-dimensional array datatype

6.5.2.2.3. Variable-length Datatypes

A variable-length (VL) datatype is a one-dimensional sequence of a datatype which are not fixed in length
from one dataset location to another. In other words, each data element may have a different number of
members. Variable-length datatypes cannot be divided, the entire data element must be transferred.

VL datatypes are useful to the scientific community in many different ways, possibly including:
* Ragged arrays: Multi-dimensional ragged arrays can be implemented with the last (fastest chang-

ing) dimension being ragged by using a VL datatype as the type of the element stored.

* Fractal arrays: A nested VL datatype can be used to implement ragged arrays of ragged arrays, to
whatever nesting depth is required for the user.

e Polygon lists: A common storage requirement is to efficiently store arrays of polygons with differ-
ent numbers of vertices. A VL datatype can be used to efficiently and succinctly describe an array
of polygons with different numbers of vertices.

e Character strings: Perhaps the most common use of VL datatypes will be to store C-like VL charac-
ter strings in dataset elements or as attributes of objects.

228 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

¢ Indices (for example, of objects within a file): An array of VL object references could be used as an
index to all the objects in a file which contain a particular sequence of dataset values.

e Object Tracking: An array of VL dataset region references can be used as a method of tracking
objects or features appearing in a sequence of datasets.

A VL datatype is created by calling H5Tvlen_create which specifies the base datatype. The first example
below shows an example of code that creates a VL datatype of unsigned integers. Each data element is a
one-dimensional array of zero or more members and is stored in the hvl_t structure. See the second
example below.

tidl = H5Tvlen_create (H5T_NATIVE_UINT);

dataset=H5Dcreate(fidl, “Datasetl”, tidl, sidl,
H5P_DEFAULT, HS5P_DEFAULT, H5P_DEFAULT);

Code Example 6-26. Create a variable-length datatype of unsigned integers

typedef struct {
size_t len; /* Length of VL data */
/*(in base type units) */
void *p; /* Pointer to VL data */
} hvl_t;

Code Example 6-27. Data element storage for members of the VL datatype

The first example below shows how the VL data is written. For each of the 10 data elements, a length and
data buffer must be allocated. Below the two examples is a figure that shows how the data is laid out in
memory.

An analogous procedure must be used to read the data. See the second example below. An appropriate
array of vl_t must be allocated, and the data read. It is then traversed one data element at a time. The
H5Dvlen_reclaim call frees the data buffer for the buffer. With each element possibly being of different
sequence lengths for a dataset with a VL datatype, the memory for the VL datatype must be dynamically
allocated. Currently there are two methods of managing the memory for VL datatypes: the standard C
malloc/free memory allocation routines or a method of calling user-defined memory management rou-
tines to allocate or free memory (set with H5Pset_vlen_mem_manager). Since the memory allocated
when reading (or writing) may be complicated to release, the H5Dvlen_reclaim function is provided to
traverse a memory buffer and free the VL datatype information without leaking memory.

The HDF Group 229

HDF5 Datatypes HDFS5 User’s Guide

hvl_t wdata[10]; /* Information to write */

/* Allocate and initialize VL data to write */
for(i=0; 1 < 10; i++) {
wdata[i].p = malloc((i+1)*sizeof(unsigned int));
wdata[i]-len = i+1;
for(3=0; j<(i+l); j++)
((unsigned int *)wdata[i]-p)[J]=1*10+j;
}

ret=H5Dwrite(dataset, tidl, H5S ALL, H5S ALL, H5P_DEFAULT,
wdata) ;

Code Example 6-28. Write VL data

hvl_t rdata[SPACE1_DIM1];
ret=H5Dread(dataset, tidl, H5S_ALL, H5S_ALL, xfer_pid, rdata);

for(i=0; i§<SPACE1_DIM1; i++) {
printf(“%d: len %d ”,rdata[i]-len);
for(J=0; j<rdata[i]-len; j++) {
printf(“ value: %u\n”,((unsigned int *)rdatal[i]-p)[JD);
}

}
ret=H5Dvlen_reclaim(tidl, sidl, xfer_pid, rdata);

Code Example 6-29. Read VL data

230

The HDF Group

HDF5 User’s Guide HDF5 Datatypes
len p
vi_twata="> | O !
1 2 .
2 3 \
3 4 1
4 5
5 5
5 7
7 5 /
3 E /
g 10 /
The data
Elements
Byte O Byte 1 Byte 2 Byte 3
dddadaadldadaddaadaaaaaaaajaaaaaaaa
Byte O Byte 1 Byte 2 Byte 3
ddaadaaadaaaadaadaaasaaaaajaaaaaaaa
Byte 4 Byte 5 Byte 6 Byte 7
bbbbhbbbh | bbbhbbhbbb | bbbbhbbhbb | bbbbhbhb

Figure 6-15. Memory layout of a VL datatype

The user program must carefully manage these relatively complex data structures. The H5Dvlen_re-
claim function performs a standard traversal, freeing all the data. This function analyzes the datatype
and dataspace objects, and visits each VL data element, recursing through nested types. By default, the
system free is called for the pointer in each vl _t. Obviously, this call assumes that all of this memory was
allocated with the system mal loc.

The user program may specify custom memory manager routines, one for allocating and one for freeing.
These may be set with the H5Pvlen_mem_manager, and must have the following prototypes:

e typedef void *(*H5MM_allocate_t)(size_t size, void *info);

e typedef void (*H5MM_free_ t)(void *mem, void *free_info);

The HDF Group 231

HDF5 Datatypes HDFS5 User’s Guide

The utility function H5Dget_vlen_buf_size checks the number of bytes required to store the VL data
from the dataset. This function analyzes the datatype and dataspace object to visit all the VL data ele-
ments, to determine the number of bytes required to store the data for the in the destination storage
(memory). The size value is adjusted for data conversion and alignment in the destination.

6.6. Other Non-numeric Datatypes

Several datatype classes define special types of objects.

6.6.1. Strings

Text data is represented by arrays of characters, called strings. Many programming languages support dif-
ferent conventions for storing strings, which may be fixed or variable-length, and may have different rules
for padding unused storage. HDF5 can represent strings in several ways. See the figure below.

232 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

The strings to store are “Four score” and “lazy programmers.”

a) HST_NATIVE_CHAR: The dataset is a one-dimensional array with 29 elements, and each element
is a single character.

| o || 2 |[2 | 3 || a [~ | 25 || 26 || 22 || =28
e v T e [

b) Fixed-length string: The dataset is a one-dimensional array with two elements, and each element
is 20 characters.

x5

“Four =core’0

*lazy programmers.’\0~

c) Variable-length string: The dataset is a one-dimensional array with two elements, and each ele-
ment is a variable-length string. This is the same result when stored as a fixed-length string except
that the first element of the array will need only 11 bytes for storage instead of 20.

0 “Four score’\0"

1 “lagy programmers. 0
u] len=10,

1

"Four score” |

“lazy programmers.”|

Figure 6-16. A string stored as one-character elements in a one-dimensional array

First, a dataset may have a dataset with datatype H5T_NATIVE_CHAR with each character of the string as
an element of the dataset. This will store an unstructured block of text data, but gives little indication of
any structure in the text. See item a in the figure above.

A second alternative is to store the data using the datatype class H5T_STRING with each element a fixed
length. See item b in the figure above. In this approach, each element might be a word or a sentence,
addressed by the dataspace. The dataset reserves space for the specified number of characters, although
some strings may be shorter. This approach is simple and usually is fast to access, but can waste storage
space if the length of the Strings varies.

A third alternative is to use a variable-length datatype. See item c in the figure above. This can be done
using the standard mechanisms described above. The program would use vl _t structures to write and
read the data.

The HDF Group 233

HDF5 Datatypes HDFS5 User’s Guide

A fourth alternative is to use a special feature of the string datatype class to set the size of the datatype to
H5T_VARIABLE. See item c in the figure above. The example below shows a declaration of a datatype of
type H5T_C_S1 which is set to HST_VARIABLE. The HDFS Library automatically translates between this
and the vl_t structure. Note: the H5T_VARIABLE size can only be used with string datatypes.

tidl = H5Tcopy (H5T_C S1);

ret = H5Tset_size (tidl, H5T_VARIABLE);

Code Example 6-30. Set the string datatype size to H5ST_VARIABLE

Variable-length strings can be read into C strings (in other words, pointers to zero terminated arrays of
char). See the example below.

char *rdata[SPACE1_DIM1];
ret=H5Dread(dataset, tidl, H5S_ALL, H5S ALL, xfer_pid, rdata);
for(i=0; W§<SPACE1 DIM1; i++) {

printfF(“%d: len: %d, str is: %s\n”, i1, strlen(rdata[i]),

rdatal[i]);
¥

ret=H5Dvlen_reclaim(tidl, sidl, xfer_pid, rdata);

Code Example 6-31. Read variable-length strings into C strings

6.6.2. Reference

In HDF5, objects (groups, datasets, and committed datatypes) are usually accessed by name. There is
another way to access stored objects - by reference. There are two reference datatypes: object reference
and region reference. Object reference objects are created with HSRcreate and other calls (cross refer-
ence). These objects can be stored and retrieved in a dataset as elements with reference datatype. The
first example below shows an example of code that creates references to four objects, and then writes the
array of object references to a dataset. The second example below shows a dataset of datatype reference
being read and one of the reference objects being dereferenced to obtain an object pointer.

In order to store references to regions of a dataset, the datatype should be H5T_REGION_OBJ. Note that
a data element must be either an object reference or a region reference: these are different types and
cannot be mixed within a single array.

234 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

A reference datatype cannot be divided for I/O: an element is read or written completely.

dataset=H5Dcreate(fidl, “Dataset3”, H5T_STD REF_OBJ, sidl,
H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

/* Create reference to dataset */
ret = H5Rcreate(&wbuf[0], fidl,“/Groupl/Datasetl”, H5R_OBJECT,

-1);

/* Create reference to dataset */
ret = H5Rcreate(&wbuf[1], fidl, “/Groupl/Dataset?2”, H5R_OBJECT,

-1);

/* Create reference to group */
ret = H5Rcreate(&wbuf[2], fidl, “/Groupl”, H5R_OBJECT, -1);

/* Create reference to committed datatype */
ret = H5Rcreate(&wbuf[3], fidl, “/Groupl/Datatypel”,
H5R_OBJECT, -1);

/> Write selection to disk */

ret=H5Dwrite(dataset, H5T_STD REF_OBJ, H5S_ALL, H5S_ALL,
H5P_DEFAULT, wbuf);

Code Example 6-32. Create object references and write to a dataset

rbuf = malloc(sizeof(hobj ref t)*SPACE1l DIM1);

/* Read selection from disk */
ret=H5Dread(dataset, H5T_STD_REF OBJ, H5S ALL, H5S_ALL,
H5P_DEFAULT, rbuf);

/* Open dataset object */
dset2 = H5Rdereference(dataset, H5R_OBJECT, &rbuf[0]);

Code Example 6-33. Read a dataset with a reference datatype

The HDF Group 235

HDF5 Datatypes HDFS5 User’s Guide

6.6.3. ENUM

The enum datatype implements a set of (hame, value) pairs, similar to C/C++ enum. The values are cur-
rently limited to native integer datatypes. Each name can be the name of only one value, and each value
can have only one name.

The data elements of the ENUMERATION are stored according to the datatype. An example would be as an
array of integers. The example below shows an example of how to create an enumeration with five ele-
ments. The elements map symbolic names to 2-byte integers. See the table below.

hid_t hdf_en_colors = H5Tcreate(H5T_ENUM, sizeof(short));
short val;
H5Tenum_insert(hdf_en_colors, “RED”, (val=0,&val));
H5Tenum_insert(hdf_en_colors, “GREEN”, (val=1,&val));
H5Tenum_insert(hdf_en_colors, “BLUE”, (val=2,&val));
H5Tenum_insert(hdf_en_colors, “WHITE”, (val=3,&val));
H5Tenum_insert(hdf_en_colors, “BLACK”, (val=4,&val));

H5Dcreate(fileid, datasetname, hdf_en_colors, spaceid,
H5P_DEFAULT, HS5P_DEFAULT, H5P_DEFAULT);

Code Example 6-34. Create an enumeration with five elements

Table 6-22. An enumeration with five elements

Name Value
RED 0
GREEN 1
BLUE 2
WHITE 3
BLACK 4

The figure below shows how an array of eight values might be stored. Conceptually, the array is an array of
symbolic names [BLACK, RED, WHITE, BLUE, ...]. See item a in the figure below. These are stored as the val-
ues and are short integers. So, the first 2 bytes are the value associated with “BLACK”, which is the number
4, and so on. See item b in the figure below.

236 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

a) Logical data to be written - eight elements

Index Mame
| 0 |BLack

| 1 |jRep

| 2 |(WHITE

| 3 |BLUE

| 4 |ReD

| 5 |wHITE

| 6 |BLUE

| 7 |GREEN

offset of Eyte O Byte 1 Byte 2 Byte 3

“BLACK"
e valuE,L\.,‘ 00000000 | DO000100 | ©OODODOO | OOOOOODOD

Byte 4 | _,_...&gfe"? Byvte & Byte 7

of fset of HRED"‘H__,-MEEEEUU 00000011 | 00O0DOOOO | 00DOOO1D

iz 2, walue 0O Eyte 8 Byte 9 Byte 10 Eyte 11

o0oOoOoOo0 oooooooo oooooooo ooooo011

offset of Byte 12 Byte 13 Byte 14 Byte 15
"WHITE"™

is 4, value 3 0oo0ooao Q0000011 Qooooona ooooooo0l

b) The storage layout. Total size of the array is 16 bytes, 2 bytes per element.

Figure 6-17. Storing an enum array

The order that members are inserted into an enumeration type is unimportant; the important part is the
associations between the symbol names and the values. Thus, two enumeration datatypes will be consid-
ered equal if and only if both types have the same symbol/value associations and both have equal under-
lying integer datatypes. Type equality is tested with the H5Tequal function.

If a particular architecture type is required, a little-endian or big-endian datatype for example, use a native
integer datatype as the ENUM base datatype and use H5Tconvert on values as they are read from or
written to a dataset.

The HDF Group 237

HDF5 Datatypes HDFS5 User’s Guide

6.6.4. Opaque

In some cases, a user may have data objects that should be stored and retrieved as blobs with no attempt
to interpret them. For example, an application might wish to store an array of encrypted certificates which
are 100 bytes long.

While an arbitrary block of data may always be stored as bytes, characters, integers, or whatever, this
might mislead programs about the meaning of the data. The opaque datatype defines data elements
which are uninterpreted by HDF5. The opaque data may be labeled with H5Tset_tag with a string that
might be used by an application. For example, the encrypted certificates might have a tag to indicate the
encryption and the certificate standard.

6.6.5. Bitfield

Some data is represented as bits, where the number of bits is not an integral byte and the bits are not nec-
essarily interpreted as a standard type. Some examples might include readings from machine registers (for
example, switch positions), a cloud mask, or data structures with several small integers that should be
store in a single byte.

This data could be stored as integers, strings, or enumerations. However, these storage methods would
likely result in considerable wasted space. For example, storing a cloud mask with one byte per value
would use up to eight times the space of a packed array of bits.

The HDF5 bitfield datatype class defines a data element that is a contiguous sequence of bits, which are
stored on disk in a packed array. The programming model is the same as for unsigned integers: the data-
type object is created by copying a predefined datatype, and then the precision, offset, and padding are
set.

While the use of the bitfield datatype will reduce storage space substantially, there will still be wasted
space if the bitfield as a whole does not match the 1-, 2-, 4-, or 8-byte unit in which it is written. The
remaining unused space can be removed by applying the N-bit filter to the dataset containing the bitfield
data. For more information, see "Using the N-bit Filter" on page 143.

6.7. Fill Values

The “fill value” for a dataset is the specification of the default value assigned to data elements that have

not yet been written. In the case of a dataset with an atomic datatype, the fill value is a single value of the
appropriate datatype, such as ‘0’ or *-1.0". In the case of a dataset with a composite datatype, the fill value
is a single data element of the appropriate type. For example, for an array or compound datatype, the fill
value is a single data element with values for all the component elements of the array or compound data-

type.

The fill value is set (permanently) when the dataset is created. The fill value is set in the dataset creation
properties in the H5Dcreate call. Note that the H5Dcreate call must also include the datatype of the

238 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

dataset, and the value provided for the fill value will be interpreted as a single element of this datatype.
The example below shows code which creates a dataset of integers with fill value -1. Any unwritten data
elements will be set to -1.

id_t plist_id;

nt Filler;

filler = -1;

plist_id = H5Pcreate(H5P_DATASET CREATE);

H5Pset Ffill _value(plist_id, H5T_NATIVE INT, &Filler);

/* Create the dataset with fill value “-1". */
dataset_id = H5Dcreate(file_id, “/dset”, H5T_STD_ 132BE,
dataspace_id, H5P_DEFAULT, plist_id, H5P_DEFAULT);

Code Example 6-35. Create a dataset with a fill value of -1

typedef struct s1_t {
int a;
char b;
double c;

} sl t;

sl t filler;

sl tid = H5Tcreate (H5T_COMPOUND, sizeof(sl t));

H5Tinsert(sl_tid, “a name”, HOFFSET(sl t, a),
H5T_NATIVE_INT);

H5Tinsert(sl _tid, “b_name”, HOFFSET(sl t, b),
H5T_NATIVE_CHAR);

H5Tinsert(sl_tid, “c_name”, HOFFSET(sl t, c),
H5T_NATIVE_DOUBLE) ;

filler.a = -1;

filler.b = “*7;

filler.c = -2.0;

plist_id = H5Pcreate(H5P_DATASET CREATE);

H5Pset Fill _value(plist_id, sl _tid, &filler);

/* Create the dataset with fill value */

/* (-1, “*7, -2.0). */

dataset = H5Dcreate(file, datasetname, sl _tid, space,
HSP_DEFAULT, plist_id, H5P_DEFAULT);

Code Example 6-36. Create a fill value for a compound datatype

The HDF Group 239

HDF5 Datatypes HDFS5 User’s Guide

The figure above shows how to create a fill value for a compound datatype. The procedure is the same as
the previous example except the filler must be a structure with the correct fields. Each field is initialized to
the desired fill value.

The fill value for a dataset can be retrieved by reading the dataset creation properties of the dataset and
then by reading the fill value with H5Pget_fill_value. The data will be read into memory using the
storage layout specified by the datatype. This transfer will convert data in the same way as H5Dread. The
example below shows how to get the fill value from the dataset created in the example "Create a dataset
with a fill value of -1" on page 239.

d

hid_t
int fi

plist2;
|

i
n ler;

dataset_id = H5Dopen(file_id, “/dset”, H5P_DEFAULT);
plist2 = H5Dget_create plist(dataset _id);

H5Pget Ffill_value(plist2, HS5T_NATIVE_INT, &filler);

/* Tiller has the fill value, “-17 */

Code Example 6-37. Retrieve a fill value

A similar procedure is followed for any datatype. The example below shows how to read the fill value for
the compound datatype created in an example above. Note that the program must pass an element large
enough to hold a fill value of the datatype indicated by the argument to H5Pget_Fill_value. Also, the
program must understand the datatype in order to interpret its components. This may be difficult to
determine without knowledge of the application that created the dataset.

char * fillbuf;
int sz;
dataset = H5Dopen(file, DATASETNAME, H5P_DEFAULT);

sl tid = H5Dget_type(dataset);

Code Example 6-38. Read the fill value for a compound datatype

240 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

sz = H5Tget_size(sl_tid);
fillbuf = (char *)malloc(sz);

plist_id = H5Dget create plist(dataset);

HsPget_fill _value(plist_id, s1_tid, fillbuf);

printf(“filler.a: %d\n”,((sl_t *) fillbuf)->a);
printf(“filler_.b: %c\n”,((s1_t *) Ffillbuf)->b);
printf(“filler.c: %fA\n”,((s1_t *) Ffillbuf)->c);

Code Example 6-38. Read the fill value for a compound datatype

6.8. Complex Combinations of Datatypes

Several composite datatype classes define collections of other datatypes, including other composite data-
types. In general, a datatype can be nested to any depth, with any combination of datatypes.

For example, a compound datatype can have members that are other compound datatypes, arrays, VL
datatypes. An array can be an array of array, an array of compound, or an array of VL. And a VL datatype
can be a variable-length array of compound, array, or VL datatypes.

These complicated combinations of datatypes form a logical tree, with a single root datatype, and leaves
which must be atomic datatypes (predefined or user-defined). The figure below shows an example of a
logical tree describing a compound datatype constructed from different datatypes.

Recall that the datatype is a description of the layout of storage. The complicated compound datatype is
constructed from component datatypes, each of which describe the layout of part of the storage. Any
datatype can be used as a component of a compound datatype, with the following restrictions:

1. No byte can be part of more than one component datatype (in other words, the fields cannot
overlap within the compound datatype)

2. The total size of the components must be less than or equal to the total size of the compound
datatype

These restrictions are essentially the rules for C structures and similar record types familiar from program-
ming languages. Multiple typing, such as a C union, is not allowed in HDF5 datatypes.

The HDF Group 241

HDF5 Datatypes HDFS5 User’s Guide

Compound
|
I I I I
Compound Atomic Array VL
VL Atomic Compound VL
Atomic VL Atomic Atomic
I
Atomic

Figure 6-18. A compound datatype built with different datatypes

6.8.1. Creating a Complicated Compound Datatype

To construct a complicated compound datatype, each component is constructed, and then added to the
enclosing datatype description. The example below shows how to create a compound datatype with four
members:

e “T1” a compound datatype with three members
e “T2” acompound datatype with two members
e “T3” aone-dimensional array of integers
e “T4” astring
Below the example code is a figure that shows this datatype as a logical tree. The output of the h5dump

utility is shown in the example below the figure.

Each datatype is created as a separate datatype object. Figure 20 below shows the storage layout for the
four individual datatypes. Then the datatypes are inserted into the outer datatype at an appropriate off-
set. Figure 21 below shows the resulting storage layout. The combined record is 89 bytes long.

The Dataset is created using the combined compound datatype. The dataset is declared to be a 4 by 3
array of compound data. Each data element is an instance of the 89-byte compound datatype. Figure 22
below shows the layout of the dataset, and expands one of the elements to show the relative position of
the component data elements.

242 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

Each data element is a compound datatype, which can be written or read as a record, or each field may be
read or written individually. The first field (“T1”) is itself a compound datatype with three fields (“T1.a”,
“T1.b”, and “T1.c”). “T1” can be read or written as a record, or individual fields can be accessed. Similarly,
the second filed is a compound datatype with two fields (“T2.f1”, “T2.f2").

The third field (“T3”) is an array datatype. Thus, “T3” should be accessed as an array of 40 integers. Array
data can only be read or written as a single element, so all 40 integers must be read or written to the third
field. The fourth field (“T4”) is a single string of length 25.

typedef struct sl1_t {
int a;
char b;
double c;

} sl t;

typedef struct s2_t {
float f1;
float f2;
} s2_t;
hid_t sl_tid, s2_tid, s3_tid, s4_tid, sb5_tid;

/* Create a datatype for sl */

sl _tid = H5Tcreate (H5T_COMPOUND, sizeof(sl t));

H5Tinsert(sl_tid, “a name”, HOFFSET(sl t, a),
H5T_NATIVE_INT);

H5Tinsert(sl_tid, “b_name”, HOFFSET(sl_ t, b),
H5T_NATIVE_CHAR);

H5Tinsert(sl _tid, “c_name”, HOFFSET(sl t, c),
H5T_NATIVE_DOUBLE) ;

/* Create a datatype for s2. *.

s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2 _t));

H5Tinsert(s2_tid, “fl1”, HOFFSET(s2_t, f1),
H5T_NATIVE_FLOAT);

H5Tinsert(s2_tid, “f2”, HOFFSET(s2_t, f2),
HST_NATIVE_FLOAT);

/* Create a datatype for an Array of integers */
s3_tid = H5Tarray_create(H5T_NATIVE_INT, RANK, dim);

/* Create a datatype for a String of 25 characters */
s4_tid = H5Tcopy(H5T_C _S1);
H5Tset_size(s4_tid, 25);

Code Example 6-39. Create a compound datatype with four members

The HDF Group 243

HDF5 Datatypes HDFS5 User’s Guide

/*

* Create a compound datatype composed of one of each of
* these types. The total size is the sum of the size of
* each.

*/

sz = H5Tget_size(sl_tid) + H5Tget size(s2_tid) +
H5Tget_size(s3_tid) + H5Tget size(s4_tid);

s5 _tid = H5Tcreate (H5T_COMPOUND, sz);

/* Insert the component types at the appropriate */
* offsets.
*/

H5Tinsert(s5_tid, “T1”, 0, sl1_tid);

H5Tinsert(s5_tid, “T2”, sizeof(sl t), s2_tid);

H5Tinsert(s5_tid, “T3”, sizeof(sl t)+sizeof(s2_t), s3 _tid);

H5Tinsert(s5_tid, “T4”, (sizeof(sl_t) +sizeof(s2_t)+
H5Tget_size(s3_tid)), s4_tid);

/*

* Create the dataset with this datatype.

*/

dataset = H5Dcreate(file, DATASETNAME, s5_tid, space,
H5P_DEFAULT, HS5P_DEFAULT, HS5P_DEFAULT);

Code Example 6-39. Create a compound datatype with four members

244 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

55 tid
T1| Compound | TZ| Compound | T3| Armay T4| String
NATIVE_INT | | NATIVE_CHAR | | NATIVE DOUELE NATIVE INT
Tl.a Tl.b Tl.c

NATIVE _FLOAT NATIVE FLOAT

T2.£f1l T2.£2

Figure 6-19. Logical tree for the compound datatype with four members

DATATYPE H5T_COMPOUND {

H5T_COMPOUND {
H5T_STD_I32LE “a_name”’;
H5T _STD I8LE “b_name™;
H5T_ IEEE_F64LE ““c_name”;

> T

H5T_COMPOUND {
H5T IEEE_F32LE “fl1”;
H5T IEEE_F32LE “f2”°;

> vT27;

H5T_ARRAY { [10] H5T_STD I32LE } “T3”;
H5T_STRING {

STRSIZE 25;

STRPAD H5T_STR_NULLTERM;

CSET H5T_CSET_ASCII;

CTYPE H5T_C_S1;
) S

Code Example 6-40. Output from h5dump for the compound datatype

The HDF Group 245

HDF5 Datatypes

HDF5 User’s Guide

a) Compound type ‘s1_t’, size 16 bytes.

| Byte 0 ” Byte 1 ” Byte 2 ” Byte 3 |
| aaaaaaasa || adgaaaaaa || daaaaaasa || aaaaaaaa |
| Byte 4 ” Byte 5 ” Byte & ” Byte 7 |
| bhbbkbbh [[[|
Byte & [Byte 9 [Byte 10		Evte 11					
e] e e]]	4		CCCCCCCC]]] 3 3 3] e		e e o] e e e
Byte 12		Byte 13 [Byte 14 [Byte 15					
g] el]] e i		CCCCCCCC		CooCoCor		CCCCCCCC	
b) Compound type ‘s2_t’, size 8 bytes.							
Byte 0 ” Byte 1 ” Byte 2 ” Byte 3							
fEEFELEE [fEEFEEEE [fEEFELEE [fEEFELEE							
Byte 4		Bvte &		Byte &		Byte 7	
gogggggy		gogggggy		gUgggggy [g9gggggy			
c) Array type ‘s3_tid’, 40 integers, total size 40 bytes.							
Eyte 0		Eycte 1		Byrce 2		Byte 3	
00000000 [00000000 [00000000 [00000000							
Eyce 4		BEyce 5		Eyte &		Eyte 7	
00000000		00000000 [00000000		00000001			
Byte 36 [Byte 37 [Byte 38 [Byte 39							
00000000		00000000 [00000000	00001010				
d) String type ‘s4_tid’, size 25 bytes.							
Byte O ” Byte 1 ” Byte 2 ” EByte 3							
\af		\br		\cf		\dr	
Syte 24 [l Byte 25	Byte 26	Byte 27					
00000000 I I I							

Figure 6-20. The storage layout for the four member datatypes

246

The HDF Group

HDF5 User’s Guide

V1Y offset 0 Byte O Byte 1 Byte 2 Byte 3
~— dadadaddaaadd|ldadadaadaaadd|ldaaaadaaaaal aaaadaaaa
Eyte 4 Byte 5 Eyte & Byte 7
bbbbbbhh
Byte 8 Byte 9 Byte 10 Byte 11
cecccccgccCc|ccCccCcCcCcC(eccCcCcCcCccCcelCcCCcCcCcCcCC
Byte 12 Byte 13 Byte 14 Byte 15
CeccCcCcCcCcC|ccCceCcCcCcCcC(eccCcCcCcCcCcelCCCCCCcCC
"T2", offset 16 Byte 16 Byte 17 Byte 18 Byte 19
= | FEFFFFEE | FEFFFFEff | FEEFFFFf | FEFFFFFF
Byte 20 Byte 21 Byte 22 Byte 23
aoagaagn goaggagaggqg agagagaogn agagagaon
"T3", offset 24 Byte 24 Byte 25 Byte 26 Byte 27
= [00000000(00000000(00000000| 00000000
Byte 28 Byte 29 Byte 30 Byte 31
00000000(00000000(00000000| 00000001
Byte 60 Eyte 61 Byte 62 Byte 63
00000000(00000000(00000000| 00001010
"T4" offset 64 Byte 64 Byte 65 Eyte 66 Byte 67
— rz* ' et o
Byte 68 Byte 63 Byte 90 Byte 91
00000000

HDEF5 Datatypes

Figure 6-21. The storage layout of the combined four members

The HDF Group 247

HDF5 Datatypes HDFS5 User’s Guide

a) A 4 x 3 array of Compound Datatype

89 byies B9 bytes 89 hytes 89 bytes
89 bytes B9 bytes 89 lwtes 89 bytes

89 bytes,” | B9 bytes |\ 89 bytes B89 bytes

LT T P T LT

b) Element [1,1] expanded

Figure 6-22. The layout of the dataset

6.8.2. Analyzing and Navigating a Compound Datatype

A complicated compound datatype can be analyzed piece by piece to discover the exact storage layout. In
the example above, the outer datatype is analyzed to discover that it is a compound datatype with four
members. Each member is analyzed in turn to construct a complete map of the storage layout.

The example below shows an example of code that partially analyzes a nested compound datatype. The
name and overall offset and size of the component datatype is discovered, and then its type is analyzed
depending on the datatype class. Through this method, the complete storage layout can be discovered.

248 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

sl _tid = H5Dget_type(dataset);

if (H5Tget _class(sl_tid) == H5T_COMPOUND) {
printf(““COMPOUND DATATYPE {\n”’);
sz = H5Tget_size(sl_tid);
nmemb = H5Tget _nmembers(sl_tid);
printf(*“ %d bytes\n”,sz);
printf(* %d members\n”,nmemb);

for (i =0; i < nmemb; i++) {
s2_tid = H5Tget_member_type(sl_tid, i);
if (H5Tget_class(s2_tid) == H5T_COMPOUND) {
/* recursively analyze the nested type. */

} else if (H5Tget _class(s2_tid) == H5T_ARRAY) {
sz2 = H5Tget_size(s2_tid);
printf(“ %s: NESTED ARRAY DATATYPE offset %d size %d
{\n”,
H5Tget _member_name(sl_tid, i),
H5Tget_member_offset(sl_tid, i),
sz2);
H5Tget array dims(s2_tid, dim);
s3_tid = H5Tget_super(s2_tid);
/* Etc., analyze the base type of the array */

} else {
/* analyze a simple type */
printf(“ %s: type code %d offset %d size %d\n”,

H5Tget _member_name(sl_tid, i),
H5Tget class(s2_tid),
H5Tget _member_offset(sl_tid, i),
H5Tget _size(s2_tid));

}

/* and so on... */

Code Example 6-41. Analyzing a compound datatype and its members

6.9. Life Cycle of the Datatype Object

Application programs access HDF5 datatypes through identifiers. Identifiers are obtained by creating a
new datatype or by copying or opening an existing datatype. The identifier can be used until it is closed or

The HDF Group 249

HDF5 Datatypes HDFS5 User’s Guide

until the library shuts down. See items a and b in the figure below. By default, a datatype is transient, and
it disappears when it is closed.

When a dataset or attribute is created (H5Dcreate or H5Acreate), its datatype is stored in the HDF5 file
as part of the dataset or attribute object. See item c in the figure below. Once an object created, its data-
type cannot be changed or deleted. The datatype can be accessed by calling H5Dget_type, H5Aget_-
type, H5Tget _super, or H5Tget _member_type. See item d in the figure below. These calls return an
identifier to a transient copy of the datatype of the dataset or attribute unless the datatype is a committed
datatype.

Note that when an object is created, the stored datatype is a copy of the transient datatype. If two objects
are created with the same datatype, the information is stored in each object with the same effect as if two
different datatypes were created and used.

A transient datatype can be stored using HSTcommit in the HDFS5 file as an independent, named object,
called a committed datatype. Committed datatypes were formerly known as named datatypes. See item e
in the figure below. Subsequently, when a committed datatype is opened with H5Topen (item f), or is
obtained with H5Tget_type or similar call (item k), the return is an identifier to a transient copy of the
stored datatype. The identifier can be used in the same way as other datatype identifiers except that the
committed datatype cannot be modified. When a committed datatype is copied with H5Tcopy, the return
is a new, modifiable, transient datatype object (item f).

When an object is created using a committed datatype (H5Dcreate, H5Acreate), the stored datatype is
used without copying it to the object. See item j in the figure below. In this case, if multiple objects are cre-
ated using the same committed datatype, they all share the exact same datatype object. This saves space
and makes clear that the datatype is shared. Note that a committed datatype can be shared by objects
within the same HDF5 file, but not by objects in other files. For more information on copying committed
datatypes to other HDF5 files, see the “Copying Committed Datatypes with H50copy” topic in the “Addi-
tional Resources” chapter.

A committed datatype can be deleted from the file by calling H5Lde lete which replaces H5Gunl ink. See
item i in the figure below. If one or more objects are still using the datatype, the committed datatype can-
not be accessed with H5Topen, but will not be removed from the file until it is no longer used. H5Tget_ -
type and similar calls will return a transient copy of the datatype.

250 The HDF Group

http://www.hdfgroup.org/HDF5/doc/Advanced/CommittedDatatypeCopying/CopyingCommittedDatatypesWithH5Ocopy.pdf

HDF5 User’s Guide HDF5 Datatypes

Special case: 1f

named datatvpe is
still referenced.
Not shown in this
diagram.

Stored
a)HSTcreats, o £
a5 O
HATvlen creakts, as object
HaTarray create,
HSTenum creats,
H3Toopy

gyHETopen

Ty

& HETeommit

B)HSTcloze _ Transient
Transient reference to

stored datatype

@)

DYHS Tcopy

cyHSDoreats,

J)HEDcres
HShcreate

HESAcre

dyHSDget type,
HSARget type,
HSTget super,
HSTget member type

kKYHEDget tvpe,
HEBAget type,
HiTget super,
HETget member type

Pointer to
stored datatype
stored
in object

Stored
i object

: e
i)HSGunlink ~g~

@)

RY}HETClose

Figure 6-23. Life cycle of a datatype

Transient datatypes are initially modifiable. Note that when a datatype is copied or when it is written to
the file (when an object is created) or the datatype is used to create a composite datatype, a copy of the
current state of the datatype is used. If the datatype is then modified, the changes have no effect on data-

sets, attributes, or datatypes that have already been created. See the figure below.

A transient datatype can be made read-only (H5T lock). Note that the datatype is still transient, and oth-
erwise does not change. A datatype that is immutable is read-only but cannot be closed except when the
entire library is closed. The predefined types such as H5T_NATIVE_INT are immutable transient types.

The HDF Group

251

HDF5 Datatypes HDFS5 User’s Guide

Use datatvpe

HETlock,
HETeommit

HETclase HETclose

Read-only

Moditiable

Use datatvpe

Predetined
Change properties

Immutable

Use datatvpe

Figure 6-24. Transient datatype states: modifiable, read-only, and immutable

To create two or more datasets that share a common datatype, first commit the datatype, and then use
that datatype to create the datasets. See the example below.

hid_t t1 = ..._.some transient type...;

H5Tcommit (file, “shared_type”, tl1, H5P_DEFAULT, H5P_DEFAULT,
HS5P_DEFAULT);

hid_t dsetl = H5Dcreate (file, “dsetl”, tl, space, H5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

hid_t dset2 = H5Dcreate (file, “dset2”, tl, space, H5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

t dsetl = HS5Dopen (file, “dsetl”, H5P_DEFAULT);

t t2 = H5Dget_type (dsetl);

t dset3 = H5Dcreate (file, “dset3”, t2, space, HS5P_DEFAULT,
H5P_DEFAULT, H5P_DEFAULT);

hid_t dset4 = H5Dcreate (file, “dset4”, t2, space, HS5P _DEFAULT,

H5P_DEFAULT, H5P_DEFAULT);

Code Example 6-42. Create a shareable datatype

252 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

Table 6-23. Datatype APIs

Function Description

hid_t H5Topen (hid_t location, const A committed datatype can be opened by

char *name) calling this function, which returns a data-
type identifier. The identifier should even-
tually be released by calling H5Tclose()
to release resources. The committed data-
type returned by this function is read-only
or a negative value is returned for failure.
The location is either a file or group iden-

tifier.
herr_t H5Tcommit (hid_t location, A transient datatype (not immutable) can
const char *name, hid_t type, H5P_DE- be written to a file and turned into a com-
FAULT, H5P_DEFAULT, H5P_DEFAULT) mitted datatype by calling this function.

The location is either a file or group iden-
tifier and when combined with name
refers to a new committed datatype.

htri_t H5Tcommitted (hid_t type) A type can be queried to determine if it is
a committed type or a transient type. If
this function returns a positive value then
the type is committed. Datasets which
return committed datatypes with
H5Dget_type() are able to share the
datatype with other datasets in the same
file.

6.10. Data Transfer: Datatype Conversion and Selection

When data is transferred (write or read), the storage layout of the data elements may be different. For
example, an integer might be stored on disk in big-endian byte order and read into memory with little-
endian byte order. In this case, each data element will be transformed by the HDF5 Library during the data
transfer.

The conversion of data elements is controlled by specifying the datatype of the source and specifying the
intended datatype of the destination. The storage format on disk is the datatype specified when the data-
set is created. The datatype of memory must be specified in the library call.

In order to be convertible, the datatype of the source and destination must have the same datatype class
(with the exception of enumeration type). Thus, integers can be converted to other integers, and floats to
other floats, but integers cannot (yet) be converted to floats. For each atomic datatype class, the possible

The HDF Group 253

HDF5 Datatypes HDFS5 User’s Guide

conversions are defined. An enumeration datatype can be converted to an integer or a floating-point num-
ber datatype.

Basically, any datatype can be converted to another datatype of the same datatype class. The HDF5 Library
automatically converts all properties. If the destination is too small to hold the source value then an over-
flow or underflow exception occurs. If a handler is defined with the H5Pset_type_conv_cb function, it
will be called. Otherwise, a default action will be performed. The table below summarizes the default
actions.

Table 6-24. Default actions for datatype conversion exceptions

Datatype Class Possible Exceptions Default Action

Integer Size, offset, pad

Float Size, offset, pad, ebits

String Size Truncates, zero terminate if required.
Enumeration No field All bits set

For example, when reading data from a dataset, the source datatype is the datatype set when the dataset
was created, and the destination datatype is the description of the storage layout in memory. The destina-
tion datatype must be specified in the H5Dread call. The example below shows an example of reading a

dataset of 32-bit integers. The figure below the example shows the data transformation that is performed.

/* Stored as H5T_STD BE32 */

/* Use the native memory order in the destination */

mem_type_id = H5Tcopy(HST_NATIVE_INT);

status = H5Dread(dataset_id, mem_type id, mem_space_id,
file_space_id, xfer_plist_id, buf);

Code Example 6-43. Specify the destination datatype with H5Dread

254 The HDF Group

HDF5 User’s Guide HDF5 Datatypes
Source Datatype: H5T_STD_BE32
| Byte 0 ” Byte 1 ” Byte 2 ” Byte 3 |
| aaasaaasa || bbbbbbbb || (ot oot ol ad ol || dddddddd |
| Byte 4 || Byte 5 || Byte & || Byte 7
| WA WA || HEKKEEKK || YYYYYYVY || ZZZZZZZZ

Destination Datatype: H5T_STD_ LE32

Automatically byte swapped

during the H5Dread

| Byvte 0 ” Byte 1 ” Byte 2 ” Byte 3 |
| bbbbbbbb || anaasaasd || dddddddd || CCCCCCCC

| Byte 4 ” Byte 5 ” Byte 6 ” Byte 7 |
| KEXEEKKE || WA || ZZZEZZZZZ || YVVVVVYY |

Figure 6-25. Layout of a datatype conversion

One thing to note in the example above is the use of the predefined native datatype H5T_NATIVE_INT.
Recall that in this example, the data was stored as a 4-bytes in big-endian order. The application wants to
read this data into an array of integers in memory. Depending on the system, the storage layout of mem-
ory might be either big or little-endian, so the data may need to be transformed on some platforms and
not on others. The H5T_NATIVE_ INT type is set by the HDF5 Library to be the correct type to describe
the storage layout of the memory on the system. Thus, the code in the example above will work correctly
on any platform, performing a transformation when needed.

There are predefined native types for most atomic datatypes, and these can be combined in composite
datatypes. In general, the predefined native datatypes should always be used for data stored in memory.

Storage Properties

Predefined native datatypes describe the storage
properties of memory.

The HDF Group

255

HDF5 Datatypes HDFS5 User’s Guide

For composite datatypes, the component atomic datatypes will be converted. For a variable-length data-
type, the source and destination must have compatible base datatypes. For a fixed-size string datatype,
the length and padding of the strings will be converted. Variable-length strings are converted as variable-
length datatypes.

For an array datatype, the source and destination must have the same rank and dimensions, and the base
datatype must be compatible. For example an array datatype of 4 x 3 32-bit big-endian integers can be
transferred to an array datatype of 4 x 3 little-endian integers, but not to a 3 x 4 array.

For an enumeration datatype, data elements are converted by matching the symbol names of the source
and destination datatype. The figure below shows an example of how two enumerations with the same
names and different values would be converted. The value ‘2’ in the source dataset would be converted to
‘0x0004’ in the destination.

If the source data stream contains values which are not in the domain of the conversion map then an over-
flow exception is raised within the library.

RED ——— RED 0Ox0D001
GREEN ————— GREEN Ox0002
BLUE —~——————= BLUE 0x0004
WHITE ———————————s WHITE Ox0008&
BLACK - BLACK 0x0010

b W R = D

Figure 6-26. An enum datatype conversion

The library also allows conversion from enumeration to a numeric datatype. A numeric datatype is either
an integer or a floating-point number. This conversion can simplify the application program because the
base type for an enumeration datatype is an integer datatype. The application program can read the data
from a dataset of enumeration datatype in file into a memory buffer of numeric datatype. And it can write
enumeration data from memory into a dataset of numeric datatype in file, too.

For compound datatypes, each field of the source and destination datatype is converted according to its
type. The name of the fields must be the same in the source and the destination in order for the data to
be converted.

The example below shows the compound datatypes shows sample code to create a compound datatype
with the fields aligned on word boundaries (s1_tid) and with the fields packed (s2_tid). The former is suit-
able as a description of the storage layout in memory, the latter would give a more compact store on disk.
These types can be used for transferring data, with s2_tid used to create the dataset, and s1_tid used
as the memory datatype.

256 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

typedef struct sl _t {
int a;
char b;
double c;

} sl t;

sl _tid = H5Tcreate (H5T_COMPOUND, sizeof(sl t));

H5Tinsert(sl_tid, “a name”, HOFFSET(sl t, a),
H5T_NATIVE_INT);

H5Tinsert(sl_tid, “b_name”, HOFFSET(sl t, b),
H5T_NATIVE_CHAR);

H5Tinsert(sl_tid, “c_name”, HOFFSET(sl t, c),
H5T_NATIVE_DOUBLE) ;

s2_tid = H5Tcopy(sl_tid);
H5Tpack(s2_tid);

Code Example 6-44. Create an aligned and packed compound datatype

When the data is transferred, the fields within each data element will be aligned according to the datatype
specification. The figure below shows how one data element would be aligned in memory and on disk.
Note that the size and byte order of the elements might also be converted during the transfer.

It is also possible to transfer some of the fields of compound datatypes. Based on the example above, the
example below shows a compound datatype that selects the first and third fields of the s1_tid. The sec-
ond datatype can be used as the memory datatype, in which case data is read from or written to these two
fields, while skipping the middle field. The second figure below shows the layout for two data elements.

The HDF Group 257

HDF5 Datatypes HDFS5 User’s Guide

Compound Datatype, with fields aligned on 4-lyte houndaries

(memory).
oftset of "2t Byte O Byte 1 Byte 2 Byte 3
is 0 aaaaaaaalaaaaaaaalaaaaaaaajaaaaaaaa
N / Byte 4 Byte 5 Byte 6 Byte 7
g bbbbbbbb |00000000|DO0OOOOO|OOOO0OODO0ODO
154 Byte 8 Byte 9 Biyte 10 Byte 11
offset of cccg,d/ccc ceeccccccleccccece|eccceced
isca _Ayte 12 Eyte 13 Byte 14 Byte 15
ccececcec|lcececceccce|cecccecce|/cccececcee

3 bytes of padding
after "n", offset 5 Automatically aligned during
transter.

Compound Datatype, with compacted fields (Disk).

offset af "a" Byte 0 Byte 1 Byte 2 Byte 3
is 0 434343343434|Aa343A44344|adaddaaaa aaaaaaaa
offset of Byte 4 Byte 5 Byte 6 Byte 7
"n" bbbbbbbb |cccecece|cececcece| cococococee
54 I—Tes Byte 9 Byte 10 Byte 11
:IJETESEth cCcCcccCcCecjcccCecCCC|CCecCCCCC| CCCCCCC
i5 5 Byte 12
CCCCCCCC

Mo padding
between "b" and "c"

Figure 6-27. Alignment of a compound datatype

258 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

typedef struct sl _t {
int a;
char b;
double c;

} sl t;

typedef struct s2 t { /* two fields from s1_ t */
int a;
double c;

} s2_t;

sl _tid = H5Tcreate (H5T_COMPOUND, sizeof(sl_t));

H5Tinsert(sl _tid, “a name”, HOFFSET(sl t, a),
HS5T_NATIVE_INT);

H5Tinsert(sl_tid, “b_name”, HOFFSET(sl t, b),
H5T_NATIVE_CHAR);

H5Tinsert(sl_tid, “c_name”, HOFFSET(sl t, c),
H5T_NATIVE_DOUBLE);

s2_tid = H5Tcreate (H5T_COMPOUND, sizeof(s2 _t));

H5Tinsert(sl_tid, “a name”, HOFFSET(s2_t, a),
H5T_NATIVE_INT);

H5Tinsert(sl_tid, “c_name”, HOFFSET(s2_t, c),
H5T_NATIVE_DOUBLE) ;

Code Example 6-45. Transfer some fields of a compound datatype

The HDF Group 259

HDF5 Datatypes HDFS5 User’s Guide

Compound Datatype, with 3 fields aligned on 4-byte boundaries.
offset of 2" Byte O Byte 1 Byte 2 Byte 3
is 0 daaaaaaajaaaaaaaralaaaaaaaalaaaaaaaa
— / Byte 4 Byte 5 Byie 6 Byte 7
e goooooOonjoopQODODO|(ODOOOODOD
i5 4 Eyte 8 Eyte 9 Byte 10 Byte 11
offset of cccecceg|cecceccCC|(ececececce|ecececccec
isca Byte 12 Byte 13 Byte 14 Byte 15
cceccccc|cecceecC|ececceecce|(ecececcee
Automatically selected and
aligned during transfer. "k0"
i5 skipped in each element.
Compound Datatype, with selected fields (mermaory).
Offset of "37 Byte 0 Byte 1 Byte 2 Byte 3
is0 /aaaaaaaa Aaaaaaaalaaaaaaaal aaaaaaaa
affset of Byte 4 Byte 5 Byte 6 Byte 7
f'c" cccccccc|cccocccct|(cececcececcc|ccocecocee
LE Byte 8 Byte 9 Byte 10 Byte 11
CCCCCCCC|¢CCCCCCC|CeeCCeCC|CCCCECEL

Figure 6-28. Layout when an element is skipped

6.11. Text Descriptions of Datatypes: Conversion to and

from

HDF5 provides a means for generating a portable and human-readable text description of a datatype and
for generating a datatype from such a text description. This capability is particularly useful for creating
complex datatypes in a single step, for creating a text description of a datatype for debugging purposes,
and for creating a portable datatype definition that can then be used to recreate the datatype on many
platforms or in other applications.

These tasks are handled by two functions provided in the HDF5 Lite high-level library:

260 The HDF Group

http://www.hdfgroup.org/HDF5/doc/HL/RM_H5LT.html

HDF5 User’s Guide HDF5 Datatypes

e H5LTtext to_dtype Creates an HDF5 datatype in a single step.
e H5LTdtype to text Translates an HDF5 datatype into a text description.

Note that this functionality requires that the HDF5 High-Level Library (H5LT) be installed.

While H5LTtext to_dtype can be used to generate any sort of datatype, it is particularly useful for
complex datatypes.

H5LTdtype_to_text is most likely to be used in two sorts of situations: when a datatype must be
closely examined for debugging purpose or to create a portable text description of the datatype that can
then be used to recreate the datatype on other platforms or in other applications.

These two functions work for all valid HDF5 datatypes except time, bitfield, and reference datatypes.

The currently supported text format used by H5LTtext_to_dtype and H5LTdtype_to_text is the
data description language (DDL) and conforms to the HDF5 DDL. The portion of the HDF5 DDL that defines
HDF5 datatypes appears below.

<datatype> ::= <atomic_type> | <compound_type> |
<array_type> | <variable_length_type>

<atomic_type> ::= <integer> | <float> | <time> |
<string> | <bitfield> | <opaque> |
<reference> | <enum>

<integer> ::= H5T_STD_ISBE | H5T_STD_ISLE |
H5T_STD_116BE | H5T_STD_I16LE |
H5T_STD_132BE | H5T_STD_I32LE |
H5T_STD_164BE | H5T_STD_I64LE |
H5T _STD_USBE | H5T_STD USLE |
H5T_STD_U16BE | H5T_STD_U16LE |
H5T_STD_U32BE | H5T_STD U32LE |
H5T_STD_UG4BE | H5T_STD UG4LE |
H5T _NATIVE_CHAR | H5T_NATIVE_UCHAR |
H5T _NATIVE_SHORT | H5T_NATIVE_USHORT |
H5T _NATIVE_INT | H5T_NATIVE_UINT |
H5T_NATIVE_LONG | H5T_NATIVE_ULONG |
H5T_NATIVE_LLONG | H5T_NATIVE_ULLONG

<float> ::= H5T_IEEE_F32BE | H5T_IEEE_F32LE |
H5T_IEEE_F64BE | H5T_IEEE_F64LE |
H5T_NATIVE_FLOAT | H5T_NATIVE_DOUBLE |
H5T_NATIVE_LDOUBLE

<time> ::= TBD

Code Example 6-46. The definition of HDF5 datatypes from the HDF5 DDL

The HDF Group 261

http://www.hdfgroup.org/HDF5/doc/HL/RM_H5LT.html#H5LTtext_to_dtype
http://www.hdfgroup.org/HDF5/doc/HL/RM_H5LT.html#H5LTdtype_to_text
http://www.hdfgroup.org/HDF5/doc/ddl.html

HDF5 Datatypes HDFS5 User’s Guide

<string> ::= HS5T_STRING { STRSIZE <strsize> ;
STRPAD <strpad> ;
CSET <cset> ;
CTYPE <ctype> ;}

<strsize> ::= <int_value> | H5T_VARIABLE
<strpad> ::= H5T_STR_NULLTERM | H5T_STR_NULLPAD |
H5T_STR_SPACEPAD

<cset> ::= H5T_CSET_ASCII | H5T_CSET_UTF8

<ctype> ::= H5T_C_S1 | H5T_FORTRAN_S1

<bitfield> ::= TBD

<opaque> ::= H5T _OPAQUE { OPQ_SIZE <opg_size>;
OPQ_TAG <opq_tag>; }

opg_size ::= <int_value>

opg_tag ::= "<string>"

<reference> ::= Not supported

<compound_type> ::= H5T_COMPOUND { <member_type_def>+ }

<member_type_def> ::= <datatype> <field_name> <offset>opt;

<fField_name> ::= "<identifier>"

<offset> ::= : <int_value>

<variable_length_type> ::= H5T_VLEN { <datatype> }

<array_type> ::= H5T_ARRAY { <dim_sizes> <datatype> }

<dim_sizes> ::= [<dimsize>] | [<dimsize>] <dim_sizes>

<dimsize> ::= <int_value>

<enum> ::= H5T ENUM { <enum_base type>; <enum_def>+ }

<enum_base_type> ::= <integer>

// Currently enums can only hold integer type data, but
// they may be expanded in the future to hold any
// datatype

<enum_def> ::= <enum_symbol> <enum_val>;
<enum_symbol> ::= "<identifier>"
<enum_val> ::= <int_value>

Code Example 6-46. The definition of HDF5 datatypes from the HDF5 DDL

The definitions of opaque and compound datatype above are revised for HDF5 Release 1.8. In Release
1.6.5. and earlier, they were defined as follows:

262 The HDF Group

HDF5 User’s Guide HDF5 Datatypes

<opaque> ::= H5T _OPAQUE { <identifier> }

<compound_type> ::= H5T_COMPOUND { <member_type_def>+ }
<member_type_def> ::= <datatype> <Field_name> ;
<field_name> ::= <identifier>

Code Example 6-47. Old definitions of the opaque and compound datatypes

Examples

The code sample below illustrates the use of H5LTtext_to_dtype to generate a variable-length string
datatype.

hid t dtype;

if((dtype = H5LTtext _to_dtype(“H5T_STRING {
STRSIZE H5T_VARIABLE;
STRPAD H5T_STR_NULLPAD;
CSET H5T_CSET_ASCII;
CTYPE H5T_C_S1;
¥}, H5LT_DDL))<O0)

goto out;

Code Example 6-48. Creating a variable-length string datatype from a text description

The code sample below illustrates the use of H5LTtext_to_dtype to generate a complex array data-
type.

The HDF Group 263

HDF5 Datatypes HDFS5 User’s Guide

hid t dtype;
if((dtype = H5LTtext to_dtype(“H5T_ARRAY { [5][7]1[13] H5T_ARRAY
{ [17]1[19] H5T_COMPOUND
{
H5T_STD_18BE
*“arr_compound_1\"’;
H5T_STD_132BE
\“arr_compound_2\"’;
}

}
3, H5LT_DDL))<0)

goto out;

Code Example 6-49. Creating a complex array datatype from a text description

264 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

7. HDF5 Dataspaces and Partial I/O

7.1. Introduction

The HDF5 dataspace is a required component of an HDF5 dataset or attribute definition. The dataspace
defines the size and shape of the dataset or attribute raw data. In other words, a dataspace defines the
number of dimensions and the size of each dimension of the multidimensional array in which the raw data
is represented. The dataspace must be defined when the dataset or attribute is created.

The dataspace is also used during dataset I/0 operations, defining the elements of the dataset that partic-
ipate in the 1/0O operation.

This chapter explains the dataspace object and its use in dataset and attribute creation and data transfer.
It also describes selection operations on a dataspace used to implement sub-setting, sub-sampling, and
scatter-gather access to datasets.

7.2. Dataspace (H5S) Function Summaries

This section provides a reference list of dataspace functions, the H5S APIs, with brief descriptions. The
functions are presented in the following categories:

¢ Dataspace management functions
¢ Dataspace query functions
¢ Dataspace selection functions: hyperslabs

e Dataspace selection functions: points

The rest of the chapter will provide examples and explanations of how to use these functions.

Function Listing 7-1. Dataspace management functions

C Function Purpose
Fortran Subroutine

H5Screate Creates a new dataspace of a specified type.
h5screate_F

H5Scopy Creates an exact copy of a dataspace.
h5scopy_T

H5Sclose Releases and terminates access to a
h5sclose_f dataspace.

The HDF Group 265

HDFS5 User’s Guide

HDF5 Dataspaces and Partial 1/0

Function Listing 7-1. Dataspace management functions

C Function
Fortran Subroutine

Purpose

H5Sdecode
h5sdecode_f

Decode a binary object description of a
dataspace and return a new object identifier.

H5Sencode
h5sencode

Encode a dataspace object description into a
binary buffer.

H5Screate_simple
hbscreate_simple_f

Creates a new simple dataspace and opens it
for access.

H5Sis_simple
h5sis_simple_F

Determines whether a dataspace is a simple
dataspace.

H5Sextent_copy
hbsextent _copy_F

Copies the extent of a dataspace.

H5Sextent_equal
h5sextent_equal F

Determines whether two dataspace extents
are equal.

H5Sset_extent_simple
h5sset_extent_simple F

Sets or resets the size of an existing
dataspace.

H5Sset_extent_none
h5sset_extent_none_f

Removes the extent from a dataspace.

Function Listing 7-2. Dataspace query functions

C Function
Fortran Subroutine

Purpose

H5Sget_simple_extent _dims
h5sget_simple_extent dims_f

Retrieves dataspace dimension size and maxi-
mum size.

H5Sget_simple_extent_ndims
h5sget_simple_extent _ndims_*f

Determines the dimensionality of a
dataspace.

H5Sget_simple_extent _npoints
h5sget_simple_extent npoints_f

Determines the number of elements in a
dataspace.

H5Sget_simple_extent_ type
h5sget_simple_extent type f

Determine the current class of a dataspace.

The HDF Group

266

HDFS5 User’s Guide

HDF5 Dataspaces and Partial 1/0

Function Listing 7-3. Dataspace selection functions: hyperslabs

C Function
Fortran Subroutine

Purpose

H5Soffset_simple
h5soffset_simple F

Sets the offset of a simple dataspace.

H5Sget_select_type
h5sget_select_type f

Determines the type of the dataspace selec-
tion.

H5Sget_select_hyper_nblocks
h5sget_select_hyper_nblocks f

Get number of hyperslab blocks.

H5Sget_select_hyper_blocklist
h5sget_select_hyper_blocklist_f

Gets the list of hyperslab blocks currently
selected.

H5Sget_select_bounds
h5sget_select_bounds_f

Gets the bounding box containing the current
selection.

H5Sselect _all
h5sselect_all_f

Selects the entire dataspace.

H5Sselect none
h5sselect none f

Resets the selection region to include no ele-
ments.

H5Sselect valid
hbsselect valid f

Verifies that the selection is within the extent
of the dataspace.

H5Sselect_hyperslab
h5sselect_hyperslab_f

Selects a hyperslab region to add to the cur-
rent selected region.

Function Listing 7-4. Dataspace selection functions: points

C Function
Fortran Subroutine

Purpose

H5Sget_select_npoints
h5sget_select_npoints_f

Determines the number of elements in a
dataspace selection.

H5Sget_select_elem_npoints
h5sget_select_elem _npoints_f

Gets the number of element points in the cur-
rent selection.

H5Sget_select_elem_pointlist
h5sget_select_elem_pointlist_f

Gets the list of element points currently
selected.

H5Sselect_elements
h5sselect_elements_F

Selects array elements to be included in the
selection for a dataspace.

The HDF Group

267

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

7.3. Definition of Dataspace Objects and the Dataspace
Programming Model

This section introduces the notion of the HDF5 dataspace object and a programming model for creating
and working with dataspaces.

7.3.1. Dataspace Objects

An HDF5 dataspace is a required component of an HDF5 dataset or attribute. A dataspace defines the size
and the shape of a dataset’s or an attribute’s raw data. Currently, HDF5 supports the following types of the
dataspaces:

e Scalar dataspaces
e Simple dataspaces

e Null dataspaces

A scalar dataspace, H5S_SCALAR, represents just one element, a scalar. Note that the datatype of this one
element may be very complex; example would be a compound structure with members being of any
allowed HDF5 datatype, including multidimensional arrays, strings, and nested compound structures. By
convention, the rank of a scalar dataspace is always O (zero); think of it geometrically as a single, dimen-
sionless point, though that point may be complex.

A simple dataspace, H5S_SIMPLE, is a multidimensional array of elements. The dimensionality of the
dataspace (or the rank of the array) is fixed and is defined at creation time. The size of each dimension can
grow during the life time of the dataspace from the current size up to the maximum size. Both the current
size and the maximum size are specified at creation time. The sizes of dimensions at any particular time in
the life of a dataspace are called the current dimensions, or the dataspace extent. They can be queried
along with the maximum sizes.

A null dataspace, H5S_NULL, contains no data elements. Note that no selections can be applied to a null
dataset as there is nothing to select.

As shown in the UML diagram in the figure below, an HDF5 simple dataspace object has three attributes:
the rank or number of dimensions; the current sizes, expressed as an array of length rank with each ele-
ment of the array denoting the current size of the corresponding dimension; and the maximum sizes,
expressed as an array of length rank with each element of the array denoting the maximum size of the
corresponding dimension.

The HDF Group 268

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

Simple dataspace |

rank:int
current size:hsize t[rank]
maximum size:hsize t[rank]

Figure 7-1. A simple dataspace

Note: A simple dataspace is defined by its rank, the current size of each dimension, and the maximum size of each
dimension.

The size of a current dimension cannot be greater than the maximum size, which can be unlimited, speci-
fied as H5S_UNLIMITED. Note that while the HDF5 file format and library impose no maximum size on an
unlimited dimension, practically speaking its size will always be limited to the biggest integer available on
the particular system being used.

Dataspace rank is restricted to 32, the standard limit in C on the rank of an array, in the current implemen-
tation of the HDF5 Library. The HDFS file format, on the other hand, allows any rank up to the maximum
integer value on the system, so the library restriction can be raised in the future if higher dimensionality is
required.

Note that most of the time Fortran applications calling HDF5 will work with dataspaces of rank less than or
equal to seven, since seven is the maximum number of dimensions in a Fortran array. But dataspace rank
is not limited to seven for Fortran applications.

The current dimensions of a dataspace, also referred to as the dataspace extent, define the bounding box
for dataset elements that can participate in I/O operations.

7.3.2. Dataspace Programming Model

The programming model for creating and working with HDF5 dataspaces can be summarized as follows:

1. Create a dataspace

2. Use the dataspace to create a dataset in the file or to describe a data array in memory
3. Modify the dataspace to define dataset elements that will participate in /O operations
4

Use the modified dataspace while reading/writing dataset raw data or to create a region refer-
ence

5. Close the dataspace when no longer needed

The rest of this section will address steps 1, 2, and 5 of the programming model; steps 3 and 4 will be dis-
cussed in later sections of this chapter.

The HDF Group 269

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

7.3.2.1. Creating a Dataspace

A dataspace can be created by calling the H5Screate function (h5screate_f in Fortran). Since the defi-
nition of a simple dataspace requires the specification of dimensionality (or rank) and initial and maximum
dimension sizes, the HDF5 Library provides a convenience APl, H5Screate_simple (h5screate_sim-

ple_T) to create a simple dataspace in one step.

The following examples illustrate the usage of these APIs.

7.3.2.2. Creating a Scalar Dataspace

A scalar dataspace is created with the H5Screate or the h5screate_f function.

InC:

hid_t space_id;

space_id = H5Screate(H5S_SCALAR);
In Fortran:

INTEGER(HID_T) :: space_id

CALL hb5screate T(H5S_SCALAR _F, space_id, error)

As mentioned above, the dataspace will contain only one element. Scalar dataspaces are used more often
for describing attributes that have just one value. For example, the attribute temperature with the value
Celsius is used to indicate that the dataset with this attribute stores temperature values using the Cel-
sius scale.

7.3.2.3. Creating a Null Dataspace

A null dataspace is created with the H5Screate or the h5screate_ T function.

In C:

hid_t space_id;

space_id = H5Screate(H5S _NULL);
In Fortran:

(H5S_NULL not yet implemented in Fortran.)
INTEGER(HID_T) :: space_id

CALL hb5screate f(H5S_NULL F, space_id, error)

As mentioned above, the dataspace will contain no elements.

The HDF Group 270

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

7.3.2.4. Creating a Simple Dataspace

Let’s assume that an application wants to store a two-dimensional array of data, A(20,100). During the life
of the application, the first dimension of the array can grow up to 30; there is no restriction on the size of
the second dimension. The following steps are used to declare a dataspace for the dataset in which the
array data will be stored.

In C:

hid_t space_id;

int rank = 2;

hsize_t current_dims[2] = {20, 100};

hsize_t max_dims[2] = {30, H5S UNLIMITED};

space_id = H5Screate(H5S_SIMPLE);

H5Sset_extent_simple(space_id,rank,current_dims,max_dims);
In Fortran:

INTEGER(HID_T) :: space_id

INTEGER :-: rank = 2

INTEGER(HSIZE_T) :: current dims = /(20, 100)/
INTEGER(HSIZE_T) :: max _dims = /(30, H5S_UNLIMITED F)/
INTEGER error

CALL hb5screate f(H5S_SIMPLE_F, space_id, error)
CALL hb5sset_extent_simple_f(space_id, rank, current _dims, max_dims,
error)

Alternatively, the convenience APIs H5Screate_simple/h5screate_simple T can replace the
H5Screate/h5screate_f and H5Sset_extent _simple/h5sset _extent_simple_ T calls.

In C:
space_id = H5Screate_simple(rank, current_dims, max_dims);
In Fortran:
CALL h5screate_simple_f(rank, current_dims, space_id, error, max_dims)

In this example, a dataspace with current dimensions of 20 by 100 is created. The first dimension can be
extended only up to 30. The second dimension, however, is declared unlimited; it can be extended up to
the largest available integer value on the system.

Note that when there is a difference between the current dimensions and the maximum dimensions of an
array, then chunking storage must be used. In other words, if the number of dimensions may change over
the life of the dataset, then chunking must be used. If the array dimensions are fixed (if the number of cur-
rent dimensions is equal to the maximum number of dimensions when the dataset is created), then con-
tiguous storage can be used. For more information, see "Data Transfer" on page 122.

Maximum dimensions can be the same as current dimensions. In such a case, the sizes of dimensions can-
not be changed during the life of the dataspace object. In C, NULL can be used to indicate to the H5Scre-
ate_simple and H5Sset_extent_simple functions that the maximum sizes of all dimensions are the

The HDF Group 271

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

same as the current sizes. In Fortran, the maximum size parameter is optional for h5screate_simple_f
and can be omitted when the sizes are the same.

In C:
space_id = H5Screate_simple(rank, current_dims, NULL);
In Fortran:

CALL hb5screate f(rank, current_dims, space_id, error)

The created dataspace will have current and maximum dimensions of 20 and 100 correspondingly, and the
sizes of those dimensions cannot be changed.

7.3.2.5. C versus Fortran Dataspaces

Dataspace dimensions are numbered from 1 to rank. HDF5 uses C storage conventions, assuming that the
last listed dimension is the fastest-changing dimension and the first-listed dimension is the slowest chang-
ing. The HDFS5 file format storage layout specification adheres to the C convention and the HDF5 Library
adheres to the same convention when storing dataspace dimensions in the file. This affects how C pro-
grams and tools interpret data written from Fortran programs and vice versa. The example below illus-
trates the issue.

When a Fortran application describes a dataspace to store an array as A(20,100), it specifies the value of
the first dimension to be 20 and the second to be 100. Since Fortran stores data by columns, the first-listed
dimension with the value 20 is the fastest-changing dimension and the last-listed dimension with the
value 100 is the slowest-changing. In order to adhere to the HDF5 storage convention, the HDF5 Fortran
wrapper transposes dimensions, so the first dimension becomes the last. The dataspace dimensions
stored in the file will be 100,20 instead of 20,100 in order to correctly describe the Fortran data that is
stored in 100 columns, each containing 20 elements.

When a Fortran application reads the data back, the HDF5 Fortran wrapper transposes the dimensions
once more, returning the first dimension to be 20 and the second to be 100, describing correctly the sizes
of the array that should be used to read data in the Fortran array A(20,100).

When a C application reads data back, the dimensions will come out as 100 and 20, correctly describing
the size of the array to read data into, since the data was written as 100 records of 20 elements each.
Therefore C tools such as h5dump and h51's always display transposed dimensions and values for the data
written by a Fortran application.

Consider the following simple example of equivalent C 3 x 5 and Fortran 5 x 3 arrays. As illustrated in the
figure below, a C application will store a 3 x 5 2-dimensional array as three 5-element rows. In order to
store the same data in the same order, a Fortran application must view the array as a 5 x 3 array with three
5-element columns. The dataspace of this dataset, as written from Fortran, will therefore be described as
5 x 3 in the application but stored and described in the file according to the C convention as a 3 x 5 array.
This ensures that C and Fortran applications will always read the data in the order in which it was written.
The HDF5 Fortran interface handles this transposition automatically.

In C (from h5_write.c):

#define NX 3 /* dataset dimensions */

The HDF Group 272

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

#define NY 5

int data[NX][NY]; /* data to write */
o

* Data and output buffer initialization.

*/

for (J = 0; J < NX; j++) {

for (i = 0; 1 < NY; i++)
data[jJ[i] =1 + 1 + J*NY;

}

/*

* 1 2 3 4 5

* 6 7 8 910

* 11 12 13 14 15

*/
dims[0] = NX;
dims[1] = NY;

dataspace = H5Screate_simple(RANK, dims, NULL);
For more information, see "h5_write.c" on page 300.
In Fortran (from h5_write.f90):

INTEGER, PARAMETER :: NX
INTEGER, PARAMETER :: NY

3
5

INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/3,5/) ! Dataset dimensions

INTEGER :: data(NX,NY)

Initialize data

doi =1, NX

do j =1, NY
data(i,j) = j + (i-1)*NY
enddo
enddo
!
I Data

1 2 3 4 5
6 7 8 910
11 12 13 14 15

CALL hb5screate_simple_f(rank, dims, dspace_id, error)
For more information, see "h5_write.f90" on page 302.

In Fortran (from h5_write_tr.f90):

The HDF Group 273

HDF5 User’s Guide

HDF5 Dataspaces and Partial 1/0

INTEGER, PARAMETER ::
INTEGER, PARAMETER ::

INTEGER(HSI1ZE_T), DIMENSION(2)

I Initialize data

doi =1, NY
1, NX

do j =

3
5

data(i,j) = i + (G-1)*NY

enddo
enddo

1 Data

a s~ wWwNPFP
© o ~NO

10

11
12
13
14
15

(/NY, NX/) ! Dataset dimensions

CALL hb5screate_simple f(rank, dims, dspace_id, error)

For more information, see "h5_write_tr.f90" on page 304.

The HDF Group

274

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

A dataset stored by a C program in a 3 x 5 array:

L1fl2]3]a]s]
L6 78] 9]10]
|11]12] 13 14 15|

The same dataset stored by a Fortran programin a 5 x 3 array:

[L6 |u]
(2] 7 |12
[3) & |13]
(4] 9 Jlaa]
[5 1015]

The first dataset above as written to an HDFS5 file from C or the second dataset above as written
from Fortran:

(1) 2]sl[afslef7)8fofrwfuffas]aafas]

The first dataset above as written to an HDF5 file from Fortran:

[tfefuf2f7]sfs]efzfafofrafs]ro]as]

Figure 7-2. Comparing C and Fortran dataspaces

Note: The HDF5 Library stores arrays along the fastest-changing dimension. This approach is often referred to as
being “in C order.” C, C++, and Java work with arrays in row-major order. In other words, the row, or the last dimen-
sion, is the fastest-changing dimension. Fortran, on the other hand, handles arrays in column-major order making the
column, or the first dimension, the fastest-changing dimension. Therefore, the C and Fortran arrays illustrated in the
top portion of this figure are stored identically in an HDF5 file. This ensures that data written by any language can be
meaningfully read, interpreted, and manipulated by any other.

7.3.2.6. Finding Dataspace Characteristics

The HDF5 Library provides several APls designed to query the characteristics of a dataspace.

The function H5Sis_simple (h5sis_simple_f) returns information about the type of a dataspace.
This function is rarely used and currently supports only simple and scalar dataspaces.

To find out the dimensionality, or rank, of a dataspace, use H5Sget _simple_extent _ndims (h5sget -
simple_extent_ndims_f).H5Sget simple_extent_dims can also be used to find out the rank. See
the example below. If both functions return O for the value of rank, then the dataspace is scalar.

The HDF Group 275

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

To query the sizes of the current and maximum dimensions, use H5Sget_simple_extent_dims
(h5sget_simple_extent _dims_f).

The following example illustrates querying the rank and dimensions of a dataspace using these functions.

In C:

hid_t space_id;

int rank;

hsize t *current_dims;
hsize t *max_dims;

rank=H5Sget_simple_extent_ndims(space_id);

(or rank=H5Sget_simple_extent_dims(space_id, NULL, NULL);)
current_dims= (hsize_t)malloc(rank*sizeof(hsize_t));
max_dims=(hsize_t)malloc(rank*sizeof(hsize_t));
H5Sget_simple_extent dims(space_id, current_dims, max_dims);
Print values here for the previous example

7.4. Dataspaces and Data Transfer

Read and write operations transfer data between an HDF5 file on disk and in memory. The shape that the
array data takes in the file and in memory may be the same, but HDF5 also allows users the ability to rep-
resent data in memory in a different shape than in the file. If the shape of an array in the file and in mem-
ory will be the same, then the same dataspace definition can be used for both. If the shape of an array in
memory needs to be different than the shape in the file, then the dataspace definition for the shape of the
array in memory can be changed. During a read operation, the array will be read into the different shape
in memory, and during a write operation, the array will be written to the file in the shape specified by the
dataspace in the file. The only qualification is that the number of elements read or written must be the
same in both the source and the destination dataspaces.

Item a in the figure below shows a simple example of a read operation in which the data is stored as a 3 by
4 array in the file (item b) on disk, but the program wants it to be a 4 by 3 array in memory. This is accom-
plished by setting the memory dataspace to describe the desired memory layout, as in item c. The read
operation reads the data in the file array into the memory array.

The HDF Group 276

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

3 x4 in file 4 x 3 in memory

a) Bead the data and change the Dataspace:
H5Dread(..., mem space, ...};

Dataspace Dataspace
rank:int = 2 rank:int = 2
current size:hsize[2] = [3,4} current size:hsize[2] = (4,3}
maximum size:hsize t[2] = {3, 4} maximum size:hsize t[2] = {4,3}

b) The Dataspace in the File c) The Dataspace for memory

Figure 7-3. Data layout before and after a read operation

a) The data is stored on disk, e.g., in blocks of 4 elements

lalbfe [d] BEGEE

AN

b) The data is read from disk,

/a | b |c|d\ to a buffer, chunk by chunk
lal [] | Jel [[af [|

¢} The data is stored in memory in the memory order,
reordered if necessary

Figure 7-4. Moving data from disk to memory

Both the source and destination are stored as contiguous blocks of storage with the elements in the order
specified by the dataspace. The figure above shows one way the elements might be organized. In item a3,
the elements are stored as 3 blocks of 4 elements. The destination is an array of 12 elements in memory
(see item c). As the figure suggests, the transfer reads the disk blocks into a memory buffer (see item b),

The HDF Group 277

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

and then writes the elements to the correct locations in memory. A similar process occurs in reverse when
data is written to disk.

7.4.1. Data Selection

In addition to rearranging data, the transfer may select the data elements from the source and destina-
tion.

Data selection is implemented by creating a dataspace object that describes the selected elements (within
the hyper rectangle) rather than the whole array. Two dataspace objects with selections can be used in
data transfers to read selected elements from the source and write selected elements to the destination.
When data is transferred using the dataspace object, only the selected elements will be transferred.

This can be used to implement partial 1/0, including:

e Sub-setting - reading part of a large dataset

e Sampling - reading selected elements (for example, every second element) of a dataset

e Scatter-gather - read non-contiguous elements into contiguous locations (gather) or read contigu-
ous elements into non-contiguous locations (scatter) or both

To use selections, the following steps are followed:

1. Get or define the dataspace for the source and destination
2. Specify one or more selections for source and destination dataspaces

3. Transfer data using the dataspaces with selections

A selection is created by applying one or more selections to a dataspace. A selection may override any
other selections (H5T_SELECT_SET) or may be “Ored” with previous selections on the same dataspace
(H5T_SELECT_OR). In the latter case, the resulting selection is the union of the selection and all previ-
ously selected selections. Arbitrary sets of points from a dataspace can be selected by specifying an appro-
priate set of selections.

Two selections are used in data transfer, so the source and destination must be compatible, as described
below.

There are two forms of selection, hyperslab and point. A selection must be either a point selection or a set
of hyperslab selections. Selections cannot be mixed.

The definition of a selection within a dataspace, not the data in the selection, cannot be saved to the file
unless the selection definition is saved as a region reference. For more information, see "References to
Dataset Regions" on page 292.

7.4.1.1. Hyperslab Selection

A hyperslab is a selection of elements from a hyper rectangle. An HDF5 hyperslab is a rectangular pattern
defined by four arrays. The four arrays are summarized in the table below.

The HDF Group 278

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

The offset defines the origin of the hyperslab in the original dataspace.

The stride is the number of elements to increment between selected elements. A stride of ‘1’ is every ele-
ment, a stride of ‘2’ is every second element, etc. Note that there may be a different stride for each dimen-
sion of the dataspace. The default stride is 1.

The count is the number of elements in the hyperslab selection. When the stride is 1, the selection is a
hyper rectangle with a corner at the offset and size count[0] by count[1] by.... When stride is greater than
one, the hyperslab bounded by the offset and the corners defined by stride[n] * count[n].

Table 7-1. Hyperslab elements

Parameter Description

Offset The starting location for the hyperslab.

Stride The number of elements to separate each element or block to be selected.
Count The number of elements or blocks to select along each dimension.

Block The size of the block selected from the dataspace.

The block is a count on the number of repetitions of the hyperslab. The default block size is ‘1’, which is
one hyperslab. A block of 2 would be two hyperslabs in that dimension, with the second starting at off-
set[n]+ (count[n] * stride[n]) + 1.

A hyperslab can be used to access a sub-set of a large dataset. The figure below shows an example of a
hyperslab that reads a rectangle from the middle of a larger two dimensional array. The destination is the
same shape as the source.

A hyperslat from = 20 arrayw to the
corner of s smallar 20 array.

Figure 7-5. Access a sub-set of data with a hyperslab

Hyperslabs can be combined to select complex regions of the source and destination. The figure below
shows an example of a transfer from one non-rectangular region into another non-rectangular region. The
source is defined as the union of two hyperslabs, and the destination is the union of three hyperslabs.

The HDF Group 279

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

e
x\%‘*\\\m:-: -
B OSRENE
RN

____w”’; Union of hyvperzlatbs in file
Jataspace o union of hvpetrslabs in
memory Jataspace. Total number o data
elerueri s weksl e ey ual; o laer a1id
ghopo of hvyporslobe con diffor.

Figure 7-6. Build complex regions with hyperslab unions

Hyperslabs may also be used to collect or scatter data from regular patterns. The figure below shows an
example where the source is a repeating pattern of blocks, and the destination is a single, one dimensional
array.

o It i
—*

o~

—" A regular series of
~7 hincks fram a 27 atrtAaw tnA
conitiguons gegquence at a certain
offect in o 1D orreoy.

Figure 7-7. Use hyperslabs to combine or disperse data

7.4.1.2. Select Points

The second type of selection is an array of points such as coordinates. Essentially, this selection is a list of
all the points to include. The figure below shows an example of a transfer of seven elements from a two
dimensional dataspace to a three dimensional dataspace using a point selection to specify the points.

The HDF Group 280

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

,,—'—'—"'_ﬂf
....................... x d__f-ﬂﬂA sequetice of poifits with fo regular
''''''''''''''''''''''''''''''''''' patterty from a 2D artay 10 a seguence
of points with no regular patiern i a

I awrar.

Figure 7-8. Point selection

7.4.1.3. Rules for Defining Selections

A selection must have the same number of dimensions (rank) as the dataspace it is applied to, although it
may select from only a small region such as a plane from a 3D dataspace. Selections do not affect the
extent of the dataspace, the selection may be larger than the dataspace. The boundaries of selections are
reconciled with the extent at the time of the data transfer.

7.4.1.4. Data Transfer with Selections

A data transfer (read or write) with selections is the same as any read or write, except the source and des-
tination dataspace have compatible selections.

During the data transfer, the following steps are executed by the library:

e The source and destination dataspaces are checked to assure that the selections are compatible.

e Each selection must be within the current extent of the dataspace. A selection may be
defined to extend outside the current extent of the dataspace, but the dataspace cannot be
accessed if the selection is not valid at the time of the access.

e The total number of points selected in the source and destination must be the same. Note
that the dimensionality of the source and destination can be different (for example, the
source could be 2D, the destination 1D or 3D), and the shape can be different, but the num-
ber of elements selected must be the same.

e The data is transferred, element by element.
Selections have an iteration order for the points selected, which can be any permutation of the dimen-

sions involved (defaulting to ‘C’ array order) or a specific order for the selected points, for selections com-
posed of single array elements with H5Sselect_elements.

The HDF Group 281

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

The elements of the selections are transferred in row-major, or C order. That is, it is assumed that the first
dimension varies slowest, the second next slowest, and so forth. For hyperslab selections, the order can
be any permutation of the dimensions involved (defaulting to ‘C’ array order). When multiple hyperslabs
are combined, the hyperslabs are coalesced into contiguous reads and writes.

In the case of point selections, the points are read and written in the order specified.

7.4.2. Programming Model

7.4.2.1. Selecting Hyperslabs

Suppose we want to read a 3x4 hyperslab from a dataset in a file beginning at the element <1,2> in the
dataset, and read itinto a 7 x 7 x 3 array in memory. See the figure below. In order to do this, we must cre-
ate a dataspace that describes the overall rank and dimensions of the dataset in the file as well as the posi-
tion and size of the hyperslab that we are extracting from that dataset.

B |)| 2 [53) & |5

1 | 2 [

2 |3 [EEE

3 |4 R

4. L% 486 [8 |8

S |68 | ¥ |8 |8 [10

&2 18 b — |

s s = |

i b oL R A I — |
I I I I I I I]

I | I | | | I

Figure 7-9. Selecting a hyperslab

The HDF Group 282

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

The code in the first example below illustrates the selection of the hyperslab in the file dataspace. The sec-
ond example below shows the definition of the destination dataspace in memory. Since the in-memory
dataspace has three dimensions, the hyperslab is an array with three dimensions with the last dimension
being 1: <3,4,1>. The third example below shows the read using the source and destination dataspaces
with selections.

/*
* get the file dataspace.
*/
dataspace = H5Dget_space(dataset); /* dataspace */
/* identifier */

/*

* Define hyperslab in the dataset.
*/

offset[0] = 1;

offset[1] = 2;

count[0] = 3;

count[1l] = 4;

status = H5Sselect_hyperslab(dataspace, H5S SELECT_SET,
offset, NULL, count, NULL);

Code Example 7-1. Selecting a hyperslab

The HDF Group 283

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0
/*
* Define memory dataspace.
*/
dimsm[0] = 7;
dimsm[1] = 7;
dimsm[2] = 3;
memspace = H5Screate_simple(3,dimsm,NULL);
/*
* Define memory hyperslab.
*/
offset_out[0] = 3;
offset_out[1] = O;
offset_out[2] = O;
count_out[0] = 3;
count_out[1l] = 4;
count_out[2] = 1;

status = H5Sselect_hyperslab(memspace, H5S SELECT_SET,
offset_out, NULL, count_out, NULL);

Code Example 7-2. Defining the destination memory

ret = H5Dread(dataset, H5T_NATIVE_INT, memspace,

dataspace,

H5P_DEFAULT, data);

Code Example 7-3. A sample read specifying source and destination dataspaces

7.4.2.2. Example with Strides and Blocks

Consider an 8 x 12 dataspace into which we want to write eight 3 x 2 blocks in a two dimensional array
from a source dataspace in memory that is a 50-element one dimensional array. See the figure below.

The HDF Group

284

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

| [O) I O) IO e (I
= I e Y s L I) 2 [
[I I I I I I I I I
[I | I | I I | | |
[I I I I I I I I I
e 3 | 4 o |.B i &
g [0 R 13 114 13 |16
B e 19

Figure 7-10. Write from a one dimensional array to a two dimensional array

The example below shows code to write 48 elements from the one dimensional array to the file dataset
starting with the second element in vector. The destination hyperslab has the following parameters: off-
set=(0,1), stride=(4,3), count=(2,4), block=(3,2). The source has the parameters: offset=(1), stride=(1),
count=(48), block=(1). After these operations, the file dataspace will have the values shown in item b in
the figure above. Notice that the values are inserted in the file dataset in row-major order.

/* Select hyperslab for the dataset in the file, using
* 3 x 2 blocks, (4,3) stride (2,4) count starting at
* the position (0,1).

*/

offset[0] = 0; offset[1l] = 1;

stride[0] = 4; stride[l] = 3;

count[0] = 2; count[1l] = 4;

block[0] = 3; block[1l] = 2;

ret = H5Sselect_hyperslab(fid, H5S SELECT_SET, offset,

stride, count, block);

Code Example 7-4. Write from a one dimensional array to a two dimensional array

The HDF Group 285

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

/*

* Create dataspace for the first dataset.

*/

midl = H5Screate_simple(MSPACE1_RANK, diml, NULL);

/*

* Select hyperslab.

* We will use 48 elements of the vector buffer starting
* at the second element. Selected elements are

*123 . . .48
*/

offset[0] = 1;
stride[0] = 1;
count[0] = 48;
block[0] = 1;

ret = H5Sselect _hyperslab(midl, H5S SELECT_SET, offset,
stride, count, block);

/*

* Write selection from the vector buffer to the dataset

* in the file.

*/

ret = H5Dwrite(dataset, H5T_NATIVE_INT, middl, fid,
H5P_DEFAULT, vector)

Code Example 7-4. Write from a one dimensional array to a two dimensional array

7.4.2.3. Selecting a Union of Hyperslabs

The HDF5 Library allows the user to select a union of hyperslabs and write or read the selection into
another selection. The shapes of the two selections may differ, but the number of elements must be
equal.

The HDF Group 286

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

Figure 7-11. Transferring hyperslab unions

The figure above shows the transfer of a selection that is two overlapping hyperslabs from the dataset into
a union of hyperslabs in the memory dataset. Note that the destination dataset has a different shape from
the source dataset. Similarly, the selection in the memory dataset could have a different shape than the
selected union of hyperslabs in the original file. For simplicity, the selection is that same shape at the des-
tination.

To implement this transfer, it is necessary to:

Get the source dataspace

Define one hyperslab selection for the source

Define a second hyperslab selection, unioned with the first
Get the destination dataspace

Define one hyperslab selection for the destination

Define a second hyperslab seletion, unioned with the first

N o u k~ w N e

Execute the data transfer (H5Dread or H5Dwr i te) using the source and destination dataspaces

The example below shows example code to create the selections for the source dataspace (the file). The
first hyperslab is size 3 x 4 and the left upper corner at the position (1,2). The hyperslab is a simple rectan-

The HDF Group 287

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

gle, so the stride and block are 1. The second hyperslab is 6 x 5 at the position (2,4). The second selection
is a union with the first hyperslab (H5S_SELECT_OR).

fid = H5Dget_space(dataset);

/*

* Select first hyperslab for the dataset in the file.
*/

offset[0] = 1; offset[1l] = 2;

block[0] = 1; block[1] = 1;

stride[0] = 1; stride[l] = 1;

count[0] = 3; count[1l] = 4;

ret = H5Sselect _hyperslab(fid, H5S SELECT_SET, offset,
stride, count, block);

/*

* Add second selected hyperslab to the selection.
*/

offset[0] = 2; offset[1l] = 4;

block[0] = 1; block[1] = 1;

stride[0] = 1; stride[l] = 1;

count[0] = 6; count[1l] = 5;

ret = H5Sselect_hyperslab(fid, H5S SELECT_OR, offset,
stride, count, block);

Code Example 7-5. Select source hyperslabs

The example below shows example code to create the selection for the destination in memory. The steps
are similar. In this example, the hyperslabs are the same shape, but located in different positions in the
dataspace. The first hyperslab is 3 x 4 and starts at (0,0), and the second is 6 x 5 and starts at (1,2).

Finally, the H5Dread call transfers the selected data from the file dataspace to the selection in memory.

In this example, the source and destination selections are two overlapping rectangles. In general, any
number of rectangles can be OR’ed, and they do not have to be contiguous. The order of the selections
does not matter, but the first should use H5S_SELECT_SET,; subsequent selections are unioned using
H5S_SELECT OR.

Itis important to emphasize that the source and destination do not have to be the same shape (or number
of rectangles). As long as the two selections have the same number of elements, the data can be trans-
ferred.

The HDF Group 288

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

/*

* Create memory dataspace.

*/

mid = H5Screate_simple(MSPACE_RANK, mdim, NULL);

/*

* Select two hyperslabs in memory. Hyperslabs has the
* same size and shape as the selected hyperslabs for
* the file dataspace.

*/

offset[0] = 0; offset[1l] = O;
block[0] = 1; block[1] = 1;
stride[0] = 1; stride[1l] = 1;
count[0] = 3; count[l] = 4;

ret = H5Sselect_hyperslab(mid, H5S_SELECT_SET, offset,
stride, count, block);

offset[0] = 1; offset[1l] = 2;
block[0] = 1; block[1] = 1;

stride[0] = 1; stride[l] = 1;
count[0] = 6; count[1l] = 5;

ret = H5Sselect_hyperslab(mid, H5S SELECT OR, offset,
stride, count, block);

ret = H5Dread(dataset, H5T NATIVE_INT, mid, fid,
H5P_DEFAULT, matrix_out);

Code Example 7-6. Select destination hyperslabs

7.4.2.4. Selecting a List of Independent Points

It is also possible to specify a list of elements to read or write using the function H5Sselect_elements
The procedure is similar to hyperslab selections.

1. Get the source dataspace

2. Set the selected points

3. Get the destination dataspace

4. Set the selected points

5. Transfer the data using the source and destination dataspaces
The figure below shows an example where four values are to be written to four separate points in a two

dimensional dataspace. The source dataspace is a one dimensional array with the values 53, 59, 61, 67.
The destination dataspace is an 8 x 12 array. The elements are to be written to the points (0,0), (3,3), (3,5),

The HDF Group 289

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

and (5,6). In this example, the source does not require a selection. The example below the figure shows
example code to implement this transfer.

A point selection lists the exact points to be transferred and the order they will be transferred. The source
and destination are required to have the same number of elements. A point selection can be used with a
hyperslab (for example, the source could be a point selection and the destination a hyperslab, or vice
versa), so long as the number of elements selected are the same.

Figure 7-12. Write data to separate points

hsize_t dim2[]1 = {4};
int values[] = {53, 59, 61, 67};

/* Array to store selected points from the
* file dataspace

*/

hssize_t coord[4][2];

/*
* Create dataspace for the second dataset.
*/

Code Example 7-7. Write data to separate points

290 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

mid2 = H5Screate_simple(l, dim2, NULL);

/*
* Select sequence of NPOINTS points in the file
* dataspace.

*/

coord[0][0] = O; coord[0][1] = O;

coord[1][0] = 3; coord[1][1] = 3;

coord[2][0] = 3; coord[2][1] = 5;

coord[3][0] = 5; coord[3][1] = 6;

ret = H5Sselect_elements(fid, H5S_SELECT_SET, NPOINTS,
(const hssize_t **)coord);

ret = H5Dwrite(dataset, H5T _NATIVE INT, mid2, fid,

H5P_DEFAULT, values);

Code Example 7-7. Write data to separate points

7.4.2.5. Combinations of Selections

Selections are a very flexible mechanism for reorganizing data during a data transfer. With different com-
binations of dataspaces and selections, it is possible to implement many kinds of data transfers including
sub-setting, sampling, and reorganizing the data. The table below gives some example combinations of
source and destination, and the operations they implement.

Table 7-2. Selection operations

Source Destination Operation

All All Copy whole array

All All (different shape) Copy and reorganize array
Hyperslab All Sub-set

Hyperslab Hyperslab (same shape) Selection

Hyperslab Hyperslab (different shape) Select and rearrange

Hyperslab with stride or block All or hyperslab with stride ~ Sub-sample, scatter

1
Hyperslab Points Scatter
Points Hyperslab or all Gather

The HDF Group 291

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

Table 7-2. Selection operations

Source Destination Operation
Points Points (same) Selection
Points Points (different) Reorder points

7.5. Dataspace Selection Operations and Data Transfer

This section is under construction.

7.6. References to Dataset Regions

Another use of selections is to store a reference to a region of a dataset. An HDF5 object reference object
is a pointer to an object (dataset, group, or committed datatype) in the file. A selection can be used to cre-
ate a pointer to a set of selected elements of a dataset, called a region reference. The selection can be
either a point selection or a hyperslab selection.

A region reference is an object maintained by the HDF5 Library. The region reference can be stored in a
dataset or attribute, and then read. The dataset or attribute is defined to have the special datatype,
H5T STD_REF_DSETREG.

To discover the elements and/or read the data, the region reference can be dereferenced. The H5SRde-
frerence call returns an identifier for the dataset, and then the selected dataspace can be retrieved with
H5Rget_select call. The selected dataspace can be used to read the selected data elements.

For more information, see "Reference" on page 234.

7.6.1. Example Uses for Region References

Region references are used to implement stored pointers to data within a dataset. For example, features
in a large dataset might be indexed by a table. See the figure below. This table could be stored as an HDF5
dataset with a compound datatype, for example, with a field for the name of the feature and a region ref-
erence to point to the feature in the dataset. See the second figure below.

292 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial I/O

Record Feature Pixels
1 "Wi'ashingtan, DoaC" <PIRElSE>
2 "Baltimore, MO" =pixels=

3 "Clouds” <PIHElS=

Figure 7-13. Features indexed by a table

The HDF Group 293

HDF5 Dataspaces and Partial I/O

HDF5 User’s Guide

a) Dataset 1: data

by Dataset 2: Compound Data: array of {5iring, Region Refernce]

"Wizhington DC" | <region ref 1=
"Baltimar, WMD" | <region ref 2=
"Storm" Zregion ref 3=

Figure 7-14. Storing the table with a compound datatype

7.6.2. Creating References to Regions

To create a region reference:

vk W oe

Create or open the dataset that contains the region

Get the dataspace for the dataset

Define a selection that specifies the region

Create a region reference using the dataset and dataspace with selection

Write the region reference(s) to the desired dataset or attribute

294

The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

The figure below shows a diagram of a file with three datasets. Dataset D1 and D2 are two dimensional
arrays of integers. Dataset R1 is a one dimensional array of references to regions in D1 and D2. The regions
can be any valid selection of the dataspace of the target dataset.

Figure 7-15. A file with three datasets
Note: In the figure above, R1 is a 1 D array of region pointers; each pointer refers to a selection in one dataset.

The example below shows code to create the array of region references. The references are created in an
array of type hdset_reg_ref_t. Each region is defined as a selection on the dataspace of the dataset,
and a reference is created using H5SRcreate(). The call to H5Rcreate() specifies the file, dataset, and
the dataspace with selection.

The HDF Group 295

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

/* create an array of 4 region references */

hdset _reg_ref_t ref[4];

/*

* Create a reference to the first hyperslab in the first
* Dataset.

*/

offset[0] = 1; offset[1l] = 1;

count[0] = 3; count[l] = 2;

status = H5Sselect hyperslab(space_id, H5S SELECT_ SET,
offset, NULL, count, NULL);

status = H5Rcreate(&ref[0], file_id, "D1",
H5R_DATASET_REGION, space_id);

/*

* The second reference is to a union of hyperslabs in
* the first Dataset

*/

offset[0] = 5; offset[1l] = 3;

count[0] = 1; count[1l] = 4;

status = H5Sselect_none(space_id);

status = H5Sselect_hyperslab(space_id, H5S SELECT_ SET,
offset, NULL, count, NULL);

offset[0] = 6; offset[1l] = 5;

count[0] = 1; count[1l] = 2;

status = H5Sselect _hyperslab(space_id, H5S SELECT OR,
offset, NULL, count, NULL);

status = H5Rcreate(&ref[1], file_id, "D1",
H5R_DATASET _REGION, space_id);

/*

* the fourth reference is to a selection of points in
* the first Dataset

*/

Code Example 7-8. Create an array of region references

296 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

status = H5Sselect _none(space_id);

coord[O0][0] = 4; coord[O][1] = 4;
coord[1][0] = 2; coord[1][1] = 6;
coord[2][0] = 3; coord[2][1] = 7;
coord[3][0] = 1; coord[3][1] = 5;
coord[4][0] = 5; coord[4][1] = 8;

status = H5Sselect _elements(space_id, H5S SELECT_ SET,
num_points, (const hssize t **)coord);

status = H5Rcreate(&ref[3], file_id, "D1",
H5R_DATASET_REGION, space_id);

/*

* the third reference is to a hyperslab in the second

* Dataset

*/

offset[0] = 0; offset[1l] = O;

count[0] = 4; count[1l] = 6;

status = H5Sselect_hyperslab(space_i1d2, H5S SELECT_SET,
offset, NULL, count, NULL);

status = H5Rcreate(&ref[2], file_id, "D2",
H5R_DATASET _REGION, space_id2);

Code Example 7-8. Create an array of region references

When all the references are created, the array of references is written to the dataset R1. The dataset is
declared to have datatype H5T_STD_REF DSETREG. See the example below.

Hsize_t dimsr[1];

dimsr[0] = 4;

/*

* Dataset with references.
*/

spacer_id = H5Screate_simple(1, dimsr, NULL);
dsetr_id = H5Dcreate(file_id, "R1", H5T_STD REF_DSETREG,
spacer_id, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT);

/*

* Write dataset with the references.

*/

status = H5Dwrite(dsetr_id, H5T_STD_REF_DSETREG, H5S_ALL,
H5S ALL, H5P_DEFAULT, ref);

Code Example 7-9. Write the array of references to a dataset

The HDF Group 297

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

When creating region references, the following rules are enforced.

¢ The selection must be a valid selection for the target dataset, just as when transferring data
e The dataset must exist in the file when the reference is created (H5Rcreate)

e The target dataset must be in the same file as the stored reference

7.6.3. Reading References to Regions

To retrieve data from a region reference, the reference must be read from the file, and then the data can
be retrieved. The steps are:
1. Open the dataset or attribute containing the reference objects
2. Read the reference object(s)
3. For each region reference, get the dataset (H5R_dereference) and dataspace (H5Rget_space)
4. Use the dataspace and datatype to discover what space is needed to store the data, allocate the

correct storage and create a dataspace and datatype to define the memory data layout

The example below shows code to read an array of region references from a dataset, and then read the
data from the first selected region. Note that the region reference has information that records the data-
set (within the file) and the selection on the dataspace of the dataset. After dereferencing the regions ref-
erence, the datatype, number of points, and some aspects of the selection can be discovered. (For a union
of hyperslabs, it may not be possible to determine the exact set of hyperslabs that has been combined.)
The table below the code example shows the inquiry functions.

When reading data from a region reference, the following rules are enforced:

e The target dataset must be present and accessible in the file

e The selection must be a valid selection for the dataset

dsetr_id = H5Dopen (File_id, "R1'", H5P_DEFAULT);

status = H5Dread(dsetr_id, H5T_STD_REF_DSETREG, H5S_ALL,
H5S ALL, H5P DEFAULT, ref _out);

/*

* Dereference the first reference.

* 1) get the dataset (H5Rdereference)

* 2) get the selected dataspace (H5Rget _region)
*/

Code Example 7-10. Read an array of region references; read from the first selection

298 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

dsetv_id = H5Rdereference(dsetr_id, H5R_DATASET REGION,
&ref_out[0]);

space_id = H5Rget_region(dsetr_id, H5R_DATASET_REGION,
&ref_out[0]);

/*

* Discover how many points and shape of the data
*/

ndims = H5Sget_simple_extent_ndims(space_id);

H5Sget_simple_extent _dims(space_id,dimsx,NULL);

/*

* Read and display hyperslab selection from the dataset.
*/

dimsy[0] = H5Sget_select _npoints(space_id);

spacex_id = H5Screate_simple(1, dimsy, NULL);

status = H5Dread(dsetv_id, HS5T_NATIVE_INT, H5S_ALL,
space_id, H5P_DEFAULT, data out);

printf("'Selected hyperslab: ');

for (i = 0; i1 < 8; i++)

{
printf("'\n");
for (J = 0; j < 10; j++)
printf("%d ", data_out[i]1[j]);
}

printf('\n");

Code Example 7-10. Read an array of region references; read from the first selection

Table 7-3. The inquiry functions

Function Information

H5Sget_select_npoints The number of elements in the selection
(hyperslab or point selection).

H5Sget_select_bounds The bounding box that encloses the selected
points (hyperslab or point selection).

H5Sget_select_hyper_nblocks The number of blocks in the selection.
H5Sget_select_hyper_blocklist A list of the blocks in the selection
H5Sget_select_elem_npoints The number of points in the selection.
H5Sget_select_elem_pointlist The points.

The HDF Group 299

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

7.7. Sample Programs

This section contains the full programs from which several of the code examples in this chapter were
derived. The h5dump output from the program’s output file immediately follows each program.

7.7.1. h5_write.c

#include "hdf5.h"

#define H5FILE_NAME ""SDS.h5""

#define DATASETNAME "C Matrix™

#define NX 3 /* dataset dimensions */
#define NY 5

#define RANK 2

int

main (void)

{
hid_t file, dataset; /* file and dataset identifiers */
hid_t datatype, dataspace; /* identifiers */
hsize_t dims[2]; /* dataset dimensions */
herr_t status;
int data[NX][NY]; /* data to write */
int i, J;
/*
* Data and output buffer initialization.
*/

for = 0; j < NX; j++) {
for (i = 0; i < NY; i++)
data[j][i] = i + 1 + j*NY;
}
/*
* 1 2 3 4 5
* 6 7 8 910
* 11 12 13 14 15
*/

/*

* Create a new file using H5F ACC_TRUNC access,

* default file creation properties, and default file
* access properties.

300 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

*/
file = H5Fcreate(H5FILE_NAME, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/*

* Describe the size of the array and create the data space for fixed

* size dataset.

*/

dims[0] = NX;

dims[1] = NY;

dataspace = H5Screate_simple(RANK, dims, NULL);

/*

* Create a new dataset within the file using defined dataspace and

* datatype and default dataset creation properties.

*/

dataset = H5Dcreate(file, DATASETNAME, HS5T_NATIVE_INT, dataspace,
H5P_DEFAULT, HS5P_DEFAULT, HS5P_DEFAULT);

/*

* Write the data to the dataset using default transfer properties.

*/

status = H5Dwrite(dataset, H5T _NATIVE_ INT, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

/*

* Close/release resources.
*/

H5Sclose(dataspace);
H5Dclose(dataset);
H5Fclose(fFile);

return O;

SDS.out
HDF5 "'SDS.h5" {
GROUP "'/" {

DATASET "C Matrix'™ {
DATATYPE H5T_STD_I132BE
DATASPACE SIMPLE { (3, 5) 7 (3,5) 1}
DATA {

1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15
3
}

The HDF Group 301

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

7.7.2. h5_write.f90

PROGRAM DSETEXAMPLE

USE HDF5 ! This modulle contains all necessary modules

IMPLICIT NONE

CHARACTER(LEN=7), PARAMETER :: filename = "'SDSF_h5" ! File name
CHARACTER(LEN=14), PARAMETER :: dsetname = "Fortran Matrix'" ! Dataset name

INTEGER, PARAMETER :: NX = 3
INTEGER, PARAMETER :: NY =5

INTEGER(HID_T) :: file_id I File i1dentifier
INTEGER(HID_T) :: dset_id 1 Dataset identifier
INTEGER(HID_T) :: dspace_id 1 Dataspace identifier

INTEGER(HSIZE_T), DIMENSION(2) :: dims = (/3,5/)

Dataset dimensions

INTEGER s rank = 2 1 Dataset rank
INTEGER i data(NX,NY)

INTEGER s error ! Error flag

INTEGER -

Initialize data

do 1 =1, NX
do j =1, NY
data(i,j) = j + (i-1)*NY
enddo
enddo

Data

4 5
9 10
14 15

1
6
11 1

N NN
W oo w

1

Initialize FORTRAN interface.

302 The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

!
CALL h5open_f(error)

I Create a new file using default properties.
I

CALL h5fcreate_f(filename, H5F_ACC_TRUNC_F, file_id, error)

I Create the dataspace.
I

CALL hb5screate_simple f(rank, dims, dspace_id, error)

I Create and write dataset using default properties.

1

CALL hbdcreate F(File_id, dsetname, H5T NATIVE INTEGER, dspace_id, &
dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F, &
H5P_DEFAULT_F)

CALL hbdwrite_f(dset_id, H5T_NATIVE_ INTEGER, data, dims, error)

I End access to the dataset and release resources used by it.
I

CALL hbdclose_f(dset_id, error)

I Terminate access to the data space.
1

CALL h5sclose_f(dspace_id, error)

I Close the file.
1

CALL h5fclose_f(file_id, error)

1
1 Close FORTRAN interface.
1

CALL hb5close_f(error)
END PROGRAM DSETEXAMPLE

SDSf.out
HDF5 "SDST.h5" {
GROUP "'/' {
DATASET "Fortran Matrix' {
DATATYPE H5T_STD_I132BE

The HDF Group 303

HDF5 Dataspaces and Partial I/O

HDF5 User’s Guide

DATASPACE SIMPLE { (5, 3) 7 (5, 3) }

DATA

1, 11,
12,
13,
9, 14,

2,
3,
4,
5, 10, 15

7.7.3. h5_write_tr.f90

PROGRAM DSETEXAMPLE

USE HDF5 ! This module contains all necessary modules

IMPLICIT NONE

CHARACTER(LEN=10), PARAMETER ::
CHARACTER(LEN=24), PARAMETER ::

INTEGER, PARAMETER ::
INTEGER, PARAMETER ::

NX
NY

3
5

INTEGER(HID_T) ::
INTEGER(HID_T) ::
INTEGER(HID_T) ::

file_id
dset _id
dspace_id

filename = "SDST_tr.h5" ! File name

dsetname = "Fortran Transpose Matrix''
1 Dataset name

! File i1dentifier

Dataset identifier
Dataspace identifier

dims = (/NY, NX/) ! Dataset dimensions

1 Dataset rank

INTEGER(HSI1ZE_T), DIMENSION(2) ::
INTEGER s rank = 2

INTEGER : data(NY,NX)
INTEGER error ! Error flag
INTEGER -

I Initialize data

do i =1, NY
do j = 1, NX
data(i,j) = 1 + (J-1)*NY
enddo
enddo

304

The HDF Group

HDF5 User’s Guide HDF5 Dataspaces and Partial 1/0

1 Data

1

I 1 6 11
1 2 7 12
1 3 8 13
1 4 9 14
1 510 15

I Initialize FORTRAN interface.
1

CALL h5open_f(error)

I Create a new file using default properties.
I

CALL h5fcreate f(Ffilename, H5F ACC TRUNC F, Ffile_id, error)

I Create the dataspace.
I

CALL hb5screate_simple f(rank, dims, dspace_id, error)

I Create and write dataset using default properties.

1

CALL hbdcreate f(File_id, dsetname, H5T _NATIVE_ INTEGER, dspace_id, &
dset_id, error, H5P_DEFAULT_F, H5P_DEFAULT_F, &
H5P_DEFAULT_F)

CALL hbdwrite_f(dset_id, H5T_NATIVE_ INTEGER, data, dims, error)

! End access to the dataset and release resources used by it.
1

CALL hb5dclose_f(dset_id, error)

I Terminate access to the data space.
1

CALL h5sclose_f(dspace_id, error)

I Close the file.
1

CALL h5fclose f(file_id, error)

I Close FORTRAN interface.

The HDF Group 305

HDF5 Dataspaces and Partial I/O HDFS5 User’s Guide

!
CALL hb5close_f(error)

END PROGRAM DSETEXAMPLE

SDST_tr.out
HDF5 *'SDSf_tr.h5" {
GROUP "'/ {
DATASET "Fortran Transpose Matrix" {
DATATYPE H5T_STD_I32LE
DATASPACE SIMPLE { (3, 5) 7 (3,5) 1}
DATA {
1, 2, 3, 4, 5,
6, 7, 8, 9, 10,
11, 12, 13, 14, 15

306 The HDF Group

HDF5 User’s Guide HDF5 Attributes

8. HDF5 Attributes

8.1. Introduction

An HDFS5 attribute is a small metadata object describing the nature and/or intended usage of a primary
data object. A primary data object may be a dataset, group, or committed datatype.

Attributes are assumed to be very small as data objects go, so storing them as standard HDF5 datasets
would be quite inefficient. HDF5 attributes are therefore managed through a special attributes interface,
HS5A, which is designed to easily attach attributes to primary data objects as small datasets containing
metadata information and to minimize storage requirements.

Consider, as examples of the simplest case, a set of laboratory readings taken under known temperature
and pressure conditions of 18.0 degrees Celsius and 0.5 atmospheres, respectively. The temperature and
pressure stored as attributes of the dataset could be described as the following name/value pairs:

temp=18.0
pressure=0.5

While HDF5 attributes are not standard HDF5 datasets, they have much in common:
e An attribute has a user-defined dataspace and the included metadata has a user-assigned data-
type
¢ Metadata can be of any valid HDF5 datatype

e Attributes are addressed by name
But there are some very important differences:

e There is no provision for special storage such as compression or chunking
e There is no partial I/O or sub-setting capability for attribute data

e Attributes cannot be shared

e Attributes cannot have attributes

e Being small, an attribute is stored in the object header of the object it describes and is thus
attached directly to that object

The “Special Issues” section describes how to handle attributes that are large in size and how to handle
large numbers of attributes. For more information, see "Special Issues" on page 315.

This chapter discusses or lists the following:

e The HDF5 attributes programming model
e HS5A function summaries
e Working with HDF5 attributes

e The structure of an attribute

e Creating, writing, and reading attributes

The HDF Group 307

HDF5 Attributes HDF5 User’s Guide

e Accessing attributes by name or index
e Obtaining information regarding an object’s attributes
e lterating across an object’s attributes
¢ Deleting an attribute
¢ Closing attributes
e Special issues regarding attributes

In the following discussions, attributes are generally attached to datasets. Attributes attached to other pri-
mary data objects such as groups or committed datatypes are handled in exactly the same manner.

8.2. Programming Model for Attributes

The figure below shows the UML model for an HDF5 attribute and its associated dataspace and datatype.

Primary data cbject

0.1

"Dm*
Attribute
o._* 0._*
1 1

Datatyps Dataspace

Figure 8-1. The UML model for an HDF?5 attribute

Creating an attribute is similar to creating a dataset. To create an attribute, the application must specify
the object to which the attribute is attached, the datatype and dataspace of the attribute data, and the
attribute creation property list.

The following steps are required to create and write an HDF5 attribute:

Obtain the object identifier for the attribute’s primary data object
2. Define the characteristics of the attribute and specify the attribute creation property list
¢ Define the datatype
¢ Define the dataspace
e Specify the attribute creation property list
3. Create the attribute

308 The HDF Group

HDF5 User’s Guide

HDF5 Attributes

4. Write the attribute data (optional)

5. Close the attribute (and datatype, dataspace, and attribute creation property list, if necessary)

6. Close the primary data object (if appropriate)

8.2.1. To Open and Read or Write an Existing Attribute

The following steps are required to open and read/write an existing attribute. Since HDF5 attributes allow
no partial I/0O, you need specify only the attribute and the attribute’s memory datatype to read it:

Obtain the object identifier for the attribute’s primary data object

2. Obtain the attribute’s name or index

w

Open the attribute

e Get attribute dataspace and datatype (optional)

Close the attribute

N o v &

Specify the attribute’s memory type

Read and/or write the attribute data

Close the primary data object (if appropriate)

8.3. Attribute (H5A) Function Summaries

Functions that can be used with attributes (H5A functions) and functions that can be used with property

lists (H5P functions) are listed below.

Function Listing 8-1. Attribute functions (H5A)

C Function
Fortran Subroutine

Purpose

H5Acreate
h5acreate_F

Creates a dataset as an attribute of another
group, dataset, or committed datatype. The C
function is a macro: see “API Compatibility
Macros in HDF5.”

H5Acreate by name
h5acreate_by name_f

Creates an attribute attached to a specified
object.

H5Aexists
hbaexists_ T

Determines whether an attribute with a given
name exists on an object.

H5Aexists_ by name
hbaexists_by name_f

Determines whether an attribute with a given
name exists on an object.

The HDF Group

309

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDF5 Attributes

HDF5 User’s Guide

Function Listing 8-1. Attribute functions (H5A)

C Function
Fortran Subroutine

Purpose

H5Aclose
h5aclose_ T

Closes the specified attribute.

H5Adelete
h5adelete_F

Deletes an attribute.

H5Adelete_by_idx
h5adelete by idx F

Deletes an attribute from an object according
to index order.

H5Adelete by name
h5adelete by name F

Removes an attribute from a specified loca-
tion.

H5Aget create_plist

h5aget create plist f

Gets an attribute creation property list identi-
fier.

H5Aget_info
h5aget_info_ f

Retrieves attribute information by attribute
identifier.

H5Aget_info_by idx
h5aget_info by idx f

Retrieves attribute information by attribute
index position.

H5Aget_info_by name

h5aget_info by name f

Retrieves attribute information by attribute
name.

H5Aget_name
h5aget _name_fF

Gets an attribute name.

H5Aget_name_by idx
h5aget_name_by idx_f

Gets an attribute name by attribute index
position.

H5Aget_space
h5aget_space f

Gets a copy of the dataspace for an attribute.

H5Aget_storage_size

h5aget_storage size f

Returns the amount of storage required for an
attribute.

H5Aget_type
h5aget_type f

Gets an attribute datatype.

HS5AIterate
(no Fortran subroutine)

Calls a user’s function for each attribute
attached to a data object. The C function is a
macro: see “API Compatibility Macros in
HDF5”

H5Aiterate_by name
(no Fortran subroutine)

Calls user-defined function for each attribute
on an object.

310

The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDFS5 User’s Guide

HDF5 Attributes

Function Listing 8-1. Attribute functions (H5A)

C Function
Fortran Subroutine

Purpose

H5Aopen
h5aopen_f

Opens an attribute for an object specified by
object identifier and attribute name.

H5Aopen_by_ idx
h5aopen_by idx_F

Opens an existing attribute that is attached to
an object specified by location and name.

H5Aopen_by name
h5aopen_by name_f

Opens an attribute for an object by object
name and attribute name.

H5Aread Reads an attribute.
hbaread_f
H5Arename Renames an attribute.

h5arename_*F

H5Arename_by name
h5arename_by name f

Renames an attribute.

H5Awrite
HSawrite_ f

Writes an attribute.

Function Listing 8-2. Attribute creation property list functions (H5P)

C Function
Fortran Subroutine

Purpose

H5Pset_char_encoding
h5pset_char_encoding_f

Sets the character encoding used to encode a
string. Use to set ASCIl or UTF-8 character
encoding for object names.

H5Pget_char_encoding
h5pget_char_encoding_Tf

Retrieves the character encoding used to cre-
ate a string.

H5Pget_attr_creation_order
h5pget_attr_creation_order_f

Retrieves tracking and indexing settings for
attribute creation order.

H5Pget_attr_phase_change
h5pget_attr_phase change_ F

Retrieves attribute storage phase change
thresholds.

H5Pset_attr_creation_order
h5pget_attr_creation_order_f

Sets tracking and indexing of attribute cre-
ation order.

H5Pset_attr_phase_change
h5pset_attr_phase _change_ f

Sets attribute storage phase change thresh-
olds.

The HDF Group

311

HDF5 Attributes HDF5 User’s Guide

8.4. Working with Attributes

8.4.1. The Structure of an Attribute

An attribute has two parts: name and value(s).
HDF5 attributes are sometimes discussed as name/value pairs in the form name=value.

An attribute’s name is a null-terminated ASCII or UTF-8 character string. Each attribute attached to an
object has a unique name.

The value portion of the attribute contains one or more data elements of the same datatype.

HDF5 attributes have all the characteristics of HDF5 datasets except that there is no partial 1/O capability.
In other words, attributes can be written and read only in full with no sub-setting.

8.4.2. Creating, Writing, and Reading Attributes

If attributes are used in an HDFS5 file, these functions will be employed: HS5Acreate, H5Awr i te, and
H5Aread. H5Acreate and HS5Awr i te are used together to place the attribute in the file. If an attribute is
to be used and is not currently in memory, H5Aread generally comes into play usually in concert with one
each of the H5Aget_* and H5Aopen_* functions.

To create an attribute, call H5Acreate:

hid_t H5Acreate (hid_t loc_id, const char *name,
hid_t type_id, hid_t space_id, hid_t create plist,
hid_t access plist)

loc_id identifies the object (dataset, group, or committed datatype) to which the attribute is to be
attached. name, type_id, space_id, and create_plist convey, respectively, the attribute’s name,
datatype, dataspace, and attribute creation property list. The attribute’s name must be locally unique: it
must be unique within the context of the object to which it is attached.

H5Acreate creates the attribute in memory. The attribute does not exist in the file until HSAwr i te writes
it there.

To write or read an attribute, call HSAwrite or H5Aread, respectively:

herr_t H5Awrite (hid_t attr_id, hid_t mem_type_id,
const void *buf)

herr_t H5Aread (hid_t attr_id, hid_t mem_type_id,
void *buf)

attr_id identifies the attribute while mem_type_id identifies the in-memory datatype of the attribute
data.

312 The HDF Group

HDF5 User’s Guide HDF5 Attributes

H5Awr i te writes the attribute data from the buffer buf to the file. HSAread reads attribute data from
the file into buf.

The HDFS5 Library converts the metadata between the in-memory datatype, mem_type_id, and the in-file
datatype, defined when the attribute was created, without user intervention.

8.4.3. Accessing Attributes by Name or Index

Attributes can be accessed by name or index value. The use of an index value makes it possible to iterate
through all of the attributes associated with a given object.

To access an attribute by its name, use the H5Aopen_by name function. HSAopen_by name returns an
attribute identifier that can then be used by any function that must access an attribute such as
H5Aread.Use the function HSAget name to determine an attribute’s name.

To access an attribute by its index value, use the H5Aopen_by_idx function. To determine an attribute
index value when it is not already known, use the H50get_info function. HSAopen_by_i1dx is generally
used in the course of opening several attributes for later access. Use H5Ai terate if the intent is to per-

form the same operation on every attribute attached to an object.

8.4.4. Obtaining Information Regarding an Object’s Attributes

In the course of working with HDF5 attributes, one may need to obtain any of several pieces of informa-
tion:

¢ An attribute name

e The dataspace of an attribute

e The datatype of an attribute

e The number of attributes attached to an object
To obtain an attribute’s name, call HSAget name with an attribute identifier, attr_id:

ssize_t H5Aget name (hid_t attr_id, size t buf _size,
char *buf)

As with other attribute functions, attr_id identifies the attribute; buf_size defines the size of the buf-
fer; and buf is the buffer to which the attribute’s name will be read.

If the length of the attribute name, and hence the value required for buf_size, is unknown, a first call to
H5Aget _name will return that size. If the value of buf_size used in that first call is too small, the name
will simply be truncated in buf. A second H5Aget_name call can then be used to retrieve the name in an
appropriately-sized buffer.

To determine the dataspace or datatype of an attribute, call HSAget_space or H5Aget_type, respec-
tively:

hid_t H5Aget _space (hid_t attr_id)

The HDF Group 313

HDF5 Attributes HDF5 User’s Guide

hid_t H5Aget type (hid_t attr_id)
H5Aget_space returns the dataspace identifier for the attribute attr_id.
H5Aget type returns the datatype identifier for the attribute attr_id.

To determine the number of attributes attached to an object, use the H50get_info function. The func-
tion signature is below.

herr_t H50get_info(hid_t object _id, H50 info_t *object_info)

The number of attributes will be returned in the object_info buffer. This is generally the preferred first
step in determining attribute index values. If the call returns N, the attributes attached to the object
object_id have index values of O through N-1.

8.4.5. Iterating across an Object’s Attributes

It is sometimes useful to be able to perform the identical operation across all of the attributes attached to
an object. At the simplest level, you might just want to open each attribute. At a higher level, you might
wish to perform a rather complex operation on each attribute as you iterate across the set.

To iterate an operation across the attributes attached to an object, one must make a series of calls to
H5AI terate:

herr_t H5AiIterate (hid_t obj_id, H5 index_t index_ type,
H5 iter_order_t order, hsize t *n, H5A operator2_t op,
void *op_data)

H5A I terate successively marches across all of the attributes attached to the object specified in loc__id,
performing the operation(s) specified in op_func with the data specified in op_data on each attribute.

When H5Aiterate is called, index contains the index of the attribute to be accessed in this call. When
H5AIterate returns, index will contain the index of the next attribute. If the returned index is the null
pointer, then all attributes have been processed, and the iterative process is complete.

op_TFunc is a user-defined operation that adheres to the HS5A_operator_t prototype. This prototype
and certain requirements imposed on the operator’s behavior are described in the HSAT terate entry in
the HDF5 Reference Manual.

op_data s also user-defined to meet the requirements of op_func. Beyond providing a parameter with
which to pass this data, HDF5 provides no tools for its management and imposes no restrictions.

8.4.6. Deleting an Attribute

Once an attribute has outlived its usefulness or is no longer appropriate, it may become necessary to
delete it.

To delete an attribute, call HSAdelete:

herr_t H5Adelete (hid_t loc_id, const char *name)

314 The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5A.html#Annot-Iterate

HDF5 User’s Guide HDF5 Attributes

H5Adelete removes the attribute name from the group, dataset, or committed datatype specified in
loc_id.

H5Adelete must not be called if there are any open attribute identifiers on the object loc_id. Such a
call can cause the internal attribute indexes to change; future writes to an open attribute would then pro-
duce unintended results.

8.4.7. Closing an Attribute

As is the case with all HDF5 objects, once access to an attribute it is no longer needed, that attribute must
be closed. It is best practice to close it as soon as practicable; it is mandatory that it be closed prior to the
H5close call closing the HDF5 Library.

To close an attribute, call H5Aclose:
herr_t H5Aclose (hid_t attr_id)

H5Aclose closes the specified attribute by terminating access to its identifier, attr_id.

8.5. Special Issues

Some special issues for attributes are discussed below.

Large Numbers of Attributes Stored in Dense Attribute Storage

The dense attribute storage scheme was added in version 1.8 so that datasets, groups, and committed
datatypes that have large numbers of attributes could be processed more quickly.

Attributes start out being stored in an object's header. This is known as compact storage. For more infor-
mation, see "Storage Strategies" on page 129.

As the number of attributes grows, attribute-related performance slows. To improve performance, dense
attribute storage can be initiated with the H5Pset_attr_phase_change function. See the HDF5 Refer-
ence Manual for more information.

When dense attribute storage is enabled, a threshold is defined for the number of attributes kept in com-
pact storage. When the number is exceeded, the library moves all of the attributes into dense storage at
another location. The library handles the movement of attributes and the pointers between the locations
automatically. If some of the attributes are deleted so that the number falls below the threshold, then the
attributes are moved back to compact storage by the library.

The improvements in performance from using dense attribute storage are the result of holding attributes
in a heap and indexing the heap with a B-tree.

Note that there are some disadvantages to using dense attribute storage. One is that this is a new feature.
Datasets, groups, and committed datatypes that use dense storage cannot be read by applications built

The HDF Group 315

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetAttrPhaseChange

HDF5 Attributes

HDF5 User’s Guide

with earlier versions of the library. Another disadvantage is that attributes in dense storage cannot be
compressed.

Large Attributes Stored in Dense Attribute Storage

We generally consider the maximum size of an attribute to be 64K bytes. The library has two ways of stor-
ing attributes larger than 64K bytes: in dense attribute storage or in a separate dataset. Using dense attri-
bute storage is described in this section, and storing in a separate dataset is described in the next section.

To use dense attribute storage to store large attributes, set the number of attributes that will be stored in
compact storage to 0 with the H5Pset_attr_phase_change function. This will force all attributes to be
put into dense attribute storage and will avoid the 64KB size limitation for a single attribute in compact

attribute storage.

The example code below illustrates how to create a large attribute that will be kept in dense storage.

/*
* Test use of dense attribute
*/

#define N 82000000
#include ""hdf5.h"

#include <stdio.h>
#include <stdlib.h>

int main(){

hid _t fid, gid, sid, aid, gpid, fpid;
hsize_t dims[] = {N};

double *buf;

int i;

herr_t status;

buf = (double *) malloc(sizeof(double) * N);

for (i=0; 1 <N; i++) { buf[i] = -100.0; }

fpid = H5Pcreate (H5P_FILE_ACCESS);

status = H5Pset_libver_bounds (fpid, H5F_LIBVER_LATEST,
H5F_LIBVER_LATEST);

fid = H5Fcreate('adense.h5", H5F ACC_TRUNC, H5P_DEFAULT,
fpid);

gpid = H5Pcreate (H5P_GROUP_CREATE);

status = H5Pset_attr_phase change (gpid, 0, 0);

Code Example 8-1. Create a large attribute in dense storage

316

The HDF Group

HDF5 User’s Guide HDF5 Attributes

gid = H5Gcreate(fid, "testgrp'™, H5P_DEFAULT, gpid,
H5P_DEFAULT);

sid = H5Screate_simple(l, dims, NULL);

aid = H5Acreate(gid, "bar'™, H5T_NATIVE DOUBLE, sid,

H5P_DEFAULT, H5P_DEFAULT);
status = H5Awrite(aid, H5T_NATIVE_DOUBLE, buf);

/* 1f you remove these two lines, it doesn"t crash */
status = H5Aclose(aid);

status = H5Pclose (gpid);
status = H5Pclose (fpid);
status = H5Gclose(gid);
status = H5Fclose (fid);
return O;

}

Code Example 8-1. Create a large attribute in dense storage

Large Attributes Stored in a Separate Dataset

In addition to dense attribute storage (see above), a large attribute can be stored in a separate dataset. In
the figure below, DatasetA holds an attribute that is too large for the object header in Datasetl. By
putting a pointer to DatasetA as an attribute in Datasetl, the attribute becomes available to those
working with Datasetl.

This way of handling large attributes can be used in situations where backward compatibility is important
and where compression is important. Applications built with versions before 1.8.x can read large attri-
butes stored in separate datasets. Datasets can be compressed while attributes cannot.

The HDF Group 317

HDF5 Attributes HDF5 User’s Guide

Datasetl

¥
Attribute

Object pointer

Dataseth

Datasetl

¥
Attribute

p— Object pointer

Figure 8-2. A large or shared HDF5 attribute and its associated dataset(s)

Note: In the figure above, DatasetA is an attribute of Dataset1 that is too large to store in Dataset1's header. Data-
setA is associated with Dataset1 by means of an object reference pointer attached as an attribute to Dataset1. The
attribute in DatasetA can be shared among multiple datasets by means of additional object reference pointers
attached to additional datasets.

Shared Attributes

Attributes written and managed through the H5A interface cannot be shared. If shared attributes are
required, they must be handled in the manner described above for large attributes and illustrated in the
figure above.

Attribute Names

While any ASCII or UTF-8 character may be used in the name given to an attribute, it is usually wise to
avoid the following kinds of characters:
e Commonly used separators or delimiters such as slash, backslash, colon, and semi-colon (\, /, 3, ;)
e Escape characters
e Wild cards such as asterisk and question mark (*, ?)

NULL can be used within a name, but HDF5 names are terminated with a NULL: whatever comes after the
NULL will be ignored by HDF5.

The use of ASCIl or UTF-8 characters is determined by the character encoding property. See
H5Pset_char_encoding in the HDF5 Reference Manual.

318 The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#Property-SetCharEncoding

HDF5 User’s Guide HDF5 Attributes

No Special I/O or Storage
HDFS5 attributes have all the characteristics of HDF5 datasets except the following:

e Attributes are written and read only in full: there is no provision for partial I/0 or sub-setting

¢ No special storage capability is provided for attributes: there is no compression or chunking, and
attributes are not extendable

The HDF Group 319

HDF5 Attributes HDF5 User’s Guide

320 The HDF Group

HDEF5 User’s Guide HDFS5 Error Handling

9. HDF5 Error Handling

9.1. Introduction

The HDF5 Library provides an error reporting mechanism for both the library itself and for user application
programs. It can trace errors through function stack and error information like file name, function name,
line number, and error description.

"Basic Error Handling Operations" beginning on page 323 discusses the basic error concepts such as error
stack, error record, and error message and describes the related API functions. These concepts and func-
tions are sufficient for application programs to trace errors inside the HDF5 Library.

"Advanced Error Handling Operations" beginning on page 329 talks about the advanced concepts of error
class and error stack handle and talks about the related functions. With these concepts and functions, an
application library or program using the HDF5 Library can have its own error report blended with HDF5’s
error report.

Starting with Release 1.8, we have a new set of Error Handling API functions. For the purpose of backward
compatibility with version 1.6 and before, we still keep the old API functions, H5Epush, H5Eprint,
H5Ewalk, H5Eclear, H5SEget_auto, H5Eset auto. These functions do not have the error stack as
parameter. The library allows them to operate on the default error stack. Users do not have to change
their code to catch up with the new Error API but are encouraged to do so.

The old APl is similar to functionality discussed in "Basic Error Handling Operations" beginning on

page 323. The functionality discussed in "Advanced Error Handling Operations" beginning on page 329,
the ability of allowing applications to add their own error records, is the new design for the Error Handling
API.

9.2. Programming Model for Error Handling

This section is under construction.

9.3. Error Handling (H5E) Function Summaries

Functions that can be used to handle errors (H5E functions) are listed below.

The HDF Group 321

HDF5 Error Handling

HDF5 User’s Guide

Function Listing 9-1. Error handling functions (H5E)

C Function
Fortran Subroutine

Purpose

H5Eauto_is v2
(no Fortran subroutine)

Determines the type of error stack.

H5Eclear
h5eclear_f

Clears the error stack for the current thread.
The C function is a macro: see “AP/ Compati-
bility Macros in HDF5.”

H5Eclear_stack
(no Fortran subroutine)

Clears the error stack for the current thread.

H5Eclose_msg
(no Fortran subroutine)

Closes an error message identifier.

H5Eclose_stack
(no Fortran subroutine)

Closes object handle for error stack.

H5Ecreate_msg
(no Fortran subroutine)

Add major error message to an error class.

H5Eget_auto
h5eget_auto f

Returns the current settings for the automatic
error stack traversal function and its data. The
C function is a macro: see “API Compatibility
Macros in HDF5.”

H5Eget_class_name
(no Fortran subroutine)

Retrieves error class name.

H5Eget_current_stack
(no Fortran subroutine)

Registers the current error stack.

H5Eget_msg
(no Fortran subroutine)

Retrieves an error message.

H5Eget_num
(no Fortran subroutine)

Retrieves the number of error messages in an
error stack.

H5Epop
(no Fortran subroutine)

Deletes specified number of error messages
from the error stack.

H5Eprint Prints the error stack in a default manner. The

h5eprint_f C function is a macro: see “API Compatibility
Macros in HDF5.”

H5Epush Pushes new error record onto error stack. The

(no Fortran subroutine)

C function is a macro: see “API Compatibility
Macros in HDF5.”

322

The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDF5 User’s Guide

HDFS5 Error Handling

Function Listing 9-1. Error handling functions (H5E)

C Function
Fortran Subroutine

Purpose

H5Eregister_class
(no Fortran subroutine)

Registers a client library or application pro-
gram to the HDF5 error API.

H5Eset_auto
hbeset_auto f

Turns automatic error printing on or off. The C
function is a macro: see “API Compatibility
Macros in HDF5.”

H5Eset_current_stack
(no Fortran subroutine)

Replaces the current error stack.

H5Eunregister_class
(no Fortran subroutine)

Removes an error class.

H5Ewalk
(no Fortran subroutine)

Walks the error stack for the current thread,
calling a specified function. The C function is a

macro: see “APl Compatibility Macros in
HDF5”

9.4. Basic Error Handling Operations

Let us first try to understand the error stack. An error stack is a collection of error records. Error records
can be pushed onto or popped off the error stack. By default, when an error occurs deep within the HDF5
Library, an error record is pushed onto an error stack and that function returns a failure indication. Its
caller detects the failure, pushes another record onto the stack, and returns a failure indication. This con-
tinues until the API function called by the application returns a failure indication. The next API function
being called will reset the error stack. All HDF5 Library error records belong to the same error class. For
more information, see "Advanced Error Handling Operations" on page 329.

9.4.1. Error Stack and Error Message

In normal circumstances, an error causes the stack to be printed on the standard error stream automati-
cally. This automatic error stack is the library’s default stack. For all the functions in this section, whenever
an error stack ID is needed as a parameter, HSE_ DEFAULT can be used to indicate the library’s default
stack. The first error record of the error stack, number #000, is produced by the API function itself and is
usually sufficient to indicate to the application what went wrong.

The HDF Group 323

http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html
http://www.hdfgroup.org/HDF5/doc/RM/APICompatMacros.html

HDF5 Error Handling HDFS5 User’s Guide

Example: An Error Report

If an application calls H5Tclose on a predefined datatype, then the message in the example below is
printed on the standard error stream. This is a simple error that has only one component, the API func-
tion; other errors may have many components.

HDF5-DIAG: Error detected in HDF5 (1.6.4) thread O.
#000: H5T.c line 462 in H5Tclose(): predefined datatype
major: Function argument
minor: Bad value

Code Example 9-1. An error report

In the example above, we can see that an error record has a major message and a minor message. A major
message generally indicates where the error happens. The location can be a dataset or a dataspace, for
example. A minor message explains further details of the error. An example is “unable to open file”.
Another specific detail about the error can be found at the end of the first line of each error record. This
error description is usually added by the library designer to tell what exactly goes wrong. In the example
above, the “predefined datatype” is an error description.

9.4.2. Print and Clear an Error Stack

Besides the automatic error report, the error stack can also be printed and cleared by the functions
H5Eprint() and H5Eclear_stack(). If an application wishes to make explicit calls to HSEprint() to
print the error stack, the automatic printing should be turned off to prevent error messages from being
displayed twice (see H5SEset_auto() below).

To print an error stack:
herr_t H5Eprint(hid_t error_stack, FILE * stream)

This function prints the error stack specified by error_stack on the specified stream, stream. If the
error stack is empty, a one-line message will be printed. The following is an example of such a message.
This message would be generated if the error was in the HDF5 Library.

HDF5-DIAG: Error detected in HDF5 Library version: 1.5.62 thread O.
To clear an error stack:
herr_t H5Eclear_stack(hid_t error_stack)

The H5Eclear_stack function shown above clears the error stack specified by error_stack. H5E_DE-
FAULT can be passed in to clear the current error stack. The current stack is also cleared whenever an API
function is called; there are certain exceptions to this rule such as HSEprint().

324 The HDF Group

HDEF5 User’s Guide HDFS5 Error Handling

9.4.3. Mute Error Stack

Sometimes an application calls a function for the sake of its return value, fully expecting the function to
fail; sometimes the application wants to call HSEprint() explicitly. In these situations, it would be mis-
leading if an error message were still automatically printed. Using the H5Eset_auto() function can con-
trol the automatic printing of error messages.

To enable or disable automatic printing of errors:

herr_t H5Eset_auto(hid_t error_stack, H5E auto t func,
void *client_data)

The H5Eset_auto function can be used to turns on or off the automatic printing of errors for the error
stack specified by error_stack. When turned on (non-null func pointer), any API function which
returns an error indication will first call func, passing it client_data as an argument. When the library
is first initialized the auto printing function is set to HSEprint() (cast appropriately) and client_data
is the standard error stream pointer, stderr.

To see the current settings:

herr_t H5Eget_auto(hid_t error_stack, H5E auto t * func,
void **client_data)

The function above returns the current settings for the automatic error stack traversal function, func, and
its data, client_data. If either or both of the arguments are null, then the value is not returned.
Example: Error Control

An application can temporarily turn off error messages while “probing” a function. See the example
below.

/* Save old error handler */
H5E_auto2_t oldfunc;
void *old_client_data;

H5Eget_auto(error_stack, &old_func, &old_client_data);

/* Turn off error handling */
H5Eset_auto(error_stack, NULL, NULL);

/* Probe. Likely to fail, but that’s okay */
status = H5Fopen (......);

/* Restore previous error handler */
HS5Eset_auto(error_stack, old_func, old_client_data);

Code Example 9-2. Turn off error messages while probing a function

The HDF Group 325

HDF5 Error Handling HDFS5 User’s Guide

Or automatic printing can be disabled altogether and error messages can be explicitly printed.

/* Turn off error handling permanently */
H5Eset _auto(error_stack, NULL, NULL);

/* 1f Tfailure, print error message */

if (H5Fopen (....)<0) {
HSEprint(H5E_DEFAULT, stderr);
exit (1);

}

Code Example 9-3. Disable automatic printing and explicitly print error messages

9.4.4. Customized Printing of an Error Stack

Applications are allowed to define an automatic error traversal function other than the default
H5Eprint(). For instance, one can define a function that prints a simple, one-line error message to the
standard error stream and then exits. The first example below defines a such a function. The second exam-
ple below installs the function as the error handler.

herr_t

my_hdf5_error_handler(hid_t estack, void *unused)

{
fprintf (stderr, “An HDF5 error was detected. Bye.\n”");
exit (1);

}

Code Example 9-4. Defining a function to print a simple error message

H5Eset _auto(H5E_DEFAULT, my hdf5 error_handler, NULL);

Code Example 9-5. The user-defined error handler

326 The HDF Group

HDEF5 User’s Guide HDFS5 Error Handling

9.4.5. Walk through the Error Stack

The H5Eprint() function is actually just a wrapper around the more complex H5SEwal k() function
which traverses an error stack and calls a user-defined function for each member of the stack. The exam-
ple below shows how H5Ewalk is used.

herr_t H5Ewalk(hid_t err_stack, H5E direction_t direction,
H5E walk_t func, void *client_data)

The error stack err_stack is traversed and func is called for each member of the stack. Its arguments
are an integer sequence number beginning at zero (regardless of direction) and the client_data
pointer. If direction is HSE_WALK_ UPWARD, then traversal begins at the inner-most function that
detected the error and concludes with the API function. Use HSE_WALK_DOWNWARD for the opposite
order.

9.4.6. Traverse an Error Stack with a Callback Function

An error stack traversal callback function takes three arguments: n is a sequence number beginning at
zero for each traversal, eptr is a pointer to an error stack member, and client_data is the same pointer
used in the example above passed to H5Ewalk(). See the example below.

typedef herr_t (*H5E_walk_t)(unsigned n, H5E_error2_t *eptr,
void *client_data)

The H5E_error2_t structure is shown below.

typedef struct {
hid_t cls_id;
hid_t maj_num;
hid_t min_num;
unsigned line;
const char *func_name;
const char *file_name;
const char *desc;

} H5E_error2_t;

The maj_numand min_num are major and minor error IDs, func_name is the name of the function where
the error was detected, file_name and line locate the error within the HDF5 Library source code, and
desc points to a description of the error.

Example: Callback Function

The following example shows a user-defined callback function.

The HDF Group 327

HDF5 Error Handling HDFS5 User’s Guide

#define MSG_SIZE 64

herr_t
custom_print_cb(unsigned n, const H5E_error2_t *err_desc,
void* client_data)

{
FILE *stream = (FILE *)client_data;
char maj [MSG_SIZE];
char min[MSG_SIZE];
char clIs[MSG_SIZE];
const int indent = 4;
/* Get descriptions for the major and minor error
* numbers
*/
if(H5Eget_class_name(err_desc->cls_id, cls, MSG_SIZE)<0)
TEST_ERROR;
if(H5Eget _msg(err_desc->maj_num, NULL, maj, MSG_SIZE)<0)
TEST_ERROR;
if(H5Eget _msg(err_desc->min_num, NULL, min, MSG_SIZE)<0)
TEST_ERROR;
fprintf (stream, “%*serror #%03d: %s In %s():
line %u\n”,
indent, “”, n, err_desc->file_name,
err_desc->func_name, err_desc->line);
fprintf (stream, “%*sclass: %s\n”, indent*2, “”, cls);
fprintf (stream, “%*smajor: %s\n”’, indent*2, “”, maj);
fprintf (stream, “%*sminor: %s\n”, indent*2, “’’, min);
return O;
error:
return -1;
¥

Code Example 9-6. A user-defined callback function

328 The HDF Group

HDEF5 User’s Guide HDFS5 Error Handling

Programming Note for C++ Developers Using C Functions

If a C routine that takes a function pointer as an argument is called from within C++ code, the C routine
should be returned from normally.

Examples of this kind of routine include callbacks such as H5Pset_elink_cb and H5Pset_type_con-
v_cb and functions such as H5Tconvert and H5Ewal k2.

Exiting the routine in its normal fashion allows the HDF5 C Library to clean up its work properly. In other
words, if the C++ application jumps out of the routine back to the C++ “catch” statement, the library is not
given the opportunity to close any temporary data structures that were set up when the routine was
called. The C++ application should save some state as the routine is started so that any problem that
occurs might be diagnosed.

9.5. Advanced Error Handling Operations

The section above, see "Basic Error Handling Operations" beginning on page 323, discusses the basic error
handling operations of the library. In that section, all the error records on the error stack are from the
library itself. In this section, we are going to introduce the operations that allow an application program to
push its own error records onto the error stack once it declares an error class of its own through the HDF5
Error API.

Example: An Error Report

An error report shows both the library’s error record and the application’s error records. See the example
below.

Error Test-DIAG: Error detected in Error Program (1.0)
thread 8192:
#000: ../../hdf5/test/error_test.c line 468 in main():
Error test failed
major: Error in test
minor: Error in subroutine

#001: ../../hdf5/test/error_test.c line 150 in
test_error(): H5Dwrite failed as supposed to
major: Error in IO
minor: Error in H5Dwrite

HDF5-DIAG: Error detected in HDF5 (1.7.5) thread 8192:
#002: ../../hdf5/src/H5Dio.c line 420 in H5Dwrite():
not a dataset
major: Invalid arguments to routine
minor: Inappropriate type

Code Example 9-7. An error report

The HDF Group 329

HDF5 Error Handling HDFS5 User’s Guide

In the line above error record #002 in the example above, the starting phrase is HDF5. This is the error
class name of the HDF5 Library. All of the library’s error messages (major and minor) are in this default
error class. The Error Test in the beginning of the line above error record #000 is the name of the

application’s error class. The first two error records, #000 and #001, are from application’s error class.

By definition, an error class is a group of major and minor error messages for a library (the HDF5 Library or
an application library built on top of the HDF5 Library) or an application program. The error class can be
registered for a library or program through the HDF5 Error API. Major and minor messages can be defined
in an error class. An application will have object handles for the error class and for major and minor mes-
sages for further operation. See the example below.

#define MSG_SIZE 64

herr_t
custom_print_cb(unsigned n, const H5E_error2_t *err_desc,
void* client_data)

{
FILE *stream = (FILE *)client_data;
char maj [MSG_SIZE];
char min[MSG_SIZE];
char clIs[MSG_SIZE];
const int indent = 4;

/* Get descriptions for the major and minor error

* numbers

*/

if(H5Eget_class_name(err_desc->cls_id, cls, MSG_SIZE)<0)
TEST_ERROR;

if(H5Eget _msg(err_desc->maj_num, NULL, maj, MSG_SIZE)<0)
TEST_ERROR;

Code Example 9-8. Defining an error class

330 The HDF Group

HDEF5 User’s Guide HDFS5 Error Handling

if(H5Eget_msg(err_desc->min_num, NULL, min, MSG_SIZE)<0)
TEST_ERROR;

fprintf (stream, “%*serror #%03d: %s in %s(Q):
line %u\n”,
indent, “’, n, err_desc->file_name,
err_desc->func_name, err_desc->line);

fprintf (stream, “%*sclass: %s\n”’, indent*2, “”, cls);
fprintf (stream, “%*smajor: %s\n”, indent*2, “’, maj);
fprintf (stream, “%*sminor: %s\n”’, indent*2, “”, min);

return O;
error:
return -1;

}

Code Example 9-8. Defining an error class

9.5.1. More Error API Functions

The Error API has functions that can be used to register or unregister an error class, to create or close error
messages, and to query an error class or error message. These functions are illustrated below.

To register an error class:

hid_t H5Eregister_class(const char* cls_name, const char* lib_name,
const char* version)

This function registers an error class with the HDF5 Library so that the application library or program can
report errors together with the HDF5 Library.

To add an error message to an error class:
hid_t H5Ecreate_msg(hid_t class, H5E_type_t msg_type, const char* mesqg)

This function adds an error message to an error class defined by an application library or program. The
error message can be either major or minor which is indicated by parameter msg_type.

To get the name of an error class:
ssize_t H5Eget class_name(hid_t class_id, char* name, size t size)
This function retrieves the name of the error class specified by the class ID.

To retrieve an error message:

ssize_t H5Eget msg(hid_t mesg_id, H5E_type t* mesg type, char* mesg,

The HDF Group 331

HDF5 Error Handling HDFS5 User’s Guide

size_t size)
This function retrieves the error message including its length and type.
To close an error message:
herr_t H5Eclose_msg(hid_t mesg_id)
This function closes an error message.
To remove an error class:
herr_t H5Eunregister_class(hid_t class_id)

This function removes an error class from the Error API.

Example: Error Class and its Message

The example below shows how an application creates an error class and error messages.

/* Create an error class */
class_id = H5Eregister_class(ERR_CLS NAME, PROG_NAME,
PROG_VERS);

/* Retrieve class name */
H5Eget _class_name(class_id, cls_name, cls_size);

/* Create a major error message in the class */
maj_id = H5Ecreate_msg(class_id, H5E_MAJOR, “... ...”7);

/* Create a minor error message in the class */
min_id = H5Ecreate_msg(class_id, H5E_MINOR, “... _...”);

Code Example 9-9. Create an error class and error messages

The example below shows how an application closes error messages and unregisters the error class.

H5Eclose_msg(maj_id);
H5Eclose_msg(min_id);
H5Eunregister_class(class_id);

Code Example 9-10. Closing error messages and unregistering the error class

332 The HDF Group

HDEF5 User’s Guide HDFS5 Error Handling

9.5.2. Pushing an Application Error Message onto Error Stack

An application can push error records onto or pop error records off of the error stack just as the library
does internally. An error stack can be registered, and an object handle can be returned to the application
so that the application can manipulate a registered error stack.

To register the current stack:
hid_t H5Eget _current_stack(void)

This function registers the current error stack, returns an object handle, and clears the current error stack.
An empty error stack will also be assigned an ID.

To replace the current error stack with another:
herr_t H5Eset_current_stack(hid_t error_stack)

This function replaces the current error stack with another error stack specified by error_stack and
clears the current error stack. The object handle error_stack is closed after this function call.

To push a new error record to the error stack:

herr_t H5Epush(hid_t error_stack, const char* file, const char* func,
unsigned line, hid_t cls_id, hid_t major_id, hid_t minor_id,
const char* desc, ...)

This function pushes a new error record onto the error stack for the current thread.
To delete some error messages:

herr_t H5Epop(hid_t error_stack, size_t count)
This function deletes some error messages from the error stack.
To retrieve the number of error records:

int H5Eget_num(hid_t error_stack)
This function retrieves the number of error records from an error stack.
To clear the error stack:

herr_t H5Eclear_stack(hid_t error_stack)
This function clears the error stack.
To close the object handle for an error stack:

herr_t H5Eclose_stack(hid_t error_stack)

This function closes the object handle for an error stack and releases its resources.

Example: Working with an Error Stack

The example below shows how an application pushes an error record onto the default error stack.

The HDF Group 333

HDF5 Error Handling HDFS5 User’s Guide

/* Make call to HDF5 1/0 routine */
if((dset_id=H5Dopen(file_id, dset_name, access plist))<0)

{

/* Push client error onto error stack */

H5Epush(H5E_DEFAULT,__ FILE_ ,FUNC,_ LINE__ ,cls_id,
CLIENT_ERR_MAJ_10,CLIENT_ERR_MINOR_OPEN,
“H5Dopen failed™);

/* Indicate error occurred in function */
return(0);

Code Example 9-11. Pushing an error message to an error stack

The example below shows how an application registers the current error stack and creates an object han-
dle to avoid another HDF5 function from clearing the error stack.

if(H5Dwrite(dset_id, mem_type_id, mem_space_id,

{

file_space_id, dset xfer_plist_id, buf)<0)

/* Push client error onto error stack */

H5Epush(H5E_DEFAULT, FILE__ ,FUNC, LINE_ ,cls_id,
CLIENT_ERR_MAJ 10,CLIENT_ERR_MINOR_HDF5,
“H5Dwrite failed”);

/* Preserve the error stack by assigning an object
* handle to it

*/

error_stack = H5Eget _current_stack();

/* Close dataset */
H5Dclose(dset_id);

/* Replace the current error stack with the
* preserved one

*/

H5Eset_current_stack(error_stack);

Return(0);

Code Example 9-12. Registering the error stack

334

The HDF Group

HDF5 User’s Guide HDFS5 Error Handling

The HDF Group 335

HDF5 Error Handling HDFS5 User’s Guide

336 The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

10. Properties and Property Lists in HDF5

10.1. Introduction

HDF5 properties and property lists make it possible to shape or modify an HDF5 file, group, dataset, attri-
bute, committed datatype, or even an I/O stream, in a number of ways. For example, you can do any of the
following:

e Customize the storage layout of a file to suit a project or task.

¢ Create a chunked dataset.

e Apply compression or filters to raw data.

e Use either ASCIl or UTF-8 character encodings.

e Create missing groups on the fly.

e Switch between serial and parallel I/0.

e Create consistency within a single file or across an international project.
Some properties enable an HDF5 application to take advantage of the capabilities of a specific computing
environment while others make a file more compact; some speed the reading or writing of data while oth-

ers enable more record-keeping at a per-object level. HDF5 offers nearly one hundred specific properties
that can be used in literally thousands of combinations to maximize the usability of HDF5-stored data.

At the most basic level, a property list is a collection of properties, represented by name/value pairs that
can be passed to various HDF5 functions, usually modifying default settings. A property list inherits a set
of properties and values from a property list class. But that statement hardly provides a complete picture;
in the rest of this section and in the next section, “Property List Classes, Property Lists, and Properties”, we
will discuss these things in much more detail. After reading that material, the reader should have a reason-
ably complete understanding of how properties and property lists can be used in HDF5 applications.

Property List Class

Property List

Property

Figure 10-1. The HDF5 property environment

The HDF Group 337

Properties and Property Lists in HDF5 HDFS5 User’s Guide

The remaining sections in this chapter discuss the following topics:

e What are properties, property lists, and property list classes?
e Property list programming model

e Generic property functions

e Summary listings of property list functions

e Additional resources

The discussions and function listings in this chapter focus on general property operations, object and link
properties, and related functions.

File, group, dataset, datatype, and attribute properties are discussed in the chapters devoted to those fea-
tures, where that information will be most convenient to users. For example, "HDF5 Datasets" on

page 103 discusses dataset creation property lists and functions, dataset access property lists and func-
tions, and dataset transfer property lists and functions. This chapter does not duplicate those discussions.

Generic property operations are an advanced feature and are beyond the scope of this guide.
This chapter assumes an understanding of the following chapters of this HDF5 User’s Guide:

e "The HDF5 Data Model and File Structure" on page 1
e "The HDF5 Library and Programming Model" on page 21

10.2. Property List Classes, Property Lists, and Properties

HDF5 property lists and the property list interface H5P provide a mechanism for storing characteristics of
objects in an HDF5 file and economically passing them around in an HDF5 application. In this capacity,
property lists significantly reduce the burden of additional function parameters throughout the HDF5 API.
Another advantage of property lists is that features can often be added to HDF5 by adding only property
list functions to the API; this is particularly true when all other requirements of the feature can be accom-
plished internally to the library.

For instance, a file creation operation needs to know several things about a file, such as the size of the
userblock or the sizes of various file data structures. Bundling this information as a property list simplifies
the interface by reducing the number of parameters to the function HSFcreate.

As illustrated in the figure above ("The HDF5 property environment" on page 337), the HDF5 property
environment is a three-level hierarchy:

e Property list classes
e Property lists

e Properties

The following subsections discuss property list classes, property lists, and properties in more detail.

338 The HDF Group

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

HDF5 User’s Guide Properties and Property Lists in HDF5

10.2.1. Property List Classes

A property list class defines the roles that property lists of that class can play. Each class includes all prop-
erties that are valid for that class with each property set to its default value. HDF5 offers a property lists
class for each of the following situations.

Table 10-1. Property list classes in HDF5

Property List Class

For further discussion

File creation (FCPL)
File access (FAPL)

File mount (FMPL)

H5P_FILE_CREATE
H5P_FILE_ACCESS

H5P_FILE_MOUNT

See various sections of "The
HDF5 File" beginning on page 45.

Used only as H5P_DEFAULT. For
more information, see "File
Mount Properties" on page 351.

Object creation (OCPL)

Object copy (OCPYPL)

H5P_OBJECT_CREATE

H5P_OBJECT_COPY

See the table of "Object property
functions (H5P)" on page 348.

Group creation (GCPL)

Group access (GAPL)

H5P_GROUP_CREATE

H5P_GROUP_ACCESS

See "Programming Model for
Groups" on page 91.

Link creation (LCPL)

Link access (LAPL)

H5P_LINK_CREATE

H5P_LINK_ACCESS

See examples in "Programming
Model for Properties and Prop-
erty Lists" on page 343 and the
table of "Link creation property
functions (H5P)" on page 350.

Dataset creation (DCPL)
Dataset access (DAPL)

Dataset transfer (DXPL)

HS5P_DATASET_CREATE
H5P_DATASET_ACCESS

H5P_DATASET_XFER

See "Programming Model for
Datasets" on page 110.

Datatype creation (TCPL)

Datatype access (TAPL)

HS5P_DATATYPE_CREATE

H5P_DATATYPE_ACCESS

See various sections of "HDF5
Datatypes" beginning on
page 173.

String creation (STRCPL)

H5P_STRING_CREATE

See "Programming Model for
Datasets" on page 110 and "Pro-
gramming Model for Datatypes"
on page 192.

Attribute creation (ACPL)

HS5P_ATTRIBUTE_CREATE

See "Working with Attributes" on
page 312.

Note: In the table above, the abbreviations to the right of each property list class name in this table are widely used
in both HDF5 programmer documentation and HDF5 source code. For example, FCPL is file creation property list,

The HDF Group 339

Properties and Property Lists in HDF5 HDFS5 User’s Guide

OCPL is object creation property list, OCPYPL is object copy property list, and STRCPL is string creation property list.
These abbreviations may appear in either uppercase or lowercase.

The “HDF5 property list class inheritance hierarchy” figure, immediately following, illustrates the inheri-
tance hierarchy of HDF5’s property list classes. Properties are defined at the root of the HDF5 property
environment (“Property List Class Root” in the figure below). Property list classes then inherit properties
from that root, either directly or indirectly through a parent class. In every case, a property list class inher-
its only the properties relevant to its role. For example, the object creation property list class (OCPL) inher-
its all properties that are relevant to the creation of any object while the group creation property list class
(GCPL) inherits only those properties that are relevant to group creation.

Property List Class Root

STRCPL OCPL LAPL

FAPL FMPIE LCPL ACPL GCPL DCPL TCPL OCPYPL GAPL DAPL TAPL DXPL

FCPL

Figure 10-2. HDF5 property list class inheritance hierarchy

Note: In the figure above, property list classes displayed in black are directly accessible through the programming
interface; the root of the property environment and the STRCPL and OCPL property list classes, in gray above, are not
user-accessible. The red empty set symbol indicates that the file mount property list class (FMPL) is an empty class;
that is, it has no settable properties. For more information, see "File Mount Properties" on page 351. Abbreviations
used in this figure are defined in the preceding table, “Property list classes in HDF5”,

10.2.2. Property Lists

A property list is a collection of related properties that are used together in specific circumstances. A new
property list created from a property list class inherits the properties of the property list class and each
property’s default value. A fresh dataset creation property list, for example, includes all of the HDF5 prop-
erties relevant to the creation of a new dataset.

Property lists are implemented as containers holding a collection of name/value pairs. Each pair specifies
a property name and a value for the property. A property list usually contains information for one to many
properties.

HDF5’s default property values are designed to be reasonable for general use cases. Therefore, an applica-
tion can often use a property list without modification. On the other hand, adjusting property list settings
is a routine action and there are many reasons for an application to do so.

340 The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

A new property list may either be derived from a property list class or copied from an existing property list.
When a property list is created from a property list class, it contains all the properties that are relevant to
the class, with each property set to its default value. A new property list created by copying an existing
property list will contain the same properties and property values as the original property list. In either
case, the property values can be changed as needed through the HDF5 API.

Property lists can be freely reused to create consistency. For example, a single set of file, group, and data-
set creation property lists might be created at the beginning of a project and used to create hundreds,
thousands, even millions, of consistent files, file structures, and datasets over the project’s life. When
such consistency is important to a project, this is an economical means of providing it.

10.2.3. Properties

A property is the basic element of the property list hierarchy. HDF5 offers nearly one hundred properties
controlling things ranging from file access rights, to the storage layout of a dataset, through optimizing the
use of a parallel computing environment.

Further examples include the following:

Purpose Examples Property List
Specify the driver to be used to open A POSIX driver or an MPI 10 driver FAPL

afile

Specify filters to be applied to a data- Gzip compression or checksum evalu- DCPL

set ation

Specify whether to record key times Creation time and/or last-modified OCPL
associated with an object time

Specify the access mode for a file Read-only or read-write LAPL

opened via an external link

Each property is initialized with a default value. For each property, there are one or more dedicated
H5Pset_* calls that can be used to change that value.

Creation, access, and transfer properties:

Properties fall into one of several major categories: creation properties, access properties, and transfer

properties.

Creation properties control permanent object characteristics. These characteristics must be established
when an object is created, cannot change through the life of the object (they are immutable), and the
property setting usually has a permanent presence in the file.

Examples of creation properties include:

The HDF Group 341

Properties and Property Lists in HDF5 HDFS5 User’s Guide

Whether a dataset is stored in a compact, contiguous, or chunked layout

The default for this dataset creation property (H5Pset_layout) is that a dataset is stored in a
contiguous block. This works well for datasets with a known size limit that will fit easily in system
memory.

A chunked layout is important if a dataset is to be compressed, to enable extending the dataset’s
size, or to enable caching during I/0.

A compact layout is suitable only for very small datasets because the raw data is stored in the
object header.

Creation of intermediate groups when adding an object to an HDF5 file

This link creation property (H5Pset_create_intermediate_group) enables an application to
add an object in a file without having to know that the group or group hierarchy containing that
object already exists. With this property set, HDF5 automatically creates missing groups. If this
property is not set, an application must verify that each group in the path exists, and create those
that do not, before creating the new object; if any group is missing, the create operation will fail.

Whether an HDF5 file is a single file or a set of tightly related files that form a virtual HDF5 file

Certain file creation properties enable the application to select one of several file layouts. Exam-
ples of the available layouts include a standard POSIX-compliant layout (H5Pset_fapl_sec2), a
family of files (H5Pset_fapl_family), and a split file layout that separates raw data and meta-
data into separate files (H5Pset_fapl_split). These and other file layout options are discussed
in "Alternate File Storage Layouts and Low-level File Drivers" on page 61.

To enable error detection when creating a dataset

In settings where data integrity is vulnerable, it may be desirable to set checksumming when data-
sets are created (H5Pset_fletcher32). A subsequent application will then have a means to ver-
ify data integrity when reading the dataset.

Access properties control transient object characteristics. These characteristics may change with the cir-
cumstances under which an object is accessed.

Examples of access properties include:

The driver used to open a file

For example, a file might be created with the MPI I/O driver (H5Pset_fapl_mpio) during high-
speed data acquisition in a parallel computing environment. The same file might later be analyzed
in a serial computing environment with 1/0 access handled through the serial POSIX driver
(H5Pset_fapl _sec2).

Optimization settings in specialized environments

Optimizations differ across computing environments and according to the needs of the task being
performed, so are transient by nature.

Transfer properties apply only to datasets and control transient aspects of data I/O. These characteristics
may change with the circumstances under which data is accessed.

Examples of dataset transfer properties include:

342

The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

¢ To enable error detection when reading a dataset

If checksumming has been set on a dataset (with H5Pset_fletcher32, in the dataset creation
property list), an application reading that dataset can choose whether check for data integrity
(H5Pset_edc_check).

e Various properties to optimize chunked data I/O on parallel computing systems

HDF5 provides several properties for tuning 1/0O of chunked datasets in a parallel computing envi-
ronment (H5Pset_dxpl_mpio_chunk_opt, H5Pset_dxpl_mpio_chunk_opt_num,
H5Pset_dxpl_mpio_chunk opt_ratio, and H5Pget_mpio_actual_chunk_opt_mode).

Optimal settings differ due to the characteristics of a computing environment and due to an appli-
cation’s data access patterns; even when working with the same file, these settings might change
for every application and every platform.

10.3. Programming Model for Properties and Property
Lists

The programming model for HDF5 property lists is actually quite simple:
1. Create a property list.
2. Modify the property list, if required.
3. Use the property list.
4. Close the property list.

There are nuances, of course, but that is the basic process.

In some cases, you will not have to define property lists at all. If the default property settings are sufficient
for your application, you can tell HDF5 to use the default property list.

The following sections first discuss the use of default property lists, then each step of the programming
model, and finally a few less frequently used property list operations.

10.3.1. Using Default Property Lists

Default property lists can simplify many routine HDF5 tasks because you do not always have to create
every property list you use.

An application that would be well-served by HDF5’s default property settings can use the default property
lists simply by substituting the value H5P_DEFAULT for a property list identifier. HDF5 will then apply the
default property list for the appropriate property list class.

The HDF Group 343

Properties and Property Lists in HDF5 HDFS5 User’s Guide

For example, the function H5Dcreate?2 calls for a link creation property list, a dataset creation property
list, and a dataset access property list. If the default properties are suitable for a dataset, this call can be
made as

dset_id = H5Dcreate2(loc_id, name, dtype_id, space_id;
H5P_DEFAULT, HS5P_DEFAULT, H5P_DEFAULT);

HDF5 will then apply the default link creation, dataset creation, and dataset access property lists correctly.

Of course, you would not want to do this without considering where it is appropriate, as there may be
unforeseen consequences. Consider, for example, the use of chunked datasets. Optimal chunking is quite
dependent on the makeup of the dataset and the most common access patterns, both of which must be
taken into account in setting up the size and shape of chunks.

10.3.2. Basic Steps of the Programming Model

The steps of the property list programming model are described in the sub-sections below.

10.3.2.1. Create a Property List

A new property list can be created either as an instance of a property list class or by copying an existing
property list. Consider the following examples. A new dataset creation property list is first created “from
scratch” with H5Pcreate. A second dataset creation property list is then created by copying the first one
with H5Pcopy.

dcplA_id = H5Pcreate (H5P_DATASET_CREATE);

The new dataset creation property list is created as an instance of the property list class H5P_ -
DATASET_CREATE.

The new dataset creation property list’s identifier is returned in dcplA_id and the property list
is initialized with default dataset creation property values.

A list of valid classes appears in the table "Property list classes in HDF5" on page 339.
dcplB_id = H5Pcopy (dcplA _id);

A new dataset creation property list, dcpIB_id, is created as a copy of dcplA_id and is initial-
ized with dataset creation property values currently in dcplA_id.

At this point, dcplA_id and dcplIB_id are identical; they will both contain any modified property values
that were changed in dcplA_id before dcpIB_id was created. They may, however, diverge as additional
property values are reset in each.

While we are creating property lists, let’s create a link creation property list; we will need this property list
when the new dataset is linked into the file below:

IcplAB_id = H5Pcreate (H5P_LINK _CREATE);

344 The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

10.3.2.2. Change Property Values

This section describes how to set property values.

Later in this section, the dataset creation property lists dcplA_id and dcpIB_id created in the section
above will be used respectively to create chunked and contiguous datasets. To set this up, we must set the
layout property in each property list. The following example sets dcplA_id for chunked datasets and
dcplB_id for contiguous datasets:

error H5Pset_layout (dcplA_id, H5D_CHUNKED);
error = H5Pset_layout (dcplB_id, H5D_CONTIGUOUS);

Since dcplA_id specifies a chunked layout, we must also set the number of dimensions and the size of
the chunks. The example below specifies that datasets created with dcplA_id will be 3-dimensional and
that the chunk size will be 100 in each dimension:

error = H5Pset _chunk (dcplA _id, 3, [100,100,100]);

These datasets will be created with UTF-8 encoded names. To accomplish that, the following example sets
the character encoding property in the link creation property list to create link names with UTF-8 encod-
ing:

error = H5Pset _char_encoding (IcplAB_id, H5T_CSET_UTF8);

dcplA_id can now be used to create chunked datasets and dcplB_id to create contiguous datasets.
And with the use of IcplAB_id, they will be created with UTF-8 encoded names.

10.3.2.3. Use the Property List

Once the required property lists have been created, they can be used to control various HDF5 processes.
For illustration, consider dataset creation.

Assume that the datatype dtypeAB and the dataspaces dspaceA and dspaceB have been defined and
that the location identifier locAB_i1d specifies the group AB in the current HDF5 file. We have already cre-
ated the required link creation and dataset creation property lists. For the sake of illustration, we assume
that the default dataset access property list meets our application requirements. The following calls would
create the datasets dsetA and dsetB in the group AB. The raw data in dsetA will be contiguous while
dsetB raw data will be chunked; both datasets will have UTF-8 encoded link names:

dsetA_id = H5Dcreate2(locAB_id, dsetA, dtypeAB, dspaceA_id,
IcplAB_id, dcplA_id, H5P_DEFAULT);

dsetB_id = H5Dcreate2(locAB_id, dsetB, dtypeAB, dspaceB id,
IcplAB_id, dcplB_id, H5P_DEFAULT);

10.3.2.4. Close the Property List

Generally, creating or opening anything in an HDF5 file results in an HDF5 identifier. These identifiers are
of HDF5 type hid_t and include things like file identifiers, often expressed as i le_id; dataset identifi-

The HDF Group 345

Properties and Property Lists in HDF5 HDFS5 User’s Guide

ers, dset_id; and property list identifiers, plist_id. To reduce the risk of memory leaks, all of these
identifiers must be closed once they are no longer needed.

Property list identifiers are no exception to this rule, and H5Pclose is used for this purpose. The calls
immediately following would close the property lists created and used in the examples above.

error H5Pclose (dcplA_id);
error H5Pclose (dcplB_id);
error = H5Pclose (IcplAB_id);

10.3.3. Additional Property List Operations

A few property list operations fall outside of the programming model described above. This section
describes those operations.

10.3.3.1. Query the Class of an Existing Property List

Occasionally an application will have a property list but not know the corresponding property list class. A
call such as in the following example will retrieve the unknown class of a known property list:

PList_Class = H5Pget _class (dcplA_id);

Upon this function’s return, PList_Class will contain the value H5P_DATASET CREATE indicating that
dcplA_idis a dataset creation property list.

10.3.3.2. Determine Current Creation Property List Settings in an Existing Object

After afile has been created, another application may work on the file without knowing how the creation
properties for the file were set up. Retrieving these property values is often unnecessary; HDF5 can read
the data and knows how to deal with any properties it encounters.

But sometimes an application must do something that requires knowing the creation property settings.
HDF5 makes the acquisition of this information fairly straight-forward; for each property setting call,
H5Pset_*, there is a corresponding H5Pget_ * call to retrieve the property’s current setting.

Consider the following examples which illustrate the determination of dataset layout and chunking set-
tings:

The application must first identify the creation property list with the appropriate get creation
property list call. There is one such call for each kind of object.

H5Dget create plistwill return a property list identifier for the creation property list
that was used to create the dataset. Call it DCPL1_id.

H5Pset layout sets a dataset’s layout to be compact, contiguous, or chunked.

H5Pget_layout called with DCPL1_id will return the dataset’s layout, either H5D_-
COMPACT, H5D_CONT I1GUOUS, or H5D_CHUNKED.

346 The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

H5Pset_chunk sets the rank of a dataset, that is the number of dimensions it will have, and the
maximum size of each dimension.

H5Pget chunk, also called with DCPL1_id, will return the rank of the dataset and the
maximum size of each dimension.

If a creation property value has not been explicitly set, these H5Pget_ calls will return the property’s
default value.

10.3.3.3. Determine Access Property Settings

Access property settings are quite different from creation properties. Since access property settings are
not retained in an HDFS file or object, there is normally no knowledge of the settings that were used in the
past. On the other hand, since access properties do not affect characteristics of the file or object, this is
not normally an issue. For more information, see "Access and Creation Property Exceptions" on page 352.

One circumstance under which an application might need to determine access property settings might be
when a file or object is already open but the application does not know the property list settings. In that
case, the application can use the appropriate get access property list call to retrieve a property list identi-
fier. For example, if the dataset dsetA from the earlier examples is still open, the following call would
return an identifier for the dataset access property list in use:

dsetA dacpl_id = H5Dget_access plist(dsetA _id);

The application could then use the returned property list identifier to analyze the property settings.

10.4. Generic Properties Interface and User-defined
Properties

HDF5’s generic property interface provides tools for managing the entire property hierarchy and for the
creation and management of user-defined property lists and properties. This interface also makes it possi-
ble for an application or a driver to create, modify, and manage custom properties, property lists, and
property list classes. A comprehensive list of functions for this interface appears under “Generic Property
Operations (Advanced)” in the “H5P: Property List Interface” section of the HDF5 Reference Manual.

Further discussion of HDF5’s generic property interface and user-defined properties and property lists is
beyond the scope of this document.

10.5. Property List Function Summaries

General property functions, generic property functions and macros, property functions that are used with
multiple types of objects, and object and link property functions are listed below.

The HDF Group 347

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#GenericPropFuncs
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#GenericPropFuncs
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html

Properties and Property Lists in HDF5 HDFS5 User’s Guide

Property list functions that apply to a specific type of object are listed in the chapter that discusses that
object. For example, the Datasets chapter has two property list function listings: one for dataset creation
property list functions and one for dataset access property list functions. As has been stated, this chapter
is not intended to describe every property list function.

Function Listing 10-1. General property list functions (H5P)

C Function Purpose
Fortran Subroutine

H5Pcreate Creates a new property list as an instance of a
h5pcreate_f specified parent property list class.

H5Pcopy Creates a new property list by copying the
h5pcopy_T specified existing property list.

H5Pget class Retrieves the parent property list class of the
h5pget_class_T specified property list.

H5Pclose Closes the specified property list.
h5pclose_f

Object property functions can be used with several kinds of objects.

Function Listing 10-2. Object property functions (H5P)

C Function Purpose
Fortran Subroutine

Object Creation Properties

H5Pget_attr_creation_order Retrieves tracking and indexing settings
h5pget_attr_creation_order_f for attribute creation order.
H5Pget_attr_phase_ change Retrieves attribute storage phase change
h5pget_attr_phase_change_T thresholds.

H5Pget _obj track_ times Determines whether times associated
h5pget_obj track_times_f with an object are being recorded.
H5Pset_attr_creation_order Sets tracking and indexing of attribute
h5pset_attr_creation_order_f creation order.

H5Pset_attr_phase_ change Sets attribute storage phase change
h5pset_attr_phase_change_T thresholds.

348 The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

Function Listing 10-2. Object property functions (H5P)

C Function Purpose
Fortran Subroutine

H5Pset _obj track_ times Sets the recording of times associated
h5pset_obj track times f with an object.

Object Copy Properties

H5Padd_merge_committed_dtype_path Adds a path to the list of paths that will
(no Fortran subroutine) be searched in the destination file for a

matching committed datatype.

H5Pfree_merge committed _dtype paths Clears the list of paths stored in an object

(no Fortran subroutine) copy property list.

H5Pget _copy_object Retrieves the properties to be used when

h5pget_copy_object f an object is copied.

H5Pget_mcdt_search_cb Retrieves the callback function from the

(no Fortran subroutine) specified object copy property list.

H5Pset _copy_object Sets the properties to be used when an

h5pset_copy_object_ f object is copied.

H5Pset _mcdt_search_cb Sets the callback function that H5Ocopy

(no Fortran subroutine) will invoke before searching the entire
destination file for a matching committed
datatype.

The following table lists link creation properties. Since the creation of a link is almost always a step in the
creation of an object, these properties may also be set in group creation property lists, dataset creation
property lists, datatype creation property lists, and the more generic object creation property lists. Some
are also applicable to the attribute creation property lists.

The HDF Group 349

Properties and Property Lists in HDF5 HDFS5 User’s Guide

Function Listing 10-3. Link creation property functions (H5P)

C Function Purpose
Fortran Subroutine

H5Pget char_encoding Queries the character encoding used to
h5pget_char_encoding f encode link or attribute names.

Note: Use with link, object, dataset, datatype,
group, or attribute creation property lists.

H5Pset_char_encoding Sets the character encoding used to
h5pset_char_encoding f encode link and attribute names.

Note: Use with link, object, dataset, datatype,
group, or attribute creation property lists.

H5Pget create_intermediate_group Queries setting for creation of intermedi-
h5pget _create_intermediate_group f ate groups.

Note: Use with link creation property lists,
which in turn can be used in the create call for
any dataset, datatype, or group.

H5Pset create_intermediate_group Specifies whether to create intermediate
h5pset_create_intermediate _group f groups when they do not already exist.

Note: Use with link creation property lists,
which in turn can be used in the create call for
any dataset, datatype, or group.

Note: In the function listing above, the properties can be used with any of the indicated property lists.

10.6. Additional Property List Resources

Property lists are ubiquitous in an HDF5 environment and are therefore discussed in many places in HDF5
documentation. The following sections and listings in the HDF5 User’s Guide are of particular interest:
¢ Inthe “HDF5 Data Model and File Structure” chapter, see "Property List" on page 13.
¢ Inthe “HDF5 File” chapter, see the following sections and listings:
e "File Creation and File Access Properties" on page 46
e "File Property Lists" on page 58
e "Example with the File Creation Property List" on page 74
o "Example with the File Access Property List" on page 75
e "File creation property list functions (H5P)" on page 53
e "File access property list functions (H5P)" on page 54

350 The HDF Group

HDF5 User’s Guide Properties and Property Lists in HDF5

e "File driver functions (H5P)" on page 55

¢ Inthe “HDF5 Attributes” chapter, see "Attribute creation property list functions (H5P)" on
page 311.

¢ Inthe “HDF5 Groups” chapter, see "Group creation property list functions (H5P)" on page 90.

e Property lists are discussed throughout "HDF5 Datasets" beginning on page 103.
All property list functions are described in the “H5P: Property List Interface” section of the HDF5 Reference
Manual. The function index at the top of the page provides a categorized listing grouped by property list
class. Those classes are listed below:

e File creation properties

e File access properties

e Group creation properties

e Dataset creation properties

e Dataset access properties

e Dataset transfer properties

e Link creation properties

e Link access properties

e Object creation properties

e Object copy properties
Additional categories not related to the class structure are as follows:

e General property list operations

e Generic property list functions

The general property functions can be used with any property list; the generic property functions
constitute an advanced feature.

The in-memory file image feature of HDF5 uses property lists in a manner that differs substantially from
their use elsewhere in HDF5. Those who plan to use in-memory file images must study “File Image Opera-
tions” (PDF) in the Advanced Topics in HDF5 collection.

10.7. Notes

File Mount Properties

While the file mount property list class HSP_FILE_MOUNT is a valid HDF5 property list class, no file mount
properties are defined by the HDF5 Library. References to a file mount property list should always be
expressed as H5P_DEFAULT, meaning the default file mount property list.

The HDF Group 351

http://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html
http://www.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced.html
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#FileCreatePropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#FileAccessPropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#GroupCreatePropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#DatasetCreatePropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#DatasetAccessPropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#DatasetTransferPropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#LinkCreatePropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#LinkAccessPropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#ObjectCreatePropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#ObjectCopyPropFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#GenPropOpsFuncs
https://www.hdfgroup.org/HDF5/doc/RM/RM_H5P.html#GenericPropFuncs

Properties and Property Lists in HDF5 HDFS5 User’s Guide

Access and Creation Property Exceptions

There are a small number of exceptions to the rule that creation properties are always retained in a file or
object and access properties are never retained.

The following properties are file access properties but they are not transient; they have permanent and
different effects on a file. They could be validly classified as file creation properties as they must be set at
creation time to properly create the file. But they are access properties because they must also be set
when a file is reopened to properly access the file.

Property Related function
Family file driver H5Pset_fapl_family
Split file driver H5Pset_ fapl_split
Core file driver H5Pset_fapl_core

The following is a link creation property, but it is not relevant after an object has been created and is not
retained in the file or object.

Property Related function

Create missing intermediate groups H5Pset_create_intermediate_groups

352 The HDF Group

HDF5 User’s Guide Additional Resources

11. Additional Resources

These documents provide additional information for the use and tuning of specific HDF5 features.

Table 11-1. Additional resources

Document

Comments

HDF5 Examples

Code examples by API.

Chunking in HDF5

Structuring the use of chunking and tun-
ing it for performance.

Using the Direct Chunk Write Function

Describes another way that chunks can be
written to datasets.

Copying Committed Datatypes with H50copy

Describes how to copy to another file a
dataset that uses a committed datatype
or an object with an attribute that uses a
committed datatype so that the commit-
ted datatype in the destination file can be
used by multiple objects.

Metadata Caching in HDF5

Managing the HDF5 metadata cache and
tuning it for performance.

HDF5 Dynamically Loaded Filters

Describes how an HDF5 application can
apply a filter that is not registered with
the HDF5 Library.

HDF5 File Image Operations

Describes how to work with HDFS5 files in
memory. Disk /0O is not required when
file images are opened, created, read
from, or written to.

Modified Region Writes

Describes how to set write operations for
in-memory files so that only modified
regions are written to storage. Available
when the Core (Memory) VFD is used.

Using Identifiers

Describes how identifiers behave and
how they should be treated.

Using UTF-8 Encoding in HDF5 Applications

Describes the use of UTF-8 Unicode char-
acter encodings in HDF5 applications.

The HDF Group

353

http://www.hdfgroup.org/HDF5/examples/
http://www.hdfgroup.org/HDF5/doc/Advanced/Chunking/index.html
http://www.hdfgroup.org/HDF5/doc/Advanced/DirectChunkWrite/UsingDirectChunkWrite.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/CommittedDatatypeCopying/CopyingCommittedDatatypesWithH5Ocopy.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/MetadataCache/index.html
http://www.hdfgroup.org/HDF5/doc/Advanced/DynamicallyLoadedFilters/HDF5DynamicallyLoadedFilters.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/FileImageOperations/HDF5FileImageOperations.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/ModifiedRegionWrites/ModifiedRegionWrites.pdf
http://www.hdfgroup.org/HDF5/doc/Advanced/UsingIdentifiers/index.html
http://www.hdfgroup.org/HDF5/doc/Advanced/UsingUnicode/index.html

Additional Resources HDFS5 User’s Guide

Table 11-1. Additional resources

Document Comments

Freeing Memory Allocated by the HDF5 Library Describes how inconsistent memory man-
agement can cause heap corruption or
resource leaks and possible solutions.

HDF5 Glossary A glossary of terms.

354 The HDF Group

http://www.hdfgroup.org/HDF5/doc/Advanced/FreeingMemory/FreeingMemoryAllocatedByTheHdf5Library.pdf
http://www.hdfgroup.org/HDF5/doc/Glossary.html

HDF5 User’s Guide Index

Index

A file creation properties, 6
file creation property lists, 46

abstract data model, 1 file storage layouts, 65

access properties, 342

array, 176 filters, 126
g fractal arrays, 228

array datatype, 148 free 231

atomic datatype, 147 !

attr_id, 312, 313, 314 G
B get_fapl_family, 55

backing_store, 69 H

big-endian, 195

block, 279 H5A, 21

H5Aclose, 40, 41, 42, 310, 315, 317

C h5aclose_f, 310

HS5Acreate, 40, 41, 104, 250, 309, 312, 317
H5Acreate_by_name, 309
h5acreate_by_name_f, 309
h5acreate_f, 309

H5Adelete, 104, 310, 314, 315
H5Adelete_by idx, 310
h5adelete_by_idx_f, 310
H5Adelete_by_name, 310
h5adelete_by _name_f, 310
h5adelete_f, 310

H5Aexists, 309

chunked, 123

committed datatype, 10, 81
compact, 85, 123

complex_t, 33

compound datatype, 32, 147, 176
compression, 162

contiguous, 123

count, 279

creation properties, 341

D H5Aexists_by name, 309
dangling link, 96 h5aexists_by_name_f, 309
data pipeline, 124 h5aexists_f, 309
data pipeline filters, 126 H5Aget_create_plist, 310
data transfer pipeline, 113 h5aget_create_plist_f, 310
dataset creation properties, 8 H5Aget_info, 310
dataset storage layouts, 65 H5Aget_info_by idx, 310
dataspace extent, 268 h5aget_info_by_idx_f, 310
decompression, 162 H5Aget_info_by_name, 310
Direct, 63 h5aget_info_by _name_f, 310

h5aget_info_f, 310
E H5Aget_name, 310, 313

H5Aget_name_by idx, 310
h5aget_name_by _idx_f, 310
h5aget_name_f, 310
external storage, 140 H5Aget_space, 310, 313, 314
h5aget_space_f, 310

error record, 324
error stack, 323

F H5Aget_storage_size, 310
file access properties, 6 h5aget_storage_size f, 310
file access property lists, 46 H5Aget_type, 194, 250, 310, 313, 314

The HDF Group 355

Index

HDF5 User’s Guide

h5aget_type_f, 310

H5Aiterate, 42, 104, 310, 313, 314
H5Aiterate_by_name, 310

H5Aopen, 311

H5Aopen_by idx, 42,311, 313
h5aopen_by_idx_f, 311

H5Aopen_by _name, 41, 42, 311, 313
h5aopen_by name_f, 311

h5aopen_f, 311

H5Aopen_idx, 104

H5Aopen_name, 104

H5A _operator_t, 314

H5Aread, 41, 42, 175, 311, 312, 313
h5aread_f, 311

H5Arename, 311

H5Arename_by _name, 311
h5arename_by name_f, 311
h5arename_f, 311

H5Awrite, 40, 41, 175, 311, 312, 313, 317
H5awrite_f, 311

H5check_version, 50

h5check_version_f, 50

H5close, 25, 50, 315

h5close_f, 50

HS5D, 21

H5D_CHUNKED, 346

H5Dclose, 24, 105, 114, 115, 119, 120, 121, 122,
135, 155, 159, 160, 167, 168, 172, 334
h5dclose_f, 105

H5D_COMPACT, 346

H5D_CONTIGUOUS, 140, 346

H5Dcreate, 24, 36, 39, 93, 105, 111, 112, 114, 115,
154, 159, 167, 171, 183, 215, 227, 229, 235, 236,
238, 239, 244, 250, 252, 297
H5Dcreate2, 344

H5Dcreate_anon, 105
h5dcreate_anon_f, 105

h5dcreate_f, 105

H5detect, 180

H5Dextend, 36, 37

H5Dfill, 106

h5dfill_f, 106

H5Dgather, 106

H5Dget_access_plist, 105
H5Dget_create_plist, 105, 122, 240, 241, 346
h5dget_create_plist_f, 105
H5Dget_offset, 105

h5dget_offset_f, 105

H5Dget_space, 29, 32, 105, 122, 283, 288
h5dget_space_f, 105

H5Dget_space_status, 105
h5dget_space_status_f, 105
H5Dget_storage_size, 105
h5dget_storage_size f, 105

H5Dget_type, 32, 105, 122,194, 221, 223, 240,
249, 250, 252, 253

h5dget_type_f, 105

H5Dget_vlen_buf size, 139, 232

H5Diterate, 106

H5dont_atexit, 50

h5dont_atexit_f, 50

H5Dopen, 40, 93, 95, 96, 104, 105, 111, 118, 119,
120, 121, 122, 135, 155, 159, 167, 223, 240, 252,
298,334

h5dopen_f, 105

H5Dread, 26, 105, 109, 115, 118, 120, 121, 123,
124, 128, 131, 138, 139, 155, 160, 168, 172, 175,
184, 222, 223, 224, 225, 230, 234, 235, 240, 254,
284, 287, 288, 289, 298, 299

h5dread_f, 105

H5Dscatter, 106

H5Dset_extent, 106, 112, 134

h5dset_extent_f, 106

h5dump, 86, 87, 272, 300

H5D_UNLIMITED, 112

H5Dvlen_get_buf size, 105
h5dvlen_get_max_len_f, 105

H5Dvlen_reclaim, 105, 109, 140, 229, 230, 231,
234

h5dvlen_reclaim_f, 105

H5Dwrite, 25, 26, 31, 105, 115,118,119, 120, 123,
124,128, 131, 155, 159, 167, 171, 175, 184, 215,
217, 230, 235, 286, 287, 291, 297, 334
h5dwrite_f, 105, 221

H5E, 21

H5Eauto_is_v2, 322

H5Eclear, 321, 322

h5eclear_f, 322

H5Eclear_stack, 322, 324, 333

H5Eclose_msg, 322, 332

H5Eclose_stack, 322, 333

H5Ecreate_msg, 322, 331, 332

H5E_DEFAULT, 323, 334

H5E_error2_t, 327

H5Eget_auto, 321, 322, 325

h5eget_auto_f, 322

H5Eget_class_name, 322, 328, 330, 331, 332
H5Eget_current_stack, 322, 333

H5Eget_msg, 322, 328, 330, 331

H5Eget_num, 322, 333

356

The HDF Group

HDF5 User’s Guide

Index

H5E_MAIJOR, 332

H5E_MINOR, 332

H5Epop, 322, 333

H5Eprint, 321, 322, 324, 325, 326, 327
h5eprint_f, 322

H5Epush, 321, 322, 333, 334
HS5Eregister_class, 323, 331, 332
H5Eset_auto, 321, 323, 324, 325, 326
h5eset_auto_f, 323
H5Eset_current_stack, 323, 333
H5Eunregister_class, 323, 332
H5Ewalk, 321, 323, 327

H5Ewalk2, 329
H5E_WALK_DOWNWARD, 327
H5E_walk_t, 327
H5E_WALK_UPWARD, 327

H5F, 21

H5F_ACC_EXCL, 23, 45, 46, 48
H5F_ACC_RDONLY, 45, 46, 49, 57, 69
H5F_ACC_RDWR, 45, 46, 57, 69, 75, 121
HSF_ACC_TRUNC, 23, 45, 46, 74, 75, 153, 158, 165,
170, 316

H5Fclear_elink_file_cache, 51, 91
H5Fclose, 23, 25, 49, 51, 57, 74, 75, 155, 160, 168,
172,317

h5fclose_f, 51

H5F_CLOSE_STRONG, 25

HSFcreate, 23, 45, 46, 48, 51, 56, 74, 75, 83, 153,
158, 165, 170, 316, 338

h5fcreate_f, 51

H5FD_CORE, 64, 127

H5FD_DIRECT, 63

H5FD_FAMILY, 64, 127

HSED_LOG, 63, 127

HSFD_MPIO, 65, 73, 127
H5FD_MPIPOSIX, 65

H5FD_MULTI, 64, 71, 127

H5FD_SEC2, 63, 127

H5FD_SPLIT, 64, 72

HSED_STDIO, 63, 68, 127
H5FD_STREAM, 65

H5FD_WINDOWS, 63

H5Fflush, 51

h5fflush_f, 51

H5Fget_access_plist, 51
h5fget_access_plist_f, 51
H5Fget_create_plist, 51
h5fget_create_plist_f, 51
H5Fget_file_image, 51
h5fget_file_image_f, 51

H5Fget_filesize, 51
h5fget_filesize_f, 51
H5Fget_freespace, 51
h5fget_freespace_f, 51
H5Fget_info, 51
H5Fget_intent, 51
H5Fget_mdc_config, 52
H5Fget_mdc_hit_rate, 52
H5Fget_mdc_size, 52
H5Fget_mpi_atomicity, 52
h5fget_mpi_atomicity f, 52
H5Fget_name, 52
h5fget_name_f, 52
H5Fget_obj_count, 52
h5fget_obj_count_f, 52
H5Fget_obj_ids, 52
h5fget_obj_ids_f, 52
H5Fget_vfd_handle, 52
H5FILE_NAME, 158, 165
H5Fis_hdf5, 52
h5fis_hdf5_f, 52
H5F_LIBVER_LATEST, 86, 316
H5Fmount, 52, 77, 97
h5fmount_f, 52

H5Fopen, 45, 46, 49, 52, 57, 69, 75, 92, 119, 121,
122,134,325

h5fopen_f, 52

H5Freopen, 52
h5freopen_f, 52
H5Freset_mdc_hit_rate_stats, 52
H5Fset_mdc_config, 52
H5Fset_mpi_atomicity, 52
h5fset_mpi_atomicity f, 52
H5F_UNLIMITED, 140
H5Funmount, 52
h5funmount_f, 52

H5G, 21
H5garbage_collect, 50
h5garbage collect_f, 50
H5Gclose, 38, 88, 94, 317
h5gclose_f, 88

H5Gcreate, 37, 38, 87,92, 317
H5Gcreate_anon, 87
h5gcreate_anon_f, 87
h5gcreate_f, 87
H5get_libversion, 50
h5get_libversion_f, 50
H5Gget_comment, 89
H5Gget_create_plist, 88
h5gget_create_plist_f, 88

The HDF Group

357

Index

HDF5 User’s Guide

H5Gget_info, 88
H5Gget_info_by_idx, 88
h5gget_info_by idx_f, 88
H5Gget_info_by name, 88
h5gget_info_by name_f, 88
h5gget_info_f, 88
H5Gget_linkval, 88
H5Gget_num_objs, 88
H5Gget_objinfo, 89

h5gget obj_info_idx_f, 88
H5Gget_objname_by_idx, 89
H5Gget_objtype_by idx, 89
H5Giterate, 89

H5Glink, 88

H5Glink2, 88

H5Gmove, 89

H5Gmove?2, 89
h5gn_members_f, 88
H5Gopen, 39, 40, 87, 93
h5gopen_f, 87
H5Gset_comment, 89
H5Gunlink, 89, 250

H5I1, 22

H5L, 22

H5Lcreate, 104
H5Lcreate_external, 88, 96
h5Icreate_external_f, 88
H5Lcreate _hard, 88, 95
h5Icreate_hard_f, 88
HS5Lcreate_soft, 88, 96
h5lcreate_soft_f, 88
H5Lcreate_ud, 88
H5Ldelete, 89, 94, 95, 96, 104, 139, 250
h5ldelete_f, 89
H5Lget_info, 89, 97
h5lget_info_f, 89
H5Lget_name_by_idx, 89
h5lget_name_by idx_f, 89
H5Lget_val, 88

H5L info_t, 97

H5Literate, 88, 89, 97
HSLiterate_by_name, 89
h5literate_by_name_f, 89
h5literate_f, 89

H5Lmove, 89, 96, 97
h5Imove_f, 89

h5ls, 272
H5LTdtype_to_text, 192, 261
H5LTtext_to_dtype, 192, 261, 263, 264
H5Lvisit, 89, 97

H50, 22

H50get_comment, 89

H50get_info, 89, 95, 97, 313, 314
H50get_info_by_idx, 89

H50get_info_by _name, 89
h5oget_info_by name_f, 89

H50_info_t, 97

H5open, 50

h5open_f, 50

H50set_comment, 89

H50uvisit, 89, 97

h5ovisit_f, 89

H5P, 22
H5Padd_merge_committed_dtype_path, 349
H5Pall_filters_avail, 90, 107
H5P_ATTRIBUTE_CREATE, 339

H5Pclose, 115, 155, 160, 168, 172, 317, 348
h5pclose_f, 348

H5Pcopy, 344, 348

h5pcopy_f, 348

H5Pcreate, 36, 39, 48, 49, 58, 75, 115, 120, 141,
142, 154, 158, 166, 170, 217, 239, 316, 344, 348
h5pcreate_f, 219, 348
H5P_CRT_ORDER_TRACKED, 86
H5P_DATASET_ACCESS, 339
H5P_DATASET_CREATE, 14, 36, 39, 115, 141, 142,
154, 158, 166, 170, 239, 339, 344, 346
H5P_DATASET_XFER, 14, 120, 217, 339
HSP_DATASET_XFER_F, 219
H5P_DATATYPE_ACCESS, 339
HSP_DATATYPE_CREATE, 339

H5Pdcpl.c, 163

H5P_DEFAULT, 22, 31, 343, 351
HS5P_FILE_ACCESS, 13, 48, 49, 58, 75, 316, 339
H5P_FILE_CREATE, 13, 48, 58, 75, 339
H5P_FILE_MOUNT, 14, 339, 351
H5Pfill_value_defined, 106
H5Pfree_merge_committed_dtype_paths, 349
H5Pget_alignment, 54

h5pget_alignment_f, 54

H5Pget_alloc_time, 107

h5pget_alloc_time_f, 107
H5Pget_attr_creation_order, 311, 348
h5pget_attr_creation_order_f, 311, 348
H5Pget_attr_phase_change, 311, 348
h5pget_attr_phase_change_f, 311, 348
H5Pget_btree_ratios, 109
h5pget_btree_ratios_f, 109

H5Pget_buffer, 108

h5pget_buffer_f, 108

358

The HDF Group

HDF5 User’s Guide

Index

H5Pget_cache, 54, 60
h5pget_cache_f, 54
H5Pget_char_encoding, 91, 108, 192, 311, 350
h5pget_char_encoding f, 91, 108, 192, 311, 350
H5Pget_chunk, 106, 347
H5Pget_chunk_cache, 108
h5pget_chunk_cache_f, 108
h5pget_chunk_f, 106

H5Pget_class, 348

h5pget_class_f, 348
H5Pget_copy_object, 349
h5pget_copy_object_f, 349
H5Pget_create_intermediate_group, 91, 350
h5pget_create_intermediate_group_f, 350
H5Pget_data_transform, 108
h5pget_data_transform_f, 108
H5Pget_driver, 55, 65
h5pget_driver_f, 55
H5Pget_driver_info, 55
H5Pget_dxpl_mpio, 109
h5pget_dxpl_mpio_f, 109
H5Pget_edc_check, 108
h5pget_edc_check_f, 108
H5Pget_elink_file_cache_size, 54, 91
H5Pget_est_link_info, 90
h5pget_est_link_info_f, 90
H5Pget_external, 108
H5Pget_external _count, 108
h5pget_external_count_f, 108
h5pget_external_f, 108
H5Pget_family_offset, 54
H5Pget_fapl_core, 55, 69

h5pget_fapl _core f, 55
H5Pget_fapl_direct, 55, 66
h5pget_fapl_direct_f, 55
H5Pget_fapl_family, 55, 70
h5pget_fapl_family_f, 55
H5Pget_fapl_log, 67

H5Pget_fapl _mpio, 55, 73
h5pget_fapl _mpio_f, 55
H5Pget_fapl _mpiposix, 56
h5pget_fapl_mpiposix_f, 56
H5Pget_fapl_multi, 56, 72
h5pget_fapl_multi_f, 56
H5Pget_fclose_degree, 54
h5pget_fclose_degree f, 54
H5Pget_file_image, 53
h5pget_file_image_f, 53
H5Pget_fill_time, 107

h5pget _fill_time_f, 107

H5Pget_fill_value, 106, 240
h5pget_fill_value_f, 106

H5Pget filter, 90, 107
H5Pget_filter_by id, 90, 107
h5pget_filter_by id_f, 90, 107
h5pget_filter_f, 90, 107
H5Pget_gc_references, 54
h5pget_gc_references_f, 54
H5Pget_hyper_vector_size, 109
h5pget_hyper_vector_size f, 109
H5Pget_istore_k, 53, 59
h5pget_istore_k f, 53
H5Pget_layout, 106, 346
h5pget_layout_f, 106
H5Pget_libver_bounds, 54
H5Pget_link_creation_order, 91
h5pget_link_creation_order_f, 91
H5Pget_link_phase_change, 90
h5pget_link_phase_change_f, 90
H5Pget_mcdt_search_cb, 349
H5Pget_mdc_config, 54
H5Pget_meta_block_size, 54, 60
h5pget_meta_block_size f, 54
H5Pget_mpio_actual_chunk_opt_mode, 343
H5Pget_multi_type, 56, 110
H5Pget_nfilters, 90, 107
h5pget_nfilters_f, 90, 107
H5Pget_nlinks, 91

h5pget_nlinks_f, 91
H5Pget_obj_track_times, 348
h5pget_obj_track_times_f, 348
H5Pget_shared_mesg_index, 53
H5Pget_shared_mesg_nindexes, 53
H5Pget_shared_mesg_phase_change, 53
H5Pget_sieve buf size, 54, 60
hS5pget_sieve_buf_size_f, 54
H5Pget_sizes, 53, 59
h5pget_sizes_f, 53
H5Pget_small_data_block_size, 55, 110
h5pget_small_data_block_size f, 55, 110
H5Pget_sym_k, 53, 59
h5pget_sym_k_f, 53
H5Pget_type_conv_cb, 109, 192
H5Pget_userblock, 53, 59
h5pget_userblock_f, 53
H5Pget_version, 53, 59
h5pget_version_f, 53
H5Pget_vlen_mem_manager, 109
H5P_GROUP_ACCESS, 339
H5P_GROUP_CREATE, 316, 339

The HDF Group

359

Index

HDF5 User’s Guide

H5P_LINK_ACCESS, 339

HSP_LINK_CREATE, 339

H5Pmodify_filter, 90, 107

h5pmodify_filter_f, 90, 107
H5P_OBJECT_COPY, 339
H5P_OBJECT_CREATE, 339

H5Premove_filter, 90, 107
h5premove_filter_f, 90, 107
H5Pset_alignment, 54, 60
h5pset_alignment_f, 54

H5Pset_alloc_time, 107

h5pset_alloc_time_f, 107
H5Pset_attr_creation_order, 311, 348
h5pset_attr_creation_order_f, 348
H5Pset_attr_phase_change, 311, 315, 316, 348
h5pset_attr_phase_change f, 311, 348
H5Pset_btree_ratios, 109

h5pset_btree ratios_f, 109

H5Pset_buffer, 108, 120

h5pset_buffer_f, 108

H5Pset_cache, 54, 60

h5pset_cache, 54

H5Pset_char_encoding, 86,91, 108, 192, 311, 318,
350

h5pset_char_encoding_f, 91, 108, 192, 311, 350
H5Pset_chunk, 36, 39, 106, 154, 158, 166, 347
H5Pset_chunk_cache, 108
h5pset_chunk_cache_f, 108

h5pset_chunk_f, 106

H5Pset_copy_object, 349
h5pset_copy_object_f, 349
h5pset_create_inter_group_f, 91
H5Pset_create_intermediate_group, 91, 342, 350
h5pset_create_intermediate_group_f, 350
H5Pset_create_intermediate_groups, 352
H5Pset_data_transform, 108
h5pset_data_transform_f, 108
H5Pset_deflate, 39, 90, 106, 126
h5pset_deflate_f, 90, 106

H5Pset_driver, 55

H5Pset_dxpl_mpio, 109
H5Pset_dxpl_mpio_chunk_opt, 109, 343
H5Pset_dxpl_mpio_chunk_opt_num, 109, 343
H5Pset_dxpl_mpio_chunk_opt_ratio, 109, 343
H5Pset_dxpl_mpio_collective_opt, 109
h5pset_dxpl_mpio_f, 109

H5Pset_edc_check, 108, 343
h5pset_edc_check_f, 108

H5Pset_elink_cb, 329
H5Pset_elink_file_cache_size, 54, 91, 96

H5Pset_est_link_info, 90
h5pset_est_link_info_f, 90
H5Pset_external, 107, 140, 141, 142
h5pset_external_f, 107
H5Pset_family offset, 54
h5pset_family_offset_f, 54
H5Pset_fapl_core, 55, 64, 69, 352
h5pset_fapl_core, 55
H5Pset_fapl_direct, 55, 63, 66
h5pset_fapl_direct_f, 55
H5Pset_fapl family, 55, 64, 70, 342, 352
h5pset_fapl_family, 55
H5Pset_fapl_log, 55, 63, 67
H5Pset_fapl_mpi, 75
H5Pset_fapl_mpio, 55, 65, 73, 342
h5pset_fapl_mpio_f, 55
H5Pset_fapl _mpiposix, 55
h5pset_fapl_mpiposix_f, 55
H5Pset_fapl_multi, 56, 64, 72
h5pset_fapl_multi_f, 56
H5Pset_fapl_sec2, 56, 63, 66, 342
h5pset_fapl _sec2 f, 56
H5Pset_fapl_split, 56, 64, 72, 342, 352
h5pset_fapl_split_f, 56
H5Pset_fapl_stdio, 49, 56, 63, 68
H5Pset_fapl_stdio_f, 56
H5Pset_fapl _windows, 56, 63, 68
H5Pset_fclose_degree, 25, 54
h5pset_fclose_degree f, 54
H5Pset_file_image, 53
h5pset_file_image_f, 53
H5Pset_fill_time, 106
h5pset_fill_time_f, 106
H5Pset_fill_value, 106, 115, 166, 239
h5pset_fill_value_f, 106
H5Pset_filter, 44, 90, 107
H5Pset_filter_callback, 108
h5pset_filter_f, 90, 107
H5Pset_fletcher32, 90, 107, 342, 343
h5pset_fletcher32 f, 90, 107
H5Pset_gc_references, 54, 61
hS5pset_gc_references_f, 54
H5Pset_hyper_vector_size, 109
h5pset_hyper_vector_size_f, 109
H5Pset_istore_k, 53, 59
h5pset_istore_k_f, 53
H5Pset_layout, 106, 342, 346
h5pset_layout_f, 106
H5Pset_libver_bounds, 54, 86, 316
h5pset_libver_bounds_f, 54

360

The HDF Group

HDF5 User’s Guide

Index

H5Pset_link_creation_order, 86, 91
h5pset_link_creation_order_f, 91
H5Pset_link_phase_change, 86, 90
h5pset_link_phase_change f, 90
H5Pset_mcdt_search_cb, 349
H5Pset_mdc_config, 54
H5Pset_meta_block_size, 54, 60
h5pset_meta_block_size f, 54
H5Pset_multi_type, 56, 109
H5Pset_nbit, 107, 149, 158
h5pset_nbit_f, 107

H5Pset_nlinks, 90

h5pset_nlinks_f, 90
H5Pset_obj_track_times, 349
h5pset_obj_track times_f, 349
H5Pset_preserve, 216, 217
h5pset_preserve_f, 219
H5Pset_scaleoffset, 107, 163, 166, 170
h5pset_scaleoffset_f, 107
H5Pset_shared_mesg_index, 53
h5pset_shared_mesg_index f, 53
H5Pset_shared_mesg_nindexes, 53
h5pset_shared_mesg_nindexes_f, 53
H5Pset_shared_mesg_phase_change, 53
H5Pset_shuffle, 107, 126
h5pset_shuffle_f, 107
H5Pset_sieve_buf size, 54, 60
h5pset_sieve_buf size f, 54
H5Pset_sizes, 53, 59, 75
h5pset_sizes_f, 53
H5Pset_small_data_block_size, 55, 110
h5pset_small_data_block_size f, 55,110
H5Pset_sym_k, 53, 59
h5pset_sym_k_f, 53

H5Pset_szip, 107

h5pset_szip_f, 107
H5Pset_type_conv_cb, 109, 192, 254, 329
H5Pset_userblock, 53, 59
h5pset_userblock f, 53
H5Pset_vlen_mem_manager, 109, 139, 229
H5P_STRING_CREATE, 339
H5Pvlen_mem_manager, 231

H5R, 22

H5Rcreate, 234, 235, 295, 296, 298
H5R_DATASET_REGION, 104, 296, 299
H5Rdefrerence, 292

H5R_dereference, 298
H5Rdereference, 104, 235, 299
h5repack, 139

h5repart, 71

H5Rget_region, 299

H5Rget_select, 292

H5Rget_space, 298

H5R_OBIJECT, 104, 235

H5S, 22

H5S_ALL, 25, 26,118,119, 120, 121, 155, 159, 160,
167, 184

H5Sclose, 24, 41, 114, 115, 155, 160, 168, 172, 265
h5sclose_f, 265

H5Scopy, 265

h5scopy_f, 265

H5Screate, 40, 41, 265, 270, 271

h5screate_f, 265, 270

H5Screate_simple, 24, 30, 31, 36, 39, 93,112, 114,
115, 153, 157, 165, 169, 266, 270, 271, 284, 286,
289, 291, 297, 299, 317

h5screate_simple_f, 266, 270, 272

H5Sdecode, 266

h5sdecode_f, 266

H5Sencode, 266

h5sencode, 266

H5set_free_list_limits, 50
h5set_free_list_limits_f, 50

H5Sextent_copy, 266

h5sextent_copy_f, 266

H5Sextent_equal, 266

h5sextent_equal_f, 266

H5Sget_select_bounds, 267, 299
h5sget_select_bounds_f, 267
H5Sget_select_elem_npoints, 267, 299
h5sget_select_elem_npoints_f, 267
H5Sget_select_elem_pointlist, 267, 299
h5sget_select_elem_pointlist_f, 267
H5Sget_select_hyper_blocklist, 267, 299
h5sget_select_hyper_blocklist_f, 267
H5Sget_select_hyper_nblocks, 267, 299
h5sget_select_hyper_nblocks_f, 267
H5Sget_select_npoints, 267, 299
h5sget_select_npoints_f, 267
H5Sget_select_type, 267

h5sget_select_type_f, 267
H5Sget_simple_extent_dims, 29, 32, 266, 276, 299
h5sget_simple_extent_dims_f, 266
H5Sget_simple_extent_ndims, 29, 266, 275, 299
h5sget_simple_extent_ndims_f, 266
H5Sget_simple_extent_npoints, 266
h5sget_simple_extent_npoints_f, 266
H5Sget_simple_extent_type, 266
h5sget_simple_extent_type_f, 266
H5Sis_simple, 266, 275

The HDF Group

361

Index

HDF5 User’s Guide

h5sis_simple_f, 266

H5S_MAX_RANK, 227

H5S_NULL, 268, 270

H5Soffset_simple, 267

h5soffset_simple_f, 267

H5S_SCALAR, 41, 268

H5S_SELECT_ALL, 118, 120

H5Sselect_all, 267

h5sselect_all_f, 267

H5Sselect_elements, 267, 281, 289, 291, 297
h5sselect_elements_f, 267
H5Sselect_hyperslab, 29, 30, 31, 267, 283, 284,
285, 288, 289, 296

h5sselect_hyperslab_f, 267

H5Sselect_none, 267, 296, 297
h5sselect_none_f, 267

H5S_SELECT_OR, 288, 289, 296
H5S_SELECT_SET, 29, 30, 31, 283, 284, 285, 288,
289, 291, 296

H5Sselect_valid, 267

h5sselect_valid_f, 267

H5Sset_extent_none, 266
h5sset_extent_none_f, 266
H5Sset_extent_simple, 266, 271
h5sset_extent_simple_f, 266

H5S_SIMPLE, 268

H5S_UNLIMITED, 35, 36, 269

H5T, 22

H5T_ARRAY, 195, 221, 226, 245, 249, 264
H5Tarray_create, 191, 200, 227, 243
h5tarray_create_f, 191

H5T_BITFIELD, 195, 221

H5Tclose, 24, 114, 115, 155, 160, 168, 172, 182,
187, 193, 194, 253, 324

h5tclose_f, 187

H5Tcommit, 186, 194, 250, 252, 253
H5Tcommit_anon, 186

h5tcommit_anon_f, 186

h5tcommit_f, 186

H5Tcommitted, 186, 194, 253
h5tcommitted_f, 186

H5Tcompiler_conv, 187

h5tcompiler_conv_f, 187

H5T_COMPOUND, 33, 34, 193, 195, 209, 212, 215,
218,221, 222, 239, 243, 244, 245, 249, 257, 259
H5T_COMPOUND_F, 210

H5Tconvert, 187, 237, 329

h5tconvert_f, 187

H5Tcopy, 24,42,114, 115,152,157, 165, 169, 179,
183, 186, 193, 194, 199, 200, 204, 205, 207, 213,
214, 234, 243, 250, 254, 257
h5tcopy_f, 186, 214

H5T_CRAY_F64, 181

H5Tcreate, 34, 186, 193, 194, 200, 209, 212, 213,
215,217, 222, 224, 225, 236, 239, 243, 244, 257,
259

h5tcreate f, 186, 210, 219, 220
H5T_C_S1, 179, 181, 234, 243, 245
H5T_CSET_ASCII, 198, 204, 245
H5T_CSET_UTF8, 198, 204
H5Tdecode, 187

h5tdecode_f, 187

H5Tdetect_class, 187
H5T_DIR_DEFAULT, 223

H5Tencode, 187

h5tencode, 187

H5T_ENUM, 193, 195, 221, 236
H5Tenum_create, 189, 200
h5tenum_create_f, 189
H5Tenum_insert, 189, 236
h5tenum_insert_f, 189
H5Tenum_nameof, 189, 199
h5tenum_nameof_f, 189
H5Tenum_valueof, 189, 199
h5tenum_valueof f, 189
H5Tequal, 186, 193, 194, 237
h5tequal_f, 186

H5Tfind, 187

H5T_FLOAT, 195, 201, 221
H5Tget_array_dims, 191, 199, 249
h5tget_array_dims_f, 191
H5Tget_array_ndims, 191, 199
h5tget_array_ndims_f, 191
H5Tget_class, 32, 186, 249
h5tget_class_f, 186
H5Tget_create_plist, 187
h5tget_create_plist_f, 187
H5Tget_cset, 189, 198

h5tget_cset_f, 189

H5Tget_ebias, 188, 196
h5tget_ebias_f, 188

H5Tget_fields, 188, 196
h5tget_fields_f, 188

H5Tget_inpad, 189, 197
h5tget_inpad_f, 189
H5Tget_member_class, 190, 198, 221
h5tget_member_class_f, 190
H5Tget_member_index, 190

362

The HDF Group

HDF5 User’s Guide

Index

h5tget_member_index_f, 190
H5Tget_member_name, 190, 198, 221, 249
h5tget_ member_name_f, 190

H5Tget _member_offset, 190, 199, 249
h5tget_member_offset_f, 190
H5Tget_member_type, 190, 194, 199, 249, 250
h5tget_member_type_f, 190
H5Tget_member_value, 190, 199
h5tget_member_value_f, 190
H5Tget_native_type, 187, 222, 223
h5tget_native_type_f, 187
H5Tget_nmembers, 190, 198, 221, 249
h5tget_nmembers_f, 190

H5Tget_norm, 189, 197

h5tget_norm_f, 189

H5Tget offset, 188

h5tget_offset_f, 188

H5Tget_order, 185, 187

h5tget_order_f, 187

H5Tget pad, 188

h5tget_pad_f, 188

H5Tget_precision, 188
h5tget_precision_f, 188

H5Tget_sign, 185, 188, 196
h5tget_sign_f, 188

H5Tget_size, 32, 185, 187, 249
h5tget_size f, 187, 210, 219

H5Tget strpad, 189, 198

h5tget_strpad_f, 189

H5Tget_super, 187, 194, 199, 249, 250
h5tget_super_f, 187

H5Tget_tag, 191, 198

h5tget_tag f, 191

H5Tget_type, 250

H5T_IEEE_F32BE, 157, 181
H5T_IEEE_F32LE, 207, 245
H5T_IEEE_F64LE, 181, 245

H5Tinsert, 34, 190, 209, 212, 213, 217, 222, 224,
225, 239, 243, 244, 257, 259

h5tinsert_f, 190, 210, 220

H5T_INTEGER, 32, 175, 184, 185, 195, 221
H5T_INTEL_B64, 181

H5Tis_variable_str, 191
h5tis_variable_str_f, 191

H5Tlock, 186, 194, 200, 251
H5T_NATIVE_CHAR, 213, 233
H5T_NATIVE_DOUBLE, 34, 209, 210, 213
H5T_NATIVE_FLOAT, 146, 159, 160, 169, 170, 171

H5T_NATIVE_INT, 24, 25, 31, 36, 39, 41, 42, 93,
114, 115, 118, 120, 121, 145, 152, 165, 166, 167,
168, 174, 181, 184, 200, 204, 205, 213, 251, 255
H5T_NATVE_INT, 120

H5T_NORM_IMPLIED, 197, 203
H5T_NORM_MSBSET, 197, 203
H5T_NORM_NONE, 197, 203

H5T_OPAQUE, 193, 195, 221, 263

H5Topen, 186, 193, 194, 250, 253

h5topen_f, 186

H5T_ORDER_BE, 153, 185, 195, 201
H5T_ORDER_LE, 24, 32, 114, 115, 185, 195, 201,
204

H5Tpack, 190, 213, 214, 257

h5tpack_f, 190, 214

H5T_PAD_NONE, 197, 203

H5T_PAD_ONE, 195, 197, 202, 203, 207
H5T_PAD_ZERO, 195, 197, 202, 203, 207
H5T_REFERENCE, 195, 221

H5T_REGION_OBJ, 234

H5Tregister, 188

H5T_SDT_I32LE, 207

H5T_SELECT_OR, 278

HST_SELECT_SET, 278

H5Tset_cset, 189

h5tset_cset_f, 189

H5Tset_ebias, 157, 189, 202

h5tset_ebias_f, 189

H5Tset_fields, 157, 188, 202, 207
h5tset_fields_f, 188

H5Tset_inpad, 189, 203, 207

h5tset_inpad_f, 189

H5Tset_norm, 189, 203

h5tset_norm_f, 189

H5Tset_offset, 152, 157, 188, 202, 207
h5tset_offset_f, 188

H5Tset_order, 24, 114, 115, 187, 201, 204
h5tset_order_f, 187

H5Tset_pad, 188, 202, 207

h5tset_pad_f, 188

H5Tset_precision, 152, 157, 188, 200, 201, 204,
207

h5tset_precision_f, 188

H5Tset_sign, 188, 200, 202

h5tset_sign_f, 188

H5Tset_size, 42, 157, 188, 201, 234, 243
h5tset_size f, 188

H5Tset_strpad, 189

h5tset_strpad_f, 189

H5Tset_tag, 191, 238

The HDF Group

363

Index

HDF5 User’s Guide

h5tset_tag_f, 191

H5T_SGN_2, 185, 196, 202
H5T_SGN_NONE, 185, 196, 200, 202
H5T_STD_BE32, 254
H5T_STD_I32BE, 181, 183, 239
H5T_STD_I32LE, 181, 245
H5T_STD_I8LE, 245
H5T_STD_REF_DSETREG, 292, 297, 298
H5T_STD_REF_OBJ, 235
H5T_STD_ROBJ, 181
H5T_STD_U16BE, 181

H5T_STRING, 195, 221, 233, 245, 263
H5T_STR_NULLPAD, 198, 204
H5T_STR_NULLTERM, 198, 204
H5T_STR_SPACEPAD, 198, 204
H5Tunregister, 188

HS5T_VARIABLE, 234

H5T_VLEN, 195, 221

H5Tvlen_create, 191, 200, 229
h5tvlen_create_f, 191
H5_VERSION_GE, 51
H5_VERSION_LE, 51

H5Z, 22

H5Z_can_apply_nbit, 149
H5Z_filter_nbit, 148, 149, 150
H5Zregister, 44

H5Zscaleoffset.c, 163

H5Z set_local_nbit, 148, 149

H5Z set_parms_array, 149, 150
H5Z_set_parms_atomic, 149, 150
H5Z_set_parms_compound, 149, 150
H5Z set_parms_noopdatatype, 149, 150
H5Z set_parms_nooptype, 149, 150
hard link, 83

hdset_reg ref t, 295

HOFFSET, 34, 209

hvl_t, 229

hyperslab, 26, 28, 278

immutable, 251, 341
immutable transient, 251
indexed, 86

library, 2
link, 94
link objects, 81

little-endian, 195
loc_id, 312, 314, 315
low version bound, 86
low-level file drivers, 62

M

major message, 324
maxdims, 112
mem_type_id, 312
minor message, 324
MPI_COMM_WORLD, 75

N

named datatype, 10, 81
named object, 7, 81
NATIVE, 181

n-bit compression, 147
n-bit datatype, 143

n-bit decompression, 148
n-bit filter, 143, 147
no-op datatypes, 147
null dataspace, 268

o

object identifier, 17, 83
object_id, 314
object_info, 314
offset, 279

padding bits, 145
permanent, 341
pipeline, 122

polygon lists, 228
POSIX, 63
post-compression, 162
pre-compression, 161
primary data object, 307
programming model, 2
property, 341
property list, 340
property list class, 339

ragged arrays, 228
raw data, 103
region reference, 292

364

The HDF Group

HDF5 User’s Guide Index
repartition, 71 transient, 250, 342
S U
scalar dataspace, 268 userblock, 59
scale_factor, 162
scale-offset compression, 160 \Y%
le-offset filter, 160
s'ca e-oftset Tiiter, variable-length, 176
simple dataspace, 268
. vector, 30
soft links, 83
storage layout, 103 VFL, 61
g¢ layout, virtual file layer, 15, 61, 123

storage model, 1 .
stored data, 2 vl_info_t, 139
stride, 279 vl_t, 229, 231, 233, 234
superblock, 58

P y4

T zlib, 126

transfer properties, 342
The HDF Group 365

Index HDF5 User’s Guide

366 The HDF Group

	Copyright Notice and License Terms
	The HDF Group Help Desk
	Update Status
	Table of Contents
	List of Figures
	List of Tables
	List of Code Examples
	List of Function Listings
	1. The HDF5 Data Model and File Structure
	1.1. Introduction
	1.2. The Abstract Data Model
	1.2.1. File
	1.2.2. Group
	1.2.3. Dataset
	1.2.4. Dataspace
	1.2.5. Datatype
	1.2.6. Attribute
	1.2.7. Property List
	1.2.8. Link

	1.3. The HDF5 Storage Model
	1.3.1. The Abstract Storage Model: the HDF5 Format Specification
	1.3.2. Concrete Storage Model

	1.4. The Structure of an HDF5 File
	1.4.1. Overall File Structure
	1.4.2. HDF5 Path Names and Navigation
	1.4.3. Examples of HDF5 File Structures

	2. The HDF5 Library and Programming Model
	2.1. Introduction
	2.2. The HDF5 Programming Model
	2.2.1. Creating an HDF5 File
	2.2.2. Creating and Initializing a Dataset
	2.2.3. Closing an Object
	2.2.4. Writing or Reading a Dataset to or from a File
	2.2.5. Reading and Writing a Portion of a Dataset
	2.2.6. Getting Information about a Dataset
	2.2.7. Creating and Defining Compound Datatypes
	2.2.8. Creating and Writing Extendable Datasets
	2.2.9. Creating and Working with Groups
	2.2.10. Working with Attributes

	2.3. The Data Transfer Pipeline

	3. The HDF5 File
	3.1. Introduction
	3.2. File Access Modes
	3.3. File Creation and File Access Properties
	3.4. Low-level File Drivers
	3.5. Programming Model for Files
	3.5.1. Creating a New File
	3.5.2. Opening an Existing File
	3.5.3. Closing a File

	3.6. Using h5dump to View a File
	3.7. File Function Summaries
	3.8. Creating or Opening an HDF5 File
	3.9. Closing an HDF5 File
	3.10. File Property Lists
	3.10.1. Creating a Property List
	3.10.2. File Creation Properties
	3.10.3. File Access Properties

	3.11. Alternate File Storage Layouts and Low-level File Drivers
	3.11.1. Identifying the Previously-used File Driver
	3.11.2. The POSIX (aka SEC2) Driver
	3.11.3. The Direct Driver
	3.11.4. The Log Driver
	3.11.5. The Windows Driver
	3.11.6. The STDIO Driver
	3.11.7. The Memory (aka Core) Driver
	3.11.8. The Family Driver
	3.11.8.1. Unix Tools and an HDF5 Utility

	3.11.9. The Multi Driver
	3.11.10. The Split Driver
	3.11.11. The Parallel Driver

	3.12. Code Examples for Opening and Closing Files
	3.12.1. Example Using the H5F_ACC_TRUNC Flag
	3.12.2. Example with the File Creation Property List
	3.12.3. Example with the File Access Property List

	3.13. Working with Multiple HDF5 Files

	4. HDF5 Groups
	4.1. Introduction
	4.2. Description of the Group Object
	4.2.1. The Group Object
	4.2.2. The Hierarchy of Data Objects
	4.2.3. HDF5 Path Names
	4.2.4. Group Implementations in HDF5

	4.3. Using h5dump
	4.4. Group Function Summaries
	4.5. Programming Model for Groups
	4.5.1. Creating a Group
	4.5.2. Opening a Group and Accessing an Object in that Group
	4.5.3. Creating a Dataset in a Specific Group
	4.5.4. Closing a Group
	4.5.5. Creating Links
	4.5.6. Discovering Information about Objects
	4.5.7. Discovering Objects in a Group
	4.5.8. Discovering All of the Objects in the File

	4.6. Examples of File Structures

	5. HDF5 Datasets
	5.1. Introduction
	5.2. Dataset Function Summaries
	5.3. Programming Model for Datasets
	5.3.1. General Model
	5.3.2. Create Dataset
	5.3.3. Data Transfer Operations on a Dataset
	5.3.4. Retrieve the Properties of a Dataset

	5.4. Data Transfer
	5.4.1. The Data Pipeline
	5.4.2. Data Pipeline Filters
	5.4.3. File Drivers
	5.4.4. Data Transfer Properties to Manage the Pipeline
	5.4.5. Storage Strategies
	5.4.6. Partial I/O Sub-setting and Hyperslabs

	5.5. Allocation of Space in the File
	5.5.1. Storage Allocation in the File: Early, Incremental, Late
	5.5.2. Deleting a Dataset from a File and Reclaiming Space
	5.5.3. Releasing Memory Resources
	5.5.4. External Storage Properties

	5.6. Using HDF5 Filters
	5.6.1. Using the N-bit Filter
	5.6.2. Using the Scale-offset Filter
	5.6.3. Using the Szip Filter

	6. HDF5 Datatypes
	6.1. Introduction and Definitions
	6.2. HDF5 Datatype Model
	6.2.1. Datatype Classes and Properties
	6.2.2. Predefined Datatypes

	6.3. How Datatypes are Used
	6.3.1. The Datatype Object and the HDF5 Datatype API
	6.3.2. Dataset Creation
	6.3.3. Data Transfer (Read and Write)
	6.3.4. Discovery of Data Format
	6.3.5. Creating and Using User-defined Datatypes

	6.4. Datatype (H5T) Function Summaries
	6.5. Programming Model for Datatypes
	6.5.1. Discovery of Datatype Properties
	6.5.1.1. Properties of Atomic Datatypes
	6.5.1.2. Properties of Composite Datatypes

	6.5.2. Definition of Datatypes
	6.5.2.1. User-defined Atomic Datatypes
	6.5.2.2. Composite Datatypes
	6.5.2.2.1. Compound Datatypes
	6.5.2.2.2. Array
	6.5.2.2.3. Variable-length Datatypes

	6.6. Other Non-numeric Datatypes
	6.6.1. Strings
	6.6.2. Reference
	6.6.3. ENUM
	6.6.4. Opaque
	6.6.5. Bitfield

	6.7. Fill Values
	6.8. Complex Combinations of Datatypes
	6.8.1. Creating a Complicated Compound Datatype
	6.8.2. Analyzing and Navigating a Compound Datatype

	6.9. Life Cycle of the Datatype Object
	6.10. Data Transfer: Datatype Conversion and Selection
	6.11. Text Descriptions of Datatypes: Conversion to and from

	7. HDF5 Dataspaces and Partial I/O
	7.1. Introduction
	7.2. Dataspace (H5S) Function Summaries
	7.3. Definition of Dataspace Objects and the Dataspace Programming Model
	7.3.1. Dataspace Objects
	7.3.2. Dataspace Programming Model
	7.3.2.1. Creating a Dataspace
	7.3.2.2. Creating a Scalar Dataspace
	7.3.2.3. Creating a Null Dataspace
	7.3.2.4. Creating a Simple Dataspace
	7.3.2.5. C versus Fortran Dataspaces
	7.3.2.6. Finding Dataspace Characteristics

	7.4. Dataspaces and Data Transfer
	7.4.1. Data Selection
	7.4.1.1. Hyperslab Selection
	7.4.1.2. Select Points
	7.4.1.3. Rules for Defining Selections
	7.4.1.4. Data Transfer with Selections

	7.4.2. Programming Model
	7.4.2.1. Selecting Hyperslabs
	7.4.2.2. Example with Strides and Blocks
	7.4.2.3. Selecting a Union of Hyperslabs
	7.4.2.4. Selecting a List of Independent Points
	7.4.2.5. Combinations of Selections

	7.5. Dataspace Selection Operations and Data Transfer
	7.6. References to Dataset Regions
	7.6.1. Example Uses for Region References
	7.6.2. Creating References to Regions
	7.6.3. Reading References to Regions

	7.7. Sample Programs
	7.7.1. h5_write.c
	7.7.2. h5_write.f90
	7.7.3. h5_write_tr.f90

	8. HDF5 Attributes
	8.1. Introduction
	8.2. Programming Model for Attributes
	8.2.1. To Open and Read or Write an Existing Attribute

	8.3. Attribute (H5A) Function Summaries
	8.4. Working with Attributes
	8.4.1. The Structure of an Attribute
	8.4.2. Creating, Writing, and Reading Attributes
	8.4.3. Accessing Attributes by Name or Index
	8.4.4. Obtaining Information Regarding an Object’s Attributes
	8.4.5. Iterating across an Object’s Attributes
	8.4.6. Deleting an Attribute
	8.4.7. Closing an Attribute

	8.5. Special Issues

	9. HDF5 Error Handling
	9.1. Introduction
	9.2. Programming Model for Error Handling
	9.3. Error Handling (H5E) Function Summaries
	9.4. Basic Error Handling Operations
	9.4.1. Error Stack and Error Message
	9.4.2. Print and Clear an Error Stack
	9.4.3. Mute Error Stack
	9.4.4. Customized Printing of an Error Stack
	9.4.5. Walk through the Error Stack
	9.4.6. Traverse an Error Stack with a Callback Function

	9.5. Advanced Error Handling Operations
	9.5.1. More Error API Functions
	9.5.2. Pushing an Application Error Message onto Error Stack

	10. Properties and Property Lists in HDF5
	10.1. Introduction
	10.2. Property List Classes, Property Lists, and Properties
	10.2.1. Property List Classes
	10.2.2. Property Lists
	10.2.3. Properties

	10.3. Programming Model for Properties and Property Lists
	10.3.1. Using Default Property Lists
	10.3.2. Basic Steps of the Programming Model
	10.3.2.1. Create a Property List
	10.3.2.2. Change Property Values
	10.3.2.3. Use the Property List
	10.3.2.4. Close the Property List

	10.3.3. Additional Property List Operations
	10.3.3.1. Query the Class of an Existing Property List
	10.3.3.2. Determine Current Creation Property List Settings in an Existing Object
	10.3.3.3. Determine Access Property Settings

	10.4. Generic Properties Interface and User-defined Properties
	10.5. Property List Function Summaries
	10.6. Additional Property List Resources
	10.7. Notes

	11. Additional Resources
	Index

