
January 25, 2013 RFC THG 2012-11-14.v5

Page 1 of 17

RFC: Direct Chunk Write

Raymond Lu

This document discusses a new HDF5 C function to bypass the library’s data conversion
and filter pipeline and write data chunks directly to a dataset in the file. It studies the
advantage for the function location in the HDF5 library and high-level library. In the
end, it recommends putting the new function in the HDF5 high-level C library.

1 Introduction
A customer of the HDF Group requested a new function, which would allow an application to write
pre-compressed data chunks directly to a dataset in an HDF5 file. The application will compress its
data outside of the HDF5 library so that it is no longer limited by the HDF5 library’s filter pipeline.

2 Motivation
The customer designs next generation X-ray pixel detectors at synchrotron light sources. It produces
data at the rate of tens of gigabyte per second. The modular architecture of the detector can scale
up its data stream in parallel. It maps well to the current parallel computing and storage systems.
The data stream can be compressed well. The data volume can be reduced by a factor of ten or more
after compression. Hence, it is crucial to compress the data before storing on disk. Any file format
for storing detector data must support data compression and allow the scaling up of the number of
processing nodes.

The current HDF5 library restricts compression to its filter pipeline and thus limits the performance
within a single process. To overcome this weakness, the library should provide a new function to
allow applications to write compressed data chunks directly to a dataset in an HDF5 file. It allows the
application to compress the detector data in parallel and match the data production rate of the
detector.

January 25, 2013 RFC THG 2012-11-14.v5

Page 2 of 17

3 Requirements
The customer gave us the following requirements for the function.

3.1 Functionality

The new function should

 Accept converted and compressed data chunks in a memory buffer

 Provide a parameter for a chunk index that identifies the chunk’s position in its dataset

 Provide a parameter to indicate which filters of the dataset’s filter pipeline should be skipped
when reading the chunk back from the file

 Accept a simple value 0 for the filter status to indicate that no filter should be skipped in order
to simplify the application

 Be available in a release of version 1.8.11 and 1.10

3.2 Implementation

The implementation of the new function in the library should

 Use the application’s original data buffer in memory to write the data chunk in the file without
copying the data to any internal buffer

 Apply no modification or check to the data in the application’s memory buffer

 Accept from the application data of any arbitrary non-zero size

 Allow the application to reuse the memory buffer once the library returns from the function

 Allow the writing of a partial chunk on the edge of a dataset

 Allow the overwriting of existing data chunks

January 25, 2013 RFC THG 2012-11-14.v5

Page 3 of 17

4 Possible Solutions
The new function differs from the current HDF5 H5D interface functions. It takes applications’ data
and writes it directly to a file bypassing the HDF5 library’s internals. This is the first function of this
type that The HDF Group developers were tasked to implement. The current library architecture does
not have a good place for adding such functions. Changes to the HDF5 library architecture are
required. This section discusses three possible locations for the new function: in the HDF5 C library
H5D interface, in the HDF5 high-level C library, or in the HDF5 C library but in a new library source file.

4.1 In the HDF5 C Library

The first solution proposes that the new function is added to the library among other HDF5 H5D C API
functions. Below is the function prototype (DO stands for dataset optimization):

herr_t H5DOwrite_chunk(hid_t dset_id,

hid_t dxpl_id,

uint32_t filter_mask,

hsize_t *offset,

size_t data_size,

const void *buf)

Please see Appendix B for the full description of this function. Basically, this function takes a pre-
processed data chunk (buf) and its size (data_size) and writes to the chunk location (offset) in the
dataset (dset_id).

Following is a simple example of using H5DOwrite_chunk to write one chunk of data, as shown in
Figure 1 (a more complete example is in Appendix B):
 hsize_t offset[2] = {4, 4};

 uint32_t filter_mask = 0;

 size_t nbytes = 40;

 if(H5DOwrite_chunk(dset_id, dxpl, filter_mask, offset, nbytes, outbuf) < 0)

 goto error;

In this example, the dataset is 8x8 elements of int. Each chunk is 4x4. The offset of the first element
of the chunk to be written is 4 and 4. In the diagram below (Figure 1), the shaded chunk is the data
to be written.

January 25, 2013 RFC THG 2012-11-14.v5

Page 4 of 17

 Figure 1. Illustration of the chunk to be written in the example code above

The function is writing a pre-compressed data chunk of 40 bytes (assumed) to the dataset. The offset
of the first element of the chunk is 4 and 4. The zero value of the filter mask means that all filters
have been applied to the pre-processed data.

Discussion

This approach was implemented when we tested the feasibility of the function and performance. The
benchmarks ran by the customer and The HDF Group developers showed an order of magnitude
enhancement in I/O. The implementation met the requirements and expectation of the customer.

Integrating this function into the library does not require much work. Using this function will evoke
little overhead as it deals with the low-level routines inside the library.

However, to use it appropriately, one has to understand exactly what this function does – bypassing
data conversion, chunk cache, filter pipeline, etc. Since it touches the low-level library directly, it
lacks the protection that most public functions have. It is more specialized compared to other
general public functions. It requires the user to have special knowledge to use this function properly.

Maintenance of this function will require careful consideration since it has a different architecture
and may be confusing to future maintainers of the HDF5 H5D interface.

Design

Figure 2 below shows how using H5DOwrite_chunk to write pre-compressed data chunks can bypass
the library’s data conversion and filter pipeline.

Implementation

In the internal routine H5D__chunk_direct_write of H5Dchunk.c under the library’s source
directory, the functionality of direct chunk write can be achieved in the following steps:

1. Initialize the chunked storage (such as B-tree indexing for chunks) through
H5D__alloc_storage if it has not been done yet.

2. Calculate the chunk index with the chunk offset passed in as a parameter through
H5V_chunk_index.

4

0

4

January 25, 2013 RFC THG 2012-11-14.v5

Page 5 of 17

3. Find out the file address of the chunk to be written through H5D__chunk_lookup.

4. Create the chunk if it does not exist, or re-allocate the chunk if its size changes through a
callback function for insertion.

5. Evict the entry for the chunk through H5D__chunk_cache_evict if it is in the chunk cache
without flushing it to the file.

6. Write the chunk to the file through H5F_block_write.

January 25, 2013 RFC THG 2012-11-14.v5

Page 6 of 17

 Figure 2. Diagram for H5DOwrite_chunk in the HDF5 Library

Performance

The following table (Table 1) describes the results of performance benchmark tests run by the HDF
developers. It shows that using the new function H5DOwrite_chunk to write pre-compressed data is
much faster than using the H5Dwrite function to compress and write the same data with the filter
pipeline. Measurements involving H5Dwrite include compression time in the filter pipeline. Since
the data is already compressed before H5DOwrite_chunk is called, use of H5DOwrite_chunk to write
compressed data avoids the performance bottleneck in the HDF5 filter pipeline.

The test was run on a Linux 2.6.18 / 64-bit Intel x86_64 machine (koala). The dataset contains 100
chunks. Only one chunk is written to the file per write call. The number of writes is 100. The time

Data
gathering

Chunk cache

Data
conversion

buffer

Raw data chunk

Raw data chunk

(Disk)

(Memory)

A

B
Fi

lt er

pi
p

el
in e

Dat
a
co
mp
ress
ion

Data

Scattering

HDF5 library

Application program

H5DOwrite_chunk

B

A B

H5
Dw
rite

January 25, 2013 RFC THG 2012-11-14.v5

Page 7 of 17

measurement is for the entire dataset with the Unix system function gettimeofday. Writing the
entire dataset with one write call takes almost the same amount of time as writing chunk by chunk.
In order to force the system to flush the data to the file, the O_SYNC flag is used to open the file.

Table 1. Performance result for H5DOwrite_chunk

Dataset size (MB)

 Size after compression (MB)

 Dataset dimensionality

 Chunk dimensionality

 Datatype

95.37

64.14

100x1000x250

1000x250

4-byte integer

762.94

512.94

100x2000x1000

2000x1000

4-byte integer

2288.82

1538.81

100x2000x3000

2000x3000

4-byte integer
 speed1 time2 speed time speed time

H5Dwrite writes without compression filter 76.22 1.25 95.66 7.98 95.4 23.99

H5DOwrite_chunk writes uncompressed data 76.99 1.24 96.24 7.93 94.72 24.16

H5Dwrite writes with compression filter 2.68 35.59 2.68 284.68 2.66 860.46

H5DOwrite_chunk writes compressed data 77.31 0.83 94.71 5.42 96.91 15.88

Unix writes compressed data to Unix file 78.25 0.82 95.75 5.36 98.16 15.68

 1 IO speed is in MB/s.
 2 Time is in second (s).

4.2 In the HDF5 High-level C Library

The second solution proposes that the new function is put into the high-level library. The function is
still called H5DOwrite_chunk. It is used in the same way as the first proposal (4.1).

Discussion

This approach requires additional considerations to ones discussed in section 4.1. Following the
convention that all high-level functions use only the library’s public functions, this function should call
H5Dwrite. In order to call H5Dwrite the following additional steps must be taken: the parameters for
direct chunk write function H5DOwrite_chunk will be saved in the dataset transfer property list and
be transferred into H5D__pre_write (a new internal function). In H5D__pre_write, the library will
retrieve the information for direct chunk write from the dataset transfer property list and handle it as
a special case. This approach has a clean organization of layering. But it requires the re-evaluation of
the performance achieved with 4.1, especially from the customer’s side.

January 25, 2013 RFC THG 2012-11-14.v5

Page 8 of 17

Design

Figure 3 below shows the design layout for H5DOwrite_chunk in the high-level library and the
subsequent changes to internal functions in the library source code.

The functionality of H5D__chunk_direct_write has been discussed in section 4.1. It bypasses the
data gathering and scattering, data conversion, filter pipeline, and chunk cache and writes the data
chunk to the file directly. This diagram omits this part of the design. Please see Figure 1 in section
4.1.2 for the detail.

Implementation

The functionality of H5DOwrite_chunk is implemented in the following steps:

1. The H5DOwrite_chunk function in the high-level library sets a flag in the dataset transfer
property list to indicate direct chunk write. It also saves its parameters filter_mask, offset,
and data_size in the dataset transfer property list. Then it calls H5Dwrite since high-level
functions can only call the library’s API function.

2. Both regular writes and direct chunk writes go through H5Dwrite. H5D__pre_write (in
H5Dio.c) is a new internal function that prepares for calling H5D__write or
H5D__chunk_direct_write.

3. If the flag for direct chunk write is on, H5D__pre_write will retrieve the information
(filter_mask, offset, and data_size) for direct chunk write from the dataset transfer
property list and invoke H5D__chunk_direct_write (in H5Dchunk.c).

4. If it is a regular write, the direct chunk write flag is off. H5D__pre_write would then invoke
H5D__write for a regular write.

January 25, 2013 RFC THG 2012-11-14.v5

Page 9 of 17

H5
Dw
rite

 Figure 3. Diagram for H5DOwrite_chunk in the high-level library

In the figure above, DXPL is short for the dataset transfer property list.

Write
direct
chunk

Retrieve
direct write
flag and info
from DXPL

Direct
chunk
write

Pack direct
write info
into DXPL.
Set direct
write flag

Write

regular
data

H5
D_
_pr
e_
wri
te

H5
D_
_ch
un
k_d
irec
t_
wri
te

H5D__write

HL library HDF5 library Application

H5
DO
writ
e_c
hun
k

Regular
data write

January 25, 2013 RFC THG 2012-11-14.v5

Page 10 of 17

Performance

The performance of H5DOwrite_chunk in the high-level library is similar to the function’s
performance in the HDF5 library (see 4.1.4). The customer has confirmed that its performance is as
good as they expect. The table (Table 2) below shows that using H5DOwrite_chunk to write pre-
compressed data avoids the performance bottleneck due to compression in the filter pipeline of the
library. The results are generally consistent with the results provided in Table 1.

Table 2. Performance result for H5DOwrite_chunk in the high-level library

Dataset size (MB)

 Size after compression (MB)

 Dataset dimensionality

 Chunk dimensionality

 Datatype

95.37

64.14

100x1000x250

1000x250

4-byte integer

762.94

512.94

100x2000x1000

2000x1000

4-byte integer

2288.82

1538.81

100x2000x3000

2000x3000

4-byte integer
 speed1 time2 speed time speed time

H5Dwrite writes without compression filter 77.27 1.23 97.02 7.86 91.77 24.94

H5DOwrite_chunk writes uncompressed data 79 1.21 95.71 7.97 89.17 25.67

H5Dwrite writes with compression filter 2.68 35.59 2.67 285.75 2.67 857.24

H5DOwrite_chunk writes compressed data 77.19 0.83 78.56 6.533 96.28 15.98

Unix writes compressed data to Unix file 76.49 0.84 95 5.4 98.59 15.61

 1 IO speed is in MB/s.
 2 Time is in second (s).

 3 This number needs further investigation since it is not consistent with the similar result in Table 1.

4.3 In the HDF5 C Library but in a New Library Source File

The third solution proposes that the new function would behave in the same way as the first
proposal, but that the function would be located in a separate source file.

The new source file called H5Dopt.c. In the future, other similar optimization functions will be
located in H5<X>opt.c. Users would choose to include the direct chunk write feature by specifying
an option on the configure line. This approach needs less work from the first round of prototype
testing. The implementation is simpler than the second approach (4.2).

From the user’s perspective, this approach is the same as the first approach. Users need to
understand the function’s behaviors – how it bypasses data conversion, chunk cache, and file
pipeline.

January 25, 2013 RFC THG 2012-11-14.v5

Page 11 of 17

5 Recommendation

Since the performance of the “direct chunk write” feature is not affected by where the function is
located, we recommend that the second proposal be adopted. The function calls H5Dwrite and
subsequently goes through the library’s routine check and protection for public functions to prevent
programming and data errors. The extra protections afforded by the high-level library make the extra
work worthwhile. This approach is also applicable to other functions that will be added to the HDF5
software in the near future thus providing uniform approach for the functions that do not follow the
mainstream architecture.

Since this new function H5DOwrite_chunk writes a data chunk directly in file, users must be careful in
using it. It bypasses hyperslab selection, data conversion, and filter pipeline to write the chunk.
Users must know exactly where to write the data and how to process the data before the write.

January 25, 2013 RFC THG 2012-11-14.v5

Page 12 of 17

Revision History
November 14, 2012: Version 1 circulated for comment within The HDF Group.

November 28, 2012: Version 2 circulated for comment within The HDF Group.

November 30, 2012: Version 3 sent to the customer.

January 8, 2013: Version 4 circulated for comment within The HDF Group.

January 25, 2013: Version 5 circulated for comment in the HDF Forum.

January 25, 2013 RFC THG 2012-11-14.v5

Page 13 of 17

Appendix A: Background Material
In June 2012, the user provided us a requirement document called Extension to the HDF5 API and
Library: Write Pre-compressed Chunk Data.

January 25, 2013 RFC THG 2012-11-14.v5

Page 14 of 17

Appendix B: Reference Manual Function Entry for H5DOwrite_chunk

Last modified: 14 November 2012

Name: H5DOwrite_chunk

Signature:

herr_t H5DOwrite_chunk(hid_t dset_id, hid_t dxpl_id, uint32_t filter_mask, hsize_t

* offset, size_t data_size, const void * buf)

Purpose:

Writes a raw data chunk from a buffer directly to a dataset.

Description:

H5DOwrite_chunk writes a raw data chunk from the application memory buffer buf directly
to its logical destination offset in a dataset identified by dset_id. Typically, the data in buf is
preprocessed in memory by a custom transformation, such as compression. The data chunk
will bypass the library’s internal data transfer pipeline (including filters), and will be written to
the file directly.

dxpl_id is the identifier of a data transfer property list. (Currently, it is unused.)

filter_mask is a mask to keep a record of which filters are used and is saved with the data
chunk in the file. The default value is zero and indicates that all enabled filters are applied. A
filter is skipped if the bit corresponding to the filter position (0<= * <32) in the pipeline is
turned on.

offset is an array that represents the logical position of the first element of the data chunk in
the dataset’s dataspace. The length of the offset array must equal the rank (number of
dimensions) of the dataspace. The values in offset must not exceed the dimension limits and
must fall on the boundary of data chunks.

data_size is the size of the raw data chunk and represents the number of bytes to be read
from the buffer buf. If the data chunk has been pre-compressed, it should be the size of the
compressed data.

buf is the memory buffer for the data chunk.

Parameters:

hid_t dset_id IN: Identifier of the dataset to write to.

hid_t dxpl_id IN: Identifier of a transfer property list for this I/O operation.

uint32_t filter_mask IN: Mask for filters.

hsize_t * offset IN: Logical position of the chunk’s first element in the dataspace.

size_t data_size IN: Size of the actual data.

const void * buf IN: Buffer with data to be written to the file.

January 25, 2013 RFC THG 2012-11-14.v5

Page 15 of 17

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Example Usage:

Following is an example of using H5DOwrite_chunk to write an entire dataset by chunk:
#include <zlib.h>

#include <math.h>

#define DEFLATE_SIZE_ADJUST(s) (ceil(((double)(s))*1.001)+12)

 :

size_t buf_size = CHUNK_NX*CHUNK_NY*sizeof(int);

const Bytef *z_src = (const Bytef*)(direct_buf);

Bytef *z_dst; /*destination buffer */

uLongf z_dst_nbytes = (uLongf)DEFLATE_SIZE_ADJUST(buf_size);

uLong z_src_nbytes = (uLong)buf_size;

int aggression = 9; /* Compression aggression setting */

uint32_t filter_mask = 0;

size_t buf_size = CHUNK_NX*CHUNK_NY*sizeof(int);

/* Create the data space */

if((dataspace = H5Screate_simple(RANK, dims, maxdims)) < 0)

 goto error;

/* Create a new file */

if((file = H5Fcreate(FILE_NAME5, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT)) < 0)

 goto error;

/* Modify dataset creation properties, i.e. enable chunking and compression */

if((cparms = H5Pcreate(H5P_DATASET_CREATE)) < 0)

 goto error;

if((status = H5Pset_chunk(cparms, RANK, chunk_dims)) < 0)

 goto error;

if((status = H5Pset_deflate(cparms, aggression)) < 0)

 goto error;

January 25, 2013 RFC THG 2012-11-14.v5

Page 16 of 17

/* Create a new dataset within the file using cparms creation properties */

if((dset_id = H5Dcreate2(file, DATASETNAME, H5T_NATIVE_INT, dataspace, H5P_DEFAULT,

 cparms, H5P_DEFAULT)) < 0)

 goto error;

/* Initialize data for one chunk */

for(i = n = 0; i < CHUNK_NX; i++)

 for(j = 0; j < CHUNK_NY; j++)

 direct_buf[i][j] = n++;

/* Allocate output (compressed) buffer */

 outbuf = malloc(z_dst_nbytes);

 z_dst = (Bytef *)outbuf;

 /* Perform compression from the source to the destination buffer */

 ret = compress2(z_dst, &z_dst_nbytes, z_src, z_src_nbytes, aggression);

 /* Check for various zlib errors */

 if(Z_BUF_ERROR == ret) {

 fprintf(stderr, "overflow");

 goto error;

 } else if(Z_MEM_ERROR == ret) {

 fprintf(stderr, "deflate memory error");

 goto error;

 } else if(Z_OK != ret) {

 fprintf(stderr, "other deflate error");

 goto error;

 }

 /* Write the compressed chunk data repeatedly to cover all the chunks in the

 * dataset, using the direct write function. */

 for(i=0; i<NX/CHUNK_NX; i++) {

 for(j=0; j<NY/CHUNK_NY; j++) {

 status = H5DOwrite_chunk(dset_id, H5P_DEFAULT, filter_mask, offset,

z_dst_nbytes, outbuf);

 offset[1] += CHUNK_NY;

January 25, 2013 RFC THG 2012-11-14.v5

Page 17 of 17

 }

 offset[0] += CHUNK_NX;

 offset[1] = 0;

 }

/* Overwrite the first chunk with uncompressed data. Set the filter mask to

 * indicate the compression filter is skipped */

filter_mask = 0x00000001;

offset[0] = offset[1] = 0;

if(H5DOwrite_chunk(dset_id, H5P_DEFAULT, filter_mask, offset, buf_size, direct_buf)
< 0)

 goto error;

 /* Read the entire dataset back for data verification converting ints to longs*/

 if(H5Dread(dataset, H5T_NATIVE_LONG, H5S_ALL, H5S_ALL, H5P_DEFAULT,

outbuf_long) < 0)

 goto error;

 /* Data verification here */

 :

 :

	1 Introduction
	2 Motivation
	3 Requirements
	3.1 Functionality
	3.2 Implementation

	4 Possible Solutions
	4.1 In the HDF5 C Library
	Discussion
	Design
	Implementation
	Performance

	4.2 In the HDF5 High-level C Library
	Discussion
	Design
	Implementation
	Performance

	4.3 In the HDF5 C Library but in a New Library Source File

	5 Recommendation

