
   

 

HDF5 Dynamically Loaded Filters 

 
Introduced with 

HDF5-1.8.11 

in 

May 2013 

 
 
 
 
 
 

 
http://www.HDFGroup.org  

http://www.hdfgroup.org/�


   

Page 2 of 26 

Copyright Notice and License Terms for HDF5 (Hierarchical Data Format 5) Software Library and 
Utilities 

HDF5 (Hierarchical Data Format 5) Software Library and Utilities 
Copyright 2006-2013 by The HDF Group. 
 
NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities 
Copyright 1998-2006 by the Board of Trustees of the University of Illinois. 
 
All rights reserved. 
 
Redistribution and use in source and binary forms, with or without modification, are permitted for any purpose (including 
commercial purposes) provided that the following conditions are met: 
 

1. Redistributions of source code must retain the above copyright notice, this list of conditions, and the following 
disclaimer. 

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions, and the following 
disclaimer in the documentation and/or materials provided with the distribution. 

3. In addition, redistributions of modified forms of the source or binary code must carry prominent notices stating that 
the original code was changed and the date of the change. 

4. All publications or advertising materials mentioning features or use of this software are asked, but not required, to 
acknowledge that it was developed by The HDF Group and by the National Center for Supercomputing Applications at 
the University of Illinois at Urbana-Champaign and credit the contributors. 

5. Neither the name of The HDF Group, the name of the University, nor the name of any Contributor may be used to 
endorse or promote products derived from this software without specific prior written permission from The HDF 
Group, the University, or the Contributor, respectively. 

 
DISCLAIMER: THIS SOFTWARE IS PROVIDED BY THE HDF GROUP AND THE CONTRIBUTORS "AS IS" WITH NO WARRANTY OF ANY 
KIND, EITHER EXPRESSED OR IMPLIED. In no event shall The HDF Group or the Contributors be liable for any damages suffered 
by the users arising out of the use of this software, even if advised of the possibility of such damage.  
 
Contributors: National Center for Supercomputing Applications  (NCSA) at the University of Illinois, Fortner Software, Unidata 
Program Center (netCDF), The Independent JPEG Group (JPEG), Jean-loup Gailly and Mark Adler (gzip), and Digital Equipment 
Corporation (DEC). 
 
Portions of HDF5 were developed with support from the Lawrence Berkeley National Laboratory (LBNL) and the United States 
Department of Energy under Prime Contract No. DE-AC02-05CH11231. 
 
Portions of HDF5 were developed with support from the University of California, Lawrence Livermore National Laboratory (UC 
LLNL). The following statement applies to those portions of the product and must be retained in any redistribution of source 
code, binaries, documentation, and/or accompanying materials: 
 

This work was partially produced at the University of California, Lawrence Livermore National Laboratory (UC LLNL) 
under contract no. W-7405-ENG-48 (Contract 48) between the U.S. Department of Energy (DOE) and The Regents of 
the University of California (University) for the operation of UC LLNL. 
 
DISCLAIMER: This work was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government nor the University of California nor any of their employees, 
makes any warranty, express or implied, or assumes any liability or responsibility for the accuracy, completeness, or 
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe 
privately- owned rights. Reference herein to any specific commercial products, process, or service by trade name, 
trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, 
or favoring by the United States Government or the University of California. The views and opinions of authors 
expressed herein do not necessarily state or reflect those of the United States Government or the University of 
California, and shall not be used for advertising or product endorsement purposes. 

 



Contents 

Page 3 of 26 

Contents 
1. Introduction .............................................................................................................................................. 4 

2. Requirements ............................................................................................................................................ 6 
2.1. Functional Requirements ................................................................................................................... 6 
2.2. Non-functional Requirements ............................................................................................................ 6 

3. Programming Model for Applications ....................................................................................................... 7 
3.1. Applying a Third-party Filter When Creating and Writing a Dataset ................................................. 7 
3.2. Reading Data with an Applied Third-party Filter ............................................................................... 7 
3.3. A Word of Caution When Using Custom Filters ................................................................................. 9 

4. Programming Model for HDF5 Filter Plugins .......................................................................................... 10 
4.1. Writing a Filter Function .................................................................................................................. 10 
4.2. Registering a Filter with The HDF Group .......................................................................................... 10 
4.3. Creating an HDF5 Filter Plugin ......................................................................................................... 11 
4.4. Installing an HDF5 Filter Plugin ........................................................................................................ 12 

5. Design ...................................................................................................................................................... 13 
5.1. Data Writing ..................................................................................................................................... 13 
5.2. Data Reading .................................................................................................................................... 13 
5.3. New HDF5 Source Files for Dynamically Loaded Filters ................................................................... 14 
5.4. Testing Dynamically Loaded Filters .................................................................................................. 15 

6. Proposed Changes to the HDF5 Command-line Tools ............................................................................ 16 
6.1. h5dump, h5ls, and h5copy ............................................................................................................... 16 
6.2. h5repack ........................................................................................................................................... 16 

7. Building an HDF5 bzip2 Plugin Example .................................................................................................. 17 

8. Example: Writing and Reading Compressed Data .................................................................................. 18 

9. HDF5 bzip2 Filter Plugin .......................................................................................................................... 22 

10. Example of Makefile ............................................................................................................................. 25 

11. References ............................................................................................................................................ 26 
 



Introduction 

Page 4 of 26 

1. Introduction 
The HDF5 Library provides an internal mechanism to compress an HDF5 dataset’s raw data and the links 
stored in an HDF5 group object. Readers who are unfamiliar with HDF5 compression are encouraged to 
view the HDF5 tutorials, the HDF5 User’s Guide, the HDF5 Reference Manual and other documentation 
available from the http://www.hdfgroup.org website.  
 
The HDF5 compression mechanism is a part of the HDF5 “filter pipeline” that modifies an application’s 
data during the I/O operations. The pipeline was designed to be extensible. New filters could be easily 
added to the pipeline by an application, or the HDF5 Library code can be modified with a new filter to be 
later used by an application. 
 
The HDF5 Library supports several “internal” filters (see in the HDF5 User’s Guide, section 5.4.2, “Data 
Pipeline Filters”). Two filters, deflate and szip, depend on third-party compression libraries.  All internal 
filters are configurable. They can be added or removed during the configuration step when the HDF5 
Library is built. 
 
While currently available HDF5 “internal” compression methods work reasonably well on users’ 
datasets, there are certain drawbacks to the current implementation. First, the “internal” compression 
methods may not provide the optimal compression ratio, as do some newly developed or specialized 
compression methods. Secondly, if a data provider wants to use a “non-internal” compression for 
storing the data in HDF5, he/she has to write a filter function that uses the new compression method 
and then register it with the library. Data consumers of such HDF5 files will need to have the new filter 
function and use it with their applications to read the data, or they will need a modified version of the 
HDF5 Library that has the new filter as a part of the library.  
 
If a user of such data does not have a modified HDF5 Library installed on his system, command-line tools 
such as h5dump or h5ls will not be able to display the compressed data. Furthermore, it would be 
practically impossible to determine the compression method used, making the data stored in HDF5 
useless. 
 
It is clear that the current HDF5 filter mechanism, while extensible, does not work well with third-party 
filters. It would be a maintenance nightmare to keep adding and supporting new compression methods 
in HDF5. For any set of HDF5 “internal” filters, there always will be data with which the “internal” filters 
will not achieve the optimal performance needed to address data I/O and storage problems. Thus the 
current HDF5 filter mechanism should be enhanced to address the issues discussed above.  
 
We have added a new feature to HDF5 called “dynamically loaded filters in HDF5.” This feature will 
make the HDF5 third-party filters available to an application at runtime. The third-party HDF5 filter 
function has to be a part of the HDF5 filter plugin installed on the system as a shared library or DLL. 
 
To use a third-party filter an HDF5 application should call the H5Pset_filter function when setting the 
filter pipeline for a dataset creation property. The HDF5 Library will register the filter with the library 
and the filter will be applied when data is written to the file.  
 

http://www.hdfgroup.org/�


Introduction 

Page 5 of 26 

When an application reads data compressed with a third-party HDF5 filter, the HDF5 Library will search 
for the required filter plugin, register the filter with the library (if the filter function is not registered) and 
apply it to the data on the read operation.  
 
This document describes this new feature and provides details in the following sections. 
 
 



Requirements 

Page 6 of 26 

2. Requirements 
The current design for the HDF5 dynamically loaded filters feature addresses the requirements listed in 
the sections below. 
 
 
 

2.1. Functional Requirements 
1. There are no changes to the HDF5 file format. 
2. There are no changes to the HDF5 interface and the programming model (see the 

“Programming Model for Applications” section on page 7) in order to use the feature. 
3. The HDF5 third-party filters are available as shared libraries or DLLs on the user’s system. The 

minimum content of the shared library satisfies the requirements as documented in the 
“Programming Model for HDF5 Filter Plugins” section on page 10. 

4. There are predefined default locations where the HDF5 Library searches the shared libraries or 
DLLs with the HDF5 filter functions. 

5. The default location may be overwritten by an environment variable. 
6. Once a filter plugin library is loaded, it stays loaded until the HDF5 Library is closed. 

 
Future enhancements: 
 
 The default search locations can be specified in a configuration file. 

 
 
 

2.2. Non-functional Requirements 
1. The HDF Group maintains a list of the third-party filters registered with HDF5 to facilitate 

tracking of a filter provenance. The current procedure is outlined at 
http://www.hdfgroup.org/services/contributions.html. 

2. The HDF group publishes a specification and provides examples of dynamic loaded filters 
libraries. 

 
Future enhancements: 
 
 The HDF Group provides a repository such as SVN or GIT for the third-party filters and outlines a 

testing procedure that can be used by the filters maintainers to test the filters with the HDF5 
libraries under development. 

 
 
 

http://www.hdfgroup.org/services/contributions.html�


Programming Model for Applications 

Page 7 of 26 

3. Programming Model for Applications  
This section describes the programming model for an application that uses a third-party HDF5 filter 
plugin to write or read data. For simplicity of presentation, it is assumed that the HDF5 filter plugin is 
available on the system in a default location.  The HDF5 filter plugin is discussed in detail in the 
“Programming Model for HDF5 Filter Plugins” section on page 10.  
 
 
 

3.1. Applying a Third-party Filter When Creating and Writing a Dataset 
A third-party filter can be added to the HDF5 filter pipeline by using the H5Pset_filter function, as a 
user would do in the past. The identification number and the filter parameters should be available to the 
application. For example, if the application intends to apply the HDF5 bzip2 compression filter that was 
registered with The HDF Group and has an identification number 307 (see 
http://www.hdfgroup.org/services/contributions.html) then the application would follow the steps as 
outlined below: 
 
        dcpl = H5Pcreate (H5P_DATASET_CREATE); 
        status = H5Pset_filter (dcpl, (H5Z_filter_t)307, H5Z_FLAG_MANDATORY, 
                                  (size_t)6, cd_values);  
 
        dset = H5Dcreate (file, DATASET, H5T_STD_I32LE, space, H5P_DEFAULT, dcpl, 
        status = H5Dwrite (dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, 
                           wdata[0]); 

 
 
 

3.2. Reading Data with an Applied Third-party Filter 
An application does not need to do anything special to read the data with a third-party filter applied. For 
example, if one wants to read data written in 3.1 the following regular steps should be taken: 
 
       file = H5Fopen (FILE, H5F_ACC_RDONLY, H5P_DEFAULT); 
       dset = H5Dopen (file, DATASET, H5P_DEFAULT); 
              H5Dread (dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, 
                         rdata[0]); 

 
The 1.8.11 version of the command-line utility h5dump, for example, will read and display the data as 
shown: 
 
[epourmal@jam example]$ ./h5dump -p *.h5 
HDF5 "h5ex_d_bzip2.h5" { 
GROUP "/" { 
   DATASET "DS1" {  
      DATATYPE  H5T_STD_I32LE 
      DATASPACE  SIMPLE { ( 32, 64 ) / ( 32, 64 ) } 
      STORAGE_LAYOUT { 
         CHUNKED ( 4, 8 ) 
         SIZE 6410 (1.278:1 COMPRESSION) 
      } 

http://www.hdfgroup.org/services/contributions.html�


Programming Model for Applications 

Page 8 of 26 

      FILTERS { 
         USER_DEFINED_FILTER { 
            FILTER_ID 307 
            COMMENT bzip2 
            PARAMS { 6 } 
         } 
      } 
      … 
      } 
      DATA { 
      (0,0): 0, -1, -2, -3, -4, -5, -6, -7, -8, -9, -10, -11, -12, -13, -14, 
      (0,15): -15, -16, -17, -18, -19, -20, -21, -22, -23, -24, -25, -26, 
      (0,27): -27, -28, -29, -30, -31, -32, -33, -34, -35, -36, -37, -38, 
      (0,39): -39, -40, -41, -42, -43, -44, -45, -46, -47, -48, -49, -50, 
      (0,51): -51, -52, -53, -54, -55, -56, -57, -58, -59, -60, -61, -62, 
      (0,63): -63, 

…… 
Compare the output above with the output of the 1.8.10 version of h5dump shown below: 
 
[epourmal@jam example]$ h5dump -p *.h5 
HDF5 "h5ex_d_bzip2.h5" { 
GROUP "/" { 
   DATASET "DS1" { 
      DATATYPE  H5T_STD_I32LE 
      DATASPACE  SIMPLE { ( 32, 64 ) / ( 32, 64 ) } 
      STORAGE_LAYOUT { 
         CHUNKED ( 4, 8 ) 
         SIZE 6410 
      } 
      FILTERS { 
         UNKNOWN_FILTER { 
            FILTER_ID 307 
            COMMENT HDF5 bzip2 filter; see 
http://www.hdfgroup.org/services/contributions.html 
            PARAMS { 6 } 
         } 
      } 
      … 
      } 
      DATA {h5dump error: unable to print data 
 
      } 
   } 
} 
} 

 
The h5dump utility version 1.8.10 cannot read data compressed with bzip2 because the filter is not 
available to the HDF5 library.  
 
The complete example of writing and reading data with an applied third-party HDF5 filter is shown in 
the “Example: Writing and Reading Compressed Data” section on page 18. Please notice that the 
application DOES NOT need to link with the HDF5 plugin library. 
 
 
 



Programming Model for Applications 

Page 9 of 26 

3.3. A Word of Caution When Using Custom Filters 
Data goes through the HDF5 filter pipeline only when it is written to the file or read into application 
memory space from the file. For example, the I/O operation is triggered with a call to H5Fflush, or when 
a data item (HDF5 metadata or a raw data chunk) is evicted from the cache or brought into the cache. 
Please notice that H5Dread/write calls on the chunked datasets do not necessarily trigger I/O since the 
HDF5 Library uses a separate chunk cache. 
 
A data item may remain in the cache until the HDF5 Library is closed. If the HDF5 plugin that has to be 
applied to the data item becomes unavailable before the file and all objects in the file are closed, an 
error will occur.  The following example demonstrates the issue. Please notice the position of the 
H5Zunregister call: 
 
        /* 
     * Create a new group using compression.  
     */ 
    gcpl = H5Pcreate (H5P_GROUP_CREATE); 
    status = H5Pset_filter(gcpl,H5Z_FILTER_BZIP2,H5Z_FLAG_MANDATORY,(size_t)1, 
cd_values); 
    group  = H5Gcreate (file, GNAME, H5P_DEFAULT, gcpl, H5P_DEFAULT); 
    for (i=0; i < NGROUPS; i++) { 
        sprintf(name, "group_%d", i); 
        tmp_id = H5Gcreate (group, name, H5P_DEFAULT, H5P_DEFAULT, H5P_DEFAULT); 
        status = H5Gclose(tmp_id); 
    } 
    
    status = H5Pclose (gcpl); 
    status = H5Gclose (group); 
    /* 
     * Unregister the filter. Call to H5Fclose will fail because the library tries 
     * to apply the filter that is not available anymore. This has a cascade effect 
     * on H5Fclose. 
     */ 
    H5Zunregister(H5Z_FILTER_BZIP2); 
    status = H5Fclose (file); 

 
Here is an error stack produced by the program: 
 
HDF5-DIAG: Error detected in HDF5 (1.9.149) thread 0: 
  #000: H5F.c line 2060 in H5Fclose(): decrementing file ID failed 
    major: Object atom 
    minor: Unable to close file 
  #001: H5I.c line 1406 in H5I_dec_app_ref(): can't decrement ID ref count 
    major: Object atom 
    minor: Unable to decrement reference count 
  #002: H5F.c line 1837 in H5F_close(): can't close file 
    major: File accessibility 
    minor: Unable to close file 
………. 
  #026: H5Z.c line 1045 in H5Z_find(): required filter is not registered 
    major: Data filters 
    minor: Object not found 

 
To avoid the problem make sure to close all objects to which the filter is applied and flush them using 
the H5Fflush call before unregistering the filter. 
 
 



Programming Model for HDF5 Filter Plugins 

Page 10 of 26 

4. Programming Model for HDF5 Filter Plugins 
This section describes how to create an HDF5 filter, an HDF5 filter plugin, and how to install the HDF5 
plugin on the system. 
 
 
 

4.1. Writing a Filter Function 
The HDF5 filter function for the dynamically loaded filter feature should be written as any custom filter 
described in http://www.hdfgroup.org/HDF5/doc/H5.user/Filters.html. See the “Example” section, 
section 5, of that document to get an idea of the simple filter function, and see the example of the more 
sophisticated HDF5 bzip2 filter function in the “Building an HDF5 bzip2 Plugin Example” section on page 
17. The HDF5 bzip2 filter function is also available for download from 
https://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2.  
 
The user has to remember a few things when writing an HDF5 filter function.  
 

1. An HDF5 filter is bidirectional.  
The filter handles both input and output to the file; a flag is passed to the filter to indicate the 
direction.  

2. An HDF5 filter operates on a buffer. 
The filter reads data from a buffer, performs some sort of transformation on the data, places 
the result in the same or new buffer, and returns the buffer pointer and size to the caller.  

3. An HDF5 filter should return zero in the case of failure.  
 
The signature of the HDF5 filter function and the accompanying filter structure (see the section below) 
are described in the HDF5 Reference Manual 
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Z.html#Compression-Register.   
 
 
 

4.2. Registering a Filter with The HDF Group 
If you are writing a filter that will be used by others, it would be a good idea to request a filter 
identification number and register it with The HDF Group. Please follow the procedure described at 
http://www.hdfgroup.org/services/contributions.html.  
 
The HDF Group anticipates that developers of HDF5 filter plugins will not only register new filters, but 
will also provide links to the source code and/or binaries for the corresponding HDF5 filter plugins. 
 
It is very important for the users of the filter that developers provide filter information in the “name” 
field of the filter structure, for example: 
 
const H5Z_class2_t H5Z_BZIP2[1] = { 
     H5Z_CLASS_T_VERS,       /* H5Z_class_t version */ 
         (H5Z_filter_t) 307,  /* Filter id number */ 

http://www.hdfgroup.org/HDF5/doc/H5.user/Filters.html�
https://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2�
http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Z.html#Compression-Register�
http://www.hdfgroup.org/services/contributions.html�


Programming Model for HDF5 Filter Plugins 

Page 11 of 26 

         1,                   /* encoder_present flag (set to true) */ 
         1,                   /* decoder_present flag (set to true) */ 
         "HDF5 bzip2 filter; see  
          http://www.hdfgroup.org/services/contributions.html",   
                             /* Filter info  */ 
          NULL,                           /* The "can apply" callback */ 
     NULL,                           /* The "set local" callback */ 
        (H5Z_func_t) H5Z_filter_bzip2,    /* The filter function */ 
 }; 
 

The HDF5 Library and command-line tools have access to the “name” field. An application can 
use the H5Pget_filter<*> functions to retrieve information about the filters.  
 
Using the example of the structure above, the h5dump tool will print the string “HDF5 bzip2 
filter found at …” pointing users to the applied filter (see the example in the “Reading 
Data with an Applied Third-party Filter” section on page 7) thus solving the problem of the 
filter’s origin.    
 
 
 

4.3. Creating an HDF5 Filter Plugin  
The HDF5 filter plugin source should include:  
 

1. The H5PLextern.h header file from the HDF5 distribution. 

2. The definition of the filter structure (see the example shown in the section above). 

3. The filter function (for example, H5Z_filter_bzip2). 

4. The two functions necessary for the HDF5 Library to find the correct type of the plugin library 
while loading it at runtime and to get information about the filter function: 
H5PL_type_t   H5PLget_plugin_type(void); 
const void*   H5PLget_plugin_info(void); 
 
Here is an example of the functions above for the HDF5 bzip2 filter: 
 
H5PL_type_t   H5PLget_plugin_type(void) {return H5PL_TYPE_FILTER;} 
const void*   H5PLget_plugin_info(void) {return H5Z_BZIP2;} 
 

5. Other functions such as the source of the compression library may also be included. 

 
Build the HDF5 filter plugin as a shared library. The following steps should be taken:  
 

1. When compiling, point to the HDF5 header files. 

2. Use the appropriate linking flags.  

3. Link with any required external libraries.  



Programming Model for HDF5 Filter Plugins 

Page 12 of 26 

4. For example, if libbz2.so is installed on a Linux system, the HDF5 bzip2 plugin library 
libH5Zbzip2.so may be linked with libbz2.so instead of including bzip2 source into the 
plugin library. 

 
The complete example of the HDF5 bzip2 plugin library is provided at 
http://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2/ and can be adopted for other plugins. 
A simple Makefile file for Linux systems is shown in the “Example of Makefile” section on page 
25. 

 
 
 

4.4. Installing an HDF5 Filter Plugin  
The default directory for an HDF5 filter plugin library is defined on UNIX-like systems as 
 
“/usr/local/hdf5/lib/plugin”  

 
and on Windows systems as  
 
"%ALLUSERSPROFILE%/hdf5/lib/plugin". 

 
The default path can be overwritten by a user with the HDF5_PLUGIN_PATH environment variable. 
Several directories can be specified for the search path using “:” as a path separator for UNIX-like 
systems and “;” for Windows. 
 
Readers are encouraged to try the example in the “Building an HDF5 bzip2 Plugin Example” section on 
page 17.  
 
 
 

http://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2/�


Design 

Page 13 of 26 

5. Design 
Dynamic loading of the HDF5 filter plugin (or filter library) is triggered only by two events: when an 
application calls the H5Pset_filter function to set the filter for the first time, or when the data to 
which the filter is applied is read for the first time.  
 
 
 

5.1. Data Writing 
This section outlines the usage of the new feature on the write operation. 
 
When the application enables a filter with H5Pset_filter, the library will search for it by its filter 
identifier. The library will first search for the filter among its internal filters and custom filters registered 
with the library, and then it will search in the list of filters that have been dynamically loaded. If it cannot 
find the filter, it will search for the filter library in the default path or the path indicated by the 
environment variable HDF5_PLUGIN_PATH.  
 
When found, the HDF5 Library will load the filter library, register the filter, and add it to the filter 
pipeline. There is no need for the application to register the dynamic filter with H5Zregister, as this 
step is done internally in H5Pset_filter. The H5PL_load function in the H5Pocpl.c file in the src 
directory of the HDF5 Library distribution does the searching and loading of the filter library.  
 
Once the filter library is loaded, it will stay loaded until the HDF5 Library is closed or until the filter is 
unregistered with the H5Zunregister call. The H5Zregister function is still required when a third-
party filter is linked into an application and is not provided as a shared library. 
 
If the dynamically loaded filter has any auxiliary data, such as the compression level for bzip2 filter, it 
can be passed in through the cd_values parameter of H5Pset_filter.    
 
 
 

5.2. Data Reading 
This section outlines the usage of the new feature on the read operation. 
 
At the application level, the user does not need to do anything special.  Inside the HDF5 Library, when 
the library sees a filter identification value associated with a data item, it first searches the filter among 
its internal filters, and then it searches in the list of dynamically loaded filters that have been loaded in 
the library.  If it cannot find the filter, it will search for and load the filter plugin library.  Once the filter 
library is loaded, it will stay open until the HDF5 Library is closed.  Below is a simple diagram showing the 
design of the library. 
 



Design 

Page 14 of 26 

 
Figure 1. Reading data with a dynamically loaded filter 

 
The required changes were implemented in the H5Z_pipeline function that resides in the H5Z.c file in 
the src directory of the HDF5 Library distribution.  
 
 
 

5.3. New HDF5 Source Files for Dynamically Loaded Filters 
Three new source files were added to the HDF5 source code distribution under the src directory: 
H5PLextern.h, H5PLprivate.h, and H5PL.c. The H5PL.c file contains functions for managing plugins. 
 
 
 



Design 

Page 15 of 26 

5.4. Testing Dynamically Loaded Filters 
The plugin.c file in the test directory contains a test for the feature. The test is controlled by the 
test_plugin.sh.in script in the same directory. 
 
The HDF Group will use bzip2 (and other plugins if they become available) to test the feature with the 
HDF5 libraries under development. For more on the bzip2 plugin, see the “Building an HDF5 bzip2 Plugin 
Example” section on page 17. 
 
 
 



Proposed Changes to the HDF5 Command-line Tools 

Page 16 of 26 

6. Proposed Changes to the HDF5 Command-line Tools 
 

6.1. h5dump, h5ls, and h5copy 
Since reading the data is transparent to applications including the HDF5 command-line tools, these 
command line tools do not require any changes. A small improvement was made to h5dump output to 
replace “UNKNOWN_FILTER” with “USER_DEFINED_FILTER”. 
 

6.2. h5repack 
As in the case of the tools mentioned in the section above, h5repack does not require any changes for 
reading a dataset with an applied third-party filter.  
 
To support an application’s use of a third-party filter while repacking datasets, new syntax is needed to 
provide filter information to the tool. The required information is the filter identification number, the 
number of the filter parameters, and the values of the filter parameters. The proposed syntax to specify 
a user defined filter and its parameters is 
 

h5repack –f  UD={ID:k; N:m; CD_VAL:[n1,…,nm]}….. 

 
where k is a filter identifier, m is a number of values in the CD_VAL array, and n1,…,nm are compression 
parameters. For example, to use bzip2 compression with h5repack, one would use 
 

h5repack –f  UD={ID:307; N:1; CD_VAL:[9]} file1.h5 file2.h5 

 
The enhancements to h5repack will be implemented in the HDF5 release 1.8.12. 
 
 
 



Building an HDF5 bzip2 Plugin Example 

Page 17 of 26 

7. Building an HDF5 bzip2 Plugin Example 
The HDF Group provides an example of the HDF5 filter plugin that can be checked out from 
https://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2. It contains the source code for the bzip2 
plugin library and an example that uses the plugin.  It requires the HDF5 Library with the dynamically 
loaded feature and the bzip2 library being available on the system. 
 
The plugin and the example can be built using configure or CMake commands. For instructions on how 
to build with CMake, see the README.txt file in the source code distribution. The bzip2 library that can 
be built with CMake is available from https://svn.hdfgroup.uiuc.edu/bzip2/.   
 
Please follow the instructions below to build with configure.  
 

1. Obtain, build, and install the HDF5 Library with the dynamically loaded filter feature. 
 
You may checkout the source from http://svn.hdfgroup.uiuc.edu/hdf5/branches/hdf5_1_8/ or 
download http://www.hdfgroup.uiuc.edu/ftp/pub/outgoing/hdf5/snapshots/v18/hdf5-1.8.11-
snap16.tar.gz. 
 

2. Make sure that libbz2.so* is installed on your system. On most UNIX-like systems it will be 
under /usr/lib.  
 

3. Obtain the source code for the plugin using SVN, or download via FTP the source tar ball: 
 
svn export https://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2 <plugin-dir> 
ftp://ftp.hdfgroup.uiuc.edu/pub/outgoing/HDF5-plugins/BZIP2-plugin.tar.gz  

 
4. You can build in place, or you can use the “srdir” configure option. If you build in place as 

shown below, you will find the plugin under the <plugin-dir>/plugins directory. 
 
cd  <plugin-dir> 
./configure –with-hdf5=<INSTALL-HDF5-DIR> --with-bz2lib=/usr 
make 
make check 
make install 

 
5. Setup the environment variable HDF5_PLUGIN_PATH to point to the <plugin-dir>/plugins 

directory with the command line shown below: 
 
setenv HDF5_PLUGIN_PATH <plugin-dir>/plugins 

 
6. Use <INSTALL-HDF5-DIR>/bin/h5dump with the h5ex_d_bzip2.h5 file found under the 

example directory of the bzip2 plugin distribution to get an output as shown in the “Reading 
Data with an Applied Third-party Filter” section on page 7. 

 
 
 

https://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2�
https://svn.hdfgroup.uiuc.edu/bzip2/�
http://svn.hdfgroup.uiuc.edu/hdf5/branches/hdf5_1_8/�
http://www.hdfgroup.uiuc.edu/ftp/pub/outgoing/hdf5/snapshots/v18/hdf5-1.8.11-snap16.tar.gz�
http://www.hdfgroup.uiuc.edu/ftp/pub/outgoing/hdf5/snapshots/v18/hdf5-1.8.11-snap16.tar.gz�
https://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2�
ftp://ftp.hdfgroup.uiuc.edu/pub/outgoing/HDF5-plugins/BZIP2-plugin.tar.gz�


Example: Writing and Reading Compressed Data 

Page 18 of 26 

8. Example: Writing and Reading Compressed Data  
This example shows how to write and read data compressed with the bzip2 compression. 
 
     1 /************************************************************ 
     2  
     3   This example shows how to write data and read it from a dataset 
     4   using bzip2 compression.  
     5   bzip2 filter is not available in HDF5.  
     6   The example uses a new feature available in HDF5 version 1.8.11  
     7   to discover, load and register filters at runtime.   
     8  
     9  ************************************************************/ 
    10  
    11 #include "hdf5.h" 
    12 #include <stdio.h> 
    13 #include <stdlib.h> 
    14  
    15 #define FILE            "h5ex_d_bzip2.h5" 
    16 #define DATASET         "DS1" 
    17 #define DIM0            32 
    18 #define DIM1            64 
    19 #define CHUNK0          4 
    20 #define CHUNK1          8 
    21  
    22 int 
    23 main (void) 
    24 { 
    25     hid_t           file, space, dset, dcpl;    /* Handles */ 
    26     herr_t          status; 
    27     H5Z_filter_t    filter_id = 0; 
    28     char            filter_name[80]; 
    29     hsize_t         dims[2] = {DIM0, DIM1}, 
    30                     chunk[2] = {CHUNK0, CHUNK1}; 
    31     size_t          nelmts = 1;           /* number of elements in cd_values */ 
    32     const unsigned  int cd_values[1] = {6};     /* bzip2 default level is 2 */ 
    33     unsigned int    values_out[1] = {99};           
    34     unsigned int    flags; 
    35     htri_t          avail; 
    36     unsigned        filter_config; 
    37     int             wdata[DIM0][DIM1],          /* Write buffer */ 
    38                     rdata[DIM0][DIM1],          /* Read buffer */ 
    39                     max, 
    40                     i, j; 
    41  
    42     /* 
    43      * Initialize data. 
    44      */ 
    45     for (i=0; i<DIM0; i++) 
    46         for (j=0; j<DIM1; j++) 
    47             wdata[i][j] = i * j - j; 
    48  
    49     /* 
    50      * Create a new file using the default properties. 
    51      */ 
    52     file = H5Fcreate (FILE, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT); 
    53  
    54     /* 
    55      * Create dataspace.  Setting maximum size to NULL sets the maximum 
    56      * size to be the current size. 



Example: Writing and Reading Compressed Data 

Page 19 of 26 

    57      */ 
    58     space = H5Screate_simple (2, dims, NULL); 
    59  
    60     /* 
    61      * Create the dataset creation property list, add the bzip2 
    62      * compression filter and set the chunk size. 
    63      */ 
    64     dcpl = H5Pcreate (H5P_DATASET_CREATE); 
    65     status = H5Pset_filter (dcpl, H5Z_FILTER_BZIP2, H5Z_FLAG_MANDATORY, 
                                  (size_t)6, cd_values); 
    66  
    67     /*  
    68      * Check that filter is registered with the library now. 
    69      * If it is registered, retrieve filter's configuration.  
    70      */ 
    71      avail = H5Zfilter_avail(H5Z_FILTER_BZIP2); 
    72     if (avail) { 
    73         status = H5Zget_filter_info (H5Z_FILTER_BZIP2, &filter_config); 
    74         if ( (filter_config & H5Z_FILTER_CONFIG_ENCODE_ENABLED) &&  
    75                 (filter_config & H5Z_FILTER_CONFIG_DECODE_ENABLED) )  
    76             printf ("bzip2 filter is available for encoding and decoding.\n"); 
    77     }      
    78     status = H5Pset_chunk (dcpl, 2, chunk); 
    79  
    80     /* 
    81      * Create the dataset. 
    82      */ 
    83     printf ("....Writing bzip2 compressed data ................\n"); 
    84     dset = H5Dcreate (file, DATASET, H5T_STD_I32LE, space, H5P_DEFAULT, dcpl, 
    85                       H5P_DEFAULT); 
    86  
    87     /* 
    88      * Write the data to the dataset. 
    89      */ 
    90     status = H5Dwrite (dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, 
    91                        wdata[0]); 
    92  
    93     /* 
    94      * Close and release resources. 
    95      */ 
    96     status = H5Pclose (dcpl); 
    97     status = H5Dclose (dset); 
    98     status = H5Sclose (space); 
    99     status = H5Fclose (file); 
   100     status - H5close(); 
   101  
   102  
   103     printf ("....Close the file and reopen for reading ........\n"); 
   104     /* 
   105      * Now we begin the read section of this example. 
   106      */ 
   107  
   108     /* 
   109      * Open file and dataset using the default properties. 
   110      */ 
   111     file = H5Fopen (FILE, H5F_ACC_RDONLY, H5P_DEFAULT); 
   112     dset = H5Dopen (file, DATASET, H5P_DEFAULT); 
   113  
   114     /* 
   115      * Retrieve dataset creation property list. 
   116      */ 
   117     dcpl = H5Dget_create_plist (dset); 
   118  



Example: Writing and Reading Compressed Data 

Page 20 of 26 

   119     /* 
   120      * Retrieve and print the filter id, compression level and filter's name 
for bzip2. 
   121      */ 
   122     filter_id = H5Pget_filter2 (dcpl, (unsigned) 0, &flags, &nelmts,  
                      values_out, sizeof(filter_name), filter_name, NULL); 
   123     printf ("Filter info is available from the dataset creation property \n "); 
   124     printf ("  Filter identifier is "); 
   125     switch (filter_id) { 
   126         case H5Z_FILTER_BZIP2: 
   127             printf ("%d\n", filter_id); 
   128             printf ("   Number of parameters is %d with the value %u\n",  
                              nelmts, values_out[0]); 
   129             printf ("   To find more about the filter check %s\n",  
                              filter_name); 
   130             break; 
   131         default: 
   132             printf ("Not expected filter\n"); 
   133             break; 
   134     } 
   135     /*  
   136      * Check that filter is not registered with the library yet. 
   137      */ 
   138      avail = H5Zfilter_avail(H5Z_FILTER_BZIP2); 
   139     if (!avail)  
   140         printf ("bzip2 filter is not yet available after the H5Pget_filter 
                       call.\n"); 
   141     else 
   142         return 1; 
   143      
   144      
   145     /* 
   146      * Read the data using the default properties. 
   147      */ 
   148     printf ("....Reading bzip2 compressed data ................\n"); 
   149     status = H5Dread (dset, H5T_NATIVE_INT, H5S_ALL, H5S_ALL, H5P_DEFAULT, 
   150                 rdata[0]); 
   151  
   152     /* 
   153      * Find the maximum value in the dataset, to verify that it was 
   154      * read correctly. 
   155      */ 
   156     max = rdata[0][0]; 
   157     for (i=0; i<DIM0; i++) 
   158         for (j=0; j<DIM1; j++) { 
   159             /*printf("%d \n", rdata[i][j]); */ 
   160             if (max < rdata[i][j]) 
   161                 max = rdata[i][j]; 
   162         } 
   163     /* 
   164      * Print the maximum value. 
   165      */ 
   166     printf ("Maximum value in %s is %d\n", DATASET, max); 
   167     /*  
   168      * Check that filter is registered with the library now. 
   169      */ 
   170     avail = H5Zfilter_avail(H5Z_FILTER_BZIP2); 
   171     if (avail)   
   172         printf ("bzip2 filter is available now since H5Dread triggered loading 
                       of the filter.\n"); 
   173           
   174  
   175     /* 



Example: Writing and Reading Compressed Data 

Page 21 of 26 

   176      * Close and release resources. 
   177      */ 
   178     status = H5Pclose (dcpl); 
   179     status = H5Dclose (dset); 
   180     status = H5Fclose (file); 
   181  
   182     return 0; 
   183 } 

 
 
 



HDF5 bzip2 Filter Plugin 

Page 22 of 26 

9. HDF5 bzip2 Filter Plugin 
This section provides partial code for the bzip2 filter plugin. For complete code, check 
http://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2/src/H5Zbzip2.c 
 
     1  /* 
     2  * This file is an example of an HDF5 filter plugin.  
     3  * The filter function  H5Z_filter_bzip2 was adopted from  
     4  * PyTables http://www.pytables.org.   
     5  * The plugin can be used with the HDF5 Library version 1.8.11 to read 
     6  * HDF5 datasets compressed with bzip2 created by PyTables.  
     7  */ 
     8  
     9 /* 
    10  * 
    11 Copyright Notice and Statement for PyTables Software Library and Utilities: 
    12  
… 
    45 */ 
    46 #include <sys/types.h> 
    47 #include <stdlib.h> 
    48 #include <string.h> 
    49 #include <assert.h> 
    50 #include <stdio.h> 
    51 #include <H5PLextern.h> 
    52  
    53 #include <bzlib.h> 
    54  
    55 static size_t H5Z_filter_bzip2(unsigned int flags, size_t cd_nelmts, 
    56                      const unsigned int cd_values[], size_t nbytes, 
    57                      size_t *buf_size, void **buf); 
    58  
    59 /*  
… 
    62  * See http://www.hdfgroup.org/services/contributions.html for more 
information. 
    63  * 
    64  * If you intend your plugin to be used by others, please register your filter 
    65  * with The HDF Group.  
    66  */ 
    67 #define H5Z_FILTER_BZIP2 307 
    68  
    69 const H5Z_class2_t H5Z_BZIP2[1] = {{ 
    70     H5Z_CLASS_T_VERS,       /* H5Z_class_t version */ 
    71     (H5Z_filter_t)H5Z_FILTER_BZIP2,         /* Filter id number             */ 
    72     1,              /* encoder_present flag (set to true) */ 
    73     1,              /* decoder_present flag (set to true) */ 
    74     "HDF5 bzip2 filter; see 
http://www.hdfgroup.org/services/contributions.html",  
    75                                 /* Filter name for debugging    */ 
    76     NULL,                       /* The "can apply" callback     */ 
    77     NULL,                       /* The "set local" callback     */ 
    78     (H5Z_func_t)H5Z_filter_bzip2,         /* The actual filter function   */ 
    79 }}; 
    80  
    81 H5PL_type_t   H5PLget_plugin_type(void) {return H5PL_TYPE_FILTER;} 
    82 const void *H5PLget_plugin_info(void) {return H5Z_BZIP2;} 
    83  
    84 static size_t H5Z_filter_bzip2(unsigned int flags, size_t cd_nelmts, 
    85                      const unsigned int cd_values[], size_t nbytes, 

http://svn.hdfgroup.uiuc.edu/hdf5_plugins/trunk/BZIP2/src/H5Zbzip2.c�


HDF5 bzip2 Filter Plugin 

Page 23 of 26 

    86                      size_t *buf_size, void **buf) 
    87 { 
    88   char *outbuf = NULL; 
    89   size_t outbuflen, outdatalen; 
    90   int ret; 
    91  
    92   if (flags & H5Z_FLAG_REVERSE) { 
    93  
    94     /** Decompress data. 
    95      ** 
… 
   102      **/ 
   103  
   104     bz_stream stream; 
   105     char *newbuf = NULL; 
   106     size_t newbuflen; 
   107  
   108     /* Prepare the output buffer. */ 
   109     outbuflen = nbytes * 3 + 1;  /* average bzip2 compression ratio is 3:1 */ 
   110     outbuf = malloc(outbuflen); 
   111     if (outbuf == NULL) { 
   112       fprintf(stderr, "memory allocation failed for bzip2 decompression\n"); 
   113       goto cleanupAndFail; 
   114     } 
   115  
   116     /* Use standard malloc()/free() for internal memory handling. */ 
   117     stream.bzalloc = NULL; 
   118     stream.bzfree = NULL; 
   119     stream.opaque = NULL; 
   120  
   121     /* Start decompression. */ 
   122     ret = BZ2_bzDecompressInit(&stream, 0, 0); 
   123     if (ret != BZ_OK) { 
   124       fprintf(stderr, "bzip2 decompression start failed with error %d\n", ret); 
   125       goto cleanupAndFail; 
   126     } 
   127  
   128     /* Feed data to the decompression process and get decompressed data. */ 
   129     stream.next_out = outbuf; 
   130     stream.avail_out = outbuflen; 
   131     stream.next_in = *buf; 
   132     stream.avail_in = nbytes; 
   133     do { 
   134       ret = BZ2_bzDecompress(&stream); 
   135       if (ret < 0) { 
   136  fprintf(stderr, "BUG: bzip2 decompression failed with error %d\n", ret); 
   137  goto cleanupAndFail; 
   138       } 
   139  
   140       if (ret != BZ_STREAM_END && stream.avail_out == 0) { 
   141         /* Grow the output buffer. */ 
   142         newbuflen = outbuflen * 2; 
   143         newbuf = realloc(outbuf, newbuflen); 
   144         if (newbuf == NULL) { 
   145           fprintf(stderr, "memory allocation failed for bzip2 
decompression\n"); 
   146           goto cleanupAndFail; 
   147         } 
   148         stream.next_out = newbuf + outbuflen;  /* half the new buffer behind */ 
   149         stream.avail_out = outbuflen;  /* half the new buffer ahead */ 
   150         outbuf = newbuf; 
   151         outbuflen = newbuflen; 
   152       } 



HDF5 bzip2 Filter Plugin 

Page 24 of 26 

   153     } while (ret != BZ_STREAM_END); 
   154  
   155     /* End compression. */ 
   156     outdatalen = stream.total_out_lo32; 
   157     ret = BZ2_bzDecompressEnd(&stream); 
   158     if (ret != BZ_OK) { 
   159       fprintf(stderr, "bzip2 compression end failed with error %d\n", ret); 
   160       goto cleanupAndFail; 
   161     } 
   162  
   163   } else { 
   164  
   165     /** Compress data. 
   166      ** 
… 
   171      **/ 
   172  
   173     unsigned int odatalen;  /* maybe not the same size as outdatalen */ 
   174     int blockSize100k = 9; 
   175  
   176     /* Get compression block size if present. */ 
   177     if (cd_nelmts > 0) { 
   178       blockSize100k = cd_values[0]; 
   179       if (blockSize100k < 1 || blockSize100k > 9) { 
   180  fprintf(stderr, "invalid compression block size: %d\n", blockSize100k); 
   181  goto cleanupAndFail; 
   182       } 
   183     } 
   184  
   185     /* Prepare the output buffer. */ 
   186     outbuflen = nbytes + nbytes / 100 + 600;  /* worst case (bzip2 docs) */ 
   187     outbuf = malloc(outbuflen); 
   188     if (outbuf == NULL) { 
   189       fprintf(stderr, "memory allocation failed for bzip2 compression\n"); 
   190       goto cleanupAndFail; 
   191     } 
   192  
   193     /* Compress data. */ 
   194     odatalen = outbuflen; 
   195     ret = BZ2_bzBuffToBuffCompress(outbuf, &odatalen, *buf, nbytes, 
   196                                    blockSize100k, 0, 0); 
   197     outdatalen = odatalen; 
   198     if (ret != BZ_OK) { 
   199       fprintf(stderr, "bzip2 compression failed with error %d\n", ret); 
   200       goto cleanupAndFail; 
   201     } 
   202   } 
   203  
   204   /* Always replace the input buffer with the output buffer. */ 
   205   free(*buf); 
   206   *buf = outbuf; 
   207   *buf_size = outbuflen; 
   208   return outdatalen; 
   209  
   210  cleanupAndFail: 
   211   if (outbuf) 
   212     free(outbuf); 
   213   return 0; 
   214 } 

 
 



Example of Makefile 

Page 25 of 26 

10. Example of Makefile  
This is an example for Makefile. Building shared libraries may be tricky. Please consult system 
documentation for the flags on your system. You may also want to consider using libtool as we do in 
the bzip2 plugin example. 
 
     1    CFLAGS = -fPIC -g 
     2    CC = gcc 
     3    HDF5_INSTALL = /mnt/scr1/_tmp/_build/hdf5/ 
     4   BZIP2_INSTALL = /mnt/scr1/bzip2-1.0.5  
     5    MAJOR = 0 
     6   MINOR = 1 
     7    NAME1 = H5Zbzip2 
     8    VERSION = $(MAJOR).$(MINOR) 
     9  
    10    # Include files in hdf5/src build/src directories for hdf5.h and 
             H5pubconf.h 
    11    INCLUDES = -I./ -I$(HDF5_INSTALL)/include -I$(BZIP2_INSTALL) 
    12  
    13    lib: lib$(NAME1).so.$(VERSION) 
    14  
    15    $(NAME1).o: $(NAME1).c 
    16     $(CC) $(CFLAGS) $(INCLUDES) -c $(NAME1).c 
    17  
    18    lib$(NAME1).so.$(VERSION): $(NAME1).o 
    19     $(CC) -shared -Wl,-soname,lib$(NAME1).so.$(MAJOR) $^ -o $@ -
L/$(BZIP2_INSTALL) -lbz2 
    20  
    21    clean: 
    22     $(RM) *.o *.so*  
    23  
    24    distclean: 
    25     $(RM) *.o *.so*  

 
 
 



References 

Page 26 of 26 

11. References 
1) The HDF Group. “HDF5 Documentation,” http://www.hdfgroup.org/HDF5/doc/doc-

info.html (November 15, 2012). 

 
 

http://www.hdfgroup.org/HDF5/doc/doc-info.html�
http://www.hdfgroup.org/HDF5/doc/doc-info.html�

	1. Introduction
	2. Requirements
	2.1. Functional Requirements
	2.2. Non-functional Requirements

	3. Programming Model for Applications 
	3.1. Applying a Third-party Filter When Creating and Writing a Dataset
	3.2. Reading Data with an Applied Third-party Filter
	3.3. A Word of Caution When Using Custom Filters

	4. Programming Model for HDF5 Filter Plugins
	4.1. Writing a Filter Function
	4.2. Registering a Filter with The HDF Group
	4.3. Creating an HDF5 Filter Plugin 
	4.4. Installing an HDF5 Filter Plugin 

	5. Design
	5.1. Data Writing
	5.2. Data Reading
	5.3. New HDF5 Source Files for Dynamically Loaded Filters
	5.4. Testing Dynamically Loaded Filters

	6. Proposed Changes to the HDF5 Command-line Tools
	6.1. h5dump, h5ls, and h5copy
	6.2. h5repack

	7. Building an HDF5 bzip2 Plugin Example
	8. Example: Writing and Reading Compressed Data 
	9. HDF5 bzip2 Filter Plugin
	10. Example of Makefile 
	11. References

