HDF5 Document Set

PDF and PS Versions

Release 1.2
October 1999

Hierarchical Data Format (HDF) Group
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

A Noteto the Reader: The primary HDF5 user documents are the online HTML documents distributed with the HDF5 code
and binaries and found on the HDF5 website. These PDF and PostScript versions are generated from the HTML to provide
the following capabilites:

* Toprovide aversion that can be reasonably printed in asingle print operation.

e Toprovide an easily searchable version.

In this package, you will find four PDF and PostScript documents:

e Introduction to HDF5
e HDF5 Tutorial
e HDF5 User's Guide
» HDF5 Reference Manual
« Andal of the above documents concatenated into asinglefile
Note that these versions were created in response to user feedback; the HDF Group is eager to hear from HDF and HDF5

users so that we can better meet our users needs. Send comments, requests, and bug reports to HDF Help at
hdfhel p@ncsa.uiuc.edu.

HDF5 Document Set

Copyright Notice and Statement for
NCSA HDF5 (Hierarchical Data Format 5) Software
Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999 by the Board of Trustees of the University of Illinois
All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National
Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip
library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any
purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, thislist of conditions,
and the following disclaimer in the documentation and/or materials provided with the
distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked,
but not required, to acknowledge that it was developed by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign and to credit the
contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or
promote products derived from this software without specific prior written permission from the
University or the Contributors.

6. THIS SOFTWARE ISPROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS"AS
IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. Inno
event shall the University or the Contributors be liable for any damages suffered by the users
arising out of the use of this software, even if advised of the possibility of such damage.

Last modified: 13 October 1999

University of Illinois a Urbana-Champaign National Center for Supercomputing Applications

|ntroduction to HDF5

Release 1.2
October 1999

Hierarchical Data Format (HDF) Group
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

Introduction to HDF5

Copyright Notice and Statement for
NCSA HDF5 (Hierarchical Data Format 5) Software
Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999 by the Board of Trustees of the University of Illinois
All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National
Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip
library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any
purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and
the following disclaimer.

2. Redigtributionsin binary form must reproduce the above copyright notice, thislist of conditions,
and the following disclaimer in the documentation and/or materials provided with the
distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked,
but not required, to acknowledge that it was developed by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign and to credit the
contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or
promote products derived from this software without specific prior written permission from the
University or the Contributors.

6. THIS SOFTWARE ISPROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS"AS
IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no
event shall the University or the Contributors be liable for any damages suffered by the users
arising out of the use of this software, even if advised of the possibility of such damage.

Last modified: 13 October 1999

National Center for Supercomputing Applications

HDF5 Release 1.2

| ntroduction to HDF5

Introduction to HDF5 1
1. What IsHDF5? 3
1.1 Limitations of the Current Release 3
1.2 Changesin the Current Release 3

2. HDF5 File Organization and Data M odel 5
2.1 HDF5 Groups 5
2.2 HDF5 Datasets 5
2.3 HDF5 Attributes 8
2.4 The File as Written to Media 8
3. The HDF5 Applications Programming I nterface (API) 11
Naming conventions 11

3.1 Include Files 12
3.2 Programming Models 12
How to create an HDF5 file 12
How to create and initialize the essential components of a dataset for writing to afile 13
How to discard objects when they are no longer needed 13
How to write a dataset to a new file 14
Getting information about a dataset 14
Reading and writing a portion of a dataset 15
Creating compound datatypes 24
Creating and writing extendible and chunked datasets 25
Working with groupsin files 27
Working with attributes 29
Working with references to objects 31
Working with references to dataset regions 38

4. Example Codes 47
Example 1: How to create a homogeneous multi-dimensional dataset and writeit to afile. 47
Example 2. How to read a hyperdlab from file into memory. 49
Example 3. Writing selected data from memory to afile. 51
Example 4. Working with compound datatypes. 55
Example 5. Creating and writing an extendible dataset. 58
Example 6. Reading data. 61
Example 7. Creating groups. 65
Example 8. Writing and reading attributes. 67
Example 9. Creating and storing references to objects. 72
Example 10. Reading references to objects. 74
Example 11. Creating and writing a reference to a region. 76
Example 12. Reading areference to aregion. 78

University of Illinois at Urbana-Champaign

Introduction to HDF5

National Center for Supercomputing Applications

HDF5 Release 1.2

| ntroduction to HDF5 Release 1.2

Thisisan introduction to the HDF5 data model and programming model. Being a Getting Started or QuickStart
document, this Introduction to HDF5 is intended to provide enough information for you to develop a basic understanding
of how HDF5 works and is meant to be used. Knowledge of the current version of HDF will make it easier to follow the
text, but it is not required. More complete information of the sort you will need to actualy use HDF5 is available in the
HDF5 documentation. Available documents include the following:

« HDF5 User's GuideWhere appropriate, this Introductionwill refer to specific sections of the User’s Guide
» HDF5 Reference Manual
Code examples are available in the source code tree when you install HDF5.

e Thedirectories hdf 5/ exanpl es and hdf 5/ doc/ ht m / Tut or / exanpl es/ contain the examples used in this
document.

e Thedirectory hdf 5/t est containsthe development tests used by the HDF5 devel opers. Since these codes are
intended to fully exercise the system, they provide more diverse and sophisticated examples of what HDF5 can
do.

University of Illinois at Urbana-Champaign 1

Introduction to HDF5

2 National Center for Supercomputing Applications

HDF5 Release 1.2

1. What IsHDF5?

HDF5 is a completely new Hierarchical Data Format product consisting of a data format specification and a supporting
library implementation. HDF5 is designed to address some of the limitations of the older HDF product and to address
current and anticipated requirements of modern systems and applications. *

We urge you to look at HDF5, the format and the library, and give us feedback on what you like or do not like about it,
and what features you would like to see added to it.

Why HDF5? The development of HDF5 is motivated by a number of limitations in the older HDF format and library.
Some of these limitations are:

» Asinglefile cannot store more than 20,000 complex objects, and a single file cannot be larger than 2 gigabytes.

« Thedatamodels are less consistent than they should be, there are more object types than necessary, and
datatypes are too restricted.

e Thelibrary sourceisold and overly complex, does not support parallel 1/0 effectively, and is difficult to usein
threaded applications.

HDF5 includes the following improvements.

* A new file format designed to address some of the deficiencies of HDF4.x, particularly the need to store larger
files and more objects per file.

e A simpler, more comprehensive data model that includes only two basic structures: a multidimensional array of
record structures, and a grouping structure.

e A simpler, better-engineered library and API, with improved support for parallel 1/0, threads, and other
reguirements imposed by modern systems and applications.

1.1 Limitations of the Current Release

This release includes the basic functionality that was planned for the HDF5 library. However, the library does not
implement all of the features detailed in the format and API specifications. Hereis alisting of some of the limitations of
the current release:

« Datacompression is supported, though only GZIP isimplemented. GZIP, or GNU Zip, is a compression function
from the GNU Project.

e Thelibrary is not currently thread aware although we have planned for that possibility and intend eventually to
implement it.

1.2 Changesin the Current Release

A detailed list of changesin HDF5 since the last release, HDF5 Release 1.0, can be found in the file hdf 5/ RELEASE in
the source code installation. At a higher level, those changes include:

e Support for bitfield, opague, enumeration, and variable-length datatypes
e Support for object and dataset region pointers

e Improved parallel performance and support for additional parallel platforms

University of Illinois at Urbana-Champaign 3

Introduction to HDF5

* Improved and expanded documentation
e Enhancementsto the h51 s and h5dunp tools and a new HDF5 to HDF4 conversion tool, h5t oh4
e Over 30 new API functions

The changes as HDF5 has evolved from the first Alpharelease to the present are summarized in the file hdf 5/ Hl STORY
in the source code installation.

Footnote:

1. Notethat HDF and HDF5 are two different products. HDF is adata format first developed in the 1980s and currently in
Release 4.x (HDF Release 4.x). HDF5 is anew data format first released in Beta in 1998 and designed to better meet the ever-
increasing demands of scientific computing and to take better advantage of the ever-increasing capabilities of computing
systems. HDF5 is currently in Release 1.x (HDF5 Release 1.X).

4 National Center for Supercomputing Applications

HDF5 Release 1.2

2. HDF5 File Organization and Data M odel

HDF5 files are organized in a hierarchical structure, with two primary structures. groups and datasets.

« HDFS5 group: agrouping structure containing instances of zero or more groups or datasets, together with
supporting metadata.

« HDF5 dataset: amultidimensional array of data elements, together with supporting metadata.

Working with groups and group members is similar in many ways to working with directories and filesin UNIX. Aswith
UNIX directories and files, objectsin an HDF5 file are often described by giving their full (or absolute) path names.

+ [signifiesthe root group.
« [foo signifies a member of the root group called fOO.

« [foo/z00 signifies amember of the group fOO, which in turn is a member of the root group.

Any HDF5 group or dataset may have an associated attribute list. An HDFb5 attribute is a user-defined HDF5 structure
that provides extrainformation about an HDF5 object. Attributes are described in more detail below.

2.1 HDF5 Groups

An HDF5 group is a structure containing zero or more HDF5 objects. A group has two parts:
e A group header, which contains a group name and alist of group attributes.

e A group symbol table, whichisalist of the HDF5 objects that bel ong to the group.

2.2 HDF5 Datasets

A dataset isstored in afile in two parts: a header and a data array.

The header contains information that is needed to interpret the array portion of the dataset, as well as metadata (or
pointers to metadata) that describes or annotates the dataset. Header information includes the name of the object, its
dimensionality, its number-type, information about how the dataitself is stored on disk, and other information used by the
library to speed up access to the dataset or maintain the file's integrity.

There are four essential classes of information in any header: name, datatype, dataspace, and storage layout:

Name. A dataset name is a sequence of aphanumeric ASCII characters.

Datatype. HDF5 allows one to define many different kinds of datatypes. There are two categories of datatypes. atomic
datatypes and compound datatypes. Atomic datatypes can also be system-specific, or NATI VE, and all datatypes can be
named:

e Atomic datatypes are those that are not decomposed at the datatype interface level, such as integers and floats.

* NATI VE datatypes are system-specific instances of atomic datatypes.

e Compound datatypes are made up of atomic datatypes.

« Named datatypes are either atomic or compound datatypes that have been specifically designated to be shared
across datasets.

University of Illinois at Urbana-Champaign 5

Introduction to HDF5

Atomic datatypes include integers and floating-point numbers. Each atomic type belongs to a particular class and has
several properties: size, order, precision, and offset. In thisintroduction, we consider only afew of these properties.

Atomic classes include integer, float, date and time, string, bit field, and opague. (Note: Only integer, float and string
classes are available in the current implementation.)

Properties of integer typesinclude size, order (endian-ness), and signed-ness (signed/unsigned).
Properties of float types include the size and location of the exponent and mantissa, and the location of the sign hit.
The datatypes that are supported in the current implementation are:
« Integer datatypes: 8-bit, 16-bit, 32-hit, and 64-bit integers in both little and big-endian format.
* Floating-point numbers: | EEE 32-bit and 64-bit floating-point numbersin both little and big-endian format.
* References.
o Strings.

NATI VE datatypes. Although it is possible to describe nearly any kind of atomic datatype, most applications will use

predefined datatypes that are supported by their compiler. In HDF5 these are called native datatypes. NATI VE datatypes
are C-like datatypes that are generally supported by the hardware of the machine on which the library was compiled. In
order to be portable, applications should almost always use the NATI VE designation to describe data values in memory.

The NATI VE architecture has base names which do not follow the same rules as the others. Instead, native type names are
similar to the C type names. The following figure shows several examples.

Examples of Native Datatypes and Corresponding C Types

Example Corresponding C Type

H5T_NATI VE_CHAR

si gned char

H5T_NATI VE_UCHAR

unsi gned char

H5T_NATI VE_SHORT

short

H5T_NATI VE_USHORT

unsi gned short

H5T_NATI VE_I NT int
H5T_NATI VE_Ul NT unsi gned
H5T_NATI VE_LONG | ong

H5T_NATI VE_ULONG

unsi gned | ong

H5T_NATI VE_LLONG

I ong | ong

H5T_NATI VE_ULLONG

unsi gned | ong | ong

HST_NATI VE_FLOAT

fl oat

H5T_NATI VE_DOUBLE

doubl e

National Center for Supercomputing Applications

HDF5 Release 1.2

H5T_NATI VE_LDOUBLE | ong doubl e
H5T_NATI VE_HSI ZE hsi ze_t
H5T_NATI VE_HSSI ZE hssi ze_t
H5T_NATI VE_HERR herr _t
H5T_NATI VE_HBOOL hbool _t

See Datatypes in the HDF User’s Guiddor further information.

A compound datatypies one in which a collection of simple datatypes are represented as a single unit, similar to astruct
in C. The parts of a compound datatype are called membersThe members of a compound datatype may be of any
datatype, including another compound datatype. It is possible to read members from a compound type without reading the
whole type.

Named datatypedormally each dataset has its own datatype, but sometimes we may want to share a datatype among
several datasets. This can be done using a nameddatatype. A named datatype is stored in the file independently of any
dataset, and referenced by al datasets that have that datatype. Named datatypes may have an associated attributes list. See
Datatypesn the HDF User’s Guideor further information.

Dataspace. A dataset dataspacelescribes the dimensionality of the dataset. The dimensions of a dataset can be fixed
(unchanging), or they may be unlimited which means that they are extendible (i.e. they can grow larger).

Properties of a dataspace consist of the rank (number of dimensions) of the data array, the actual sizes of the dimensions
of the array, and the maximum sizes of the dimensio@hshe array. For a fixed-dimension dataset, the actual size isthe

same as the maximum size of adimension. When adimension is unlimited, the maximum sizeis set to the value
H5P_UNLI M TED. (An example below shows how to create extendible datasets.)

A dataspace can also describe portions of a dataset, making it possible to do partial 1/0 operations on selectionsSelection
is supported by the dataspace interface (H5S). Given an n-dimensional dataset, there are currently four waysto do partia
selection:

e Select alogically contiguous n-dimensional hyperslab.

» Sdlect anon-contiguous hyperslab consisting of elements or blocks of elements (hyperslabs) that are equally
spaced.

e Select aunion of hyperslabs.
* Sdlect alist of independent points.

Since /O operations have two end-points, the raw data transfer functions require two dataspace arguments: one describes
the application memory dataspace or subset thereof, and the other describes the file dataspace or subset thereof.

See Dataspaces$n the HDF User’s Guiddor further information.

Storage layout. The HDF5 format makes it possible to store datain a variety of ways. The default storage layout format is
contiguousmeaning that datais stored in the same linear way that it is organized in memory. Two other storage layout
formats are currently defined for HDF5: compactand chunkedIn the future, other storage layouts may be added.

Compactstorage is used when the amount of datais small and can be stored directly in the object header. (Note: Compact
storage is not supported in this release.)

Chunkedstorage involves dividing the dataset into equal-sized "chunks' that are stored separately. Chunking has three
important benefits.

University of Illinois at Urbana-Champaign 7

Introduction to HDF5

* It makesit possible to achieve good performance when accessing subsets of the datasets, even when the subset to
be chosen is orthogonal to the normal storage order of the dataset.

e |t makesit possible to compress large datasets and still achieve good performance when accessing subsets of the
dataset.

* It makesit possible efficiently to extend the dimensions of a dataset in any direction.

See Datasets and Dataset Chunking Issuesin the HDF User’s Guidefor further information. We particularly encourage
you to read Dataset Chunking Issuasice the issue is complex and beyond the scope of this document.

2.3 HDF5 Attributes

Attributesare small named datasets that are attached to primary datasets, groups, or named datatypes. Attributes can be
used to describe the nature and/or the intended usage of a dataset or group. An attribute has two parts: (1) anameand (2)
avalue The value part contains one or more data entries of the same datatype.

The Attribute API (H5A) is used to read or write attribute information. When accessing attributes, they can be identified
by name or by an index value. The use of an index value makesit possible to iterate through all of the attributes associated
with a given object.

The HDF5 format and 1/O library are designed with the assumption that attributes are small datasets. They are always
stored in the object header of the object they are attached to. Because of this, large datasets should not be stored as
attributes. How large is "large” is not defined by the library and is up to the user’s interpretation. (Large datasets with
metadata can be stored as supplemental datasetsin a group with the primary dataset.)

See Attributesin the HDF User’s Guideor further information.

2.4 TheFileasWritten to Media

For those who are interested, this section takes alook at the low-level elements of the file as the file is written to disk (or
other storage media) and the relation of those low-level elements to the higher level elements with which users typically
are more familiar. The HDF5 API generally exposes only the high-level elements to the user; the low-level elements are
often hidden. The rest of this Introduction does not assume an understanding of this material.

The format of an HDF5 file on disk encompasses several key ideas of the HDF4 and Al O file formats as well as
addressing some shortcomings therein. The new format is more self-describing than the HDF4 format and is more
uniformly applied to data objects in the file.

8 National Center for Supercomputing Applications

HDF5 Release 1.2

sl
0
2
e
D
0
x

Y
— Root Groug
Group Local heap
Tahble JE—

Sroup table antries
[=tored a=s B-trees)

= Group
& roup Local heap
Tahble

Zroup table

[ataz =t

[ratatype or
Cata=pace

Figure 1. Relationships among the HDF5 root
group, other groups, and objects

An HDFH5 file appears to the user as a directed graph. The nodes
of this graph are the higher-level HDF5 objects that are exposed
by the HDF5 APIs:

Groups
Datasets
Datatypes
Dataspaces

Ohject Object Data
Chject
Headear
Object header
callection

— Ohject Header
Extension

—=Global heap

Figure 2: HDF5 objects -- datasets, datatypes, or
dataspaces

At the lowest level, as information is actually written to the disk, an HDF5 file is made up of the following objects:

e A boot block

» B-tree nodes (containing either symbol
nodes or raw data chunks)

e Object headers

Collections
Local heaps

Free space

The HDF5 library uses these lower-level objects to represent the higher-level objects that are then presented to the user or
to applications through the APIs. For instance, a group is an object header that contains a message that pointsto alocal
heap and to a B-tree which points to symbol nodes. A dataset is an object header that contains messages that describe
datatype, space, layout, filters, external files, fill value, etc with the layout message pointing to either araw data chunk or

to a B-tree that points to raw data chunks.

See the HDF5 File Format Specification for further information.

University of lllinois a Urbana-Champaign

Introduction to HDF5

10 National Center for Supercomputing Applications

HDF5 Release 1.2

3. The HDF5 Applications Programming
|nterface (API)

The current HDF5 API isimplemented only in C. The API provides routines for creating HDF5 files, creating and writing
groups, datasets, and their attributes to HDF5 files, and reading groups, datasets and their attributes from HDF5 files.

Naming conventions

All Croutinesin the HDF 5 library begin with a prefix of the form H5*, where * isa single |etter indicating the object on
which the operation is to be performed:

H5F: File-level access routines.
Example: H5Fopen, which opens an HDF5 file.

H5G: Group functions, for creating and operating on groups of objects.
Example: H5Gset , which sets the working group to the specified group.

H5T: DataT ype functions, for creating and operating on simple and compound datatypes to be used as the
elementsin data arrays.
Example: H5Tcopy, which creates a copy of an existing datatype.

H5S: DataSpace functions, which create and manipulate the dataspace in which the elements of a data array are
stored.
Example: H5Scr eat e_si npl e, which creates simple dataspaces.

H5D: Dataset functions, which manipulate the data within datasets and determine how the dataisto be stored in
thefile.
Example: H5Dx ead, which reads al or part of a dataset into a buffer in memory.

H5P: Property list functions, for manipulating object creation and access properties.
Example: H5Pset _chunk, which sets the number of dimensions and the size of a chunk.

H5A: Attribute access and manipulating routines.
Example: H5Aget _name, which retrieves name of an attribute.

H5Z: Compression registration routine.
Example: H5Zr egi st er , which registers new compression and uncompression functions for use with the HDF5
library.

H5E: Error handling routines.
Example: H5Epr i nt , which prints the current error stack.

H5R: Reference routines.
Example: H5Rer eat e, which creates a reference.

H5I: Identifier routine.
Example: H51 get _t ype, which retrieves the type of an object.

University of lllinois at Urbana-Champaign 11

Introduction to HDF5

3.1 IncludeFiles

There are anumber definitions and declarations that should be included with any HDF5 program. These definitions and
declarations are contained in severa include files. The main include fileishdf 5. h. Thisfileincludes all of the other files
that your program islikely to need. Be sureto include hdf 5. h in any program that uses the HDF5 library.

3.2 Programming Models

In this section we describe how to program some basic operations on files, including how to
* Createafile
* Createand initialize a dataset.
« Discard objects when they are no longer needed.
* Write adataset to anew file.
» Obtain information about a dataset.
* Read aportion of a dataset.
e Create and write compound datatypes.
* Create and write extendible datasets.
« Create and populate groups.

* Work with attributes.

How to create an HDF5 file

This programming model shows how to create afile and also how to close the file.
1. Createthefile.
2. Closethefile.

The following code fragment implements the specified model. If there is a possibility that the file already exists, the user
must add the flag HSACC_TRUNC to the access mode to overwrite the previous file's information.
hi d_t file; /* identifier */

/*

* Create a new file using HoACC_TRUNC access,

* default file creation properties, and default file

* access properties.

* Then close the file.

*/

file = HoFcreate(FI LE, HSACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);

status = H5Fcl ose(file);

12 National Center for Supercomputing Applications

HDF5 Release 1.2

How to create and initialize the essential components of a dataset for writing to a
file

Recall that datatypes and dimensionality (dataspace) are independent objects, which are created separately from any
dataset that they might be attached to. Because of this the creation of a dataset requires, at a minimum, separate
definitions of datatype, dimensionality, and dataset. Hence, to create a dataset the following steps need to be taken:

1. Create and initialize a dataspace for the dataset to be written.
2. Definethe datatype for the dataset to be written.
3. Create and initialize the dataset itself.

The following code illustrates the creation of these three components of a dataset object.
hid_t dat aset, datatype, dataspace; /* declare identifiers */
/*

* Create dataspace: Describe the size of the array and
* create the data space for fixed size dataset.

*/

di msf[0] = NX;

di msf[1] = NY;

dat aspace = H5Screate_si npl e(RANK, di nsf, NULL);
/*

* Define datatype for the data in the file.

* W will store little endian integer nunbers.
*/

dat at ype = H5Tcopy(H5T_NATI VE_I NT) ;

status = H5Tset _order (datatype, H5T_ORDER _LE);

* Create a new dataset within the file using defined

* dat aspace and datatype and default dataset creation

* properties.

* NOTE: H5T_NATIVE I NT can be used as datatype if conversion

* to little endian is not needed.

dat aset = H5Dcreate(file, DATASETNAME, datatype, dataspace, H5P_DEFAULT);

How to discard objects when they are no longer needed

The datatype, dataspace and dataset objects should be released once they are no longer needed by a program. Since each
is an independent object, the must be released (or closed) separately. The following lines of code close the datatype,
dataspace, and datasets that were created in the preceding section.

H5Tcl ose(dat at ype) ;
H5Dcl ose(dat aset) ;

H5Scl ose(dat aspace) ;

University of lllinois at Urbana-Champaign 13

Introduction to HDF5

How to write a dataset to a new file

Having defined the datatype, dataset, and dataspace parameters, you write out the data with a call to H5Dwr i t e.

/*

* Wite the data to the dataset using default transfer

* properties.

*/

status = H5Dwrite(dataset, HS5T_NATIVE_INT, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

Thethird and fourth parameters of H5Dwr i t e in the example describe the dataspaces in memory and in the file,
respectively. They are set to the value H5S_ALL to indicate that an entire dataset isto be written. In alater section we look
at how we would access a portion of a dataset.

Example 1 contains a program that creates a file and a dataset, and writes the dataset to the file.

Reading is analogous to writing. If, in the previous example, we wish to read an entire dataset, we would use the same
basic calls with the same parameters. Of course, the routine H5Dr ead would replace HSDwr i t e.

Getting information about a dataset

Although reading is analogous to writing, it is often necessary to query afile to obtain information about a dataset. For
instance, we often need to know about the datatype associated with a dataset, as well dataspace information (e.g. rank and
dimensions). There are several "get" routines for obtaining thisinformation. The following code segment illustrates how
we would get this kind of information:

/ *

* Get datatype and dataspace identifiers and then query

* dataset class, order, size, rank and di mensions.

*/

dat atype = H5Dget _type(dataset); /* datatype identifier */
cl ass = H5Tget cl ass(datatype);

if (class == HS5T_INTEGER) printf("Data set has | NTEGER type \n");
order = H5Tget order(datatype);

if (order == H5T_ORDER LE) printf("Little endian order \n");

size = H5Tget_size(datatype);
printf(" Data size is % \n", size);

dat aspace = H5Dget _space(dat aset); /* dataspace identifier */
r ank = H5Sget _si npl e_ext ent _ndi ns(dat aspace) ;
status_n = H5Sget _si npl e_ext ent _di ns(dat aspace, dins_out);

printf("rank %, dinensions %d x % \n", rank, dins_out[0], dins_out[1]);

14 National Center for Supercomputing Applications

HDF5 Release 1.2

Reading and writing a portion of a dataset

In the previous discussion, we describe how to access an entire dataset with one write (or read) operation. HDF5 also
supports access to portions (or selections) of a dataset in one read/write operation. Currently selections are limited to
hyperslabs, their unions, and the lists of independent points. Both types of selection will be discussed in the following
sections. Several sample cases of selection reading/writing are shown on the figure on the following page.

In example (a) asingle hyperslab isread from the midst of atwo-dimensional array in afile and stored in the corner of a
smaller two-dimensional array in memory. In (b) aregular series of blocks isread from a two-dimensional array in the file
and stored as a contiguous sequence of values at a certain offset in a one-dimensional array in memory. In (¢) a sequence
of points with no regular pattern is read from a two-dimensional array in a file and stored as a sequence of points with no
regular pattern in athree-dimensional array in memory. In (d) a union of hyperslabsin the file dataspace is read and the
datais stored in another union of hyperslabs in the memory dataspace.

Asthese examplesillustrate, whenever we perform partial read/write operations on the data, the following information
must be provided: file dataspace, file dataspace sel ection, memory dataspace and memory dataspace selection. After the
required information is specified, actual read/write operation on the portion of datais donein asingle call to the HDF5
read/write functions H5Dread(write).

Selecting hyper slabs

Hyperslabs are portions of datasets. A hyperslab selection can be alogically contiguous collection of pointsin a
dataspace, or it can be regular pattern of points or blocks in a dataspace. The following picture illustrates a selection of
regularly spaced 3x2 blocksin an 8x12 dataspace.

Hyperdab selection

X X X X X | X X X
X X X X X | X X X
X X X X X | X X X
X X X X X | X X X
X X X X X | X X X
X X X X X | X X X

Four parameters are required to describe a completely general hyperslab. Each parameter is an array whose rank isthe
same as that of the dataspace:

e start:astarting location for the hyperdab. In the example st art is(0,1).

e stride: the number of elements to separate each element or block to be selected. In the example st ri de is
(4,3). If the stride parameter is set to NULL, the stride size defaults to 1 in each dimension.

University of lllinois at Urbana-Champaign 15

Introduction to HDF5

Mappings between File Dataspaces and Selections and
Memory Dataspaces and Selections

Fike dataspace and selecton Memory dataspace and selection

L

A hyperslab from a 2D array 1o the
cortier of a smaller 2D artay.

A regular series of

btlocks from a 2D arrav toa

contiguous sequence at a certain
offzet ity & 1D artrrayv.

- /ﬁsmjl;;nints with hio regular
patterts from 2 2D atray to a sequetice
of poifits with fio regular pattert it a

D arrany.

/

Jataspace to union of hyperslabs in
menory dataspace. Total number of data
elements must be equal: numter atnd

d shape of hvpetrslats can differ.

Eewy. Dataspace delecton or ¥ (Fingle pointy

16 National Center for Supercomputing Applications

HDF5 Release 1.2

* count : the number of elements or blocks to select along each dimension. In the example, count is(2,4).

* bl ock: the size of the block selected from the dataspace. In the example, bl ock is(3,2). If the block parameter
isset to NULL, the block size defaults to a single element in each dimension, asif the block array was set to all
1s.

In what order isdata copied? When actual 1/O is performed data val ues are copied by default from one dataspace to
another in so-called row-major, or C order. That is, it is assumed that the first dimension varies slowest, the second next
dowest, and so forth.

Example without strides or blocks. Suppose we want to read a 3x4 hyperslab from a dataset in afile beginning at the
element <1, 2> in the dataset. In order to do this, we must create a dataspace that describes the overall rank and
dimensions of the dataset in the file, as well asthe position and size of the hyperdlab that we are extracting from that
dataset. The following code illustrates the selection of the hyperslab in the file dataspace.

/*

* Define file dataspace.

*

/

dat aspace = H5Dget _space(dat aset); /* dataspace identifier */
r ank = H5Sget _si npl e_ext ent _ndi ns(dat aspace) ;

status_n = H5Sget _si npl e_ext ent _di ns(dat aspace, dinms_out, NULL);
/*

* Define hyperslab in the dataset.

*

/

of fset[0] = 1;

offset[1] = 2;

count[0] = 3;

count[1] = 4;

status = H5Ssel ect _hypersl ab(dat aspace, H5S SELECT SET, offset, NULL,
count, NULL);

This describes the dataspace from which we wish to read. We need to define the dataspace in memory analogously.
Suppose, for instance, that we have in memory a 3 dimensional 7x7x3 array into which we wish to read the 3x4 hyperdab
described above beginning at the element <3, 0, 0>. Since the in-memory dataspace has three dimensions, we have to
describe the hyperslab as an array with three dimensions, with the last dimension being 1: <3, 4, 1>.

Notice that we must describe two things: the dimensions of the in-memory array, and the size and position of the
hyperslab that we wish to read in. The following code illustrates how this would be done.

/*

* Define menory dataspace.
*

/

dimsn{0] = 7;

dimsn{1] = 7;

dinmsni 2] = 3;

nmenspace = H5Screat e_si npl e(RANK_OUT, di msm NULL) ;
/*

* Define menory hypersl ab.
*

/

of fset _out[0] = 3;

of fset _out[1] = O;

of fset _out[2] = O;

count _out[0] = 3;

count _out[1] = 4;

count _out[2] = 1;

status = H5Ssel ect _hypersl ab(nmenspace, H5S SELECT_SET, offset_out, NULL,
count _out, NULL);

University of lllinois at Urbana-Champaign 17

Introduction to HDF5
/ *

Example 2 contains a complete program that performs these operations.

Example with strides and blocks. Consider the 8x12 dataspace described above, in which we selected eight 3x2 blocks.
Suppose we wish to fill these eight blocks.

Hyperslab selection

X X X X X | X X X
X X X X X | X X X
X X X X X | X X X
X X X X X | X X X
X X X X X | X X X
X X X X X | X X X

This hyperslab has the following parameters: start =(0, 1), stride=(4,3), count=(2,4), block=(3,2).
Suppose that the source dataspace in memory is this 50-element one dimensional array called vect or :

A 50-element one dimensional array

-1 1 2 3 4 5 6 7 ... | 47 48 -1

The following code will write 48 elements from vect or to our file dataset, starting with the second element invect or .

/* Select hyperslab for the dataset in the file, using 3x2 blocks, (4,3) stride
* (2,4) count starting at the position (0,1).

*
/
start[0] = 0; start[1l]] = 1;
stride[0] = 4; stride[l] = 3;
count[0] = 2; count[1l] = 4
bl ock[0] = 3; block[1] = 2;
ret = H5Ssel ect _hypersl ab(fid, H5S SELECT SET, start, stride, count, block);
/*
* Create dataspace for the first dataset.
*
/

m dl = H5Screate_si npl e(MSPACEL_RANK, di ml, NULL);

/*

* Sel ect hypersl ab.

* W will use 48 elenents of the vector buffer starting at the second el enent.
* Selected elenments are 1 2 3 . . . 48

*/

start[0] = 1;
stride[0] = 1;
count[0] = 48;

18 National Center for Supercomputing Applications

HDF5 Release 1.2

bl ock[0] = 1;
ret = H5Ssel ect _hypersl ab(m dl, H5S SELECT_SET, start, stride, count, block);

/*
* Wite selection fromthe vector buffer to the dataset in the file.

*

ret = H5Dwite(dataset, H5T _NATIVE INT, mddl, fid, HS5P_DEFAULT, vector)

After these operations, the file dataspace will have the following values.

Hyperdab selection with assigned values

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16
17 18 19 20 21 22 23 24
25 26 27 28 29 30 31 32
33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48

Notice that the values are inserted in the file dataset in row-major order.

Example 3 includes this code and other example code illustrating the use of hyperslab selection.

Selecting a list of independent points

A hyperslab specifies aregular pattern of elementsin adataset. It is also possible to specify alist of independent elements
to read or write using the function H5Ssel ect _el enent s. Suppose, for example, that we wish to write the values 53, 59,
61, 67 to the following elements of the 8x12 array used in the previous example: (0,0), (3,3), (3,5), and (5,6). The
following code selects the points and writes them to the dataset:

#def i ne FSPACE_RANK 2 /* Dataset rank as it is stored in the file */
#def i ne NPO NTS 4 /* Nunber of points that will be selected
and overwitten */

#def i ne MSPACE2_RANK 1 /* Rank of the second dataset in nmenory */

#defi ne MSPACE2_DI M 4 /* Dataset size in nmenory */

hsize_t din2[] = {MSPACE2_DI M ; /* Di mension size of the second
dataset (in nenory) */

i nt values[] = {53, 59, 61, 67}; [/* New values to be witten */

hssi ze_t coord[NPO NTS] [FSPACE RANK]; /* Array to store selected points
fromthe file dataspace */

/*

* Create dataspace for the second dataset.

*/

nm d2 = H5Screat e_si npl e(MBPACE2_RANK, di n2, NULL);

University of Illinois at Urbana-Champaign 19

Introduction to HDF5

/*
* Sel ect sequence of NPO NTS points in the file dataspace.
*/

coord[0] [O]

coord[1] [O]

coord[2] [0]

coord[3] [0]

coord[O] [1]
coord[1] [1]
coord[2] [1]
; coord[3][1]

(TR TEN TR
gqwwo

QNwo

ret = H5Ssel ect _elenments(fid, H5S SELECT_SET, NPQO NTS,
(const hssize_t **)coord);

/*

* Wite new selection of points to the dataset.

*/

ret = H5Dwite(dataset, HS5T_NATIVE_INT, md2, fid, HS5P_DEFAULT, val ues);

After these operations, the file dataspace will have the following values:

Hyperdab selection with an overlay of independent points

53 |1 2 3 4 5 6 7 8
9 10 11 |12 13 |14 15 |16
17 |18 19 |20 21 |22 23 |24
59 61
25 |26 27 |28 29 |30 31 |32
33 |34 35 |36 |67 |37 |38 39 |40
41 |42 43 |44 45 |46 47 |48

Example 3 contains a complete program that performs these subsetting operations.

20 National Center for Supercomputing Applications

HDF5 Release 1.2

Selecting a union of hyperslabs

The HDF5 Library allows the user to select a union of hyperslabs and write or read the selection into another selection.
The shapes of the two selections may differ, but the number of elements must be equal.

Suppose that we want to read two overlapping hyperslabs from the dataset written in the previous example into a union of
hyperslabs in the memory dataset. This exerciseisillustrated in the two figures immediately below. Note that the memory
dataset has a different shape from the previously written dataset. Similarly, the selection in the memory dataset could have
adifferent shape than the selected union of hyperslabsin the original file; for simplicity, we will preserve the selection’s
shape in this example.

Selection of aunion of hyperdabsin afile dataset

53 1 2 3 4 5 6 7 8
9 10 13 14 15 16
17 18 21 22 23 24
59
25 26 29 30 31 32
33 34 35 36 67 37 38 39 40
41 42 43 44 45 46 47 48

Selection of a union of hyperslabsin a memory dataset
Blank cellsin this figure actually contain values written when the dataset was initialized.

10 11 12

s ERIRERE

59

27 28 29 30

35 36 67 37 38

43 44 45 46

(Note: The above tables highlight hyperdlab selections with green, blue, and yellow
shading. This shading may not appear properly in black-and-white printed copies.)

The following lines of code show the required steps.

First obtain the dataspace identifier for the dataset in the file.

University of Illinois at Urbana-Champaign 21

Introduction to HDF5

/*

* Get dataspace of the open dataset.
*/

fid = HoDget _space(dat aset);

Then select the hyperslab with the size 3x4 and the |eft upper corner at the position (1,2):

/*

* Select first hyperslab for the dataset in the file. The foll ow ng
* elenents are sel ected:

* 10 0 11 12
* 18 0 19 20
* 059 061
*

*/

start[0] = 1; start[1l] = 2;

bl ock[0] = 1; block[1] = 1;
stride[0] = 1; stride[l] = 1,
count[0] = 3; count[1l] = 4

ret = H5Ssel ect _hypersl ab(fid, H5S SELECT SET, start, stride, count, block);
Now select the second hyperslab with the size 6x5 at the position (2,4), and create the union with the first hyperdab.
/*

* Add second sel ected hyperslab to the sel ection.
* The followi ng el enents are sel ected:

* 19 20 0 21 22

* 061 0 0 O

* 27 28 0 29 30

* 35 36 67 37 38

* 43 44 0 45 46

* 0 0 0 0 O

* Note that two hypersl abs overlap. Conmon el ements are:
* 19 20
* 0 61
*/

start[0] = 2; start[1l] = 4;

bl ock[0] = 1; block[1] = 1;

stride[0] = 1; stride[l] = 1,

count[0] = 6; count[1l] = 5;

ret = H5Ssel ect _hypersl ab(fid, H5S SELECT OR, start, stride, count, block);

Note that when we add the selected hyperslab to the union, the second argument to the H5Ssel ect _hyper sl ab function
hasto be H5S_SELECT_ORinstead of H5S SELECT SET. Using H5S_SELECT SET would reset the selection to the
second hyperslab.

22 National Center for Supercomputing Applications

HDF5 Release 1.2

Now define the memory dataspace and select the union of the hyperslabs in the memory dataset.

/*

* Create nenory dat aspace.

*/

m d = H5Screate_si npl e(MSPACE_RANK, ndi m NULL);

/*
* Sel ect two hyperslabs in nenory. Hyperslabs has the same
* size and shape as the selected hyperslabs for the file dataspace.

*/

start[0] = 0; start[1] = O;

bl ock[0] = 1; block[1] = 1;

stride[0] = 1; stride[1l] = 1,

count[0] = 3; count[1l] = 4

ret = H5Ssel ect _hypersl ab(m d, H5S SELECT_SET, start, stride, count, block);
start[0] = 1; start[1l] = 2;

bl ock[0] = 1; block[1] = 1;

stride[0] = 1; stride[l] = 1,

count[0] = 6; count[1l] = 5;

ret = H5Ssel ect _hypersl ab(m d, H5S SELECT OR, start, stride, count, block);

Finally we can read the selected data from the file dataspace to the selection in memory with one call to the H5Dr ead
function.

ret = H5Dread(dataset, HST_NATIVE_INT, md, fid, H5P_DEFAULT, matrix_out);
Example 3 includes this code along with the previous selection example.

University of lllinois at Urbana-Champaign 23

Introduction to HDF5

Creating compound datatypes

Properties of compound datatypes. A compound datatype is similar to a struct in C or acommon block in Fortran. Itisa
collection of one or more atomic types or small arrays of such types. To create and use of a compound datatype you need
to refer to various properties of the data compound datatype:

e Itisof class compound.
e Ithasafixed total size, in bytes.

e |t consists of zero or more members (defined in any order) with unique names and which occupy non-
overlapping regions within the datum.

e Each member hasits own datatype.

» Each member is referenced by an index number between zero and N-1, where N is the number of membersin the
compound datatype.

« Each member has a name which is unique among its siblings in a compound datatype.

» Each member has a fixed byte offset, which is the first byte (smallest byte address) of that member in a
compound datatype.

e Each member can be asmall array of up to four dimensions.

Properties of members of a compound datatype are defined when the member is added to the compound type and cannot
be subsequently modified.

Defining compound datatypes. Compound datatypes must be built out of other datatypes. First, one creates an empty
compound datatype and specifiesitstotal size. Then members are added to the compound datatype in any order.

Member names. Each member must have a descriptive name, which is the key used to uniquely identify the member
within the compound datatype. A member name in an HDF5 datatype does not necessarily have to be the same as the
name of the corresponding member in the C struct in memory, although thisis often the case. Nor does one need to define
all members of the C struct in the HDF5 compound datatype (or vice versa).

Offsets. Usually a C struct will be defined to hold a data point in memory, and the offsets of the membersin memory will
be the offsets of the struct members from the beginning of an instance of the struct. The library defines the macro to

compute the offset of a member within a struct:
HOFFSET('s, n)
This macro computes the offset of member m within a struct variables.

Here is an example in which a compound datatype is created to describe complex numbers whose type is defined by the
conpl ex_t struct.

typedef struct {

doubl e re; [*real part */
double im /*imgi nary part */
} conplex_t;

conplex_t tnp; /*used only to conpute offsets */
hid_t conplex_id = H5Tcreate (H5T_COVPOUND, sizeof tnp);
H5Ti nsert (conplex_id, "real", HOFFSET(tnp,re),
H5T_NATI VE_DOUBLE) ;
H5Ti nsert (conplex_id, "imaginary", HOFFSET(tmp,im,
H5T_NATI VE_DOUBLE) ;

Example 4 shows how to create a compound datatype, write an array that has the compound datatype to the file, and read
back subsets of the members.

24 National Center for Supercomputing Applications

HDF5 Release 1.2

Creating and writing extendible and chunked datasets

An extendible dataset is one whose dimensions can grow. In HDF5, it is possible to define a dataset to have certain initial
dimensions, then later to increase the size of any of the initial dimensions.

For example, you can create and store the following 3x3 HDF5 dataset:

111
111
111

then later to extend thisinto a 10x3 dataset by adding 7 rows, such as this:

NNNNNNNR PP
NNNNNNNR PP

1
1
1
2
2
2
2
2
2
2
€

then further extend it to a 10x5 dataset by adding two columns, such asthis:
3

1
1
1
2
2
2
2
2
2

WWWWWwWwwwww

NNNNNNNRP PP
NNNNNNNRP PP
WWWWWwwwww

N

HDF 5 requires you to use chunking in order to define extendible datasets. Chunking makes it possible to extend datasets
efficiently, without having to reorganize storage excessively.

The following operations are required in order to write an extendible dataset:

1. Declare the dataspace of the dataset to have unlimited dimensions for all dimensions that might eventually be
extended.

2. Set dataset creation properties to enable chunking and create a dataset.
3. Extend the size of the dataset.

For example, suppose we wish to create a dataset similar to the one shown above. We want to start with a 3x3 dataset,
then later extend it in both directions.

Declaring unlimited dimensions. We could declare the dataspace to have unlimited dimensions with the following code,
which uses the predefined constant H5S_UNLI M TED to specify unlimited dimensions.

hsize t dins[2] = { 3, 3}; /* dataset dinensions

at the creation time */

hsize t maxdims[2] = {H5S_UNLIM TED, H5S UNLI M TED};
/*

* Create the data space with unlimted di nensions.
*/

dat aspace = H5Screate_si npl e(RANK, di s, maxdins);

University of lllinois at Urbana-Champaign 25

Introduction to HDF5

Enabling chunking. We can then set the dataset storage layout properties to enable chunking. We do this using the
routine H5Pset _chunk.

hid_t cparns;
hsize_t chunk_di ms[2] ={2, 5};

/*

* Modify dataset creation properties to enable chunking.
*/

cparnms = H5Pcreate (HS5P_DATASET_CREATE);

status = H5Pset _chunk(cparns, RANK, chunk_dins);

Then create a dataset.

/*

* Create a new dataset within the file using cparns

* creation properties.

*/

dataset = HoDcreate(file, DATASETNAMVE, HS5T_NATI VE_I NT, dataspace,
cparms) ;

Extending dataset size. Finally, when we want to extend the size of the dataset, we invoke H5Dext end to extend the
size of the dataset. In the following example, we extend the dataset along the first dimension, by seven rows, so that the
new dimensions are <10, 3>:

/*

* Extend the dataset. Dataset becones 10 x 3.
*/

dinms[0] = dins[0] + 7;

size[0] = dins[0];

size[1] = dins[1];

status = H5Dextend (dataset, size);

Example 5 shows how to create a 3x3 extendible dataset, write the dataset, extend the dataset to 10x3, write the dataset
again, extend it again to 10x5, write the dataset again. Example 6 shows how to read the data written by Example 5.

26 National Center for Supercomputing Applications

HDF5 Release 1.2

Working with groupsin files

Groups provide a mechanism for organizing meaningful and extendible sets of datasets within an HDF5 file. The H5G
API contains routines for working with groups.

Creating a group. To create agroup, use H5Gcr eat e. For example, the following code creates a group called Dat a in
the root group.

/*

* Create a group in the file.

*/

grp = H6CGcreate(file, "/Data", 0);

A group may be created in another group by providing the absolute name of the group to the H5Ger eat e function or by
specifying its location. For example, to create the group Dat a_new in the Dat a group, one can use the following
sequence of calls:

/*

* Create group "Data_new' in the group "Data" by specifying
* absol ute nanme of the group.

*/

grp_new = H5CGcreate(file, "/Datal/Data_new', 0);

or
/*
* Create group "Data_new' in the "Data" group.

*/
grp_new = H5CGcreate(grp, "Data_new', 0);

Note that the group identifier gr p is used as the first parameter in the H5Ger eat e function when the relative nameis
provided.

Thethird parameter in H5Gcr eat e optionally specifies how much file space to reserve to store the names that will appear
in this group. If anon-positive value is supplied, then a default size is chosen.

H5CGcl ose closes the group and rel eases the group identifier.

Creating a dataset in a particular group. Aswith groups, a dataset can be created in a particular group by specifying its
absolute name asiillustrated in the following example:

/*

* Create the dataset "Conpressed_Data" in the group using the
* absol ute nane. The dataset creation property list is nodified
* to use GZIP conpression with the conpression effort set to 6.
* Note that conpression can be used only when the dataset is

* chunked.

*/

di ns[0] = 1000;

dims[1] = 20;

cdi ns[0] = 20;

cdi ms[1] = 20;

dat aspace = H5Screate_sinpl e(RANK, dins, NULL);

plist = H5Pcr eat e(H5P_DATASET_CREATE) ;

H5Pset _chunk(plist, 2, cdins);
H5Pset _deflate(plist, 6);

University of lllinois at Urbana-Champaign 27

Introduction to HDF5

dataset = HoDcreate(file, "/Datal/ Conpressed_Data", H5T_NATI VE I NT,
dat aspace, plist);

A relative dataset name may also be used when a dataset is created. First obtain the identifier of the group in which the
dataset is to be created. Then create the dataset with H5Dcr eat e asillustrated in the following example:

/*

* Qpen the group.

*/

grp = HoGopen(file, "Data");

/*

* Create the dataset "Conpressed_Data" in the "Data" group

* by providing a group identifier and a rel ative dataset

* nane as paranmeters to the H5Dcreate function.

*/

dat aset = HoDcreate(grp, "Conpressed _Data", H5T_NATI VE I NT,
dat aspace, plist);

Accessing an object in a group. Any object in agroup can be accessed by its absolute or relative name. The following
lines of code show how to use the absolute name to access the dataset Conpr essed_Dat a in the group Dat a created in
the examples above:

/*
* (Open the dataset "Conpressed _Data" in the "Data" group.
*/
dat aset = H5Dopen(file, "/Datal/ Conpressed_Data");
The same dataset can be accessed in another manner. First access the group to which the dataset belongs, then open the
dataset.

/*

* Open the group "data" in the file.
*/

grp = HoGopen(file, "Data");

/*
* Access the "Conpressed Data" dataset in the group.
*
/
dat aset = H5Dopen(grp, "Conpressed_Data");
Example 7 shows how to create agroup in afile and a dataset in a group. It uses the iterator function H5G t er at e to find
the names of the objectsin the root group, and H5@ i nk and H5Gunl i nk to create a new group name and delete the
original name.

28 National Center for Supercomputing Applications

HDF5 Release 1.2

Working with attributes

Think of an attribute as a small datasets that is attached to a normal dataset or group. The HS5A API contains routines for
working with attributes. Since attributes share many of the characteristics of datasets, the programming model for
working with attributes is analogous in many ways to the model for working with datasets. The primary differences are
that an attribute must be attached to a dataset or a group, and subsetting operations cannot be performed on attributes.

To create an attribute belonging to a particular dataset or group, first create a dataspace for the attribute with the call to
H5Scr eat e, then create the attribute using H5Acr eat e. For example, the following code creates an attribute called
Integer _attribute thatisamember of adataset whose identifier isdat aset . The attribute identifier isat t r 2.
H5Awr i t e then sets the value of the attribute of that of the integer variable poi nt . H5Acl ose then releases the attribute
identifier.

int point = 1; /* Value of the scalar attribute */

/*

* Create scalar attribute.

*/

aid2 = H5Screate(H5S _SCALAR);

attr2 = HSAcreate(dataset, "Integer attribute", HS5T_NATIVE_I NT, aid2,
H5P_DEFAULT) ;

/*

* Wite scalar attribute.

*/

ret = HSAwrite(attr2, HS5T_NATIVE_INT, &point);

/*

* Close attribute dataspace.

*/

ret = H5Scl ose(ai d2);

/*

* Close attribute.

*/

ret = H5Acl ose(attr2);

Toread a scalar attribute whose name and datatype are known, first open the attribute using HsAopen_nane, then
use H5Aread to get its value. For example the following reads a scalar attribute called| nt eger _at t ri but e whose
datatype is a native integer, and whose parent dataset has the identifier dat aset .

/*
* Attach to the scalar attribute using attribute nane, then read and
* display its val ue.

*/
attr = H5Aopen_nane(dataset,"Integer attribute");
ret = HbAread(attr, H5T_NATIVE_ I NT, &point_out);

printf("The value of the attribute \"Integer attribute\" is %l \n", point_out);
ret = H5Acl ose(attr);

Reading an attribute whose char acteristics are not known. It may be necessary to query afile to obtain information
about an attribute, namely its name, datatype, rank and dimensions. The following code opens an attribute by its index
value using H5Aopen_i ndex, then reads in information about its datatype.

/*
* Attach to the string attribute using its index, then read and di splay the val ue.
*/

University of lllinois at Urbana-Champaign 29

Introduction to HDF5

attr = H5Aopen_i dx(dataset, 2);
atype H5Tcopy(H5T_C_S1);
H5Tset _si ze(atype, 4);
ret = HSAread(attr, atype, string_out);
printf("The value of the attribute with the index 2 is % \n", string out);

In practice, if the characteristics of attributes are not known, the code involved in accessing and processing the attribute
can be quite complex. For this reason, HDF5 includes a function called H5Ai t er at e, which applies a user-supplied
function to each of a set of attributes. The user-supplied function can contain the code that interprets, accesses and
processes each attribute.

Example 8 illustrates the use of the H5Ai t er at e function, as well as the other attribute examples described above.

30 National Center for Supercomputing Applications

HDF5 Release 1.2

Working with referencesto objects

In HDF5, objects (i.e. groups, datasets, and named datatypes) are usually accessed by name. This access method was
discussed in previous sections. There is another way to access stored objects -- by reference.

An object reference is based on the relative file address of the object header in the file and is constant for the life of the
object. Once areference to an object is created and stored in a dataset in thefile, it can be used to dereference the object it
points to. References are handy for creating afileindex or for grouping related objects by storing referencesto themin
one dataset.

Creating and Storing Referencesto Objects
The following steps are involved in creating and storing file references to objects:
1. Createthe objects or open them if they already exist in the file.
2. Create adataset to store the objects’ references.
3. Create and store references to the objects in a buffer.
4. Write abuffer with the references to the dataset.
Programming Example

Description: The example below [also Example 9] creates a group and two datasets and a named datatype in the group.
References to these four objects are stored in the dataset in the root group.

#i ncl ude <hdf5. h>
#define FILE1l "treferl. h5"

/* 1-D dataset with fixed di nensions */
#defi ne SPACE1L_NAME " Spacel"

#def i ne SPACEL1_RANK 1

#def i ne SPACE1_DI ML 4

/* 2-D dataset with fixed di nensions */
#def i ne SPACE2_NAME " Space?2"

#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10
i nt
mai n(voi d) {
hi d_t fidil; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hi d_t gr oup; /* Goup ID */
hid_t si di; /* Dataspace |ID */
hi d_t tidi; /* Datatype ID */
hsi ze_t dinmsl[] = {SPACE1_DI ML};
hobj _ref _t *wbuf ; /* buffer to wite to disk */
i nt *tu32; /* Tenporary pointer to int data */
i nt i; /* counting variables */
const char *wite_comment="Foo!"; /* Comments for group */
herr _t ret; /* Generic return val ue */

/* Conpound datatype */
typedef struct sl_t {

University of lllinois at Urbana-Champaign 31

Introduction to HDF5

unsigned int a;
unsi gned int b;
float c;

} sl t;

/* Allocate wite buffers */
wbuf =(hobj _ref t *)mall oc(sizeof (hobj ref_t)*SPACEL DI M) ;
tu32=mal | oc(si zeof (i nt)*SPACE1_DI M) ;

/* Create file */
fidl = H5Fcreate(FI LEl, H5F_ACC TRUNC, H5P_DEFAULT, H5P DEFAULT);

/* Create dataspace for datasets */
sidl = H5Screat e_si npl e(SPACE1_RANK, dinmsl, NULL);

/* Create a group */
group=HsCGcreate(fidl, "Goupl",-1);

/* Set group’'s coment */
ret =H5Gset _conment (group, ".",wite_conment);

/* Create a dataset (inside Goupl) */
dat aset =H5Dcr eat e(gr oup, "Dat aset 1", H6T_STD U32LE, si d1, H5P_DEFAULT) ;

for(i=0; i < SPACE1l_DI ML; i ++)
tu3d2[i] = i*3;

/* Wite selection to disk */
ret=H5Dwri t e(dat aset, H5T_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, t u32);

/* O ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create another dataset (inside Goupl) */
dat aset =H5Dcr eat e(gr oup, " Dat aset 2", H5T_NATI VE_UCHAR, si d1, H5P_DEFAULT) ;

/* O ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create a datatype to refer to */
tidl = HoTcreate (HST_COMPOUND, sizeof (sl_t));

/[* Insert fields */
ret=H5Ti nsert (tidl, "a", HOFFSET(sl1l t,a), HS5T_NATIVE | NT);

ret=H5Tinsert (tidl, "b", HOFFSET(s1_t,b), HS5T_NATIVE_INT);
ret=H5Tinsert (tidl, "c", HOFFSET(sl1l_t,c), H5T_NATIVE FLQOAT);

/* Save datatype for later */
ret=H5Tcommt (group, "Datatypel", tidl);

/* O ose datatype */
ret = H5Tcl ose(tidl);

/* O ose group */
ret = H5Gcl ose(group);

/* Create a dataset to store references */
dat aset =H5Dcr eat e(fi d1, "Dat aset 3", H5T_STD_REF_OBJ, si d1, H5P_DEFAULT) ;

/* Create reference to dataset */
ret = H5Rcreate(&wuf[0],fidl,"/ G oupl/ Datasetl1l", HSR OBJECT, - 1);

32 National Center for Supercomputing Applications

HDF5 Release 1.2

/* Create reference to dataset */
ret = H5Rcreate(&wbuf[1],fidl,"/ G oupl/ Dataset2", HS5R OBJECT, - 1);

/* Create reference to group */
ret = H5Rcreate(&wouf[2],fidl,"/ G oupl", H5R OBJECT, -1);

/* Create reference to named datatype */
ret = H5Rcreate(&wbuf[3],fidl,"/ G oupl/ Datatypel”, HbR OBJECT, -1);

/* Wite selection to disk */
ret=H5Dwri t e(dat aset, H5T_STD REF_OBJ, H5S_ALL, H5S_ALL, H5P_DEFAULT, wouf) ;

/* O ose disk dataspace */
ret = H5Scl ose(sidl);

/* Cl ose Dataset */
ret = H5Dcl ose(dat aset);

/[* Close file */
ret = H5Fcl ose(fidl);

free(wouf);
free(tu32);
return O;

}

Remarks:

e Thefollowing code,

dat aset = H5Dcreate (fidl, "Dataset3", H5T_STD REF_OBJ, si d1, H5P_DEFAULT);

creates a dataset to store references. Notice that the HST_SDT_REF_OBJ datatype is used to specify that
references to objects will be stored. The datatype H5T_STD REF DSETREGIs used to store the dataset region
references and is be discussed later.

e Thenext few callsto the H5Rcr eat e function create references to the objects and store them in the buffer wbuf.
The signature of the H5Rcr eat e functioniis:

herr_t H5Rcreate (void* buf, hid_t loc_id, const char *nane,
H5R type_t ref _type, hid_t space_id)

« Thefirst argument specifies the buffer to store the reference.

e The second and third arguments specify the name of the referenced object. In the example, the file identifier
fidl and absolute name of the dataset / G- oup1/ Dat aset 1 identify the dataset. One could also use the
group identifier of group Gr oup1 and the relative name of the dataset Dat aset 1 to create the same
reference.

« Thefourth argument specifies the type of the reference. The example uses references to the objects
(H5R_OBJECT). Another type of reference, reference to the dataset region (HSR_DATASET_REG ON), is
discussed later.

* Thefifth argument specifies the space identifier. When references to the objects are created, it should be set
to-1.

e« TheHsDwr i t e function writes a dataset with the references to the file. Notice that the HST_SDT_REF_0BJ
datatype is used to describe the dataset’s memory datatype.

University of lllinois at Urbana-Champaign 33

Introduction to HDF5

File Contents: The contents of thet r ef er 1. h5 file created by this example are as follows:

HDF5 "treferl. h5" {
GROUP "/" {
DATASET " Dat aset 3" {
DATATYPE { H5T_REFERENCE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
DATASET 0: 1696, DATASET 0: 2152, GROUP 0: 1320, DATATYPE 0: 2268
}

}
GROUP "Groupl" {
DATASET "Dat aset 1" {
DATATYPE { H5T_STD U32LE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
0, 3, 6 9
}

}
DATASET "Dat aset 2" {
DATATYPE { H5T_STD USLE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
0, 0, 0, 0
}

}

DATATYPE " Dat at ypel" {
H5T_STD | 32BE "a";
H5T_STD | 32BE "b";
H5T | EEE_F32BE "c";

Notice how the data in dataset Dat aset 3 is described. The two numbers with the colon in between represent a unique
identifier of the object. These numbers are constant for the life of the object.

34 National Center for Supercomputing Applications

HDF5 Release 1.2

Reading References and Accessing Objects Using References

The following steps are involved:

1. Open the dataset with the references and read them. The H5T_STD REF_OBJ datatype must be used to describe

the memory datatype.

2. Usetheread reference to obtain the identifier of the object the reference points to.

3. Open the dereferenced object and perform the desired operations.

4. Closedl objects when the task is complete.

Programming Example

Description: The following example [also Example 10] below opens and reads dataset Dat aset 3 from the file created
previously. Then the program dereferences the references to dataset Dat aset 1, the group and the named datatype, and

opens those objects. The program reads and displays the dataset’s data, the group’s comment, and the number of members

of the compound datatype.

#i ncl ude <stdlib. h>
#i ncl ude <hdf5. h>

#define FILE1l "treferl. h5"

/* dataset with fixed dinensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACE1_RANK 1
#def i ne SPACE1_DI ML 4
i nt
mai n(voi d)
{
hi d_t fidl; /* HDF5 File IDs
hid_t dataset, /* Dataset ID
dset 2; /* Dereferenced dataset ID */
hi d_t gr oup; /* Goup ID */
hid_t si di; /* Dataspace |ID
hi d_t tidl; /* Datatype |ID
hobj ref _t *rbuf ; /* buffer to read fromdisk */
i nt *tu32; /* temp. buffer read fromdisk */
i nt i; /* counting variables */

char r ead_co‘rment [10];

herr _t ret; /* Generic return val ue

/* Allocate read buffers */
r buf mal | oc(si zeof (hobj _ref _t)*SPACE1_DI ML) ;
tu32 mal | oc(si zeof (i nt)*SPACEL_DI ML) ;

/* Open the file */
fidl = H5Fopen(FI LE1l, HS5F_ACC RDWR, H5P_DEFAULT);

/* Open the dataset */
dat aset =H5Dopen(fi d1, "/ Dat aset 3");

/* Read sel ection fromdisk */

*/
*/

*/
*/

*/

r et =H5Dr ead(dat aset , H5T_STD_REF_OBJ, H5S_ALL, H5S_ALL, H5P_DEFAULT, r buf) ;

University of Illinois at Urbana-Champaign

35

Introduction to HDF5

/* Open dataset object */
dset 2 = H5Rder ef er ence(dat aset, HbR_OBJECT, & buf[0]);

/* Check information in referenced dataset */
sidl = H5Dget _space(dset 2);

ret =H5Sget _si npl e_ext ent _npoi nt s(si dl);

/* Read fromdisk */

r et =H5Dr ead(dset 2, H5T_NATI VE_I NT, H56S_ALL, H5S_ALL, H5P_DEFAULT, t u32);
printf("Dataset data : \n");

for (i=0; i < SPACE1_DIML ; i++) printf (" % ", tu32[i]);
printf("\n");

printf("\n");

/* O ose dereferenced Dataset */
ret = H5Dcl ose(dset 2);

/* Open group object */
group = H5Rder ef er ence(dat aset, HbR_OBJECT, & buf[2]);

/* Get group’'s coment */

ret =H5Gget _comment (group, ".", 10, read_conment) ;
printf("Goup comment is % \n", read_comment);
printf(" \n");

/* O ose group */
ret = H5Gcl ose(group);

/* Open datatype object */
tidl = H5Rder ef er ence(dat aset, HSR_OBJECT, & buf[3]);

/* Verify correct datatype */
H5T_cl ass_t tcl ass;

tclass= H5Tget_cl ass(tidl);
if ((tclass == H5T_COVPOUND))
printf ("Nunmber of conpound datatype menbers is % \n", H5Tget_nnmenmbers(tidl));
printf(" \n");
}

/* C ose datatype */
ret = H5Tclose(tidl);

/* Cl ose Dataset */
ret = H5Dcl ose(dat aset);

[* Close file */
ret = H5Fcl ose(fidl);

/* Free nenory buffers */
free(rbuf);

free(tu32);

return O;

36 National Center for Supercomputing Applications

HDF5 Release 1.2

The output of this program is as follows:

Dat aset data :
0 3 6 9

G oup coment is Foo!

Nunmber of conpound dat atype nenbers is 3

Remarks:

e TheH5Dr ead function was used to read dataset Dat aset 3 containing the references to the objects. The
H5T_STD_REF_OBJ memory datatype was used to read references to memory.

* H5Rder ef er ence obtains the object’s identifier. The signature of thisfunctionis:

hid_t H5Rdereference (hid_t datatset, H5R type_t ref_type, void *ref)

* Thefirst argument is an identifier of the dataset with the references.

* The second argument specifies the reference type. HSR_OBJECT was used to specify a reference to an object.
Another type, used to specifiy areference to a dataset region and discussed later, isHSR_DATASET_REG ON.

e Thethird argument is a buffer to store the reference to be read.
e Thefunction returns an identifier of the object the reference pointsto. In this simplified situation, the type

that was stored in the dataset is known. When the type of the object is unknown, HSRget _obj ect _t ype
should be used to identify the type of object the reference points to.

University of lllinois at Urbana-Champaign 37

Introduction to HDF5

Working with referencesto dataset regions

A dataset region reference points to the dataset selection by storing the relative file address of the dataset header and the
global heap offset of the referenced selection. The selection referenced is located by retrieving the coordinates of the areas
in the selection from the global heap. This internal mechanism of storing and retrieving dataset selections is transparent to
the user. A reference to the dataset selection (region) is constant for the life of the dataset.

Creating and Storing Referencesto Dataset Regions
The following steps are involved in creating and storing references to the dataset regions:
1. Create adataset to store the dataset regions (sel ections).
2. Create selectionsin the dataset(s). Dataset(s) should aready exist in thefile.
3. Createreferences to the selections and store them in a buffer.
4. Write references to the dataset regionsin thefile.
5. Closeall objects.
Programming Example

Description: The example below [also Example 11] creates a dataset in the file. Then it creates a dataset to store
references to the dataset regions (selections). Thefirst selection isa 6 x 6 hyperslab. The second selection is a point
selection in the same dataset. References to both selections are created and stored in the buffer, and then written to the
dataset in thefile.

#i ncl ude <stdlib. h>
#i ncl ude <hdf5. h>

#def i ne FI LE2 "trefer2. ht"
#defi ne SPACE1_NAME "Spacel"
#defi ne SPACELl_RANK 1
#def i ne SPACE1_DI ML 4

/* Dataset with fixed dinensions */
#defi ne SPACE2_NAME " Space2"

#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10

/* Elenent selection information */
#def i ne PO NT1_NPO NTS 10

i nt
mai n(voi d)
{
hi d_t fidl; /* HDF5 File IDs */
hi d_t dset 1, /* Dataset ID */
dset 2; /* Dereferenced dataset ID */
hi d_t si di, /* Dataspace |D #1 */
si d2; /* Dataspace | D #2 */
hsi ze_t dinmsl[] = {SPACE1_DI ML},
dims2[] = {SPACE2_DI ML, SPACE2_DI M2};
hssi ze_t st art [SPACE2_RANK] ; /* Starting |location of hyperslab */
hsi ze_t stri de[SPACE2_RANK] ; /* Stride of hyperslab */
hsi ze_t count [SPACE2_RANK] ; /* Element count of hyperslab */

38 National Center for Supercomputing Applications

HDF5 Release 1.2

hsi ze_t bl ock[SPACE2_RANK] ; /* Block size of hyperslab */
hssi ze_t coor d1[PO NT1_NPO NTS] [SPACE2_RANK] ;
/* Coordi nates for point selection */
hdset _reg_ref _t *wbuf ; /* buffer to wite to disk */
i nt * dwbuf ; /* Buffer for witing nuneric data to disk */
i nt i; /* counting variables */
herr _t ret; /* Generic return val ue */

/* Allocate wite & read buffers */
wbuf =cal | oc(si zeof (hdset _reg_ref t), SPACE1 DI ML) ;
dwbuf =rmal | oc(si zeof (i nt)* SPACE2_DI ML* SPACE2_DI M2) ;

/[* Create file */
fidl = H5Fcreate(FI LE2, H5F_ACC TRUNC, H5P_DEFAULT, H5P DEFAULT);

/* Create dataspace for datasets */
si d2 = H5Screat e_si npl e(SPACE2_RANK, di ms2, NULL);

/* Create a dataset */
dset 2=H5Dcr eat e(fi d1, "Dat aset 2", H5T_STD _USLE, si d2, H5P_DEFAULT) ;

for(i=0; i < SPACE2_DI ML*SPACE2_DI M2; i ++)
dwbuf [i] =i *3;

/* Wite selection to disk */
ret=H5Dwrite(dset 2, HST_NATI VE_| NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, dwbuf) ;

/* O ose Dataset */
ret = H5Dcl ose(dset2);

/* Create dataspace for the reference dataset */
sidl = H5Screat e_si npl e(SPACE1_RANK, dinmsl, NULL);

/* Create a dataset */
dset 1=H5Dcr eat e(fi d1, " Dat aset 1", H5ST_STD REF_DSETREG, si d1, HSP_DEFAULT) ;

/* Create references */

/* Select 6x6 hyperslab for first reference */

start[0] =2; start[1]=2;

stride[0]=1; stride[1]=1,;

count [0] =6; count[1] =6;

bl ock[0] =1; bl ock[1] =1;

ret = H5Ssel ect _hypersl ab(sid2, H5S_SELECT_SET, start, stride, count, bl ock);

/* Store first dataset region */
ret = H5Rcreate(&wbuf[0],fidl,"/Dataset2", HSR DATASET_REQ ON, si d2) ;

/* Sel ect sequence of ten points for second reference */
coordl[0] [0] =6; coordl[O][1] =9;

coordl[1][0]=2; coordl[1][1]=2;

coordl[2] [0] =8; coord1[2][1]=4;

coordl[3][0]=1; coordl[3][1] =6;

coordl[4] [0] =2; coord1[4][1]=8;

coordl[5][0]=3; coordl[5][1]=2;

coordl1[6] [0] =0; coord1[6] [1] =4;

coordl[7][0] =9; coordl[7][1] =0;

coordl[8] [0] =7; coord1[8][1]=1;

coordl[9][0] =3; coordl[9][1]=3;

ret = H5Ssel ect _el enent s(si d2, H5S_SELECT_SET, PO NT1_NPO NTS, (const hssi ze_t

**)coordl);

University of lllinois at Urbana-Champaign 39

Introduction to HDF5

/* Store second dataset region */
ret = H5Rcreate(&wbuf[1],fidl,"/Dataset2", HSR_DATASET_REd ON, si d2);

/* Wite selection to disk */
ret=Hs5Dwrite(dset 1, H5T_STD REF DSETREG, H5S_ALL, H5S ALL, H5P_DEFAULT, wbuf) ;

/* Cose all objects */

ret = H5Scl ose(sidl);
ret = H5Dcl ose(dset1);
ret = H5Scl ose(sid2);

/[* Close file */
ret = H5Fcl ose(fidl);

free(wouf);
free(dwouf);
return O;

}

Remarks:
* Thecode,

dset 1=H5Dcr eat e(fi d1, " Dat aset 1", H5T_STD_REF_DSETREG, si d1, H5SP_DEFAULT) ;

creates a dataset to store references to the dataset(s) regions (selections). Notice that the
HST_STD REF_DSETREGdatatypeis used.

* This program uses hyperslab and point selections. The dataspace handle sid2 is used for the callsto
H5Ssel ect _hyper sl ab and H5Ssel ect _el enment s. The handle was created when dataset Dat aset 2 was
created and it describes the dataset’s dataspace. It was not closed when the dataset was closed to decrease the
number of function calls used in the example. In areal application program, one should open the dataset and
determine its dataspace using the H5Dget _space function.

* H5Rcreat e isused to create a dataset region reference and store it in a buffer. The signature of the function is:

herr_t H5Rcreate(void *buf, hid_t loc_id, const char *nane,
H5R type_t ref _type, hid_t space_id)

« Thefirst argument specifies the buffer to store the reference.

* Thesecond and third arguments specify the name of the referenced dataset. In the example, the file identifier
fidl and the absolute name of the dataset / Dat aset 2 were used to identify the dataset. The reference to the
region of this dataset is stored in the buffer buf.

« Thefourth argument specifies the type of the reference. Since the example creates references to the dataset
regions, the HSR_DATASET REG ON datatypeis used.

* Thefifth argument is a dataspace identifier of the referenced dataset.

40 National Center for Supercomputing Applications

HDF5 Release 1.2

File Contents: The contents of the filet r ef er 2. h5 created by this program are as follows:

HDF5 "trefer2. h5" {
GROUP "/ " {
DATASET "Dat aset 1" {
DATATYPE { H5T_REFERENCE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
DATASET 0: 744 {(2,2)-(7,7)}, DATASET 0:744 {(6,9), (2,2), (8,4), (1,6),
(2,8), (3,2), (0,4), (9,00, (7,1), (3,3)}, NULL, NuLL
}

}
DATASET "Dat aset 2" {
DATATYPE { H5T_STD_USLE }
DATASPACE { SIMPLE (10, 10) / (10, 10) }
DATA {
0, 3, 6, 9, 12, 15, 18, 21, 24, 27,
30, 33, 36, 39, 42, 45, 48, 51, 54, 57,
60, 63, 66, 69, 72, 75, 78, 81, 84, 87,
90, 93, 96, 99, 102, 105, 108, 111, 114, 117,
120, 123, 126, 129, 132, 135, 138, 141, 144, 147,
150, 153, 156, 159, 162, 165, 168, 171, 174, 177,
180, 183, 186, 189, 192, 195, 198, 201, 204, 207,
210, 213, 216, 219, 222, 225, 228, 231, 234, 237,
240, 243, 246, 249, 252, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255, 255, 255

}
}

Notice how raw data of the dataset with the dataset regionsis displayed. Each element of the raw data consists of a
reference to the dataset (DATASET nunber 1: nunber 2) and its selected region. If the selection is a hyperslab, the corner
coordinates of the hyperslab are displayed. For the point selection, the coordinates of each point are displayed. Since only
two selections were stored, the third and fourth elements of the dataset Dat aset 1 are set to NULL. This was done by the
buffer inizialization in the program.

Reading references to dataset regions
The following steps are involved in reading references to dataset regions and referenced dataset regions (selections).

1. Open and read the dataset containing references to the dataset regions. The datatype H5T_STD _REF_DSETREG
must be used during read operation.

2. UseH5Rder ef er ence to obtain the dataset identifier from the read dataset region reference.
or

Use H5Rget _r egi on to obtain the dataspace identifier for the dataset contai ning the selection from the read
dataset region reference.

3. With the dataspace identifier, the H5S interface functions, H5Sget _sel ect _*, can be used to obtain information
about the selection.

4. Closeal objects when they are no longer needed.

University of lllinois at Urbana-Champaign 41

Introduction to HDF5

Programming Example

Description: The following example [also Example 12] reads a dataset containing dataset region references. It reads data
from the dereferenced dataset and displays the number of elements and raw data. Then it reads two selections. a hyperdab
selection and a point selection. The program queries a number of points in the hyperslab and the coordinates and displays
them. Then it queries a number of selected points and their coordinates and displays the information.

#i nclude <stdlib. h>
#i ncl ude <hdf5. h>

#def i ne FI LE2 "trefer2. ht"
#defi ne NPO NTS 10

/* 1-D dataset with fixed di nensions */
#defi ne SPACEL_NAME " Spacel"

#def i ne SPACE1_RANK 1

#def i ne SPACE1_DI ML 4

/* 2-D dataset with fixed di nensions */
#defi ne SPACE2_NAME " Space?2"

#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10
i nt
mai n(voi d)
{
hi d_t fidl; /* HDF5 File IDs */
hi d_t dset 1, /* Dataset |ID */
dset 2; /* Dereferenced dataset ID */
hi d_t si di, /* Dataspace |D #1 */
si d2; /* Dataspace |ID #2 */
hsi ze_t * coords; /* Coordi nate buffer */
hsi ze_t | oW SPACE2_RANK] ; /* Sel ection bounds */
hsi ze_t hi gh[SPACE2_RANK] ; /* Sel ection bounds */
hdset _reg_ref _t *r buf; /* buffer to to read disk */
i nt *dr buf ; /* Buffer for reading nuneric data fromdisk */
i nt i, j; /* counting variables */
herr _t ret; /* Generic return val ue */

/* Qutput nessage about test being perfornmed */

/* Allocate wite & read buffers */
rbuf =mal | oc(si zeof (hdset _reg_ref_t)*SPACE1_DI M) ;
dr buf =cal | oc(si zeof (i nt), SPACE2_DI ML* SPACE2_DI M) ;

/* Open the file */
fidl = H5Fopen(FI LE2, H5F_ACC RDWR, H5P_DEFAULT);

/* Cpen the dataset */
dset 1=H5Dopen(fidl, "/ Dataset1");

/* Read selection fromdisk */
ret =H5Dr ead(dset 1, H5T_STD REF DSETREG H5S_ALL, H5S_ALL, H5P_DEFAULT, r buf) ;

/[* Try to open objects */
dset 2 = H5Rder ef erence(dset 1, HSR_DATASET_REG ON, & buf[0]);

/* Check information in referenced dataset */
sidl = HoDget _space(dset 2);

42 National Center for Supercomputing Applications

HDF5 Release 1.2

ret =H5Sget _si npl e_ext ent _npoi nt s(si dl);
printf(" Nunmber of elenments in the dataset is : %\n",ret);

/* Read fromdisk */
r et =H5Dr ead(dset 2, H5T_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, dr buf) ;

for(i=0; i < SPACE2_DI ML; i ++)
for (j=0; j < SPACE2_DIM2; j++) printf (" %l ", drbuf[i*SPACE2_DI M2+j]);
printf("\n"); }

/* Get the hyperslab selection */
si d2=H5Rget regi on(dset 1, HSR DATASET REG ON, & buf[0]);

/* Verify correct hyperslab selected */

ret = H5Sget _sel ect _npoi nts(sid2);

printf(" Nunmber of elements in the hyperslab is : % \n", ret)

ret = H5Sget _sel ect _hyper_nbl ocks(si d2);

coords=nml | oc(ret*SPACE2_RANK*si zeof (hsi ze_t)*2); /* allocate space for the hyperslab
bl ocks */

ret = H5Sget _sel ect _hyper _bl ocklist(sid2,0,ret, coords);

printf(" Hyperslab coordinates are : \n");

printf (" (%u, %u) (%u, %u) \n", \
(unsi gned | ong) coords[0], (unsi gned | ong)coords[1], (unsi gned | ong)coords[2], (unsi gned
| ong) coords[3]);

free(coords)

ret = H5Sget _sel ect _bounds(si d2, | ow, hi gh);

/* Cl ose region space */
ret = H5Scl ose(sid2);

/* Get the el enent selection */
si d2=H5Rget _regi on(dset 1, HSR_DATASET_REG ON, & buf[1]);

/I* Verify correct elements selected */
ret = H5Sget _sel ect _el em npoi nts(sid2);
printf(" Number of selected elenents is : %\n", ret);

/* Allocate space for the element points */
coords= nmal | oc(ret*SPACE2_RANK*si zeof (hsi ze_t));
ret = H5Sget_sel ect _elempointlist(sid2,0,ret,coords);
printf(" Coordinates of selected elenments are : \n");
for (i=0; i < 2*NPA NTS; i=i+2)
printf(" (%u, %u) \n", (unsigned long)coords[i], (unsigned |ong)coords[i+1]);

free(coords);
ret = H5Sget _sel ect _bounds(si d2, | ow, hi gh);

/* Cl ose region space */
ret = H5Scl ose(sid2);

/* Close first space */
ret = H5Scl ose(sidl);

/* O ose dereferenced Dataset */
ret = H5Dcl ose(dset 2);

/* O ose Dataset */
ret = H5Dcl ose(dsetl);

/* Close file */
ret = H5Fcl ose(fidl);

University of lllinois at Urbana-Champaign 43

Introduction to HDF5

/* Free menory buffers */
free(rbuf);

free(drbuf);

return O;

The output of this programiis:

Nunber of elenents in the dataset is : 100
0 3 6 9 12 15 18 21 24 27

30 33 36 39 42 45 48 51 54 57

60 63 66 69 72 75 78 81 84 87

90 93 96 99 102 105 108 111 114 117

120
150
180
210
240
255

123 126 129 132 135 138 141 144 147
153 156 159 162 165 168 171 174 177
183 186 189 192 195 198 201 204 207
213 216 219 222 225 228 231 234 237
243 246 249 252 255 255 255 255 255
255 255 255 255 255 255 255 255 255

Nurmber of elenments in the hyperslab is : 36
Hyper sl ab coordi nates are :

(2,
Nunber of selected elenents is : 10
Coordi nates of selected elenents are :

6

NN AN AN AN AN SN S S~
WNOOWNPEFE N

2) (7, 7)

©
~

WRORARNOO AN
— N e e e

Remarks:

The dataset with the region references was read by H5Dr ead with the H5T_STD REF DSETREG datatype
specified.

The read reference can be used to obtain the dataset identifier with the following call:

dset 2 = H5Rder ef erence (dset 1, HSR_DATASET_REQ ON, &r buf[0]);
or to obtain spacial information (dataspace and selection) with the call to H5SRget _r egi on:

si d2=H5Rget regi on(dset 1, HSR DATASET REG ON, & buf[0]);
The reference to the dataset region has information for both the dataset itself and its selection. In both functions:

* Thefirst parameter is an identifier of the dataset with the region references.

« The second parameter specifies the type of reference stored. In this example, areference to the dataset
region is stored.

« Thethird parameter is a buffer containing the reference of the specified type.

This example introduces several H5Sget _sel ect * functions used to obtain information about selections:

National Center for Supercomputing Applications

HDF5 Release 1.2

H5Sget _sel ect _npoi nt s: returnsthe number of elementsin the hyperslab

H5Sget _sel ect _hyper _nbl ocks: returnsthe number of blocks in the hypersliab

H5Sget _sel ect _bl ockl i st: returnsthe"lower left" and "upper right" coordinates of the blocksin the hyperslab
selection

H5Sget _sel ect _bounds: returnsthe coordinates of the "minimal" block containing a hyperslab selection
H5Sget _sel ect _el em npoi nt's: returns the number of pointsin the element selection

H5Sget _sel ect _el em poi nt's: returns the coordinates of the element selection

University of lllinois at Urbana-Champaign 45

Introduction to HDF5

46

National Center for Supercomputing Applications

HDF5 Release 1.2

4. Example Codes

Example 1: How to create a homogeneous multi-dimensional dataset and writeit to afile.

This example creates a 2-dimensional HDF 5 dataset of little endian 32-bit integers.

/* dat aset dinmensions */

/*
This exanple wites data to the HDF5 file.
Data conversion is performed during wite operation.
*/
#i ncl ude
#def i ne FILE " SDS. h5"
#defi ne DATASETNAME "I nt Array"”
#define NX 5
#defi ne NY 6

#defi ne RANK 2

i nt
mai n (voi d)

hid_t file, dataset;

hid_t dat at ype, dat aspace;
hsi ze_t di nsf[2] ;

herr_t st at us;

i nt dat a[NX] [NY] ;

i nt i, J;

/*

/* file and dataset handl es */
/* handl es */
/* dat aset di nensions */

/* data to wite */

* Data and output buffer initialization.

*/
for (j =0; j <NX j++) {
for (i =0; i < NY; i++)

data[j][i] =1 +j;
}
/*
*012345
*123456
* 234567
*345678
* 4567809
*/
/*

* Create a new file using H5F_ACC TRUNC access,
* default file creation properties, and default file

* access properties.
*/

file = H5Fcreate(FILE, H5F_ACC TRUNC, HS5P_DEFAULT, HSP_DEFAULT);

/*

* Describe the size of the array and create the data space for fixed

* size dataset.

*/
di nsf[0] = NX
dinmsf[1] = NY;

University of Illinois at Urbana-Champaign

47

Introduction to HDF5

dat aspace = H5Screate_sinpl e(RANK, dinsf, NULL);

/*

* Define datatype for the data in the file.

* W will store little endian INT nunbers.

*/

dat at ype = H5Tcopy(H5T_NATI VE I NT);

status = H5Tset _order(datatype, H5T_ORDER _LE);

/*
* Create a new dataset within the file using defined dataspace and
* datatype and default dataset creation properties.

*/

dat aset = HoDcreate(file, DATASETNAME, datatype, dataspace,
H5P_DEFAULT) ;

/*

* Wite the data to the dataset using default transfer properties.

*/

status = Hs5Dwrite(dataset, HS5T_NATIVE INT, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

/*
* Cl ose/rel ease resources.
*/

H5Scl ose(dat aspace) ;

H5Tcl ose(dat at ype) ;

H5Dcl ose(dat aset) ;

H5Fcl ose(file);

return O;

48

National Center for Supercomputing Applications

HDF5 Release 1.2

Example 2. How to read a hyperslab from fileinto memory.

This example reads a hyperslab from a 2-d HDF5 dataset into a 3-d dataset in memory.

Thi s exanpl e reads hyperslab fromthe SDS. h5 file
created by h5_wite.c programinto two-di nensional

pl ane of the three-dinensional array.

Informati on about dataset in the SDS.h5 file is obtained.

EE I I I

/
#i ncl ude "hdf5. h"

#define FILE " SDS. h5"

#defi ne DATASETNAME "I nt Array”

#define NX_SUB 3 /* hypersl ab di nensions */
#define NY_SUB 4
#define NX 7
#define NY 7
#define Nz 3

/* output buffer dinmensions */

#defi ne RANK 2
#defi ne RANK_OUT 3
i nt

mai n (voi d)

hid_t file, dataset; /* handl es */
hid_t dat at ype, dat aspace;
hid_t nmenspace;

H5T_cl ass_t cl ass; /* datatype class */
H5T_order _t order; /* data order */
size_t si ze; /*
* size of the data el ement
* stored in file

*

/

hsi ze_t di nsni 3] ; /* menory space di nensions */

hsi ze_t di ms_out[2]; /* dataset dimensions */

herr _t st at us;

i nt data out[NXI[[NY][NZ]; /* output buffer */

hsi ze_t count[2]; /* size of the hyperslab in the file */
hssi ze_t of fset[2]; /* hyperslab offset in the file */
hsi ze_t count _out[3]; /* size of the hyperslab in nenory */
hssi ze_t of fset _out[3]; /* hyperslab offset in nenory */

i nt i, j, k, status_n, rank;

for (j =0; j <NX j++) {
for (i =0; i <NY; i++) {
for (k = 0; k < NX j++) {
for (i =0; i <NY; i++) printf("% ", data_out[j][i][0]);
printf("\n");

~

¥k F 3k ok * Ok
Oh~hwWwoOoOOO
oOuUulhhOOO
NN NoNeNe)
O~NOYO OO
[cNoNeoNoNoNe)
[cNoNeoNoNeNe)
[cNoNeoNoNeNe)

University of Illinois at Urbana-Champaign

49

Introduction to HDF5

*000O0OO0OOO
*/

/*
* Closel/rel ease resources.
*/

H5Tcl ose(dat at ype);

H5Dcl ose(dat aset) ;

H5Scl ose(dat aspace) ;

H5Scl ose(menspace) ;

H5Fcl ose(file);

return O;

50 National Center for Supercomputing Applications

HDF5 Release 1.2

Example 3. Writing selected data from memory to afile.

This example shows how to use the selection capabilities of HDF5 to write selected datato afile. It includes the examples
discussed in the text.

/*
*
*
*
* the matrix using 3x2 bl ocks, (4,3)
* Then four elenents
*
*/
#i ncl ude
#define FILE "Sel ect. h5"
#def i ne MSPACE1l_RANK 1 /*
#def i ne MSPACEL_DI M 50 /*
#def i ne MSPACE2_RANK 1 /*
#def i ne MSPACE2_DI M 4 /*
#def i ne FSPACE_RANK 2 /*
#def i ne FSPACE_DI ML 8 /*
#def i ne FSPACE_DI M2 12
/*
#def i ne MSPACE_RANK 2
#def i ne MSPACE_DI ML 8
#def i ne MSPACE_DI M2 12
#define NPO NTS 4 /*
int main (void)
{
hi d_t file, dataset; /*
hi d_t mdl, md2, fid; /*

hsize_t di mi[]

hsi ze_t din2[]

hsize_t fdin[] =

{MBPACEL_ DI M}; /*

{MBPACE2 DIM; /*

Thi s program shows how t he H5Ssel ect _hypersl ab and H5Ssel ect _el ement s
functions are used to wite selected data fromnenory to the file.
Program takes 48 el enents fromthe linear buffer and wites theminto

stride and (2,4) count.

of the matrix are overwitten with the new val ues and
file is closed. Programreopens the file and reads and di splays the result.

Rank of the first dataset in nenory */
Dat aset size in nmenory */

Rank of the second dataset in nmenory */
Dat aset size in menory */

Dataset rank as it is stored in the file */
Di nensi on sizes of the dataset as it is
stored in the file */

W will read dataset back fromthe file
to the dataset in nenory with these
dat aspace paraneters. */

Nurmber of points that will be sel ected
and overwitten */

File and dataset identifiers */

Dat aspace identifiers */

Di nensi on size of the first dataset
(in nmenory) */

Di nensi on size of the second dataset
(in nmenory */

{ FSPACE_DI ML, FSPACE_DI M2} ;

/*

hssize_t start[2]; /* Start of hyper

hsize_t stride[2];
hsi ze_t count[2];
hsi ze_t bl ock[2];

/* Block count */
/* Bl ock sizes */

Di mensi on sizes of the dataset (on disk) */

slab */

[* Stride of hyperslab */

hssi ze_t coord[NPO NTS] [FSPACE_RANK]; /* Array to store selected points

herr_t ret;

ui

nt

int

(A

fromthe file dataspace */

mat ri x[MSBPACE_DI ML] [MSPACE_DI M2] ;

University of Illinois at Urbana-Champaign

51

Introduction to HDF5

i nt vect or[MSPACE1_DI M ;

int values[] = {53, 59, 61, 67}; /* New values to be witten */
/*

* Buffers’ initialization.

*/

vector[0] = vector[MSPACEL_ DIM - 1] = -1;
for (i =1, i < MSPACE_DI ML; i++) {
for (j = 0; j < MSPACE DI M2; | ++)
matrix[i][j] = O;

/*

* Create a file.

*/

file = H5Fcreate(FI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
/*

* Create dataspace for the dataset in the file.
*/

fid = HoScreate_si npl e(FSPACE_RANK, fdim NULL);
/*

* Create dataset and wite it into the file.

*/

dataset = HoDcreate(file, "Matrix in file", HS5T_NATIVE INT, fid, H5P_DEFAULT);
ret = H5Dwite(dataset, HS5T_NATIVE_INT, H5S_ALL, H5S ALL, H5P_DEFAULT, natrix);

/*
* Sel ect hyperslab for the dataset in the file, using 3x2 bl ocks,
* (4,3) stride and (2,4) count starting at the position (0,1).
*
/

start[0] = 0; start[1l] = 1,
stride[0] = 4; stride[l] = 3;
count[0] = 2; count[1l] = 4,
bl ock[0] = 3; block[1l] = 2;
ret = H5Ssel ect _hypersl ab(fid, H5S SELECT SET, start, stride, count, block);
/*
* Create dataspace for the first dataset.
*
/

m dl = H5Screat e_si npl e(MBPACEL_RANK, di ml, NULL);

/*

* Sel ect hypersl ab.

* W will use 48 elenments of the vector buffer starting at the second el enent.
* Selected elenments are 1 2 3 . . . 48

*/

start[0] = 1;

stride[0] = 1;

count[0] = 48;

bl ock[0] = 1;

ret = H5Ssel ect _hypersl ab(m dl, H5S SELECT_SET, start, stride, count, block);
/*

* Wite selection fromthe vector buffer to the dataset in the file.
*

* File dataset should look like this:

* 0 1 2 0 3 4 0 5 6 0 7 8

* 0O 910 0 11 12 0 13 14 0 15 16

* 017 18 0 19 20 0 21 22 0 23 24

* 0O 0 0OOOO OO O O0O OTUO

* 02526 027 28 029 30 0 31 32

52

National Center for Supercomputing Applications

HDF5 Release 1.2

*

*

[eNeNe]
Hw
OPFr Ww
How
oON B
[eoNeNe]
Hw
o wao
H W
oo
[eNoNe]
Hw
[@ & RN
Hw
(@ epRee]
[eNeNe]
Hw
o ~N o
b
[@NecNe]

*

*/

ret = HoDwite(dataset, H5T_NATIVE INT, midl, fid, H5P_DEFAULT,

/*

* Reset the selection for the file dataspace fid.
*/

ret = H5Ssel ect _none(fid);

/*

* Create dataspace for the second dataset.

*/

m d2 = H5Screat e_si npl e(MBPACE2_RANK, di n2, NULL);

/*
* Sel ect sequence of NPO NTS points in the file dataspace.
*/

coord[0] [O]

coord[1][0]

coord[2] [O]

coord[3][0]

coord[O] [1]
coord[1] [1]
coord[2] [1]
coord[3] [1]

nmonon

guwwo
noanon

eawe

ret = H5Ssel ect _elenents(fid, H5S SELECT_SET, NPQO NTS,
(const hssize_t **)coord);

vector);

/*

* Wite new selection of points to the dataset.

*/

ret = H5Dwite(dataset, HS5T_NATIVE_INT, md2, fid, HS5P_DEFAULT, val ues);
/*

* File dataset should | ook like this:

* 53 1 2 0 3 4 0 5 6 0 7 8
* 0 910 011 12 0 13 14 0 15 16
* 017 18 0 19 20 0 21 22 0 23 24
* 0O 0 059 061 0 0 0 O O O
* 02526 027 28 029 30 0 31 32
* 0 33 34 0 35 36 67 37 38 0 39 40
* 0 41 42 0 43 44 0 45 46 0 47 48
* 0O 0 0OOO OO O O O O0OTO
*

*/

/*

* Close nenory file and nmenory dat aspaces.

*/

ret = H5Scl ose(midl);

ret = H5Scl ose(m d2);

ret = H5Scl ose(fid);

/*

* Cl ose dataset.

*/

ret = H5Dcl ose(dataset);

/*

* Close the file.

*/

ret = H5Fclose(file);

/*

University of Illinois at Urbana-Champaign

53

Introduction to HDF5

* Open the file.
*/
file = HsFopen(FI LE, H5F ACC RDONLY, H5P DEFAULT):

/*

* Open the dataset.

*/

dat aset = dataset = Hs5Dopen(file,"Matrix in file");

/*

* Read data back to the buffer matrix.

*/

ret = H5Dread(dataset, H5T_NATIVE INT, H5S ALL, H5S ALL,
H5P_DEFAULT, matrix);

/*

* Display the result.

*/

for (i=0; i < MBPACE DI M; i++) {
for(j=0; j < MSPACE_DIM2; j++) printf("%3d
printf("\n");

toomatrix[i][i]);

return O;

54 National Center for Supercomputing Applications

HDF5 Release 1.2

Example 4. Working with compound datatypes.

This example shows how to create a compound datatype, write an array which has the compound datatype to the file, and
read back subsets of fields.

Thi s exanpl e shows how to create a conpound dat at ype,
wite an array which has the conpound datatype to the file,
and read back fields’ subsets.

/

* 0% X X Ok

#i ncl ude "hdf5. h"

#define FILE " SDSconpound. h5"
#def i ne DATASETNAME "ArrayCf Struct ures”
#define LENGTH 10

#def i ne RANK 1

i nt

mai n(voi d)

/* First structure and dataset*/
typedef struct sl t {

i nt a;
float b;
doubl e c;
} sl t;
sl_t S1[LENGTH] ;
hid_t sl tid; /* File datatype identifier */

/* Second structure (subset of sl t) and dataset*/
typedef struct s2_t {

doubl e c;

i nt a;
} s2_t;
s2_t s2[LENGTH] ;
hi d_t s2_tid; /* Menmory datatype handle */
[* Third "structure" (will be used to read float field of s1) */
hid_t s3_tid; /* Menory datatype handle */
fl oat S3[LENGTH] ;
i nt i;
hid_t file, dataset, space; /* Handles */
herr_t st at us;

hsi ze_t dinf] = {LENGTH}; /* Dat aspace di nensions */

/*

* Initialize the data

*/

for (i = 0; i< LENGTH, i++) {
sifi]l.a =i;
si[i].b =i*i;
sif[i].c = 1./(i+1);

}

/*
* Create the data space.

University of lllinois at Urbana-Champaign 55

Introduction to HDF5

*/

space = H5Screate_sinpl e(RANK, dim NULL);

/*

* Create the file.

*/

file = HoFcreate(FI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
/*

* Create the menory dat at ype.

*/

sl tid = HoTcreate (H5T_COVPOUND, sizeof(sl_t));

H5Tinsert (sl _tid, "a_name", HOFFSET(sl_t, a), H5T_NATIVE_ I NT);
H5Tinsert(si1_tid, "c_name", HOFFSET(sl1l_t, c), HS5T_NATI VE_DOUBLE);
H5Tinsert(sl_tid, "b_nanme", HOFFSET(sl1_t, b), H5T_NATI VE_FLQAT);

/*

* Create the dataset.

*/

dat aset = H5Dcreate(file, DATASETNAME, sl1_tid, space, H5P_DEFAULT);
/*

* Wite data to the dataset;

*/

status = HoDwite(dataset, sl tid, H5S ALL, H5S ALL, H5P_DEFAULT, sl);
/*

* Rel ease resources

*/

H5Tcl ose(sl_tid);
H5Scl ose(space);
H5Dcl ose(dat aset) ;
H5Fcl ose(file);

/*

* Open the file and the dataset.

*/

file = HsFopen(FI LE, H5F _ACC RDONLY, H5P_DEFAULT);

dat aset = HoDopen(file, DATASETNANE);

/*

* Create a datatype for s2

*/

s2_tid = H5Tcreat e(H5T_COVPOUND, sizeof (s2_t));

H5Tinsert(s2_tid, "c_name", HOFFSET(s2_t, c), HS5T_NATI VE_DOUBLE);
H5Ti nsert(s2_tid, "a_name", HOFFSET(s2_t, a), H5T_NATIVE_I NT);

/*

* Read two fields ¢ and a fromsl dataset. Fields in the file

* are found by their nanes "c_nanme" and "a_nane".

*/

status = H5Dread(dataset, s2_tid, H5S ALL, H5S ALL, H5P_DEFAULT, s2);

/*

* Display the fields

*/

printf("\n");

printf("Field ¢ : \n");

for(i =0; i < LENGTH, i++) printf("%4f ", s2[i].c);
printf("\n");

56

National Center for Supercomputing Applications

HDF5 Release 1.2

printf("\n");

printf("Field a : \n");

for(i =0; i < LENGTH, i++) printf("% ", s2[i].a);
printf("\n");

/*

* Create a datatype for s3.

*/

s3 tid = H5Tcreat e(H5T_COVPOUND, si zeof (float));

status = HoTinsert(s3_tid, "b_name", 0, H5T_NATI VE _FLOAT);

/*

* Read field b fromsl dataset. Field in the file is found by its nane.

*/
status = H5Dread(dataset, s3_tid, H5S ALL, H5S ALL, H5P_DEFAULT, s3);

/*

* Display the field

*/

printf("\n");

printf("Field b : \n");

for(i =0; i < LENGTH, i++) printf("%4f ", s3[i]);
printf("\n");

/*
* Rel ease resources
*/
H5Tcl ose(s2_tid);
H5Tcl ose(s3_tid);
H5Dcl ose(dat aset) ;
H5Fcl ose(file);

return O;

University of Illinois at Urbana-Champaign

57

Introduction to HDF5

Example 5. Creating and writing an extendible dataset.

This example shows how to create a 3x3 extendible dataset, to extend the dataset to 10x3, then to extend it again to 10x5.

/*

* Thi s exanpl e shows how to work wi th extendi bl e dat aset.
* In the current version of the library dataset MJST be
* chunked.

*

*/

#i ncl ude "hdf5. h"

#defi ne FILE " SDSext endi bl e. h5"
#def i ne DATASETNAME " Ext endi bl eArray”
#def i ne RANK 2
#define NX 10
#defi ne NY 5
i nt
mai n (voi d)
{
hid_t file; /* handl es */
hid_t dat aspace, dataset;
hid_t fil espace;
hid_t cpar Is;
hsi ze_t dinms[2] ={ 3, 3}; /*
* dat aset di nensions
* at the creation tine
*/
hsi ze_t dinmsl[2] ={ 3, 3}; /* datal di nensions */
hsi ze_t dims2[2] ={ 7, 1}; /* data2 di nensions */
hsi ze_t dinms3[2] ={ 2, 2}; /* data3 di nensions */
hsi ze_t maxdi ns[2] = {H5S_UNLIM TED, H5S UNLI M TED};
hsi ze_t chunk_dins[2] ={2, 5};
hsi ze_t size[2];
hssi ze_t of fset[2];
herr _t st at us;
i nt datal[3][3] ={ {1, 1, 1}, /* data to wite */
{1, 1, 1},
{1, 1, 1} };
i nt dat a2[7] ={ 2, 2, 2, 2, 2, 2, 2}
i nt data3[2][2] = { {3, 3},
{3, 3}
/*
* Create the data space with unlimted di nensions.
*/
dat aspace = H5Screate_si npl e(RANK, di ms, nmaxdi ns);
/*
* Create a newfile. If file exists its contents will be overwitten.
*/

file = H5Fcreate(FlLE, H5F_ACC_TRUNC, HS5P_DEFAULT, HSP_DEFAULT);

58 National Center for Supercomputing Applications

HDF5 Release 1.2

/*

* Modify dataset creation properties, i.e. enable chunking.
*/

cparnms = H5Pcreate (HS5P_DATASET_CREATE);

status = H5Pset _chunk(cparns, RANK, chunk_dins);

/*
* Create a new dataset within the file using cparns
* creation properties.

*/

dataset = HoDcreate(file, DATASETNAVE, H5T_NATI VE | NT, dataspace,
cparms);

/*

* Extend the dataset. This call assures that dataset is at |east 3 x 3.
*/

si ze[0] = 3;

size[1] = 3;

status = H5Dextend (dataset, size);

/*
* Sel ect a hypersl ab.
*
/
fil espace = HoDget _space (dataset);
offset[0] = O;
offset[1] = O;
status = H5Ssel ect _hypersl ab(fil espace, H5S SELECT SET, offset, NULL,
di ns1, NULL);
/*
* Wite the data to the hypersl ab.
*
/

status = H5Dwite(dataset, HS5T_NATI VE_I NT, dataspace, fil espace,
H5P_DEFAULT, datal);

/*
* Extend the dataset. Dataset becones 10 x 3.
*/

di ns[0] = dinsl[0] + dins2[0];

si ze[0] = dins[0];

si ze[1] = dins[1];

status = H5Dextend (dataset, size);

/*

* Sel ect a hypersl ab.

*/

fil espace = HoDget _space (dataset);

of fset[0] = 3;

offset[1] = O;

status = H5Ssel ect _hypersl ab(fil espace, H5S SELECT SET, offset, NULL,
di n82, NULL);

/*

* Define menory space

*/

dat aspace = H5Screate_sinpl e(RANK, dins2, NULL);

/*

* Wite the data to the hypersl ab.

*/

status = H5Dwite(dataset, HS5T_NATI VE_I NT, dataspace, fil espace,
H5P_DEFAULT, data2);

University of lllinois at Urbana-Champaign 59

Introduction to HDF5

/*
* Extend the dataset. Dataset becones 10 x 5.
*/

di ms[1] = dinsl[1] + dins3[1];

si ze[0] = dins[0];

si ze[1] = dins[1];

status = H5Dextend (dataset, size);

/*

* Sel ect a hyperslab

*/

fil espace = HoDget _space (dataset);

offset[0] = O;

of fset[1] = 3;

status = H5Ssel ect _hypersl ab(fil espace, H5S SELECT SET, offset, NULL,
di ms3, NULL):

/*

* Define nenory space.

*/

dat aspace = H5Screate_sinpl e(RANK, dins3, NULL);

/*

* Wite the data to the hypersl ab.

*/

status = H5Dwite(dataset, HS5T_NATI VE_I NT, dataspace, fil espace,
H5P_DEFAULT, data3);

Resul ti ng dat aset

T T R N
NNNNNNNWWW
OO O0OO0OO0OO0OOoOWWW
OCOO0OO0OO0OO0OO0OOoOWWW
OOOO0OO0OOCOONN
OOOO0OOOOONN

*
~

/*
* Cl osel/rel ease resources.
*/

H5Dcl ose(dat aset) ;

H5Scl ose(dat aspace) ;

H5Scl ose(fil espace);

H5Fcl ose(file);

return O;

60 National Center for Supercomputing Applications

HDF5 Release 1.2

Example 6. Reading data.
This example shows how to read information the chunked dataset written by Example 5.
/*
Thi s exanpl e shows how to read data from a chunked dat aset.
W will read fromthe file created by h5_extend_wite.c
*/

#i ncl ude "hdf5. h"

#def i ne FILE " SDSext endi bl e. h5"
#def i ne DATASETNAME " Ext endi bl eArray"
#def i ne RANK 2

#defi ne RANKC 1

#def i ne NX 10

#define NY 5

i nt

mai n (voi d)

hi d_t file; /* handl es */

hid_t dat aset ;

hi d_t fil espace;

hid_t nmenspace;

hi d_t cpar 1rs;

hsi ze_t di ns[2] ; /* dataset and chunk di mensi ons*/
hsi ze_t chunk_di ns[2] ;

hsi ze_t col _dins[1];

hsi ze_t count[2];

hssi ze_t of fset[2];

herr _t status, status_n;

i nt data out[NX[[NY]; [/* buffer for dataset to be read */
i nt chunk_out[2][5]; /* buffer for chunk to be read */

i nt col um(10] ; /* buffer for colum to be read */
i nt rank, rank_chunk;

hsi ze_t i, j;

/*

* Open the file and the dataset.

*/

file = HsFopen(FI LE, H5F _ACC _RDONLY, H5P _DEFAULT);
dat aset = H5Dopen(file, DATASETNAME);

/*
* CGet dataset rank and di nension.
*
/
fil espace = H5Dget _space(dataset); /* Get filespace handle first. */
r ank = H5Sget _si npl e_extent _ndi ns(fil espace);

status_n = H5Sget_sinple_extent _dims(fil espace, dims, NULL);
printf("dataset rank %, dinmensions %u x % u\n",
rank, (unsigned |ong)(dinms[0]), (unsigned long)(dinms[1]));

/*
* Get creation properties list.

University of lllinois at Urbana-Champaign 61

Introduction to HDF5

*/
cparnms =

/*

H5Dget _create_pli st (dataset);

* Check if dataset is chunked.

*/

if (H5D_CHUNKED == H5Pget | ayout(cparms)) {

/*

* CGet chunking information:

*/

rank_chunk

printf("chunk rank %, dinmensions %u x %u\n",
(unsi gned | ong) (chunk_di ns[0]),

rank and di nensi ons

H5Pget _chunk(cparns, 2, chunk_dins);

H5T_NATI VE_I NT, nmenspace,

}
/*
* Define the menory space to read dataset.
*
/
menspace = H5Screat e_si npl e(RANK, di ns, NULL) ;
/*
* Read dat aset back and displ ay.
*
/
status = H5Dread(dat aset,
H5P_DEFAULT, data_out);
printf("\n");
printf("Dataset: \n");
for (j =0; j <dins[0]; j++) {
for (i =0; i <dins[1]; i++) printf("% "
printf("\n");
}
/*
* dataset rank 2, dinensions 10 x 5
* chunk rank 2, dinensions 2 x 5
* Dat aset :
* 11133
* 11133
* 11100
* 20000
* 20000
* 20000
* 20000
* 20000
* 20000
* 20000
*/
/*
*

* First define nenory dataspace,
* and read it

*/

col _di nms[0]

menspace =

/*

into colum array.

10;

Read the third colum fromthe dataset.

t hen define hyperslab

H5Scr eat e_si npl e(RANKC, col _dins, NULL);

* Define the colum (hyperslab) to read.

*/
of f set [0]
of fset[1]

0;
2;

/* Get properties handle first. */

rank_chunk,
(unsigned | ong) (chunk_dinms[1]));

fil espace,

data_out[j][i]);

62

National Center for Supercomputing Applications

HDF5 Release 1.2

count[0] = 10;
count[1] = 1;
status = H5Ssel ect _hypersl ab(fil espace, H5S SELECT SET, offset, NULL

count, NULL);
status = H5Dread(dataset, H5T_NATIVE INT, nenspace, fil espace
H5P_DEFAULT, col um);
printf("\n");
printf("Third colum: \n");
for (i =0; i < 10; i++) {
printf("% \n", colum[i]);

}
/*
* Third col um:
* 1
* 1
* 1
* 0
* 0
* 0
* 0
* 0
* 0
* 0
*/
/*
* Define the nenory space to read a chunk
*
/
nmenspace = H5Screat e_si mpl e(rank_chunk, chunk_di ns, NULL) ;
/*
* Define chunk in the file (hyperslab) to read
*
/
of fset[0] = 2;
of fset[1] = O;
count[0] = chunk_dins[O0];
count[1] = chunk_dins[1];

status = H5Ssel ect _hypersl ab(fil espace, H5S _SELECT_SET, offset, NULL
count, NULL);

/*
* Read chunk back and displ ay.
*/
status = H5Dread(dataset, HS5T_NATIVE I NT, nenspace, fil espace
H5P_DEFAULT, chunk_out)
printf("\n");
printf("Chunk: \n");
for (j =0; j < chunk_dinms[0]; j++) {
for (i =0; i < chunk_dins[1]; i++) printf("% ", chunk _out[j][i])
printf("\n");
}
/

I\)I—‘Q
OrCc
[eoNe]
[eoNe]

ECTEE I R

/*
* Cl ose/rel ease resources
*/
H5Pcl ose(cpar s);
H5Dcl ose(dat aset) ;

University of lllinois at Urbana-Champaign 63

Introduction to HDF5

H5Scl ose(fil espace);
H5Scl ose(nenspace) ;
H5Fcl ose(file);

return O;

64 National Center for Supercomputing Applications

HDF5 Release 1.2

Example 7. Creating groups.

This example shows how to create and access a group in an HDF5 file and to place a dataset within this group. It also
illustrates the usage of the H5G t er at e, H5@ i nk, and H5Gunl i nk functions.

* ok Kk kKK

This exanple creates a group in the file and dataset in the group.
Hard link to the group object is created and the dataset is accessed
under different nanes.

Iterator function is used to find the object nanes in the root group.

#i ncl ude "hdf5. h"

#define FILE "group. hg"
#def i ne RANK 2

her

i nt
mai

{

r_t file_info(hid_t loc_id, const char *nane, void *opdata);
/* Qperator function */

n(voi d)

hid_t file;

hid_t arp;

hi d_t dat aset, dataspace;
hid_t plist;

herr _t st at us;
hsize_t dins[2];
hsize_t cdins[2];

i nt i dx;
/*
* Create a file.
*/
file = HoFcreate(FI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
/*
* Create a group in the file.
*/

grp = H6CGereate(file, "/Data", 0);

/
Create dataset "Conpressed Data" in the group using absolute
nane. Dataset creation property list is nodified to use

&ZI P conpression with the conpression effort set to 6.

* Note that conpression can be used only when dataset is chunked.

* % X ok

*/

di ns[0] = 1000;
di ms[1] = 20;
cdi ms[0] = 20;
cdi ms[1] = 20;

dat aspace = H5Screat e_si npl e(RANK, dims, NULL);

University of lllinois at Urbana-Champaign 65

Introduction to HDF5

pli st = H5Pcr eat e(H5P_DATASET_CREATE) ;
H5Pset _chunk(plist, 2, cdins);
H5Pset _defl ate(plist, 6);
dat aset = H5Dcreate(file, "/Datal/ Conpressed_Data",
dat aspace, plist);

/*

* Close the dataset and the file.
*/

H5Scl ose(dat aspace) ;

H5Dcl ose(dat aset) ;

H5Fcl ose(file);

/*

* Now reopen the file and group in the file.

*/

file = HsFopen(FILE, H5F ACC RDWR, H5P DEFAULT);
grp = H5Gopen(file, "Data");

/*
* Access "Conpressed_Data" dataset in the group.
*
/
dat aset = H5Dopen(grp, "Conpressed_Data");
i f(dataset

H5T_NATI VE_I NT,

66

National Center for Supercomputing Applications

HDF5 Release 1.2

Example 8. Writing and reading attributes.

This example shows how to create HDF5 attributes, to attach them to a dataset, and to read through all of the attributes of
a dataset.

/*
* This programillustrates the usage of the H5A Interface functions.
* |t creates and wites a dataset, and then creates and wites array,
* scalar, and string attributes of the dataset.
* Programreopens the file, attaches to the scalar attribute using
* attribute nane and reads and displays its value. Then index of the
* third attribute is used to read and display attribute val ues
* The HSAiterate function is used to iterate through the dataset attributes,
* and display their nanes. The function is also reads and di spl ays the val ues
* of the array attribute.
*/
#i ncl ude
#i ncl ude

#define FILE "Attri butes. h5"

#define RANK 1 /* Rank and size of the dataset */
#define SIZE 7

#defi ne ARANK 2 /* Rank and di nension sizes of the first dataset attribute */
#define ADOML 2

#define ADIM2 3

#define ANAVE "Float attribute" /* Name of the array attribute */

#defi ne ANAVES "Character attribute"” /* Nane of the string attribute */

herr_t attr_info(hid_t loc_id, const char *nanme, void *opdata)
/* Qperator function */

i nt

mai n (voi d)

{
hid_t file, dataset; /* File and dataset identifiers */
hid fid; /* Dataspace identifier */

t
_t attrl, attr2, attr3; /* Attribute identifiers */
hi d_t attr;
t ai d1, aid2, aid3; /[* Attribute dataspace identifiers */
t atype; /* Attribute type */

{ Sl zg};
{ADI ML, ADI M2}; [/* Dimensions of the first attribute */

hsize_t fdinf]
hsi ze_t adinf]

float matrix[ADI ML][ADIM2]; /* Attribute data */

herr_t ret; /* Return value */

ui nt i,j; /* Counters */

i nt idx; /* Attribute index */

char string_out[80]; /* Buffer to read string attribute back */
int poi nt _out ; /* Buffer to read scalar attribute back */
/*

* Data initialization.

*/

University of lllinois at Urbana-Champaign 67

Introduction to HDF5

int vector[] ={1, 2, 3, 4, 5, 6, 7}; [/* Dataset data */

int point = 1, /* Value of the scalar attribute */
char string[] = "ABCD'; /* Value of the string attribute */
for (i=0; i < ADIML; i++) { /* Values of the array attribute */
for (j=0; j < ADIM2; j++)
matrix[i][j] = -1.;
/*
* Create a file.
*/
file = HoFcreate(FI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
/*
* Create the dataspace for the dataset in the file.
*/
fid = H5Screat e(H5S_SI MPLE) ;
ret = HoSset_extent_sinple(fid, RANK, fdim NULL);
/*
* Create the dataset in the file.
*/
dataset = HoDcreate(file, "Dataset", H5T_NATIVE INT, fid, H5P_DEFAULT);
/*
* Wite data to the dataset.
*/
ret = HoDwite(dataset, HS5T_NATIVE_INT, H5S ALL , H5S ALL, H5P_DEFAULT, vector);
/*
* Create dataspace for the first attribute.
*/
ai d1 = H5Screate(H5S_SI MPLE) ;
ret = H5Sset_extent_sinple(aidl, ARANK, adim NULL);
/*
* Create array attribute.
*/
attrl = H5Acreate(dataset, ANAME, H5T_NATI VE_FLQAT, aidl, H5P_DEFAULT);
/*
* Wite array attribute.
*/
ret = HbAwite(attrl, HS5T_NATI VE_FLOAT, matri x);
/*
* Create scalar attribute.
*/
aid2 = H5Screate(H5S _SCALAR);
attr2 = HoAcreate(dataset, "lInteger attribute", HST_NATIVE_INT, aid2,
H5P_DEFAULT) ;
/*
* Wite scalar attribute.
*/
ret = HbAwite(attr2, HST_NATIVE_INT, &point);
/*
* Create string attribute.
*/

ai d3 = H5Screate(H5S _SCALAR);

68

National Center for Supercomputing Applications

HDF5 Release 1.2

atype H5Tcopy(H5T_C S1);
H5Tset _si ze(atype, 4);

attr3 = H5Acreate(dataset, ANAMES, atype, aid3, H5P_DEFAULT);

/*

* Wite string attribute.
*/

ret = HbAwrite(attr3, atype, string);
/*

* Close attribute and file dataspaces.
*/

ret = H5Scl ose(aidl);

ret = H5Scl ose(aid2);

ret = H5Scl ose(aid3);

ret = H5Scl ose(fid);

/*

* Close the attributes.
*/

ret = H5Acl ose(attrl);

ret = HbAcl ose(attr2);

ret = H5Acl ose(attr3);

/*

* (C ose the dataset.

*/

ret = H5Dcl ose(dat aset);
/*

* Close the file.

*/

ret = HoFcl ose(file);

/*

* Reopen the file.

*/

file = H5Fopen(FI LE, H5F_ACC RDONLY, H5P_DEFAULT);
/*

* Qpen the dataset.

*/

dat aset = H5Dopen(file, "Dataset");

/*
* Attach to the scalar attribute using attribute nane, then read and
* display its val ue.

*/
attr = H5Aopen_nane(dataset, "I nteger attribute");
ret = HSAread(attr, HS5T_NATIVE_INT, &point_out);

printf("The value of the attribute \"Integer attribute\" is %l \n", point_out);
ret = HS5Acl ose(attr);

/*
* Attach to the string attribute using its index, then read and display the val ue.
*/

attr = H5Aopen_i dx(dataset, 2);
atype = H5Tcopy(H5T_C_S1);
H5Tset _si ze(atype, 4);
ret = HSAread(attr, atype, string_out);

printf("The value of the attribute with the index 2 is % \n", string_out);
ret = H5Acl ose(attr);
ret H5Tcl ose(atype);

University of lllinois at Urbana-Champaign 69

Introduction to HDF5

/*

* Get attribute info using iteration function.
*/

idx = HoAiterate(dataset, NULL, attr_info, NULL);

/*

* Close the dataset and the file.
*/

H5Dcl ose(dat aset) ;

H5Fcl ose(file);

return O;

}

/*
* QOperator function.
*/
herr _t
attr_info(hid_t loc_id, const char *nane, void *opdata)
{
hid_t attr, atype, aspace; [* Attribute, datatype and dataspace identifiers */
i nt rank;
hsize_t sdinf64];
herr_t ret;
int i;
size_t npoints; /* Nunmber of elenents in the array attribute. */
float *float_array; /* Pointer to the array attribute. */
/*
* Open the attribute using its nane.
*/
attr = H5Aopen_nanme(loc_id, nane);

/*

* Display attribute name.
*/

printf("\n");
printf("Name : ");

put s(nane) ;

/*
* Get attribute datatype, dataspace, rank, and di mensi ons.
*/

atype H5Aget _type(attr);

aspace HS5Aget _space(attr);

rank = H5Sget _si npl e_ext ent _ndi ns(aspace);

ret = H5Sget _sinpl e_extent_dins(aspace, sdim NULL);

/*

* Display rank and di nension sizes for the array attribute.
*/

if(rank 0) {

printf("Rank : % \n", rank);

printf ("D nension sizes : ");

for (i=0; i< rank; i++) printf("%d ", (int)sdinfi]);
printf("\n");

}

/*

* Read array attribute and display its type and val ues.
*/

70 National Center for Supercomputing Applications

HDF5 Release 1.2

if (HBT_FLOAT == H5Tget cl ass(atype)) {

printf("Type : FLOAT \n");

npoi nts = H5Sget _si npl e_ext ent _npoi nt s(aspace)

float_array = (float *)malloc(sizeof (float)*(int)npoints);
ret = HSAread(attr, atype, float_array);

printf("Values : ");

for(i =0; i < (int)npoints; i++) printf("% ", float_array[i])
printf("\n");
free(float_array);
}
/*
* Release all identifiers
*/

H5Tcl ose(atype);
H5Scl ose(aspace) ;
H5Acl ose(attr);

return O;

University of Illinois at Urbana-Champaign

71

Introduction to HDF5

Example 9. Creating and storing referencesto objects.

This example creates a group and two datasets and a named datatype in the group. References to these four objects are

stored in the dataset in the root group.

#i ncl ude <hdf5. h>

#def i ne FILE1l "treferl. h5"

/* 1-D dataset with fixed di nensions */
#defi ne SPACE1_NAME "Spacel"

#def i ne SPACE1_RANK 1

#def i ne SPACE1_DI ML 4

/* 2-D dataset with fixed di nensions */
#defi ne SPACE2_NAME " Space2"

#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10
i nt
mai n(voi d) {
hi d_t fidl; /* HDF5 File IDs
hid_t dataset; /* Dataset ID
hid_t group; /* Group ID */
hid_t sidi; /* Dataspace |D
hid_t tidi; /* Datatype ID
hsi ze_t dinmsl[] = {SPACE1_DI M};
hobj ref _t *wbuf ; /* buffer to wite to disk */
i nt *tu32; /* Tenporary pointer to int data */
i nt i; /* counting variables */
const char *wite_conment="Foo!"; /* Comments for group */
herr _t ret; /* Generic return val ue

/* Conpound dat atype */
typedef struct sl t {

unsi gned int a;
unsi gned int b;
float c;

} sl t;

/* Allocate wite buffers */
wbuf =(hobj _ref_t *)mal | oc(si zeof (hobj _ref _t)*SPACE1_DI ML) ;
tu32=mal | oc(si zeof (i nt)*SPACELl_DI M) ;

/* Create file */
fidl = H5Fcreate(FI LEL, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create dataspace for datasets */
sidl = H5Screate_si nmpl e(SPACE1_RANK, dinsl, NULL);

/* Create a group */
group=HsCcreate(fidl, "G oupl",-1);

/* Set group’s coment */
ret =H5Gset _coment (group,".",wite_conment);

/* Create a dataset (inside Goupl) */

dat aset =H5Dcr eat e(gr oup, "Dat aset 1", H6T_STD_U32LE, si d1, H5SP_DEFAULT) ;

for(i=0; i < SPACE1l_DI ML; i ++)

*/
*/

*/
*/

*/

72

National Center for Supercomputing Applications

HDF5 Release 1.2

tu3d2[i] = i*3;

/* Wite selection to disk */

ret =H5Dwri t e(dat aset , HST_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, t u32);

/* O ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create another dataset (inside Goupl) */

dat aset =H5Dcr eat e(gr oup, " Dat aset 2", H5T_NATI VE_UCHAR, si d1, H5P_DEFAULT) ;

/* O ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create a datatype to refer to */
tidl = H5Tcreate (HST_COMPOUND, sizeof (sl_t));

/[* Insert fields */
ret=H5Ti nsert (tidl, "a", HOFFSET(sl1l t,a), HS5T_NATIVE | NT);

ret=H5Tinsert (tidl, "b", HOFFSET(sl_t,b), HS5T_NATIVE_|NT);
ret=H5Tinsert (tidl, "c", HOFFSET(sl1l_t,c), H5T_NATIVE FLQOAT);

/* Save datatype for later */
ret=H5Tcomi t (group, "Datatypel”, tidl);

/* C ose datatype */
ret = H5Tcl ose(tidl);

/* O ose group */
ret = H5Gcl ose(group);

/* Create a dataset to store references */

dat aset =H5Dcr eat e(fi d1, "Dat aset 3", HST_STD_REF_OBJ, si d1, H5P_DEFAULT) ;

/* Create reference to dataset */
ret = H5Rcreate(&wuf[0],fidl,"/ G oupl/ Dataset 1", HSR OBJECT, - 1);

/* Create reference to dataset */
ret = H5Rcreate(&wbuf[1],fidl,"/ G oupl/ Dataset2", HSR_OBJECT, - 1) ;

/* Create reference to group */
ret = H5Rcreate(&wbuf[2],fidl,"/ G oupl", HGR OBJECT, -1);

/* Create reference to naned datatype */
ret = HS5Rcreate(&wbuf[3],fidl,"/ G oupl/Datatypel”, HSR OBJECT, - 1);

/* Wite selection to disk */

ret =H5Dwr i t e(dat aset , H5T_STD REF_OBJ, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf) ;

/* O ose disk dataspace */
ret = H5Scl ose(sidl);

/* Cl ose Dataset */
ret = H5Dcl ose(dat aset);

[* Close file */

ret = H5Fcl ose(fidl);
free(wouf);
free(tu32);

return O;

University of Illinois at Urbana-Champaign

73

Introduction to HDF5

Example 10. Reading refer ences to objects.

This example opens and reads dataset Dat aset 3 from the file created in Example 9. Then the program dereferences the
references to dataset Dat aset 1, the group and the named datatype, and opens those objects. The program reads and
displays the dataset’s data, the group’s comment, and the number of members of the compound datatype.

#i nclude <stdlib. h>
#i ncl ude <hdf5. h>

#define FILE1l "treferl. h5"

/* dataset with fixed dinensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACE1_RANK 1
#def i ne SPACE1_DI ML 4
i nt
mai n(voi d)
hi d_t fidl; /* HDF5 File IDs */
hi d_t dataset, /* Dataset |ID */
dset 2; /* Dereferenced dataset ID */
hi d_t group; /* Goup ID */
hid_t si di; /* Dataspace |ID */
hi d_t tidi; /* Datatype ID */
hobj ref _t *rbuf ; /* buffer to read fromdisk */
i nt *tu32; /* temp. buffer read fromdisk */
i nt i; /* counting variables */
char read_comment[10];
herr_t ret; /* Generic return val ue */

/* Allocate read buffers */
rbuf = mall oc(sizeof (hobj ref t)*SPACEL_DI ML) ;
tu32 = mal | oc(sizeof (int)*SPACEL_DI M) ;

/* Open the file */
fidl = H5Fopen(FI LE1l, H5F_ACC RDWR, H5P_DEFAULT);

/* Open the dataset */
dat aset =H5Dopen(fi d1, "/ Dat aset 3");

/* Read sel ection fromdisk */
r et =H5Dr ead(dat aset , HST_STD REF_OBJ, H5S_ALL, H5S_ALL, H5P_DEFAULT, r buf) ;

/* Open dataset object */
dset 2 = H5Rder ef er ence(dat aset, HSR_OBJECT, & buf[0]);

/* Check information in referenced dataset */
sidl = HoDget _space(dset 2);

r et =H5Sget _si npl e_ext ent _npoi nts(si dl);

/* Read from disk */

ret =H5Dr ead(dset 2, H5T_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, t u32);
printf("Dataset data : \n");

for (i=0; i < SPACE1_DIML ; i++) printf (" % ", tu32[i]);
printf("\n");

printf("\n");

/* O ose dereferenced Dataset */

74 National Center for Supercomputing Applications

HDF5 Release 1.2

ret = H5Dcl ose(dset2);

/* Open group object */
group = H5Rder ef er ence(dat aset, HSR_OBJECT, & buf[2]);

/* Get group’s coment */

r et =H6Gget _comment (group, ".", 10, read_conment) ;
printf("Goup comment is % \n", read_comment);
printf(" \n");

/* O ose group */
ret = H5Gcl ose(group);

/* Open datatype object */
tidl = H5Rder ef er ence(dat aset, HSR_OBJECT, & buf[3]);

/* Verify correct datatype */
H5T_cl ass_t tcl ass;

tclass= H5Tget_cl ass(tidl);
if ((tclass == H5T_COVPOUND))
printf ("Nunmber of conpound datatype menbers is % \n",
printf(" \n");
}

/* O ose datatype */
ret = H5Tcl ose(tidl);

/* C ose Dataset */
ret = H5Dcl ose(dat aset);

/* Cose file */
ret = H5Fcl ose(fidl);

/* Free nenory buffers */
free(rbuf);

free(tu32);

return O;

H5Tget _nnenbers(tidl));

University of Illinois at Urbana-Champaign

75

Introduction to HDF5

Example 11. Creating and writing areferenceto aregion.

This example creates a dataset in the file. Then it creates a dataset to store references to the dataset regions (selections).
Thefirst selection isa 6 x 6 hyperslab. The second selection is a point selection in the same dataset. References to both

selections are created and stored in the buffer, and then written to the dataset in the file.

#i nclude <stdlib. h>
#i ncl ude <hdf5. h>

#define FILE2 "trefer2. h5"
#defi ne SPACE1_NAME " Spacel"
#def i ne SPACE1_RANK 1
#def i ne SPACE1_DI ML 4

/* Dataset with fixed di nensions */
#defi ne SPACE2_NAME " Space?2"

#def i ne SPACE2_RANK 2

#def i ne SPACE2_DI ML 10

#def i ne SPACE2_DI M2 10

/* El ement selection information */
#defi ne PO NT1_NPO NTS 10

i nt
mai n(voi d)
{
hi d_t fidil; /* HDF5 File IDs */
hid_t dset 1, /* Dataset ID */
dset 2; | * Dereferenced dataset ID */
hi d_t si di, /* Dataspace | D #1
si d2; /* Dataspace |ID #2 */
hsi ze_t dimsl[] = {SPACE1_DI M},
dins2[] = {SPACE2_DI ML, SPACE2_DI M2};
hssi ze_t start [SPACE2_RANK] ; /* Starting |ocation of hyperslab */
hsi ze_t stri de[SPACE2_RANK] ; /* Stride of hyperslab */
hsi ze_t count [SPACE2_RANK] ; /* El ement count of hyperslab */
hsi ze_t bl ock[SPACE2_RANK] ; /* Block size of hyperslab */
hssi ze_t coor d1[PO NT1_NPO NTS] [SPACE2_RANK] ;
/* Coordinates for point selection */
hdset _reg_ref _t *wbuf ; /* buffer to wite to disk */
i nt * dwbuf ; /* Buffer for witing nuneric data to disk */
i nt i; /* counting variables */
herr _t ret; /* Generic return val ue */
/* Allocate wite & read buffers */
wbuf =cal | oc(si zeof (hdset _reg_ref _t), SPACE1_DI ML) ;
dwbuf =mal | oc(si zeof (i nt)* SPACE2_DI ML* SPACE2_DI M2) ;
[* Create file */
fidl = H5Fcreate(FlI LE2, H5F_ACC TRUNC, H5P_DEFAULT, H5P DEFAULT);
/* Create dataspace for datasets */
si d2 = H5Screate_si npl e(SPACE2_RANK, dims2, NULL);
/* Create a dataset */
dset 2=H5Dcr eat e(fi d1, "Dat aset 2", H5T_STD_USLE, si d2, H5P_DEFAULT) ;
for(i=0; i < SPACE2_DI Mi*SPACE2_DI M2; i ++)
dwouf[i]=i*3;
76 National Center for Supercomputing Applications

HDF5 Release 1.2

/* Wite selecti

ret =HsDwri t e(dset 2, HST_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, dwbuf);

/* Cl ose Dataset

on to disk */

*/

ret = H5Dcl ose(dset2);

/* Create dataspace for the reference dataset */
sidl = H5Screat e_si npl e(SPACE1_RANK, dimnmsl, NULL);

/* Create a dataset */

dset 1=H5Dcr eat e(fi d1, " Dat aset 1", H5T_STD_REF_DSETREG, si d1, H5SP_DEFAULT) ;

/* Create references */

/* Select 6x6 hyperslab for first

start[0] =2; star
stride[0]=1; str

t[1] =2;
i de[1] =1;

count [0] =6; count[1] =6;
bl ock[0] =1; bl ock[1] =1;

ret = H5Ssel ect _hypersl ab(sid2, H5S_SELECT_SET, start, stride, count, bl ock) ;

/* Store first dataset region */

ret = H5Rcreate(&wbuf[0],fidl,"/Dataset2", HSR DATASET _REQ ON, si d2);

/* Sel ect sequence of ten points for second reference */

coor d1[0] [0] =6;
coordl[1] [0] =2;
coordl[2] [0] =8;
coordl[3] [0] =1;
coordl[4][0] =2;
coordl[5] [0] =3;
coor dl[6] [0] =0;
coordl[7] [0] =9;
coordl[8] [0] =7;
coordl[9] [0] =3;
ret = H5Ssel ect
**)coordl);

/* Store second

/* Wite selecti

ret =HsDwrite(dset 1, H5T_STD REF_DSETREG, H5S_ALL, H5S_ALL, H5P_DEFAULT, wbuf) ;

/[* Close all obj

coordl[0] [1] =9;
coordl[1] [1] =2;
coordl[2] [1] =4;
coordl[3] [1] =6;
coordl[4] [1] =8;
coordl[5] [1] =2;
coordl[6] [1] =4;
coordl[7] [1] =0;
coordl[8] [1] =1;
coordl[9] [1] =3;

dat aset region */
ret = H5Rcreate(&wbuf[1],fidl,"/Dataset2", HSR DATASET_REQ ON, si d2) ;

on to disk */

ects */

ret = H5Scl ose(sidl);
ret = H5Dcl ose(dsetl);
ret = H5Scl ose(sid2);

/* Close file */
ret = H5Fcl ose(f

free(wouf);
free(dwouf);
return O;

idl);

reference */

_el ement s(si d2, H5S_SELECT_SET, PO NT1_NPQO NTS, (const hssi ze_t

University of Illinois at Urbana-Champaign

77

Introduction to HDF5

Example 12. Reading areferenceto aregion.

This example reads a dataset containing dataset region references. It reads data from the dereferenced dataset and displays
the number of elements and raw data. Then it reads two selections: a hyperslab selection and a point selection. The
program queries a number of pointsin the hyperslab and the coordinates and displays them. Then it queries a number of

selected points and their coordinates and displays the information.

#i ncl ude <stdlib. h>
#i ncl ude <hdf5. h>

#def i ne FI LE2 "trefer2. ht"
#defi ne NPO NTS 10

/* 1-D dataset with fixed di nensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACEL1_RANK 1

#def i ne SPACE1_DI ML 4

/* 2-D dataset with fixed di nensions */
#defi ne SPACE2_NAME " Space?2"

#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10
i nt
mai n(voi d)
{
hi d_t fidl; /* HDF5 File IDs */
hid_t dset 1, /* Dataset ID */
dset 2; | * Dereferenced dataset
hid_t sidi, /* Dataspace |ID #1 */
si d2; /* Dataspace | D #2 */
hsize t * coords; /* Coordinate buffer */
hsi ze_t | oW SPACE2_RANK] ; /* Sel ection bounds */
hsi ze_t hi gh[SPACE2_RANK] ; Sel ection bounds */
hdset _reg_ref _t *r buf; /* buffer to to read disk */
i nt *dr buf ; /* Buffer for reading nuneric data fromdisk */
i nt i, j; /* counting variables */
herr _t ret; /* Generic return val ue */

/* Qutput nessage about test being perforned */

/* Allocate wite & read buffers */

rbuf =mal | oc(si zeof (hdset _reg_ref_t)*SPACE1_DI M) ;
dr buf =cal | oc(si zeof (i nt), SPACE2_DI ML* SPACE2_DI M) ;

/* Open the file */

fidl = H5Fopen(Fl LE2, H5F_ACC RDWR HSP_DEFAULT);

/* Cpen the dataset */
dset 1=H5Dopen(fidl, "/ Dataset1");

/* Read sel ection fromdisk */

ret =H5Dr ead(dset 1, H5T_STD_REF_DSETREG, H5S_ALL, H5S_ALL, H5P_DEFAULT, r buf) ;

/* Try to open objects */

dset 2 = H5Rder ef erence(dset 1, HSR_DATASET_REG ON, & buf [0]) ;

/* Check information in referenced dataset */
sidl = HoDget _space(dset 2);

78

National Center for Supercomputing Applications

HDF5 Release 1.2

ret =H5Sget _si npl e_ext ent _npoi nt s(si dl);
printf(" Nunmber of elenments in the dataset is : %\n",ret);

/* Read fromdisk */
r et =H5Dr ead(dset 2, H5T_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, dr buf) ;

for(i=0; i < SPACE2_DI ML; i ++)
for (j=0; j < SPACE2_DIM2; j++) printf (" %l ", drbuf[i*SPACE2_DI M2+j]);
printf("\n"); }

/* Get the hyperslab selection */
si d2=H5Rget regi on(dset 1, HSR DATASET REG ON, & buf[0]);

/* Verify correct hyperslab selected */

ret = H5Sget _sel ect _npoi nts(sid2);

printf(" Nunmber of elements in the hyperslab is : % \n", ret)

ret = H5Sget _sel ect _hyper_nbl ocks(si d2);

coords=nml | oc(ret*SPACE2_RANK*si zeof (hsi ze_t)*2); /* allocate space for the hyperslab
bl ocks */

ret = H5Sget _sel ect _hyper _bl ocklist(sid2,0,ret, coords);

printf(" Hyperslab coordinates are : \n");

printf (" (%u, %u) (%u, %u) \n", \
(unsi gned | ong) coords[0], (unsi gned | ong)coords[1], (unsi gned | ong)coords[2], (unsi gned
| ong) coords[3]);

free(coords)

ret = H5Sget _sel ect _bounds(si d2, | ow, hi gh);

/* Cl ose region space */
ret = H5Scl ose(sid2);

/* Get the el enent selection */
si d2=H5Rget _regi on(dset 1, HSR_DATASET_REG ON, & buf[1]);

/I* Verify correct elements selected */
ret = H5Sget _sel ect _el em npoi nts(sid2);
printf(" Number of selected elenents is : %\n", ret);

/* Allocate space for the element points */
coords= nmal | oc(ret*SPACE2_RANK*si zeof (hsi ze_t));
ret = H5Sget_sel ect _elempointlist(sid2,0,ret,coords);
printf(" Coordinates of selected elenments are : \n");
for (i=0; i < 2*NPA NTS; i=i+2)
printf(" (%u, %u) \n", (unsigned long)coords[i], (unsigned |ong)coords[i+1]);

free(coords);
ret = H5Sget _sel ect _bounds(si d2, | ow, hi gh);

/* Cl ose region space */
ret = H5Scl ose(sid2);

/* Close first space */
ret = H5Scl ose(sidl);

/* O ose dereferenced Dataset */
ret = H5Dcl ose(dset 2);

/* O ose Dataset */
ret = H5Dcl ose(dsetl);

/* Close file */
ret = H5Fcl ose(fidl);

University of lllinois at Urbana-Champaign 79

Introduction to HDF5

/* Free menory buffers */
free(rbuf);

free(drbuf);

return O;

Last modified: 16 October 1999

80 National Center for Supercomputing Applications

HDF5 Tutoria

Release 1.2
October 1999

Hierarchical Data Format (HDF) Group
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

HDF5 Tutorial

Copyright Notice and Statement for
NCSA HDF5 (Hierarchical Data Format 5) Software
Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999 by the Board of Trustees of the University of Illinois
All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National
Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip
library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any
purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and
the following disclaimer.

2. Redigtributionsin binary form must reproduce the above copyright notice, thislist of conditions,
and the following disclaimer in the documentation and/or materials provided with the
distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked,
but not required, to acknowledge that it was developed by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign and to credit the
contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or
promote products derived from this software without specific prior written permission from the
University or the Contributors.

6. THIS SOFTWARE ISPROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS"AS
IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no
event shall the University or the Contributors be liable for any damages suffered by the users
arising out of the use of this software, even if advised of the possibility of such damage.

Last modified: 13 October 1999

National Center for Supercomputing Applications

HDF5 Release 1.2

Introductory Topics

1. Introduction 1
2. HDF5 File Organization 3
3. TheHDF5 API 5
4. Creating an HDF5 File 7
5. Creating a Dataset 11
6. Reading to/Writing from a Dataset 17
7. Creating an Attribute 21
8. Creating a Group 25
9. Creating Groups using Absolute/Relative Names 27
10. Creating Datasetsin Groups 31
Introductory Topics Questions 35
Introductory Topics Questionswith Answers 37
Advanced Topics
11. Compound Data Types 41
12. Selectionsusing H5Ssel ect _hyper sl ab 47
13. Selectionsusing H5Ssel ect _el ement s and H5SCopy 51
14. Referencesto Objects 55
15. Referencesto Dataset Regions 63
16. Chunking and Extendible Datasets 71
17. Mounting Files 75
18. Iterating over Group Members 79
Utilities (h5dunp, h5I s) 83
Glossary 85
References 89
Example Programs from This Tutorial 91

Last Modified: November 8, 1999

University of Illinois at Urbana-Champaign

HDF5 Tutorial

National Center for Supercomputing Applications

HDF5 Release 1.2

1. Introduction

Welcome to the HDF5 Tutoria provided by the HDF User Support Group.

HDF5 isafile format and library for storing scientific data. HDF5 was designed and implemented to address the
deficiencies of HDF4.x. It has a more powerful and flexible data model, supports files larger than 2 GB, supports parallel
1/0, and is thread-safe. For a short overview presentation of the HDF5 data model, library and tools see:

http://hdf. ncsa. ui uc. edu/ HDF5/ HDF5_over vi ew i ndex. ht m

Thistutorial coversthe basic HDF5 data objects and file structure, the HDF5 programming model and the API functions
necessary for creating and modifying data objects. It also introduces the available HDF5 tools to access HDF5 files.

The examples used in this tutorial, along with a Makefile to compile them can be found in the . / exanpl es/ directory in
the online version of thistutorial. You can also download atar file from NCSA’s HDF server with the examples and
Makefile (seentt p: / / hdf . ncsa. ui uc. edu/ t r ai ni ng/ ot her - ex5/ exanpl es. t ar). In order to use the Makefile
you may have to edit it and update the compiler and compiler options, as well as the path for the HDF5 binary
distribution.

Please check the “References” section of this tutorial for where to find other examples of HDF5 Programs.
We hope that the step-by-step examples and instructions will give you a quick start with HDF5.

Please send your comments and suggestiamsf teel p@csa. ui uc. edu.

(Note that the HDF5 Tutorialwas designed and implemented to be used online. Since this version has been modified for
PDF and Postcript format distribution, it lacks the full interactive capability. For interactive use, see either an installed
version of the HDF5 document set that is distributed wih the HDF5 source code and binaries or the HDF web site,
http://hdf. ncsa. ui uc. edu/trai ni ng/ hdf 5/.)

Last Modified: October 8, 1999

University of Illinois at Urbana-Champaign 1

HDF5 Tutorial

2 National Center for Supercomputing Applications

HDF5 Release 1.2

2. HDF5 File Organization

An HDF5 fileisa container for storing a variety of scientific data, and the two primary HDF5 objects are groups and
datasets.

e HDF5 group: agrouping structure containing zero or more HDF5 objects, together with supporting metadata.
 HDF5 dataset: amultidimensiona array of data elements, together with supporting metadata.

Any HDF5 group or dataset may have an associated attribute list. An HDF5 attribute is a user-defined HDF5 structure
that provides extrainformation about an HDF5 object.

Working with groups and group members (datasets for example) is similar in many ways to working with directories and
filesin UNIX. Aswith UNIX directories and files, objectsin an HDF5 file are often described by giving their full (or
absolute) path names.

| signifies the root group.
/ f oo signifies a member of the root group called foo.
/ f oo/ zoo signifies a member of the group foo, which in turn is a member of the root group.

Last Modified: July 30, 1999

University of Illinois at Urbana-Champaign 3

HDF5 Tutorial

4 National Center for Supercomputing Applications

HDF5 Release 1.2

3. TheHDF5API

The HDF5 library provides several interfaces, and is currently implemented in C. The APIs provide routines for accessing
HDF5 files and creating and manipulating HDF5 objects. All C routinesin the HDF5 library begin with a prefix of the
form H5*, where * isasingle letter indicating the object on which the operation is to be performed. The APIs are listed
below:

API DESCRIPTION

H5 Library Functions: the general-purpose H5 functions.

H5A | Annotation Interface: attribute access and manipulating routines.

H5D |Dataset Interface: dataset access and manipulating routines.

H5E | Error Interface: error handling routines.

HS5F |FileInterface: file access routines.

H5G | Group Interface: group creating and operating routines.

H5I Identifier Interface: identifier routines.

H5P | Property List Interface: object property list manipulating routines.

H5R |Reference Interface: reference routines.

H5S |Dataspace Interface: routines for defining dataspaces.

Data type Interface: routines for creating and manipulating the

ISy data type of dataset elements.

H5Z | Compression Interface: compression routine(s).

Last Modified: July 30, 1999

University of Illinois at Urbana-Champaign 5

HDF5 Tutorial

6 National Center for Supercomputing Applications

HDF5 Release 1.2

4. Creating an HDF5 File

What isan HDF5 file?

An HDF5 fileisabinary file which contains scientific data and supporting metadata. The two primary objects stored in an
HDF5 file are groups and datasets. Groups and datasets will be discussed in the other sessions.

To create afile, the program application must specify afile name, file access mode, file creation property list, and file
access property list.
e FileCreation Property List:
Thefile creation property list is used to control the file metadata. File metadata contains information about the
size of the user-block, the size of various file data structures used by the HDF5 library, etc.

The user-block is afixed length block of data located at the beginning of the file which isignored by the HDF5
library and may be used to store any data information found to be useful to applications.

For more details, see the HDF5 documentation. In this tutorial, the default file metadata is used.

* FileAccess Property List:
The file access property list is used to control different methods of performing 1/0O on files. See the HDF5 User’s
Guide for details. The default file access property is used in this tutorial.
The steps to create and close an HDF5 file are as follows:
1. Specify the file creation and access property listsif necessary.
2. Createafile.

3. Closethefile and close the property lists if necessary.

To create an HDF5 file, the calling program must contain the following calls:

file_id = HoFcreate(fil enane, access_nopde, create_id, access_id);

H5Fcl ose(file_id);

University of Illinois at Urbana-Champaign 7

HDF5 Tutorial

Programming Example
Description

The following example demonstrates how to create and close an HDF5 file. It creates afile called file.hs’, and then closes
thefile.
[h5 crtfile.c]

o T L o O S

#i ncl ude <hdf5. h>
#define FILE "file.h5"

mai n() {
hi d_t file_id; /* file identifier */
herr_t st at us;

/* Create a new file using default properties. */
file id = H5Fcreate(FlI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P DEFAULT);

/* Term nate access to the file. */
status = H5Fcl ose(file_id);
}

o T L o O S

Remarks

Theinclude file 'hdf5.h’ contains definitions and declarations, and it must be included in any file that uses the
HDFS5 library.

e H5Fcreate creates an HDF5 file and returns the file identifier.
hid_t H5Fcreate (const char *nane, unsigned flags, hid t create_id,
hid_t access_id)
* Thefirst parameter specifies the name of thefile to be created.

e The second parameter specifies the file access mode. HSF_ ACC_TRUNC will truncate afileif it
already exists.

e Thethird parameter specifies the file creation property list. HSP_DEFAULT indicates that the default
file creation property list is used.

e Thelast parameter of H5Fcreate specifies the file access property list. HSP_DEFAULT indicates that
the default file access property list is used.

« When afileisno longer accessed by a program, H5Fclose must be called to rel ease the resource used by thefile.
Thiscall is mandatory.

herr_t H5Fclose (hid_t file_id)

e Theroot group is automatically created when afileis created. Every file has aroot group and the path name of
the root groupis’/’.

8 National Center for Supercomputing Applications

HDF5 Release 1.2

File Contents

HDF has developed tools to examine the contents of HDF5 files. The tool used in thistutorial isthe HDF5 dumper,
h5dump. h5dump is atool that displays the file contents in human readable form to an ASCII filein DDL. DDL (Data
Description Language) is alanguage that describes HDF5 objects in Backus-Naur Form. To view the file contents, type:

h5dunp <fil ename>

Figure 4.1 describes the file contents of 'file.h5’ using a directed graph. Each HDF5 object is represented by arectangle
and the arrows indicate the structure of the contents. In Fig. 4.2, ‘file.n5’ contains a group object named '/’ (the root group).

Fig. 4.1 Contents of file.n5’

Figure 4.2 is the text-description of 'file.h5’ generated by h5dump. The HDF5 file called file.h5’ contains a group called
T

Fig. 4.2 ‘file.h5 in DDL

HDF5 "file.h5" {
GROUP "/" {

}

}

University of Illinois at Urbana-Champaign

HDF5 Tutorial

File Definition in DDL

Figure 4.3 isthe simplified DDL file definition for creating an HDF5 file. For smplicity, asimplified DDL isused in this
tutorial. A complete and more rigorous DDL can be found in the HDF5 User's Guide. See the “References” section of this
tutorial.

Fig. 4.3 HDF5 File Definition

The explanation of the symbols used in the DDL:

M defined as

<t nane> a token with the name tnane
<a> | one of <a> or

<a>* zero or nore occurrences of <a>

The simplified DDL file definition:

<file> ::= HDF5 "<file_name>" { <root_group> }

<root_group> ::= GROUP "/" { <group_attribute>* <group_nenber>* }
<group_attribute> ::= <attribute>

<group_nmnenber> ::= <group> | <dataset>

Last Modified: August 27, 1999

10 National Center for Supercomputing Applications

HDF5 Release 1.2

5. Creating a Dataset

What is a Dataset?

A dataset is a multidimensional array of data el ements, together with supporting metadata. To create a dataset, the
application program must specify the location to create the dataset, the dataset name, the data type and space of the data
array, and the dataset creation properties.

Data Types

A datatypeisacollection of datatype properties, al of which can be stored on disk, and which when taken as awhole,
provide complete information for data conversion to or from that data type.

There are two categories of datatypesin HDF5; atomic and compound data types. An atomic type is a type which cannot
be decomposed into smaller units at the API level. A compound data type is a collection of one or more atomic types or
small arrays of such types.

Atomic types include integer, float, date and time, string, bit field, and opaque. Figure 5.1 shows the HDF5 data types.
Some of the HDF5 predefined atomic data types are listed in Figure 5.2. In this tutorial, we consider only HDF5
predefined integers. For information on data types, see the HDF5 User’'s Guide.

Fig5.1 HDFS5 data types

+-- integer
+-- floating point
+---- atomic ----+-- date and tine
| +-- character string
HDF5 dat atypes --| +-- bit field
[+-- opaque
I
+---- conpound
Fig. 5.2 Examples of HDF5 predefined data types
Data Type Description
HS5T_STD_I32LE Four-byte, little-endian, signed two’s complement integer
H5T_STD_U16BE Two-byte, big-endian, unsigned integer
HS5T_IEEE_F32BE Four-byte, big-endian, | EEE floating point
HS5T_IEEE_F64LE Eight-byte, little-endian, |EEE floating point
H5T C S1 One-byte, null-terminated string of eight-bit characters

University of lllinois at Urbana-Champaign 11

HDF5 Tutorial

Dataspaces

A dataspace describes the dimensionality of the data array. A dataspaceis either aregular N-dimensional array of data
points, called a simple dataspace, or amore general collection of data points organized in another manner, called a
complex dataspace. Figure 5.3 shows HDF5 dataspaces. In thistutorial, we only consider simple dataspaces.

Fig 5.3 HDF5 dataspaces

+-- sinple
HDF5 dat aspaces - -
+-- conpl ex

The dimensions of a dataset can be fixed (unchanging), or they may be unlimited, which means that they are extendible. A
dataspace can also describe portions of a dataset, making it possible to do partial 1/O operations on selections.

Dataset creation properties

When creating a dataset, HDF5 allows users to specify how raw datais organized on disk and how the raw datais
compressed. Thisinformation is stored in a dataset creation property list and passed to the dataset interface. The raw data
on disk can be stored contiguoudly (in the same linear way that it is organized in memory), partitioned into chunks and
stored externaly, etc. In thistutorial, we use the default creation property list; that is, no compression and contiguous
storage layout is used. For more information about the creation properties, see the HDF5 User’s Guide.

In HDF5, data types and spaces are independent objects, which are created separately from any dataset that they might be
attached to. Because of this the creation of a dataset requires definitions of data type and dataspace. In this tutorial, we use
HDF5 predefined data types (integer) and consider only simple dataspaces. Hence, only the creation of dataspace objects
is needed.

To create an empty dataset (no data written) the following steps need to be taken:
4. Obtain the location id where the dataset is to be created.
5. Definethe dataset characteristics and creation properties.
* defineadatatype
e define adataspace
e gpecify dataset creation properties
6. Createthe dataset.
7. Closethe datatype, dataspace, and the property list if necessary.
8. Close the dataset.

To create a simple dataspace, the calling program must contain the following calls:

dat aspace_i d = H5Screate_sinpl e(rank, dinms, nmaxdins);
H5Scl ose(dat aspace_id);

To create a dataset, the calling program must contain the following calls:
dataset _id = HoDcreate(hid_t loc_id, const char *nane, hid_t type_id,

hid_t space_id, hid_t create_plist_id);
H5Dcl ose (dataset _id)

12 National Center for Supercomputing Applications

HDF5 Release 1.2

Programming Example

Description

The following example shows how to create an empty dataset. It creates afile called 'dset.h5’, defines the dataset
dataspace, creates a dataset which is a 4x6 integer array, and then closes the dataspace, the dataset, and the file.
[h5_crtdat.c]

o T L o O S

#i ncl ude <hdf5. h>
#define FILE "dset. h5"

mai n() {
hid_t file_id, dataset _id, dataspace_id; /* identifiers */
hsi ze_t di ms[2] ;
herr _t st at us;

/* Create a new file using default properties. */
file_id = H5Fcreate(FI LE, HSF_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT):

/* Create the data
space for the dataset. */
di ms[0] 4;
di ms[1] 6;
dat aspace_id = H5Screate_sinple(2, dinms, NULL);

/* Create the dataset. */
dataset _id = HoDcreate(file_id, "/dset", H5T_STD | 32BE, dataspace_id,
H5P_DEFAULT) ;

/* End access to the dataset and rel ease resources used by it. */
status = H5Dcl ose(dataset _id);

/* Term nate access to the data space. */
status = H5Scl ose(dat aspace_i d);

/* Close the file. */
status = H5Fcl ose(file_id);
}

e o S I

Remarks

« H5Screate_simple creates a new simple data space and returns a data space identifier.

hid_t H5Screate_sinple (int rank, const hsize_t * dins,
const hsize_t * maxdi ns)

* Thefirst parameter specifies the rank of the dataset.

e The second parameter specifies the size of the dataset.

e Thethird parameter is for the upper limit on the size of the dataset. If it is NULL, the upper limit isthe

University of Illinois at Urbana-Champaign

13

HDF5 Tutorial

same as the dimension sizes specified by the second parameter.

» H5Dcreate creates a dataset at the specified location and returns a dataset identifier.

hid t H5Dcreate (hid_t loc_id, const char *nane, hid_t type_id,
hid_t space_id, hid_t create_plist_id)

e Thefirst parameter isthe location identifier.
* Thesecond parameter is the name of the dataset to create.

* Thethird parameter is the data type identifier. H5T_STD_|32BE, a 32-bit Big Endian integer, isan
HDF atomic data type.

* Thefourth parameter is the data space identifier.

* Thelast parameter specifies the dataset creation property list. HSP_DEFAULT specifies the default
dataset creation property list.

» H5Dcreate creates an empty array and initializes the data to O.

e When adataset is no longer accessed by a program, H5Dclose must be called to rel ease the resource used by the
dataset. Thiscall is mandatory.

hid t H5Dclose (hid_t dataset _id)

14 National Center for Supercomputing Applications

HDF5 Release 1.2

File Contents

Thefile contents of 'dset.h5’ are shown is Figure 5.4 and Figure 5.5.

Figure5.4 The Contents of 'dset.hS’

Figure5.5 'dset.h5 in DDL

HDF5 "dset.h5" {
GROUP "/" {
DATASET "dset" {
DATATYPE { H5T_STD_ | 32BE }
DATASPACE { SIMPLE (4, 6) / (4, 6) }

DATA {
0, 0, 0, 0, 0, O,
0, 0, 0, 0, 0, 0O,
0, 0, 0, 0, 0, O,
0, 0,0 0 0 0
}
}
}
}

Dataset Definition in DDL

Thefollowing isthe simplified DDL dataset definition:

Fig. 5.6 HDF5 Dataset Definition

<dat aset > ::= DATASET "<dat aset_nane>" { <data type>
<dat aspace>
<dat a>
<dat aset _attribute>* }

<data type> ::= DATATYPE { <atomic_type> }

<dat aspace> ::= DATASPACE { SI MPLE <current_dims> / <max_di ms> }

<dataset _attribute> ::= <attribute>

Last Modified: August 27, 1999

University of Illinois at Urbana-Champaign 15

HDF5 Tutorial

16 National Center for Supercomputing Applications

HDF5 Release 1.2

6. Reading to/Writing from a Dataset

Reading to/Writing from a Dataset

During a dataset |/O operation, the library transfers raw data between memory and the file. The memory can have a data
type different than the file data type and can also be a different size (memory is a subset of the dataset elements, or vice
versa). Therefore, to perform read or write operations, the application program must specify:

The dataset

The dataset’s data type in memory

The dataset’s dataspace in memory

The dataset’s dataspace in the file

The transfer properties (The data transfer properties control various aspects of the 1/0 operations like the number
of processes participating in a collective 1/O request or hints to the library to control caching of raw data. In this

tutorial, we use the default transfer properties.)

The data buffer

The steps to read to/write from a dataset are as follows:

9.

10.
11.
12.
13.
14.
15.

16.

Obtain the dataset identifier.

Specify the memory data type.

Specify the memory dataspace.

Specify the file dataspace.

Specify the transfer properties.

Perform the desired operation on the dataset.
Close the dataset.

Close the dataspace/data type, and property list if necessary.

To read to/write from a dataset, the calling program must contain the following call:

H5Dr ead(dat aset _id, memtype_id, nmemspace_id, file_space_id,

or

xfer_plist_id, buf);

H5Dwrite(dataset _id, nemtype_id, memspace_id, file_space_id,

xfer_plist_id, buf);

University of lllinois at Urbana-Champaign 17

HDF5 Tutorial

Programming Example

Description

The following example shows how to read and write an existing dataset. It opens the file created in the previous example,
obtains the dataset identifier, /dset, writes the dataset to the file, then reads the dataset back from memory. It then closes
the dataset and file.

[h5_rdwt.c]

o T L o O S

#i ncl ude <hdf5. h>
#defi ne FILE "dset.h5"

mai n() {
hi d_t file_id, dataset_id;, /* identifiers */
herr _t st at us;
i nt i, j, dset_data[4][6];

/* Initialize the dataset. */
for (i =0; i < 4; i++)
for (j =0;] <6, j++)
dset _data[i][j] =i * 6 + | + 1;

/* QOpen an existing file. */
file_id = H5Fopen(FI LE, H5F_ACC RDWR, H5P_DEFAULT);

/* Open an existing dataset. */

dataset _id = HoDopen(file_id, "/dset");

/* Wite the dataset. */

status = HoDwite(dataset_id, HS5T_NATIVE_INT, H5S ALL, H5S ALL, HS5P_DEFAULT,
dset _data);

status = H5Dr ead(dataset id, H5T_NATIVE INT, H5S ALL, H5S ALL, H5P_DEFAULT,
dset _data);

/* Close the dataset. */
status = H5Dcl ose(dataset _id);

/* Close the file. */

status = H5Fcl ose(file_id);
}

o e S

Remarks

» H5Fopen opens an existing file and returns afile identifier.

hid_t H5Fopen (const char *name, unsigned flags, hid_t access_id)

e Thefirst argument isthe file name.

18 National Center for Supercomputing Applications

HDF5 Release 1.2

The second argument is the file access mode. HSF_ ACC_RDWR alows afile to be read from and
written to.

Thethird parameter is the identifier for the file access property list. HSP_ DEFAULT specifiesthe
default file access property list.

« H5Dopen opens an existing dataset with the name specified by the second argument at the location specified by
the first parameter, and returns an identifier.

hi d_t H5Dopen (hid_t loc_id, const char *nane)

« H5Dwrite writes raw data from an application buffer to the specified dataset, converting from the data type and
data space of the dataset in memory to the data type and data space of the dataset in the file.

herr t HoDwrite (hid_t dataset_id, hid_t memtype_id, hid_t nemspace_id,

hid t file_space_id, hid_ t xfer_plist_id, const void * buf)
Thefirst parameter is the identifier of the dataset.

The second parameter isthe identifier of the dataset’s datatype in memory. HST_NATIVE_INT isan
integer data type for the machine on which the library was compiled.

Thethird parameter is the identifier of the dataset’s dataspace in memory. H5S _ALL indicates that the
dataset’s dataspace in memory is the same asthat in the file.

The fourth parameter is the identifier of the dataset’s dataspace in the file. H5S_ALL indicates that the
entire dataspace of the dataset in the file is referenced.

The fifth parameter is the identifier of the data transfer propery list. H5SP_DEFAULT indicates that the
default datatransfer property list is used.

The last parameter is the data buffer.

» H5Dread reads raw data from the specified dataset to an application buffer, converting from the file datatype and
dataspace to the memory datatype and dataspace.

herr_t HoDread (hid_t dataset _id, hid t memtype_ id, hid_t memspace_id,

hidt file_space_id, hid_t xfer_plist_id, void * buf)
Thefirst parameter is the identifier of the dataset read from.

The second parameter is the identifier of the dataset’s memory datatype.
Thethird parameter is the identifier of the dataset’s memory dataspace.
The fourth parameter is the identifier of the dataset’s fil e dataspace.
The fifth parameter is the identifier of the data transfer propery list.

The last parameter is the data buffer.

University of lllinois at Urbana-Champaign 19

HDF5 Tutorial

File Contents

Figure 6.1 shows the contents of 'dset.h5'.

Fig. 6.1 ’dset.h5 in DDL

HDF5 "dset. h5" {
GROUP "/ " {
DATASET "dset" ({
DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (4, 6) / (4, 6) }
DATA {
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24

Last Modified: August 27, 1999

20 National Center for Supercomputing Applications

HDF5 Release 1.2

/. Creating an Attribute

What is an Attribute?

Attributes are small datasets that can be used to describe the nature and/or the intended usage of the object they are
attached to. In this section, we show how to create and read/write an attribute.

Creating an attribute

Creating an attribute is similar to the creation of a dataset. To create an attribute the application must specify the object
which the attribute is attached to, the data type and space of the attribute data and the creation properties.

The steps to create an attribute are as follows:
17. Obtain the object identifier that the attribute isto be attached to.
18. Define the characteristics of the attribute and specify creation properties.
« Define the data type.
» Define the dataspace.
e Specify the creation properties.
19. Create the attribute.
20. Close the attribute and data type, dataspace, and creation property list if necessary.

To create an attribute, the calling program must contain the following calls:

attr_id = HoAcreate(loc_id, attr_nane, type_id, space_id, create_plist);
H5Acl ose(attr_id);

Reading/Writing an attribute

Attributes may only be read/written as an entire object. No partial 1/0 is currently supported. Therefore, to perform I/O
operations on an attribute, the application needs only to specify the attribute and the attribute’s memory data type.

The steps to read/write an attribute are as follows.
1. Obtain the attribute identifier.
2. Specify the attribute’s memory data type.
3. Perform the desired operation.

4. Closethe memory datatype if necessary.

University of lllinois at Urbana-Champaign 21

HDF5 Tutorial

To read/write an attribute, the calling program must contain the following calls:

status = HoAread(attr_id, memtype_id, buf);
or

status = HbAwite(attr_id, nemtype_id, buf);

Programming Example

Description

This example shows how to create and write a dataset attribute. It opens an existing file 'dset.h5’, obtains the id of the
dataset "/dset1", defines the attribute’s dataspace, creates the dataset attribute, writes the attribute, and then closes the
attribute’s dataspace, attribute, dataset, and file.

[h5 crtatt.c]

s o

#i ncl ude <hdf5. h>
#define FILE "dset. h5"

mai n() {

hid_t file_id, dataset _id, attribute_id, dataspace_id; /* identifiers
*/

hsi ze_t di ns;

int attr_data[2];

herr _t st at us;

/[* Initialize the attribute data. */
attr_data[0] = 100;
attr_data[1] = 200;

/* QOpen an existing file. */
file_id = H5Fopen(FILE, H5F_ACC RDWR, H5P_DEFAULT);

/* Open an existing dataset. */
dataset _id = HoDopen(file_id, "/dset");

/* Create the data space for the attribute. */
dins = 2;
dat aspace_id = H5Screate_sinple(1, &dimnms, NULL);

/* Create a dataset attribute. */
attribute_id = H5Acreate(dataset _id, "attr", H5T_STD | 32BE, dataspace_id, H5P_DEFAULT);

/* Wite the attribute data. */
status = HSAwite(attribute_id, HS5T_NATIVE_INT, attr_data);

/* Close the attribute. */
status = Hb5Acl ose(attribute_id);

/* C ose the dataspace. */
status = H5Scl ose(dat aspace_i d);

22 National Center for Supercomputing Applications

HDF5 Release 1.2

/* Close to the dataset. */
status = H5Dcl ose(dat aset _id);

/* Close the file. */
status = HoFcl ose(file_id);
}

o T L o O S

Remarks

« Hb5Acreate creates an attribute which is attached to the object specified by the first parameter, and returns an
identifier.

hid t H5Acreate (hid_t loc_id, const char *nane, hid_t type_id,
hid_t space_id, hid_t create_plist)

Thefirst parameter isthe identifier of the object which the attribute is attached to.
* Thesecond parameter is the name of the attribute to create.

e Thethird parameter isthe identifier of the attribute’s datatype.

* Thefourth parameter is the identifier of the attribute’s dataspace.

* Thelast parameter istheidentifier of the creation property list. HSP_DEFAULT specifies the default
creation property list.

« HS5Awrite writes the entire attribute, and returns the status of the write.
herr_t HS5Awrite (hid_t attr_id, hid_t nemtype_id, void *buf)
e Thefirst parameter is the identifier of the attribute to write.
e The second parameter is the identifier of the attribute’'s memory datatype.
* Thelast parameter isthe data buffer.

e When an attribute is no longer accessed by a program, H5Aclose must be called to release the attribute from use.
Thiscall is mandatory.

herr_t H5Aclose (hid_t attr_id)

University of lllinois at Urbana-Champaign 23

HDF5 Tutorial

File Contents

The contents of 'dset.h5’ and the attribute definition are given in the following:

Fig. 7.1 ’dset.h5 in DDL

HDF5 "dset.h5" {
GROUP "/ " {
DATASET "dset" {
DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (4, 6) / (4, 6) }
DATA {
1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12
13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24

}
ATTRI BUTE "attr" {
DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (2) / (2) }
DATA {
100, 200

Attribute Definition in DDL

Fig. 7.2 HDF5 Attribute Definition

<attribute> ::= ATTRI BUTE "<attr_nane>" { <datatype>
<dat aspace>
<data> }

Last Modified: August 27, 1999

24 National Center for Supercomputing Applications

HDF5 Release 1.2

8. Creating a Group

What isa Group?

An HDF5 group is a structure containing zero or more HDF5 objects. The two primary HDF5 objects are groups and
datasets. To create a group, the calling program must:

21. Obtain the location identifier where the group isto be created.
22. Create the group.
23. Close the group.

To create a group, the calling program must contain the following calls:

group_id = H5Gereate (loc_id, name, size_hint);
H5Ccl ose (group_id);

Programming Example
Description

The following example shows how to create and close a group. It creates afile called 'group.h5’, creates a group called
MyGroup in the root group, and then closes the group and file.
[h5_crtgrp.c]

o T L o O S

#i ncl ude <hdf5. h>
#define FILE "group. h5"

mai n() {
hi d_t file_id, group_id; /* identifiers */
herr _t st at us;

/* Create a new file using default properties. */
file_id = H5Fcreate(FI LE, HSF_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT):

/* Create a group named "/MyGoup"” in the file. */
group_id = H5Gcreate(file_id, "/ MyGoup", 0);

/* Close the group. */
status = H5Ccl ose(group_id)

/* Term nate access to the file. */
status = H5Fcl ose(file_id);
}

T

University of lllinois at Urbana-Champaign 25

HDF5 Tutorial

Remarks

» H5Gcreate creates a new empty group and returns a group identifier.
hid_t H5Gcreate (hid_t loc_id, const char *nanme, size_t size_hint)

e Thefirst parameter specifies the location to create the group.

* The second parameter specifies the name of the group to be created.

e Thethird parameter specifies how much file space to reserve to store the names that will appear in the
group. If anon-positive value is supplied, then a default size is used. Passing a value of zero isusually
adequate since the library is able to dynamically resize the name heap.

» H5Gcreate creates a group named MyGroup in the root group of the specified file.

e H5Gclose closes the group. This call is mandatory.

herr_t H5CGcl ose (hid_t group_id)

File Contents

The contents of 'group.h5’ and the definition of the group are given in the following:

Fig. 8.1 The Contents of 'group.h5’.

Fig. 8.2 ’group.h5’ in DDL

HDF5 " group. h5" {

GROUP "/" {
GROUP " MyGroup” {
}

}

}

Last Modified: August 27, 1999

26 National Center for Supercomputing Applications

HDF5 Release 1.2

9. Creating Groups using Absolute/Relative
Names

Absolutevs. Relative Names

Recall that to create an HDF5 object, we have to specify the location where the object isto be created. Thislocation is
determined by the identifier of an HDF5 object and the name of the object to be created. The name of the created object
can be either an absolute name or a name relative to the specified identifier. In Example 5, we used the file identifier and
the absolute name "/MyGroup" to create agroup. The file identifier and the name "/" specifies the location where the
group "MyGroup" was created.

In this section, we discuss HDF5 names and show how to use absolute/relative names by giving an example of creating
groupsin afile.

Names

HDF5 object names are a dash-separated list of components. There are few restrictions on names. component names may
be any length except zero and may contain any character except slash (/") and the null terminator. A full name may be
composed of any number of component names separated by slashes, with any of the component names being the special
name".". A name which begins with a slash is an absolute name which is accessed beginning with the root group of the
file while all other relative names are accessed beginning with the specified group. Multiple consecutive slashesin afull
name are treated as single slashes and trailing slashes are not significant. A special case isthe name"/" (or equivalent)
which refers to the root group.

Functions which operate on names generally take alocation identifier which is either afile ID or agroup 1D and perform
the lookup with respect to that location. Some possibilities are:

Location |Object

Type Name Description

FileID [foo/bar | The object bar in group foo in the root group.

Group ID |/foo/bar | The object bar in group foo in the root group of the file containing the specified group. In
other words, the group ID’s only purpose isto supply afile.

FileID / The root group of the specified file.

Group ID |/ The root group of the file containing the specified group.

Group ID |foo/bar | The object bar in group foo in the specified group.

FileID . The root group of thefile.
Group ID |. The specified group.
Other ID . The specified object.

University of Illinois at Urbana-Champaign 27

HDF5 Tutorial

Programming Example

Description

The following example code shows how to create groups using absolute and relative names. It creates three groups: the
first two groups are created using the file identifier and the group absolute names, and the third group is created using a
group identifier and the name relative to the specified group.

[h5_crtgrpar.c]

o T L o O S

#i ncl ude <hdf5. h>
#define FILE "groups. h5"

mai n() {
hid_t file_id, groupl_id, group2_id, group3_id; /* identifiers */
herr _t st at us;

}

/* Create a new file using default properties. */
file_id = H5Fcreate(FI LE, HSF_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT):

/* Create group "MyGroup" in the root group using absolute nane. */
groupl id = HoCGereate(file_id, "/ MyGoup", 0);

/* Create group "Group_A" in group "MyGroup" using absolute name. */
group2_id = HoGereate(file_id, "/ MG oup/ Goup_A", 0);

/* Create group "Group_B" in group "MyGoup" using relative name. */
group3_id = H5Gereate(groupl_id, "G oup_B", 0);

/* C ose groups. */

status = H5Ccl ose(groupl_id);
status = H5Ccl ose(group2_id);
status = H5Ccl ose(group3_id);

/* Close the file. */
status = H5Fcl ose(file_id);

o e S

Remarks

» H5Gcreate creates agroup at the location specified by alocation ID and aname. The location ID can be afile ID
or agroup |D and the name can be relative or absolute.

« Thefirst H5Gcreate creates the group 'MyGroup’ in the root group of the specified file.

* Thesecond H5Gcreste creates the group 'Group_A' in the group '"MyGroup’ in the root group of the specified
file. Note that the parent group (MyGroup) aready exists.

« Thethird H5Gcreate creates the group 'Group_B' in the specified group.

28

National Center for Supercomputing Applications

HDF5 Release 1.2

File Contents

The file contents are shown bel ow:

Fig. 9.1 The Contents of 'groups.h5’

Fig. 9.2 ’groups.h5’ in DDL

HDF5 "groups. h5" {
GROUP "/ " {
GROUP "MyG oup" {
GROUP " Group_A" {

}
GROUP " Group_B" {
}
}
}
}

Last Modified: August 27, 1999

University of Illinois at Urbana-Champaign

29

HDF5 Tutorial

30 National Center for Supercomputing Applications

HDF5 Release 1.2

10. Creating Datasetsin Groups

Creating datasetsin groups

We have shown how to create groups, datasets and attributes. In this section, we show how to create datasets in groups.
Recall that H5Dcreate creates a dataset at the location specified by alocation identifier and a name. Similar to H5Gcreate,
the location identifier can be afile identifier or a group identifier and the name can be relative or absolute. The location
identifier and the name together determine the location where the dataset is to be created. If the location identifier and
name refers to a group, then the dataset is created in that group.

Programming Example

Description

This example shows how to create a dataset in a particular group. It opens the file created in the previous example and
creates two datasets.
[h5_crtgrpd.c]

s o

#i ncl ude <hdf5. h>
#define FILE "groups. h5"

mai n() {
hid_t file_id, group_id, dataset_id, dataspace_id; /* identifiers */
hsi ze_t di nms[2] ;
herr _t st at us;
i nt i, j, dsetl data[3][3], dset2_data[2][10];

/* Initialize the first dataset. */
for (i =0; i < 3; i++)
for (j =0; j <3; j+4)
dsetl datal[i][j] =] + 1;

/* Initialize the second dataset. */
for (i =0; i < 2; i++4)
for (j =0; j <10; j++)
dset2 datali][j] =] + 1;

/* QOpen an existing file. */
file_id = H5Fopen(FILE, H5F_ACC RDWR, H5P_DEFAULT);

/* Create the data space for the first dataset. */
dins[0] = 3;

dims[1] = 3;

dat aspace_id = H5Screate_sinple(2, dins, NULL);

University of lllinois at Urbana-Champaign 31

HDF5 Tutorial

}

/* Create a dataset in group "MyG oup". */

dataset _id = HoDcreate(file_id, "/ MGoup/dsetl”, H5T _STD | 32BE, dataspace_id

H5P_DEFAULT) ;

/* Wite the first dataset. */

status = H5Dwite(dataset_id, HST_NATIVE INT, H5S ALL, H5S ALL, HS5P_DEFAULT,

dsetl data);

/* Close the data space for the first dataset. */
status = H5Scl ose(dat aspace_i d);

/* Close the first dataset. */
status = H5Dcl ose(dataset _id);

/* QOpen an existing group of the specified file. */
group_id = H5Gopen(file_id, "/ MG oup/ Goup_A");

/* Create the data space for the second dataset. */
dinms[0] = 2;

dims[1] = 10;

dat aspace_id = H5Screate_sinple(2, dins, NULL);

/* Create the second dataset in group "Goup A". */

dataset _id = HoDcreate(group_id, "dset2", H5T_STD | 32BE, dataspace_id, H5P_DEFAULT);

/* Wite the second dataset. */

status = H5Dwite(dataset_id, HS5T_NATIVE INT, H5S ALL, H5S ALL, HS5P_DEFAULT,

dset2_data);

/* Close the data space for the second dataset. */
status = H5Scl ose(dat aspace_i d);

/* Close the second dataset */
status = H5Dcl ose(dataset _id);

/* Close the group. */
status = H5Ccl ose(group_id);

/* Close the file. */
status = HoFcl ose(file_id);

L e o O S

32

National Center for Supercomputing Applications

HDF5 Release 1.2

File Contents

Fig. 10.1 The Contents of 'groups.h5’

Fig. 10.2 ’'groups.h5 in DDL

HDF5 "groups. h5" {
GROUP "/ " {
GROUP "MyG oup" {
GROUP "Group_A" {
DATASET "dset 2" {
DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (2, 10) / (2, 10) }
DATA {
1, 2, 3
1, 2, 3,
}
}
}
GROUP "Group_B" {
DATASET "dset 1" {
DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (3, 3) / (3, 3) }
DATA {

3
’ 3’
3

e
N NN

Last Modified: August 27, 1999

University of lllinois at Urbana-Champaign 33

HDF5 Tutorial

34 National Center for Supercomputing Applications

HDF5 Release 1.2

Introductory Topics Questions

Section 2: HDF File Organization

1.

Narme and describe the two primary objects that can be stored in an HDF5
file:

What is an attribute?

G ve the path name for an object called "harry" that is a nenber of a
group called "dick," which in turn is a menber of the root group.

Section 3: The HDF5 API

Descri be the purpose of each of the foll owing HDF5 APIs:

H5A, H5D, HS5E, F5F, H5G H5T, H5Z

Section 4: Creating an HDF File

What two HDF5 routines nust be called in order to create an HDF5 file?
What include file nust be included in any file that uses the HDF5 library.
An HDF5 file is never conpletely enpty because as soon as an HDF5 file

is created, it autonatically contains a certain primary object. Wat is
that object?

Section 5: Creating a Dataset

1.

2.

Name and describe two maj or datatype categori es.
Li st the HDF5 atomic datatypes. G ve an exanple of a predefined datatype.

VWhat does the dataspace describe? What are the major characteristics of the
si npl e dat aspace?

What i nformation needs to be passed to the H5Dcreate function, i.e.
what information is needed to describe a dataset at creation tine?

University of Illinois at Urbana-Champaign

35

HDF5 Tutorial

Section 6: Reading fromWiting to a Dataset

1. What are six pieces of information which need to be specified for
reading and witing a dataset?

2. Way are both the nenory dataspace and file dataspace needed for
read/wite operations, but only the nmenory datatype is specified for the
dat at ype?

3. What does the line DATASPACE { SIMPLE (4, 6) / (4, 6) } inFige6.1
neans?

Section 7: Creating an Attribute

1. What is an attribute?

2. Can partial 1/O operations be performed on attributes?

Section 8: Creating a G oup

What are the two primary objects that can be included in
a group?

Section 9: Creating G oups using Absol ute/Rel ati ve Nanes

1. Group nanmes can be specified in tw "ways". Wat are these
two types of group nanes that you can specify?

2. You have a dataset nanmed "npoo" in the group "boo", which is
in the group "foo", which in turn, is in the root group. How would
you specify an absolute name to access this dataset?

Section 10: Creating Datasets in G oups

Describe a way to access the dataset "npo" described in the previous section
(Section 9, question 2), using a relative and absol ute pat hnane.

Last Modified: August 2, 1999

36 National Center for Supercomputing Applications

HDF5 Release 1.2

Introductory Topics Questionswith Answers

Section 2: HDF File Organization

1. Nanme and describe the two primary objects that can be stored in an HDF5
file:

Answer :
Group: A grouping structure containing zero or nore HDF5 objects, together
with supporting netadata.

Dataset: A nultidinmensional array of data elements, together wth
supporting netadata.

2. What is an attribute?

Answer: An HDF attribute is a user-defined HDF5 structure that provides extra
i nformati on about an HDF5 obj ect.

3. Gve the path name for an object called "harry" that is a nenber of a
group called "dick," which in turn is a nenber of the root group.

Answer: /dick/harry

Section 3: The HDF5 API

Descri be the purpose of each of the following HDF5 APl s:
H5A, H5D, H5E, F5F, H5G H5T, H5Z

H5A: Attribute access and nmani pul ation routines.

H5D: Dat aset access and nani pul ati on routines.

H5E: Error handling routines.

F5F: File access routines.

H5G Routines for creating and operating on groups.

H5T: Routines for creating and mani pul ati ng the datatypes of dataset el enents.
H5Z: Data conpression routines.

Section 4: Creating an HDF File

1. What two HDF5 routines nust be called in order to create an HDF5 fil e?
Answer: H5Fcreate and H5Fcl ose.
2. What include file must be included in any file that uses the HDF5 l|ibrary.

Answer: hdf5.h nmust be included because it contains definitions and
decl arations used by the library.

University of Illinois at Urbana-Champaign 37

HDF5 Tutorial

3. An HDF5 file is never conpletely enpty because as soon as an HDF5 file
is created, it autonatically contains a certain primary object. Wat is
that object?

Answer: The root group.

Section 5: Creating a Dataset

1. Nanme and describe two maj or datatype categories.

Answer: atomic datatype - An atomi c datatype cannot be deconposed into
smaller units at the APl |evel.
conpound datatype - A conpound datatype is a collection of atomc/
conmpound dat atypes, or small arrays of such types.

2. List the HDF5 atonmic datatypes. G ve an exanple of a predefined datatype.

Answer: There are six HDF5 atomic datatypes: integer, floating point,
date and tinme, character string, bit field, opaque.
H5T_I| EEE_F32LE - 4-byte little-endian, |EEE floating point,
H5T_NATIVE_INT - native integer

3. What does the dataspace describe? What are the nmmjor characteristics of the
si npl e dat aspace?

Answer: The dataspace describes the dinmensionality of the dataset. It is
characterized by its rank and di mensi on sizes.

4. What information needs to be passed to the H5Dcreate function, i.e.
what information is needed to describe a dataset at creation tine?

Answer: dataset |ocation, nane, dataspace, datatype, and creation properties.

Section 6: Reading fromWiting to a Dataset

1. What are six pieces of information which need to be specified for
reading and witing a dataset?

Answer: A dataset, a dataset’s datatype and dataspace in nmenory, the
dataspace in the file, the transfer properties and data buffer.

2. Wiy are both the nenory dataspace and file dataspace needed for
read/wite operations, but only the nmenory datatype is specified for the
dat at ype?

Answer: A dataset’s file datatype is specified at creation tinme and cannot be
changed. Both file and nenory dat aspaces are needed for perforning
subsetting and partial |/O operations.

3. What does the line DATASPACE { SIMPLE (4, 6) / (4, 6) } in Fig 6.1
means?

Answer: It neans that the dataset "dset" has a sinple dataspace with the
current dimensions (4,6) and the naxi mum size of the dinensions (4,6).

38 National Center for Supercomputing Applications

HDF5 Release 1.2

Section 7: Creating an Attribute

1. What is an attribute?

Answer: An attribute is a dataset attached to an object. It describes the

nature and/or the intended usage of the object.
2. Can partial /0O operations be perforned on attributes?

Answer: No

Section 8: Creating a G oup

What are the two primary objects that can be included in
a group?

Answer: A group and a dat aset

Section 9: Creating G oups using Absol ute/Rel ati ve Nanes

1. Goup nanmes can be specified in two "ways". What are these
two types of group nanes that you can specify?

Answer: rel ative and absol ute

2. You have a dataset named "nmoo" in the group "boo", which is

in the group "foo", which in turn, is in the root group. How would

you specify an absolute name to access this dataset?
Answer: /f oo/ boo/ noo

Section 10: Creating Datasets in G oups

Describe a way to access the dataset "npo" described in the previous section

(Section 9, question 2), using a relative and absol ute pat hnane.

Answers: 1. Access the group, "/foo", and get the group ID

Access the group "boo" using the group ID obtained in Step 1
Access the dataset "nmpo" using the group IDin Step 2.

gid = H6Gopen (file_id, "/foo", 0); /* absolute path
gidl = H5Gopen (gid, "boo", 0); /* relative path
did = HoDopen (gidl, "npo"); /* relative path

2. Access the group, "/foo", and get the group |D

Access the dataset "boo/npo", with the group ID just obtained
HoGopen (file_id, "/foo", 0); /* absol ute path
H5Dopen (gid, "boo/ nmoo"); /* relative path

gid
did

3. Access the dataset with an absol ute path.

did = HoDopen (file_id, "/fool/boo/no"); /* absolute path

*/
*/

*/
*/

*/

Last Modified: August 2, 1999

University of Illinois at Urbana-Champaign

39

HDF5 Tutorial

40

National Center for Supercomputing Applications

HDF5 Release 1.2

11. Compound Data Types

Creating Compound Data Types

A compound datatypeis similar to astruct in C or acommon block in Fortran. It is a collection of one or more atomic
types or small arrays of such types. To create and use a compound data type you need to refer to various properties of the
data compound data type:

It isof class compound.
It has afixed total size, in bytes.

It consists of zero or more members (defined in any order) with unique names and which occupy non-
overlapping regions within the datum.

Each member has its own data type.

Each member is referenced by an index number between zero and N-1, where N is the number of membersin the
compound data type.

Each member has a name which is unique among its siblings in a compound data type.

Each member has a fixed byte offset, which isthe first byte (smallest byte address) of that member in a
compound data type.

Each member can be a small array of up to four dimensions.

Properties of members of a compound data type are defined when the member is added to the compound type and cannot
be subsequently modified.

Compound data types must be built out of other data types. First, one creates an empty compound data type and specifies
its total size. Then members are added to the compound data type in any order.

University of lllinois at Urbana-Champaign 41

HDF5 Tutorial

Programming Example

Description

This example shows how to create a compound data type, write an array to the file which uses the compound data type,
and read back subsets of the members.
[compound. c]

++++++++H+
#i ncl ude "hdf5. h"

#define FILE " SDSconpound. h5"
#def i ne DATASETNAME "ArrayCf Struct ures”
#define LENGTH 10

#def i ne RANK 1

i nt

mai n(voi d)

{

/* First structure and dataset*/
typedef struct sl t {

i nt a;
float b;
doubl e c;
} sl t;
sl t s1[LENGTH ;
hi d_t sl_tid; /* File datatype identifier */

/* Second structure (subset of sl_t) and dataset*/
typedef struct s2_t {

doubl e c;

i nt a;
} s2_t;
s2_t s2[LENGTH] ;
hi d_t s2_tid; /* Menmory datatype handle */
[* Third "structure" (will be used to read float field of s1) */
hid_t s3_tid; /* Menory datatype handl e */
fl oat S3[LENGTH] ;
i nt i;
hid_t file, dataset, space; /* Handles */
herr _t st at us;

hsi ze_t dinf] = {LENGTH}; /* Dat aspace di nensions */

/*

* Initialize the data

*/

for (i = 0; i < LENGTH, i++) {
sifi]l.a =i;
sif[i].b =i*i;
si[i].c = 1./(i+1)

}

/*

42 National Center for Supercomputing Applications

HDF5 Release 1.2

* Create the data space.
*/
space = H5Screate_sinpl e(RANK, dim NULL);

/*

* Create the file.

*/

file = HoFcreate(FI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
/*

* Create the nmenory data type.

*/

sl tid = HoTcreate (H5T_COVPQOUND, sizeof(sl t));

H5Tinsert(sl_tid, "a_name", HOFFSET(sl1l_t, a), HS5T_NATIVE_INT);
H5Tinsert(sl_tid, "c_name", HOFFSET(sl1_t, c), H5T_NATI VE_DOUBLE);
H5Ti nsert(sl1_tid, "b_name", HOFFSET(s1_t, b), HS5T_NATI VE_FLQAT);

/*

* Create the dataset.

*/

dataset = HoDcreate(file, DATASETNAME, sl tid, space, H5P_DEFAULT);
/*

* Wite data to the dataset;

*/

status = HoDwite(dataset, sl tid, H5S ALL, H5S ALL, H5P_DEFAULT, sl);
/*

* Rel ease resources

*/

H5Tcl ose(s1_tid);
H5Scl ose(space) ;
H5Dcl ose(dat aset) ;
H5Fcl ose(file);

/*

* Open the file and the dataset.

*/

file = H5Fopen(FI LE, H5F_ACC RDONLY, H5P_DEFAULT);

dat aset = H5Dopen(file, DATASETNAME);

/*

* Create a data type for s2

*/

s2_tid = H5Tcreat e(H5T_COVPOUND, si zeof (s2_t));

H5Ti nsert(s2_tid, "c_name", HOFFSET(s2_t, c), H5T_NATI VE_DOUBLE);
H5Tinsert(s2_tid, "a_name", HOFFSET(s2_t, a), HS5T_NATIVE_INT);

/*

* Read two fields ¢ and a fromsl dataset. Fields in the file

* are found by their nanes "c_nane" and "a_nane".

*/

status = H5Dread(dataset, s2 tid, H5S ALL, H5S ALL, H5P_DEFAULT, s2);

/*

* Display the fields

*/

printf("\n");

printf("Field c : \n");

for(i =0; i < LENGIH i++) printf("%4f ", s2[i].c);
printf("\n");

University of Illinois at Urbana-Champaign

43

HDF5 Tutorial

}

printf("\n");
printf("Field a: \n")
for(i = 0; i < LENGIH, i++) printf("% ", s2[i].a);
printf("\n");
/*
* Create a data type for s3
*/
s3_tid = H5Tcreat e(HST_COVPOUND, si zeof (float));

status = H5Tinsert(s3_tid, "b_name", 0, H5T_NATI VE_FLOAT);

/*

* Read field b fromsl dataset. Field in the file is found by its nane.
*/

status = HoDread(dataset, s3 tid, H5S ALL, H5S ALL, H5P_DEFAULT, s3);

/*
* Display the field
*/
printf("\n");
printf("Field b : \n")
for(i =0; i < LENGIH, i++) printf("%4f ", s3[i]);
printf("\n");

/*
* Rel ease resources
*/
H5Tcl ose(s2_tid);
H5Tcl ose(s3_tid);
H5Dcl ose(dat aset) ;
H5Fcl ose(file);

return O;

e S Y

The program outputs the following:

Field c
1. 0000 0.5000 0.3333 0.2500 0.2000 0.1667 0.1429 0.1250 0.1111 0.1000

Field a
01234567829

Field b
0. 0000 1.0000 4.0000 9.0000 16.0000 25.0000 36.0000 49. 0000 64.0000 81. 0000

e s o o T e e o

Remarks

« H5Tcreate creates a new data type of the specified class with the specified number of bytes.

hid_t H5Tcreate (H5T_class_t class, size_t size)

* Theclass parameter specifies the data type to create. Currently only the HST_COMPOUND data type
classis supported with this function.

National Center for Supercomputing Applications

HDF5 Release 1.2

* The size parameter specifies the number of bytesin the data type to create.

e H5Tinsert adds a member to the compound data type specified by type id.

herr_t H5Tinsert (hid_t type_id, const char * nane, off _t offset, hid_t field_id

e Thetype id parameter isthe identifier of the compound data type to modify.

e The name parameter is the name of the field to insert. The new member name must be unique within a
compound data type.

* Theoffset parameter is the offset in the memory structure of the field to insert. The library defines the
HOFFSET macro to compute the offset of a member within a struct:

HOFFSET (s, m)
This macro computes the offset of member mwithin a struct variable s.

» Thefield id parameter isthe data type identifier of the field to insert.

* H5Tclose releases a data type.

herr_t H5Tclose (hid_t type_id)
The type_id parameter is the identifier of the data type to release.

File Contents

HDF5 " SDSconpound. h5" {
GROUP "/ {
DATASET "ArrayOf Structures” {
DATATYPE {
H5T_STD_| 32BE "a_nane";
H5T_| EEE_F32BE "b_nane";
H5T_| EEE_F64BE "c_nane";

}
DATASPACE { SIMPLE (10) / (10) }

DATA {

{
[O],
[0]1
[1]

1

{
[1],
[1]1
[0.5]

1,

{
[2]1
[4],
[0.333333]

1,

{
[3],
[9]1
[0.25]

University of lllinois at Urbana-Champaign 45

HDF5 Tutorial

H

{

417,
16 1,
0.2]

51,
251,
0. 166667]

61,
36],
0.142857]

771,
49 1,
0.125]

81,
64],
0.111111]

91,
811,
0.1]

Last Modified: August 27, 1999

46

National Center for Supercomputing Applications

HDF5 Release 1.2

12. Selectionsusing H5Sselect _hyperdab

Selecting a Portion of a Dataspace

Hyperslabs are portions of datasets. A hyperslab selection can be alogically contiguous collection of pointsin a
dataspace, or it can be aregular pattern of points or blocks in a dataspace. Y ou can select a hyperslab to write to/read from

with the function H5Sselect_hyperslab.

Programming Example

Description

This example createsa 5 x 6 integer array in afile called sds.hb5. It selects a 3 x 4 hyperslab from the dataset, as follows
(Dimension 0 is offset by 1 and Dimension 1 is offset by 2):

X X X |X
X X X |X
X X X |X

Then it reads the hyperdlab from thisfile into a 2-dimensional plane (size 7 x 7) of a3-dimensional array (size 7 x 7 x 3),
as follows (with Dimension O offset by 3):

X X X X
X I X | X X
X I X I X X

University of Illinois at Urbana-Champaign 47

HDF5 Tutorial

[h5_hypersl ab. c]

/**

Thi s exanpl e shows howto wite and read a hyperslab. It
is derived fromthe h5_read.c and h5_write.c exanples in
the "Introduction to HDF5".

**/

#i ncl ude "hdf5. h"
#define FILE "sds. h5"
#defi ne DATASETNAME "I nt Array"”
#define NX_ SUB 3 /* hypersl ab di nensions */
#define NY_SUB 4
#define NX 7 /* output buffer dinmensions */
#define NY 7
#define Nz 3
#def i ne RANK 2
#def i ne RANK _QUT 3
#define X 5 /* dataset dinmensions */
#define Y 6
i nt
mai n (voi d)
{
hsi ze_t di msf[2] ; /* dataset dinmensions */
i nt data[X [VY] ; [* data to wite */
/*
* Data and output buffer initialization.
*
/
hi d_t file, dataset; /* handl es */
hid_t dat aspace;
hid_t nmenspace;
hsi ze_t di nsni 3] ; /* menory space di nensions */
hsi ze_t di ms_out[2]; /* dataset dinmensions */
herr _t st at us;
i nt data out[NXI[[NY][NZ]; /* output buffer */
hsi ze_t count[2]; /* size of the hyperslab in the file */
hssi ze_t of fset[2]; /* hyperslab offset in the file */
hsi ze_t count _out[3]; /* size of the hyperslab in nmenory */
hssi ze_t of fset _out[3]; /* hyperslab offset in nenory */
i nt i, j, k, status_n, rank;

/***

This wites data to the HDF5 file.

***/

/*
* Data and output buffer initialization.
*/
for (j =0; j <X j++) {
for (i =0; i <Y, i++4)
data[j][i] =1 +j;

48 National Center for Supercomputing Applications

HDF5 Release 1.2

}

/*
*012345
*123456
*234567
*345678
*456789
*/

/*

* Create a new file using H5F_ACC TRUNC access,

* the default file creation properties, and the default file

* access properties.

*/

file = HFcreate (FILE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/*

* Describe the size of the array and create the data space for fixed
* size dataset.

*/

dinsf[0] = X

dimsf[1] =Y,

dat aspace = H5Screate_sinple (RANK, dinsf, NULL);

/*

* Create a new dataset within the file using defined dataspace and
* default dataset creation properties.

*/

dataset = HoDcreate (file, DATASETNAME, HS5T_STD | 32BE, dataspace,
H5P_DEFAULT) ;

/*

* Wite the data to the dataset using default transfer properties.

*/

status = HoDwite (dataset, HS5T_NATIVE | NT, H5S ALL, H5S ALL,
H5P_DEFAULT, data);

/*
* Cl ose/rel ease resources.
*/

H5Scl ose (dat aspace);

H5Dcl ose (dat aset);

H5Fcl ose (file);

/***

This reads the hyperslab fromthe sds.h5 file just
created, into a 2-dinensional plane of the 3-dinensional
array.

**/

for (j =0, j <NX j++) {
for (i =0; i <NY; i++) {
for (k =0; k < NX j++) {
for (i =0; i <NY; i++) printf("% ", data_out[j][i][0]);
printf("\n ");
}
/*
*00000O00O
*0000O0O0O

printf("\n");

University of lllinois at Urbana-Champaign 49

HDF5 Tutorial

oOulhwoO
oo ol kO
oO~NO®U1IO
O ~NOO
[cNeoNeoNoNe]
[cNeoNeoNoNe]
[cNeoNeoNoNe]

E o I

/*
* Close and rel ease resources.
*/

H5Dcl ose (dat aset);

H5Scl ose (dat aspace);

H5Scl ose (nenspace);

H5Fcl ose (file);

Remarks

» H5Sselect_hyperslab selects a hyperslab region to add to the current selected region for a specified dataspace.

herr_t H5Ssel ect _hyperslab (hid_t space_id, H5S sel oper_t op,
const hssize_t *start, const hsize_t *stride,
const hsize_t *count, const hsize_t *block)

e Thefirst parameter, space id, isthe dataspace identifier for the specified dataspace.

* Thesecond parameter, op, can only be set to H5S_SELECT_SET in the current release. It replaces the
existing selection with the parameters from this call. Overlapping blocks are not supported.

e The dtart array determines the starting coordinates of the hyperslab to select.
* Thesdtride array indicates which elements along a dimension are to be selected.
e The count array determines how many positions to select from the dataspace in each dimension.
e Theblock array determines the size of the element block selected by the dataspace.
The start, stride, count, and block arrays must be the same size as the rank of the dataspace.
e Thisexampleintroduces the following H5Dget_* functions:

H5Dget_space: returns an identifier for a copy of the dataspace of a dataset.
H5Dget_type: returns an identifier for a copy of the data type of a dataset.

e Thisexampleintroduces the following H5Sget_* functions used to obtain information about selections:

H5Sget_simple_extent_dims: returns the size and maximum sizes of each dimension of a dataspace.
H5Sget_simple_extent_ndims. determines the dimensionality (or rank) of a dataspace.

Last Modified: August 27, 1999

50 National Center for Supercomputing Applications

HDF5 Release 1.2

13. Selectionsusing H5Ssel ect _el enent s and
H5SCopy

Selecting I ndependent Points and Copying a Dataspace

Y ou can select independent points to read or write to in a dataspace by use of the H5Sselect_elements function.

The H5Scopy function allows you to make an exact copy of a dataspace, which can help cut down on the number of
function calls needed when selecting a dataspace.

Programming Example

Description

This example shows you how to use H5Sselect_elements to select individual pointsin a dataset and how to use H5Scopy
to make a copy of adataspace. [h5_copy. ¢]

/***/

/* */

/* PROGRAM h5_copy. c */
/* PURPOSE: Shows how to use the H5SCOPY function. */
/* DESCRI PTI ON: */
/* This programcreates two files, copyl.h5, and copy2.h5. */
/* In copyl.h5, it creates a 3x4 dataset called ’Copyl’, */
/* and wite 0's to this dataset. */
/* In copy2.h5, it create a 3x4 dataset called ' Copy2’, */
/* and wite 1's to this dataset. */
/* It closes both files, reopens both files, selects two */
/* points in copyl.h5 and wites values to them Then it */
/* does an H5Scopy fromthe first file to the second, and */
/* wites the values to copy2.h5. It then closes the */
I * files, reopens them and prints the contents of the */
/* two dat asets. */
/* */

/***/

#i ncl ude "hdf5. h"
#define FILEL "copyl. h5"
#define FILE2 "copy2. h5"

#defi ne RANK
#def i ne DI ML
#define DI M2
#def i ne NUWP

NDAWN

int main (void)

{

University of lllinois at Urbana-Champaign 51

HDF5 Tutorial

hid_t filel, file2, datasetl, dataset?2;
hi d_t m dl, md2, fidl, fidz;

hsize_t fdin{] = {D M, DI M};

hsize_t mdin{] = {DI ML, DI M},

hsize t start[2], stride[2], count[2], block[2];
int bufl[DI M][D M];

int buf2[D M][D M];

i nt bufnew D M][DI M];

int val[] = {53, 59};

hsize_t marray[] = {2};

hssi ze_t coord[NUMP] [RANK] ;

herr_t ret;

uint i, j;

/***I

/* */
/* Create two files containing identical datasets. Wite 0's to one */
/* and 1's to the other. */
/* */

/***/

for (1 =0; i <D M,; i++)
for (j =0,] <DM,; j++)
buf1[i][j] = O;
for (i =0; i <DM,; i++)
for (j =0,] <DM; j++)
buf2[i][j] = 1;
filel = H5Fcreate(Fl LELl, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
file2 = H5Fcreate(FI LE2, H5F_ACC_TRUNC, H5P_DEFAULT, H5P_DEFAULT);
fidl = H5Screate_sinple (RANK, fdim NULL);
fid2 = H5Screate_sinple (RANK, fdim NULL);
datasetl = H5Dcreate (filel, "Copyl", HS5T_NATIVE_INT, fidl, H5P_DEFAULT);
dataset2 = HoDcreate (file2, "Copy2", HS5T_NATIVE_INT, fid2, H5P_DEFAULT);
ret = HoDwrite(datasetl, HS5T_NATIVE_INT, H5S ALL, H5S ALL, H5P_DEFAULT, bufl);
ret = H5Dwite(dataset2, HS5T_NATIVE_INT, H5S ALL, H5S ALL, H5P_DEFAULT, buf?2);
ret = H5Dcl ose (datasetl);
ret = H5Dcl ose (dataset?2);
ret = H5Sclose (fidl);
ret = H5Sclose (fid2);
ret = H5Fclose (filel);
ret = HoFcl ose (file2);

/***/
/* */
/* Open the two files. Select two points in one file, wite values to */
/* those point |ocations, then do H5Scopy and wite the values to the */
/* other file. Cose files. */
/* */

/***I

filel = H5Fopen (FILEl, H5F_ACC RDWR, H5P_DEFAULT);
file2 = H5Fopen (FILE2, H5F_ACC _RDWR, H5P_DEFAULT);
datasetl = H5Dopen (filel, "Copyl");

dataset2 = H5Dopen (file2, "Copy2");

fidl = H5Dget _space (datasetl);

52 National Center for Supercomputing Applications

HDF5 Release 1.2

m dl = H5Screate_sinple(l, marray, NULL);
coord[0][0] = 0; coord[O0][1] = 3;
coord[1][0] = 0; coord[1][1] = 1;

ret = H5Ssel ect_elenments (fidl, H5S SELECT_SET, NUMP, (const hssize_t **)coord);

ret HoDwrite (datasetl, HS5T_NATIVE INT, nmidl, fidl, H5P_DEFAULT, val);

fid2 = H5Scopy (fidl);

ret = HoDwite (dataset2, HS5T_NATIVE INT, nmidl, fid2, HS5P_DEFAULT, val);
ret = H5Dcl ose (datasetl);

ret = H5Dcl ose (dataset?2);

ret = H5Sclose (fidl);

ret = H5Scl ose (fid2);

ret = HoFclose (filel);

ret = HoFcl ose (file2);

ret = H5Sclose (midl);

/***I

/* */
/* Open both files and print the contents of the datasets. */
/* */

/***I

filel
file2

H5Fopen (FILE1l, H5F_ACC RDWR, H5P_DEFAULT);
H5Fopen (FILE2, H5F ACC RDWR, H5P_DEFAULT);
dataset1l = H5Dopen (filel, "Copyl");
dat aset2 = H5Dopen (file2, "Copy2");

ret = HoDread (dataset1, HS5T_NATIVE I NT, H5S ALL, H5S ALL,
H5P_DEFAULT, buf new);

printf ("\nDataset 'Copyl in file 'copyl.h5 contains: \n");
for (i=0;i<DIM; i++) {
for (j=0;j<DM;j++) printf ("9%8d ", bufnewfil[j]);
printf("\n");
}

printf ("\nDataset 'Copy2’ in file 'copy2.h5 contains: \n");

ret = HsDread (dataset2, HST_NATIVE_ INT, H5S ALL, H5S ALL,
H5P_DEFAULT, buf new);

for (i=0;i<DIM; i++) {

for (j=0;j<D M;j++) printf ("98d ", bufnewi][j]);
printf("\n");

}

ret = H5Dcl ose (datasetl);

ret = H5Dcl ose (dataset?2);

ret = HoFcl ose (filel);

ret = H5Fclose (file2);

}

e e T

Remarks

» H5Sselect_elements selects array elements to be included in the selection for a dataspace:

University of Illinois at Urbana-Champaign

53

HDF5 Tutorial

herr_t H5Ssel ect _el enents (hid_t space_id, H5S seloper_t op,

e Thespace id parameter isthe dataspace identifier.

size_t numelem const hssize t **coord)

e The op parameter currently can only be set to H5S SELECT_SET and specifies to replace the existing

selection with the parameters from this call.

e Thecoord array is atwo-dimensional array of size 'dataspace rank’ by the number of elementsto be

selected, num_elem.

» H5Scopy creates an exact copy of a dataspace:

hid_t H5Scopy(hid_t space_id)
e The space id parameter is the dataspace identifier to copy.

File Contents

Following isthe DDL for copyl.h5 and copy2.h5, as viewed with the commands "h5dump copy1.h5" and "h5dump

copy2.h5".
Fig. S.1 ’'copyl.h5 in DDL

HDF5 "copyl. h5" {
GROUP "/ " {
DATASET " Copyl" {

DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (3, 4) / (3, 4) }

DATA {
0, 59, 0, 53,
0, 0, 0, O,
0, 0, 0, 0
}
}
}
}

Fig. S.2 ’'copy2.h5 in DDL

HDF5 "copy2. h5" {
GROUP "/ {
DATASET " Copy2" ({

DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (3, 4) / (3, 4) }

DATA {
1, 59, 1, 53,
1, 1, 1, 1,
1, 1, 1, 1
}
}
}
}

Last Modified: August 27, 1999

54

National Center for Supercomputing Applications

HDF5 Release 1.2

14. Referencesto Objects

Referencesto Objects

In HDF5, objects (i.e. groups, datasets, and named data types) are usually accessed by name. This access method was
discussed in previous sections. There is another way to access stored objects - by reference.

An object reference is based on the relative file address of the object header in the file and is constant for the life of the
object. Once areference to an object is created and stored in a dataset in thefile, it can be used to dereference the object it
points to. References are handy for creating afileindex or for grouping related objects by storing referencesto themin
one dataset.

Creating and Storing Referencesto Objects

The following steps are involved in creating and storing file references to objects:
24. Create the objects or open them if they already exist in thefile.
25. Create adataset to store the objects’ references.
26. Create and store references to the objects in a buffer.

27. Write abuffer with the references to the dataset.
Programming Example

Description

The example below creates a group and two datasets and a named data type in the group. References to these four objects
are stored in the dataset in the root group. [h5_r ef 2obj w. ¢]

e s o o T e e o

#i ncl ude <hdf5. h>
#define FILE1l "treferl. h5"

/* 1-D dataset with fixed di nensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACE1_RANK 1

#def i ne SPACE1_DI ML 4

University of lllinois at Urbana-Champaign 55

HDF5 Tutorial

/* 2-D dataset with fixed di nensions */
#defi ne SPACE2_NAME " Space?2"

#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10
i nt
mai n(voi d) {
hi d_t fidi; /* HDF5 File IDs */
hid_t dataset; /* Dataset ID */
hi d_t group; /* Goup ID */
hid_t si di; /* Dataspace |ID */
hi d_t tidi; /* Datatype ID */
hsi ze_t dinsl[] = {SPACE1_DI ML};
hobj _ref _t *wbuf ; /* buffer to wite to disk */
i nt *tu32; /* Tenporary pointer to int data */
i nt i; /* counting variables */
const char *wite_comment="Foo!"; /* Comments for group */
herr _t ret; /* Generic return val ue */

/* Conpound dat atype */

typedef struct sl t {
unsigned int a;
unsi gned int b;
float c;

} sl_t;

[* Allocate wite buffers */
wbuf =(hobj _ref _t *)mall oc(si zeof (hobj ref_t)*SPACEL DI M) ;
tu32=mal | oc(si zeof (i nt)*SPACE1_DI M) ;

/[* Create file */
fidl = H5Fcreate(FlI LEl, H5F_ACC TRUNC, H5P_DEFAULT, H5P DEFAULT);

/* Create dataspace for datasets */
sidl = H5Screat e_si npl e(SPACE1_RANK, dimnmsl, NULL);

/* Create a group */
group=HsCGcreate(fidl, "G oupl",-1);

/* Set group’'s coment */
ret =H5Gset _comnment (group, ".",wite_conment);

/* Create a dataset (inside Goupl) */
dat aset =H5Dcr eat e(gr oup, "Dat aset 1", H6T_STD _U32LE, si d1, H5SP_DEFAULT) ;

for(i=0; i < SPACE1l_DI ML; i ++)
tu3d2[i] =i*3;

/* Wite selection to disk */
ret=H5Dwri t e(dat aset, HST_NATI VE_I NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, t u32);

/* C ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create another dataset (inside Goupl) */
dat aset =H5Dcr eat e(gr oup, " Dat aset 2", H5T_NATI VE_UCHAR, si d1, H5P_DEFAULT) ;

/* C ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create a datatype to refer to */

56 National Center for Supercomputing Applications

HDF5 Release 1.2

}

tidl = H5Tcreate (H5T_COVPOUND, sizeof (sl t));

/* Insert fields */
ret=H5Ti nsert (tidl, "a", HOFFSET(s1l_t,a), H5T_NATIVE_INT);

ret=H5Ti nsert (tidl, "b", HOFFSET(s1l_t,b), H5T_NATIVE_I NT);
ret=H5Tinsert (tidl, "c", HOFFSET(s1_t,c), HS5T_NATIVE_FLQAT);

/* Save datatype for later */
ret=H5Tcomi t (group, "Datatypel”, tidl);

/* C ose datatype */
ret = H5Tcl ose(tidl);

/* O ose group */
ret = H5Gcl ose(group);

/* Create a dataset to store references */
dat aset =H5Dcr eat e(fi d1, "Dat aset 3", H5T_STD_REF_OBJ, si d1, H5P_DEFAULT) ;

/* Create reference to dataset */
ret = H5Rcreate(&wbuf[0],fidl,"/ G oupl/ Dataset 1", HSR OBJECT, - 1);

/* Create reference to dataset */
ret = H5Rcreate(&wbuf[1],fidl,"/ G oupl/ Dataset2", H5R OBJECT, - 1);

/* Create reference to group */
ret = H5Rcreate(&wouf[2],fidl,"/ G oupl", H5R OBJECT, -1);

/* Create reference to named datatype */
ret = H5Rcreate(&wbuf[3],fidl,"/ G oupl/ Datatypel”, HGR OBJECT, -1);

/* Wite selection to disk */
ret=H5Dwri t e(dat aset, H5T_STD REF_OBJ, H5S_ALL, H5S_ALL, H5P_DEFAULT, wouf) ;

/* O ose disk dataspace */
ret = H5Scl ose(sidl);

/* Cl ose Dataset */
ret = H5Dcl ose(dat aset);

[* Close file */

ret = H5Fcl ose(fidl);
free(wouf);
free(tu32);

return O;

o S L e o o S

Remarks

e Thefollowing code,

dat aset = HoDcreate (fidl, "Dataset3", H5T_STD REF _OBJ, si d1, H5P_DEFAULT);

creates a dataset to store references. Notice that the HST_SDT_REF OBJdatatype is used to specify that
references to objects will be stored. The datatype HST_STD_REF DSETREG is used to store the dataset region
references and will be discussed later in this tutorial.

University of lllinois at Urbana-Champaign 57

HDF5 Tutorial

e The next few calls to the H5Rcreate function create references to the objects and store them in the buffer wbuf.
The signature of the H5Rcreate function is:

herr_t HS5Rcreate (void* buf, hid_t loc_id, const char *nane,
H5R type_t ref _type, hid_t space_id)

* Thefirst argument specifies the buffer to store the reference.

e The second and third arguments specify the name of the referenced object. In our example, thefile
identifier fidl and absolute name of the dataset "/Groupl/Dataset1" were used to identify the dataset.
One could a'so use the group identifier of group "Groupl" and the relative name of the dataset
"Dataset1" to create the same reference.

* Thefourth argument specifies the type of the reference. Our example uses referencesto the objects
(H5R_OBJECT). Another type of reference, reference to the dataset region (
H5R_DATASET_REGION), will be discussed later in thistutorial.

« Thefifth argument specifies the space identifier. When references to the objects are created it should be
setto -1.

« The H5Dwrite function writes a dataset with the references to the file. Notice that the H5T _SDT_REF OBJdata
type is used to describe the dataset’s memory data type.

File Contents

The contents of the "treferl.h5" file created by this example are as follows:

Fig "treferl. h5"

HDF5 "trefer1. h5" {
GROUP "/ " {
DATASET " Dat aset 3" {
DATATYPE { H5T_REFERENCE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
DATASET 0: 1696, DATASET 0: 2152, GROUP 0: 1320, DATATYPE 0: 2268
}
}

GROUP "G oupl" {

DATASET " Dat aset 1" {
DATATYPE { H5T_STD_U32LE }
DATASPACE { SIMPLE (4) /
DATA {

0, 3, 6, 9
}

}
DATASET " Dat aset 2" {
DATATYPE { H5T_STD USLE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
0, 0, 0, 0
}

}

DATATYPE " Dat at ypel" {
H5T_STD | 32BE "a";
H5T_STD | 32BE "b";

(4)1}

58 National Center for Supercomputing Applications

HDF5 Release 1.2

H5T_| EEE_F32BE "c";

Notice how the datain dataset "Dataset3" is described. The two numbers with the colon in between represent a unique
identifier of the object. These numbers are constant for the life of the object.

Reading References and Accessing Objects Using References

The following steps are involved:

5. Open the dataset with the references and read them. The H5T_STD_REF_OBJ data type must be used to
describe the memory data type.

6. Usethe read reference to obtain the identifier of the object the reference points to.
7. Open the dereferenced object and perform the desired operations.

8. Close all objects when the task is complete.

Programming Example

Description

The example below opens and reads dataset "Dataset3" from the file created previously. Then the program dereferences
the references to dataset "Dataset1", the group and the named data type, and opens those objects. The program reads and
displays the dataset’s data, the group’s comment and the number of members of the compound data type.
[h5_ref2objr.c]

o o o S S S

#i nclude <stdlib. h>
#i ncl ude <hdf5. h>

#define FILE1l "treferl. h5"

/* dataset with fixed dinensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACE1_RANK 1

#def i ne SPACE1_DI ML 4

i nt

mai n(voi d)
hi d_t fidl; /* HDF5 File IDs */
hi d_t dataset, /* Dataset |ID */

dset 2; /* Dereferenced dataset ID */

hid_t group; /* Group ID */
hi d_t si di; /* Dataspace | D */
hid_t tidi; /* Datatype ID */
hobj _ref _t *r buf ; /* buffer to read fromdisk */
i nt *tu32; /* tenmp. buffer read fromdisk */
i nt i; /* counting variables */

University of lllinois at Urbana-Champaign 59

HDF5 Tutorial

char read_comment[10];
herr_t ret; /* Generic return val ue */

/* Allocate read buffers */
rbuf = mall oc(sizeof (hobj ref t)*SPACEL1_DI ML) ;
tu32 = mal | oc(sizeof (int)*SPACEL_DI M) ;

/* Open the file */
fidl = H5Fopen(FI LE1l, HS5F_ACC RDWR, H5P_DEFAULT);

/* Open the dataset */
dat aset =H5Dopen(fi d1, "/ Dat aset 3");

/* Read sel ection fromdisk */
r et =H5Dr ead(dat aset , HST_STD REF_OBJ, H5S ALL, H5S_ALL, H5P_DEFAULT, r buf) ;

/* Open dataset object */
dset 2 = H5Rder ef er ence(dat aset, HSR_OBJECT, & buf[0]);

/* Check information in referenced dataset */
sidl = HoDget _space(dset 2);

r et =H5Sget _si npl e_ext ent _npoi nts(si dl);

/* Read from disk */

r et =H5Dr ead(dset 2, H5T_NATI VE_I NT, H56S_ALL, H5S_ALL, H5P_DEFAULT, t u32);
printf("Dataset data : \n");

for (i=0; i < SPACE1_DIML ; i++) printf (" % ", tu32[i]);
printf("\n");

printf("\n");

/* O ose dereferenced Dataset */
ret = H5Dcl ose(dset 2);

/* Open group object */
group = H5Rder ef er ence(dat aset, HbR_OBJECT, & buf[2]);

/* Get group’'s coment */

ret =H5Gget _comment (group, ".", 10, read_conment) ;
printf("Goup comment is % \n", read_comment);
printf(" \n");

/* O ose group */
ret = H5Ccl ose(group);

/* Open datatype object */
tidl = H5Rder ef er ence(dat aset, HSR_OBJECT, & buf[3]);

/* Verify correct datatype */
H5T class_t tcl ass;

tclass= H5Tget_cl ass(tidl);
if ((tclass == H5T_COVPOUND))
printf ("Nunmber of conpound datatype menbers is % \n", H5Tget_nnmenmbers(tidl));
printf(" \n");
}

/* C ose datatype */
ret = H5Tclose(tidl);

/* Cl ose Dataset */
ret = H5Dcl ose(dat aset);

60 National Center for Supercomputing Applications

HDF5 Release 1.2

/* Close file */

ret = H5Fcl ose(fidl);

/* Free nenory buffers */
free(rbuf);

free(tu32);

return O;

}

S L L L I T O e e e o e

Following is the output of this program:

Dat aset data :
0 3 6 9

G oup coment is Foo!

Nunmber of conpound dat atype nenbers is 3

L B e I o L L B N e o o B A

Remarks

» The H5Dread function was used to read dataset "Dataset3" containing the references to the objects. The
H5T_STD_REF _OBJmemory data type was used to read references to memory.

« H5Rdereference obtains the object’s identifier. The signature of this function is:

hid t H5Rdereference (hid_ t datatset, H5R type_t ref_type, void *ref)

Thefirst argument is an identifier of the dataset with the references.

e The second argument specifies the reference type. We used H5SR_OBJECT to specify areference to an
object. Another typeisH5R_DATASET_REGION to specify areference to a dataset region. This will
be discussed later in thistutorial.

* Thethird argument is a buffer to store the reference to be read.

e Thefunction returns an identifier of the object the reference points to. In our simplified situation we

know what type was stored in the dataset. When the type of the object is unknown, then
H5Rget_object_type should be used to identify the type of object the reference points to.

Last Modified: August 27, 1999

University of lllinois at Urbana-Champaign 61

HDF5 Tutorial

62 National Center for Supercomputing Applications

HDF5 Release 1.2

15. Referencesto Dataset Regions

Referencesto Dataset Regions

Previoudly you learned about creating, reading, and writing dataset selections. Here you will learn how to store dataset
selectionsin afile, and how to read them back using references to the dataset regions.

A dataset region reference points to the dataset selection by storing the relative file address of the dataset header and the
global heap offset of the referenced selection. The selection referenced is located by retrieving the coordinates of the areas

in the selection from the global heap. This internal mechanism of storing and retrieving dataset selections is transparent to
the user. A reference to the dataset selection (region) is constant for the life of the dataset.

Creating and Storing Referencesto Dataset Regions

The following steps are involved in creating and storing references to the dataset regions:
28. Create adataset to store the dataset regions (selections).
29. Create selections in the dataset(s). Dataset(s) should aready exist in thefile.
30. Create references to the selections and store them in a buffer.
31. Write references to the dataset regionsin thefile.

32. Close all objects.

Programming Example

Description

The example below creates a dataset in the file. Then it creates a dataset to store references to the dataset regions
(selections). Thefirst selection isa 6 x 6 hyperslab. The second selection is a point selection in the same dataset.
References to both selections are created and stored in the buffer, and then written to the dataset in the file.
[h5_ref2regw c]

o o o S S S

#i nclude <stdlib. h>
#i ncl ude <hdf5. h>

#define FILE2 "trefer2. h5"
#defi ne SPACE1_NAME " Spacel"
#def i ne SPACE1_RANK 1
#def i ne SPACE1_DI ML 4

University of lllinois at Urbana-Champaign 63

HDF5 Tutorial

/* Dataset with fixed dinensions */
#defi ne SPACE2_NAME " Space2"
#def i ne SPACE2_RANK 2
#def i ne SPACE2_DI ML 10
#def i ne SPACE2_DI M2 10

/* Elenent selection information */
#def i ne PO NT1_NPO NTS 10

i nt

mai n(voi d)

{

hi d_t fidl; /* HDF5 File IDs */
hi d_t dset 1, /* Dataset |ID */
dset 2; /* Dereferenced dataset ID */
hi d_t si di, /* Dataspace | D #1 */
si d2; /* Dataspace |ID #2 */
hsi ze_t dinmsl[] = {SPACE1_DI ML},
dins2[] = {SPACE2_DI ML, SPACE2_DI M2};
hssi ze_t start [SPACE2_RANK] ; /* Starting |ocation of hyperslab */
hsi ze_t stri de[SPACE2_RANK] ; /* Stride of hyperslab */
hsi ze_t count [SPACE2_RANK] ; /* El ement count of hyperslab */
hsi ze_t bl ock[SPACE2_RANK] ; /* Block size of hyperslab */
hssi ze_t coor d1[PO NT1_NPO NTS] [SPACE2_RANK] ;
/* Coordinates for point selection */
hdset _reg_ref _t *wbuf ; /* buffer to wite to disk */
i nt * dwbuf ; /* Buffer for witing numeric data to disk */
i nt i; /* counting variables */
herr _t ret; /* Generic return val ue */

/* Allocate wite & read buffers */
wbuf =cal | oc(si zeof (hdset _reg_ref _t), SPACE1_DI ML);
dwbuf =mal | oc(si zeof (i nt)* SPACE2_DI ML* SPACE2_DI M) ;

/* Create file */
fidl = H5Fcreate(FI LE2, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create dataspace for datasets */
sid2 = H5Screat e_si nmpl e(SPACE2_RANK, dins2, NULL);

/* Create a dataset */
dset 2=H5Dcr eat e(fi d1, "Dat aset 2", H5T_STD_USLE, si d2, H5P_DEFAULT) ;

for(i=0; i < SPACE2_ DI ML*SPACE2_DI M2; i ++)
dwouf [i]=i *3;

/* Wite selection to disk */
ret=HsDwrite(dset 2, HST_NATI VE_| NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, dwbuf) ;

/* Close Dataset */
ret = H5Dcl ose(dset 2);

/* Create dataspace for the reference dataset */
sidl = H5Screate_si nmpl e(SPACE1_RANK, dinsl, NULL);

/* Create a dataset */
dset 1=H5Dcr eat e(fi d1, "Dat aset 1", H5T_STD_REF_DSETREG, si d1, H5P_DEFAULT) ;

/* Create references */

[* Select 6x6 hyperslab for first reference */
start[0] =2; start[1]=2;

National Center for Supercomputing Applications

HDF5 Release 1.2

stride[0]=1; stride[1]=1,;

count [0] =6; count[1] =6;

bl ock[0] =1; bl ock[1] =1;

ret = H5Ssel ect _hypersl ab(sid2, H5S_SELECT_SET, start, stride, count, bl ock) ;

/* Store first dataset region */
ret = H5Rcreate(&wbuf[0],fidl,"/Dataset2", HSR DATASET_REQ ON, si d2);

/* Sel ect sequence of ten points for second reference */
coordl[0] [0] =6; coordl[0][1]=9;

coordl[1][0] =2; coord1[1][1]=2;

coordl[2] [0] =8; coordl[2][1] =4,

coordl[3][0] =1; coord1[3][1] =6;

coordl[4][0]=2; coordl[4][1]=8;

coordl1[5][0] =3; coordil[5][1]=2;

coordl[6] [0] =0; coordl[6][1] =4;

coordl1[7] [0] =9; coord1[7] [1] =O0;

coordl[8][0]=7; coordl[8][1]=1;

coordl1[9] [0] =3; coord1[9][1]=3;

ret = H5Ssel ect _el ement s(si d2, H5S_SELECT_SET, PO NT1_NPO NTS, (const hssi ze_t

**)coordl);

}

/* Store second dataset region */
ret = H5Rcreate(&wbuf[1],fidl,"/Dataset2", HSR_DATASET_REd ON, si d2);

/* Wite selection to disk */
ret=H5Dwrite(dsetl, H5T_STD REF DSETREG H5S_ALL, H5S ALL, H5P_DEFAULT, wbuf);

/* Close all objects */

ret = H5Scl ose(sidl);
ret = H5Dcl ose(dsetl);
ret = H5Scl ose(sid2);

/* Close file */
ret = H5Fcl ose(fidl);

free(wouf);
free(dwouf);
return O;

o i e o o e

Remarks

* Thecode,

dset 1=H5Dcr eat e(fi d1, " Dat aset 1", H5T_STD_REF_DSETREG, si d1, H5SP_DEFAULT) ;

creates a dataset to store references to the dataset(s) regions(selections). Notice that the
H5T_STD_REF DSETREG datatypeis used.

e Thisprogram uses hyperslab and point selections. We used the dataspace handle sid2 for the callsto
H5Sselect_hyperslab and H5Sselect_elements. The handle was created when dataset " Dataset2" was created and
it describes the dataset’s dataspace. We did not close it when the dataset was closed to decrease the number of
function calls used in the example. In areal application program, one should open the dataset and determine its
dataspace using the H5Dget_space function.

» H5Rcreateis used to create a dataset region reference and store it in a buffer. The signature of the functioniis:

University of lllinois at Urbana-Champaign 65

HDF5 Tutorial

herr_t H5Rcreate(void *buf, hid_t loc_id, const char *nane,
H5R type_t ref _type, hid_t space_id)

« Thefirst argument specifies the buffer to store the reference.

* Thesecond and third arguments specify the name of the referenced dataset. In our example the file
identifier fidl and the absolute name of the dataset "/Dataset2" were used to identify the dataset. The
reference to the region of this dataset is stored in the buffer buf.

« Thefourth argument specifies the type of the reference. Since we are creating references to the dataset
regions, the HSR_DATASET_REGION datatype is used.

e Thefifth argument is a dataspace identifier of the referenced dataset.

File Contents

The contents of the file "trefer2.h5" created by this program are as follows:

HDF5 "trefer2. h5" {
GROUP "/ " {
DATASET "Dat aset 1" {
DATATYPE { H5T_REFERENCE }
DATASPACE { SIMPLE (4) / (4) }
DATA {
DATASET 0: 744 {(2,2)-(7,7)}, DATASET 0:744 {(6,9), (2,2), (8,4), (1,6),
(2,8), (3,2), (0,4, (9,0), (7,1), (3,3)}, NuULL, NuULL

}
DATASET "Dat aset 2" {
DATATYPE { H5T_STD USLE }
DATASPACE { SIMPLE (10, 10) / (10, 10) }
DATA {
0, 3, 6 9, 12, 15 18, 21, 24, 27,
30, 33, 36, 39, 42, 45, 48, 51, 54, 57,
60, 63, 66, 69, 72, 75, 78, 81, 84, 87,
90, 93, 96, 99, 102, 105, 108, 111, 114, 117,
120, 123, 126, 129, 132, 135, 138, 141, 144, 147,
150, 153, 156, 159, 162, 165, 168, 171, 174, 177,
180, 183, 186, 189, 192, 195, 198, 201, 204, 207,
210, 213, 216, 219, 222, 225, 228, 231, 234, 237,
240, 243, 246, 249, 252, 255, 255, 255, 255, 255
255, 255, 255, 255, 255, 255, 255, 255, 255, 255

}
}

Notice how raw data of the dataset with the dataset regions is displayed. Each element of the raw data consists of a
reference to the dataset (DATASET numberl:number2) and its selected region. If the selection is a hyperslab, the corner
coordinates of the hyperslab are displayed. For the point selection, the coordinates of each point are displayed. Since only
two selections were stored, the third and fourth elements of the dataset "Dataset1” are set to NULL. This was done by the
buffer inizialization in the program.

66 National Center for Supercomputing Applications

HDF5 Release 1.2

Reading Referencesto Dataset Regions

The following steps are involved in reading references to the dataset regions and referenced dataset regions (selections).

9. Open and read the dataset containing references to the dataset regions. The data type
H5T_STD_REF DSETREG must be used during read operation.

10. Use H5Rdereference to obtain the dataset identifier from the read dataset region reference.
OR

Use H5Rget_region to obtain the dataspace identifier for the dataset containing the selection from the read
dataset region reference.

11. With the dataspace identifier, the H5S interface functions, H5Sget_select *, can be used to obtain information
about the selection.

12. Close al objects when they are no longer needed.

Programming Example

Description

The following example reads a dataset containing dataset region references. It reads data from the dereferenced dataset

and displays the number of elements and raw data. Then it reads two selections: hyperslab and point. The program queries

anumber of pointsin the hyperslab and the coordinates and displays them. Then it queries a number of selected points
and their coordinates and displays the information.
[h5_ref2regr.c]

o o o S S S

#i ncl ude <stdlib. h>
#i ncl ude <hdf5. h>

#def i ne FI LE2 "trefer2. ht"
#defi ne NPO NTS 10

/* 1-D dataset with fixed di nensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACE1_RANK 1

#def i ne SPACE1_DI ML 4

/* 2-D dataset with fixed di nensions */
#defi ne SPACE2_NAME " Space2"

#def i ne SPACE2_RANK 2

#def i ne SPACE2_DI ML 10

#def i ne SPACE2_DI M2 10

i nt

mai n(voi d)

{
hi d_t fidi; /* HDF5 File |Ds */
hid_t dset 1, /* Dataset ID */

dset 2; /* Dereferenced dataset ID */

University of Illinois at Urbana-Champaign

67

HDF5 Tutorial

hid_t sidi, /* Dataspace |ID #1 */
si d2; /* Dataspace | D #2 */

hsize t * coor ds; /* Coordinate buffer */

hsi ze_t | oW SPACE2_RANK] ; /* Sel ection bounds */

hsi ze_t hi gh][SPACE2_RANK] ; /* Sel ection bounds */

hdset _reg_ref _t *r buf; /* buffer to to read disk */

i nt *dr buf ; /* Buffer for reading nuneric data fromdisk */

i nt i, j; /* counting variables */

herr _t ret; /* Generic return val ue */

/* Qutput nessage about test being perfornmed */

/* Allocate wite & read buffers */
rbuf =mal | oc(si zeof (hdset _reg_ref_t)*SPACE1_DI M) ;
dr buf =cal | oc(si zeof (i nt), SPACE2_DI ML* SPACE2_DI M) ;

/* Open the file */
fidl = H5Fopen(FI LE2, H5F_ACC RDWR, H5P_DEFAULT);

/* Cpen the dataset */
dset 1=H5Dopen(fidl, "/ Dataset1");

/* Read selection fromdisk */
ret =H5Dr ead(dset 1, H5T_STD REF _DSETREG H5S_ALL, H5S_ALL, H5P_DEFAULT, r buf) ;

/* Try to open objects */
dset 2 = H5Rder ef erence(dset 1, HSR_DATASET_REG ON, & buf [0]) ;

/* Check information in referenced dataset */
sidl = HoDget _space(dset 2);

r et =H5Sget _si npl e_ext ent _npoi nt s(si dl);
printf(" Number of elenments in the dataset is : %\n",ret);

/* Read fromdisk */
ret =H5Dr ead(dset 2, HST_NATI VE_| NT, H5S_ALL, H5S_ALL, H5P_DEFAULT, dr buf) ;

for(i=0; i < SPACE2_DI ML; i++) {
for (j=0; j < SPACE2_DI M2; j++) printf (" % ", drbuf[i*SPACE2_DI M2+j]);
printf("\n"); }

/* Get the hyperslab selection */
si d2=H5Rget _regi on(dset 1, HSR_DATASET_REG ON, & buf [0]) ;

/* Verify correct hyperslab selected */

ret = H5Sget _sel ect _npoi nts(sid2);

printf(" Nunmber of elenents in the hyperslab is : % \n", ret);

ret = H5Sget _sel ect _hyper _nbl ocks(si d2);

coords=mal | oc(ret* SPACE2_RANK*si zeof (hsize_t)*2); /* allocate space for the hyperslab
bl ocks */

ret = H5Sget _sel ect _hyper _bl ocklist(sid2,0,ret, coords);

printf(" Hyperslab coordinates are : \n");

printf (" (%u, %u) (%u, %u) \n", \
(unsi gned | ong) coords[0], (unsi gned | ong)coords[1], (unsi gned | ong)coords[2], (unsi gned
| ong) coords[3]);

free(coords);

ret = H5Sget _sel ect _bounds(si d2, | ow, hi gh);

/* Cd ose region space */
ret = H5Scl ose(sid2);

/* Get the elenent selection */
si d2=H5Rget _regi on(dset 1, HSR_DATASET _REG ON, & buf[1]);

68 National Center for Supercomputing Applications

HDF5 Release 1.2

I* Verify correct elements selected */
ret = H5Sget _sel ect _el em npoi nts(sid2);
printf(" Number of selected elenents is : %\n", ret);

/* Allocate space for the element points */
coords= mal | oc(ret*SPACE2_RANK*si zeof (hsi ze_t));
ret = H5Sget _sel ect _elem pointlist(sid2,0,ret,coords);
printf(" Coordinates of selected elenments are : \n");
for (i=0; i < 2*NPA NTS; i=i+2)
printf(" (%u, %u) \n", (unsigned long)coords[i], (unsigned |ong)coords[i+1]);

free(coords);
ret = H5Sget _sel ect _bounds(si d2, | ow, hi gh);

/* C ose region space */
ret = H5Scl ose(sid2);

/* Cose first space */
ret = H5Scl ose(sidl);

/* Close dereferenced Dataset */
ret = H5Dcl ose(dset2);

/* C ose Dataset */
ret = H5Dcl ose(dsetl);

/* Close file */
ret = H5Fcl ose(fidl);

/* Free nenory buffers */
free(rbuf);

free(drbuf);

return O;

}

T O O L L o e

Output of this programis:

Nunber of elenents in the dataset is : 100

0 3 6 9 12 15 18 21 24 27

30 33 36 39 42 45 48 51 54 57

60 63 66 69 72 75 78 81 84 87

90 93 96 99 102 105 108 111 114 117

120 123 126 129 132 135 138 141 144 147
150 153 156 159 162 165 168 171 174 177
180 183 186 189 192 195 198 201 204 207
210 213 216 219 222 225 228 231 234 237
240 243 246 249 252 255 255 255 255 255
255 255 255 255 255 255 255 255 255 255
Nurber of elements in the hyperslab is : 36
Hypersl ab coordi nates are :

(2,2) (7, 7)

Nunber of selected elenents is : 10

Coordi nates of selected elenents are :

9)

NN AN~
WNEFP,OONOD
N0 RN
Nt N N N N

University of lllinois at Urbana-Champaign 69

HDF5 Tutorial

(0, 4
(9,0
(7,1
(3,3

—

o o o S S S

Remarks

e The dataset with the region references was read by H5Dread with the HST_STD_REF DSETREG data type
specified.
« Theread reference can be used to obtain the dataset identifier as we did with the following call:

dset 2 = H5Rderef erence (dset 1, HSR DATASET_REQ ON, & buf[0]);
or to obtain spacia information (dataspace and selection) with the call to H5Rget_region:

si d2=H5Rget _regi on(dset 1, HSR_DATASET _REG ON, & buf [0]) ;
The reference to the dataset region has information for both the dataset itself and its selection. In both functions:

* Thefirst parameter is an identifier of the dataset with the region references.

* Thesecond parameter specifies the type of reference stored. In this example a reference to the dataset
region is stored.

« Thethird parameter is a buffer containing the reference of the specified type.
* Thisexampleintroduces several H5Sget_select* functions used to obtain information about selections:

H5Sget_select_npoints: returns the number of elementsin the hypersliab
H5Sget_select_hyper_nblocks: returns the number of blocks in the hyperdab
H5Sget_select_blocklist: returnsthe "lower left" and "upper right” coordinates of the blocks in the
hyperslab selection

H5Sget_select_bounds: returns the coordinates of the "minimal” block containing a hyperslab selection
H5Sget_select_elem_npoints: returns the number of points in the element selection
H5Sget_select_elem_points: returns the coordinates of the element selection

Last Modified: August 27, 1999

70 National Center for Supercomputing Applications

HDF5 Release 1.2

16. Chunking and Extendible Datasets

Creating an Extendible Dataset

An extendible dataset is one whose dimensions can grow. In HDF5, it is possible to define a dataset to have certain initial
dimensions, then later to increase the size of any of theinitial dimensions.

HDF5 requires you to use chunking in order to define extendible datasets. Chunking makes it possible to extend datasets
efficiently, without having to reorganize storage excessively.

The following operations are required in order to write an extendible dataset:

33. Declare the dataspace of the dataset to have unlimited dimensions for all dimensions that might eventually be
extended.

34. Set dataset creation properties to enable chunking and create a dataset.

35. Extend the size of the dataset.

Programming Example

Description

This example shows how to create a 3 x 3 extendible dataset, write to that dataset, extend the dataset to 10x3, and write to
the dataset again. [h5_extend. c]

/**
*
Thi s exanple shows how to work with extendi bl e datasets.
In the current version of the library a dataset MJST be
chunked in order to be extendible.

h5_read_chunk.c exanples that are in the "Introduction

*
*
*
*
* This exanple is derived fromthe h5_extend _wite.c and
*
* to HDF5".

*

*

**/

#i ncl ude "hdf5. h"

#defi ne FILE "ext. h5"

#def i ne DATASETNAME " Ext endi bl eArray"
#def i ne RANK 2

i nt

mai n (voi d)

University of lllinois at Urbana-Champaign 71

HDF5 Tutorial

{
hi d_t file; /* handl es */
hid_t dat aspace, dataset;
hi d_t fil espace;
hid_t cpar Irs;
hid_t nmenspace;
hsi ze_t dinms[2] = { 3, 3}; /* dataset dimensions
at creation time */
hsi ze_t dimsl[2] ={ 3, 3}; /* datal di nensions */
hsi ze_t dinms2[2] ={ 7, 1}; /* data2 di nensions */
hsi ze_t maxdi ms[2] = {H5S_UNLI M TED, H5S_UNLI M TED};
hsi ze_t size[2];
hssi ze_t of fset[2];
hsi ze_t i,j;
herr _t status, status_n;
i nt datal[3][3] ={ {1, 1, 1}, /* data to wite */
{1, 1, 1},
{1, 1, 1} };
i nt dat a2[7] ={ 2, 2, 2, 2, 2, 2, 2};
/* Variables used in reading data back */
hsi ze_t chunk_dins[2] ={2, 5};
hsi ze_t chunk_di nmsr[2] ;
hsi ze_t dinsr[2];
i nt data_out[10][3];
i nt rank, rank_chunk;
/* Create the data space with unlimted di mensions. */
dat aspace = H5Screate_sinple (RANK, dins, maxdi ms);
/* Create a new file. If file exists its contents will be overwitten. */
file = HoFcreate (FILE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT):
/* Modify dataset creation properties, i.e. enable chunking */
cparnms = H5Pcreate (H5P_DATASET_CREATE);
status = H5Pset_chunk (cparms, RANK, chunk_dins);
/* Create a new dataset within the file using cparns
creation properties. */
dat aset = HoDcreate (file, DATASETNAME, H5T_NATI VE I NT, dataspace,
cpar s) ;
/* Extend the dataset. This call assures that dataset is 3 x 3.*/
si ze[0] = 3;
si ze[1] = 3;
status = H5Dextend (dataset, size);
/* Select a hyperslab */
fil espace = HoDget _space (dataset);
of fset[0] = O;
of fset[1] = O;
status = H5Ssel ect _hyperslab (fil espace, H5S SELECT SET, offset, NULL,
dims1, NULL):
/* Wite the data to the hyperslab */
status = HoDwite (dataset, HS5T_NATIVE_ I NT, dataspace, fil espace,
H5P_DEFAULT, datal);
/* Extend the dataset. Dataset beconmes 10 x 3 */
di ms[0] = dinsl[0] + dins2[0];
72 National Center for Supercomputing Applications

HDF5 Release 1.2

si ze[0] = dins[0];

si ze[1] = dins[1];

status = H5Dextend (dataset, size);

/* Select a hyperslab */

fil espace = HoDget _space (dataset);

of fset[0] = 3;

offset[1] = O;

status = H5Ssel ect _hyperslab (fil espace, H5S SELECT SET, offset, NULL,

di ms2, NULL);

/* Define menory space */
dat aspace = H5Screate_sinple (RANK, dins2, NULL);

/* Wite

st at us

/* O ose

st at us
st at us
stat us
st at us

the data to the hyperslab */
HoDwrite (dataset, HS5T_NATI VE_|I NT, dataspace, filespace,
H5P_DEFAULT, data2);

resources */

H5Dcl ose (dataset);
H5Scl ose (dat aspace);
H5Scl ose (fil espace);
H5Fcl ose (file);

/**

Read the data back

***/

}

file =
dat aset

H5Fopen (FILE, H5F_ACC RDONLY, H5P_DEFAULT);

= Ho5Dopen (file, DATASETNAME);

fil espace = HoDget _space (dataset);
rank = H5Sget _sinple_extent_ndins (fil espace);
status_n = H5Sget _sinple_extent_dins (fil espace, dinmsr, NULL);

cpar s

H5Dget _create_plist (dataset);

if (H5D_CHUNKED == H5Pget | ayout (cparns))

{

rank_chunk = H5Pget _chunk (cparns, 2, chunk_dinsr);

}

menspace = H5Screate_sinple (rank, di nmsr, NULL);

st at us

H5Dr ead (dataset, H5T_NATI VE_I NT, nenspace, fil espace,
H5P_DEFAULT, data_out);

printf("\n");
printf("Dataset: \n");

for (j

0; j < dimsr[0]; j++)

for (i =0; i <dinsr[1]; i++)

printf("% ", data_out[j][i]);
printf("\n");
}
status = H5Pcl ose (cparns);
status = H5Dcl ose (dataset);
status = H5Scl ose (fil espace);
status = H5Scl ose (nemspace);
status = H5Fclose (file);

O

University of lllinois at Urbana-Champaign 73

HDF5 Tutorial

Remarks

The function H5Pcreate creates a new property as an instance of a property list. The signature of thisfunctionis
asfollows:
hid t H5Pcreate (H5P_class_t type)

e The parameter type isthe type of property list to create.
The class types are: H5P_FILE_CREATE, H5P_FILE_ACCESS, H5P_DATASET_CREATE,
H5P DATASET XFER, and H5SP_MOUNT

The function H5Pset_chunk sets the size of the chunks used to store a chunked layout dataset. The signature of
thisfunction is asfollows:

herr_t H5Pset_chunk (hid_t plist, int ndins, const hsize t * dim)
e Thefirst parameter, plist, isthe identifier for the property list to query.
* The second parameter, ndims, is the number of dimensions of each chunk.
* Thethird parameter, dim, is an array containing the size of each chunk.

A non-negative valueisreturned if successful; otherwise a negative value is returned.

The function H5Dextend extends a dataset that has an unlimited dimension. The signature is as follows:

herr_t HbDextend (hid_t dataset_id, const hsize t * size)
* Thefirst parameter, dataset_id, is the identifier of the dataset.

* Thesecond parater, size, isan array containing the new magnitude of each dimension.

This function returns a non-negative value if successful; otherwise it returns a negative value.

The H5Dget_create plist function returns an identifier for a copy of the dataset creation property list for a
dataset.

The H5Pget_layout function returns the layout of the raw data for a dataset. Valid types are HSD_COMPACT,
H5D_CONTIGUOUS, and H5D_CHUNKED.

The H5Pget_chunk function retrieves the size of chunks for the raw data of a chunked layout dataset. The
signature of this functioniis:
int H5Pget_chunk (hid_t plist, int nmax_ndins, hsize_t * dins)
e Thefirst parameter, plist, isthe identifier of the property list to query.
* Thesecond parameter, max_ndims, is the size of the dims array.

* Thethird parameter, dims, is the array to store the chunk dimensions

The H5Pclose function terminates access to a property list. The signature of this functioniis:

herr_t H5Pclose (hid_t plist)
where plist isthe identifier of the property list to terminate access to.

Last Modified: August 27, 1999

74

National Center for Supercomputing Applications

HDF5 Release 1.2

17. Mounting Files

Mounting Files

HDF5 allows you to combine two or more HDF5 files in a manner similar to mounting filesin UNIX. The group structure
and metadata from one file appear as though they exist in another file. The following steps are involved:

36. Open thefiles.

37. Choose the "mount point" in the first file (parent). The "mount point" in HDF5 isagroup (it can also be the root
group).

38. Usethe HDF5 API function H5Fmount to mount the second file (child) in the first one.

39. Work with the objects in the second file as if they were members of the "mount point" group in the first file. The
previous contents of the "mount point" group are temporarily hidden.

40. Unmount the second file using the H5Funmount function when the work is done.

Programming Example

Description

In the following example we create one file with agroup in it, and another file with a dataset. Mounting is used to access
the dataset from the second file as a member of a group in the first file. The following picture illustrates this concept.

" FI LEY " FI LE2’
! ! ! !
! / ! ! / !
! [! ! [!
! | ! ! | !
! Y, ! ! \Y !
e ! [!
! I Goup ! ! ! ! Dat aset! !
| | | |

University of lllinois at Urbana-Champaign 75

HDF5 Tutorial

After mounting the second file, 'FILE2’, under the group in thefile, 'FILEL’, the parent has the following structure:

"FI LEY

[h5_mount. c]
B e a L a2

#i ncl ude<hdf 5. h>

#define FILE1L "nount 1. h5"
#define FILE2 "nount 2. h5"

#defi ne RANK 2
#define NX 4
#define NY 5

int main(void)

{

hid_t fidl, fid2, gid; /* Files and group identifiers */
hidt did, tid, sid; /* Dataset and datatype identifiers */

herr_t status;
hsize_t dims[] = {NX NY}; /* Dataset dinmensions */

int i, j;

int bnf NXJ[NY], bmout[NX][NY]; /* Data buffers */
/*

* |Initialization of buffer matrix "bn{

*/

for(i =0; i < NX; i++) {
for(j =0; j <NY; j++)

brfil[j] =1 +j;
/*
* Create first file and a group init.
*/

fidl = H5Fcreat e(FI LEl, H5F ACC TRUNC, H5P DEFAULT, H5P DEFAULT);
gid = HbCGereate(fidl, "/G', 0);

76 National Center for Supercomputing Applications

HDF5 Release 1.2

/*

* Close group and file

*/

H5Ccl ose(gi d) ;

H5Fcl ose(fidl);

/*

* Create second file and dataset "D' in it.
*/

fid2 = H5Fcreate(FI LE2, HS5F_ACC TRUNC, H5P_DEFAULT, HS5P_DEFAULT);
di ms[0] = NX;

dims[1] = NY;

sid = H5Screate_sinpl e(RANK, dins, NULL);

did = HsDcreate(fid2, "D', HST_NATIVE_INT, sid, H5P_DEFAULT);

/*

* Wite data to the dataset.

*/

status = HsDwrite(did, H5T_NATIVE INT, H5S ALL, H5S ALL, H5P_DEFAULT, bmn);

/*
* Close all identifiers.
*/

H5Scl ose(sid);

H5Dcl ose(di d);

H5Fcl ose(fid2);

/*
* Reopen both files
*
/
fidl = H5Fopen(Fl LEl, H5F_ACC RDONLY, H5P_DEFAULT);
fid2 = H5Fopen(FI LE2, H5F_ACC RDONLY, H5P_DEFAULT);
/*
* Mount second file under Gin the first file.
*
/
H5Frmount (fidl, "/G', fid2, H5P_DEFAULT);
/*
* Access dataset Din the first file under /G D nane.
*
/
did = H5Dopen(fidl,"/GD");
tid = H5Dget _type(did);
status = HsDread(did, tid, H5S ALL, H5S ALL, H5P_DEFAULT, bm out);
/*
* Print out the data.
*
/

for(i=0; i < NX; i++){
for(j=0; j < NY; j++)
printf(" %", bmout[il[j]);

printf("\n");
/*
* Close all identifers
*/

H5Tcl ose(tid);
H5Dcl ose(di d);

/*
* Unnmounting second file
*/

University of Illinois at Urbana-Champaign 17

HDF5 Tutorial

H5Funmount (fid1l, "/G");

* Close both files

H5Fcl ose(fidl);
H5Fcl ose(fid2);

return 0;

}

S L L L I T O e e e o e

Remarks

Thefirst part of the program creates a group in one file and creates and writes a dataset to another file.

Both files are reopened with the HSF_ ACC_RDONLY access flag since no objects will be modified. The child
should be opened with H5F_ACC_RDWR if the dataset is to be modified.

The second file is mounted in the first using the HSFmount function.
herr_t HS5Fmount (hid_t loc_id, const char *nane, hid_t file_id, hid_t plist_id)

e Thefirst two arguments specify the location of the "mount point" (agroup). In this example the
"mount point" isagroup "/G" in the file specified by its handle fid1. Since group G isin the root group
of thefirst file, one can also use just "G" to identify it.

Below is adescription of another scenario:
Suppose group G was a member of group D in the first file (fid1). Then mounting point G can be
specified in two different ways:

* loc idisfidl
nameis"D/G"

* loc_idisanidentifier of the group "D"
nameisjust "G"

e Thethird argument is an identifier of the file which will be mounted. Only one file can be mounted per
"mount point".

e Thefourth argument isan identifier of the property list to be used. Currently, only the default property
list, HSP_DEFAULT, can be used.

In this example we just read data from the dataset D. One can modify data also. If the dataset is modified while
the file is mounted, it becomes modified in the original file too after the file is unmounted.

The file is unmounted with the H5SFunmount function:
herr _t H5Funnmount(hid_t loc_id, const char *nane)

Arguments to this function specify the location of the "mount point". In our example loc_id is an identifier of the
first file, and name is the name of group G, "/G". One could also use "G" instead of "/G" since G is a member of
the root group in the file fidl. Notice that H5SFunmount does not close files. They are closed with the respective
callsto the H5Fclose function. Closing the parent automatically unmounts the child.

The h5dump utility cannot display filesin memory, therefore no output of FILE1 after FILE2 was mounted is
provided.

Last Modified: August 27, 1999

78

National Center for Supercomputing Applications

HDF5 Release 1.2

18. Iterating over Group Members

How to Iterate Over Group Members

This section discusses how to find names and object types of HDF5 group members.
The HDF5 Group interface has a function, H5Giterate, to iterate over the group members.

Operations on each group member can be performed during the iteration process. The operator function and its data are
passed to the iterator as parameters. There are no restrictions on what kind of operations can be performed on group
members during the iteration procedure.

The following steps are involved:

41. Write an operator function which will be used during the iteration process. The HDF5 library defines the
operator function signature and return val ues.

42. Open the group to iterate through.

43. Use H5Giterate to iterate through the group or just afew members of the group.

Programming Example

Description

In this example we iterate through the members of the root group. The operator function displays the members’ names and

their object types. The object type can be a group, dataset, or named datatype. [h5_i terate. c]

+++++++++++++H
#i ncl ude <hdf5. h>

#define FILE "iterate.h5"
#define FALSE O

/* 1-D dataset with fixed di nensions */
#defi ne SPACE1_NAME " Spacel"

#def i ne SPACE1_RANK 1

#def i ne SPACE1_DI ML 4

herr_t file_info(hid_t loc_id, const char *name, void *opdata);
/* Qperator function */

i nt

mai n(voi d) {

University of Illinois at Urbana-Champaign

79

HDF5 Tutorial

hi d_t file; /* HDF5 File IDs */

hi d_t dataset; /* Dataset |ID */

hid_t group; /* Group ID */

hid_t si d; /* Dat aspace | D */

hid_t tid; /* Datatype ID */

hsi ze_t dinms[] = {SPACE1_DI ML};

herr _t ret; /* Generic return val ue */

/* Conpound datatype */
typedef struct sl_t {

unsigned int a;
unsi gned int b;
float c;

} sl t;

/*

/* Create file */
file = HoFcreate(FI LE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);

/* Create dataspace for datasets */
sid = H5Screat e_si npl e(SPACEL_RANK, dins, NULL);

/* Create a group */
group=HsCGcreate(file,"Goupl",-1);

/* Cose a group */
ret = H5Gcl ose(group);

/* Create a dataset */
dat aset =H5Dcreate(fil e, "Dat aset 1", H5T_STD_U32LE, si d, H5P_DEFAULT) ;

/* O ose Dataset */
ret = H5Dcl ose(dat aset);

/* Create a datatype */
tid = H5Tcreate (HS5T_COMPOUND, sizeof(sl_t));

/[* Insert fields */
ret=H5Tinsert (tid, "a", HOFFSET(sl_t,a), H5T_NATIVE_INT);

ret=H5Tinsert (tid, "b", HOFFSET(s1_t,b), H5T_NATIVE_I NT);
ret=H5Ti nsert (tid, "c", HOFFSET(sl_t,c), H5T_NATIVE FLQAT);

/* Save datatype for later */
ret=HsTcommit (file, "Datatypel", tid);

/* C ose datatype */
ret = H5Tcl ose(tid);

/* Iterate through the file to see nenbers of the root group */

printf(" Objects in the root group are:\n");
printf("\n");

HsGterate(file, "/", NULL, file_info, NULL);

/* Cose file */
ret = H5Fclose(file);

return O;

80

National Center for Supercomputing Applications

HDF5 Release 1.2

* QOperator function.

*/

herr _t file_info(hid_t loc_id, const char *nanme, void *opdata)

{

}

H5G stat _t statbuf;

/*

* Get type of the object and display its name and type.

* The nane of the object is passed to this function by

* the Library. Some magic :-)

*/

H5CGget _objinfo(loc_id, name, FALSE, &statbuf);

switch (statbuf.type) {

case H5G_GROUP:
printf(" Object with nane % is a group \n", nane);
br eak;

case H5G_DATASET:
printf(" OGobject with name % is a dataset \n", nane);
br eak;

case H5G TYPE:
printf(" Object with nane % is a naned datatype \n", nane);
br eak;

defaul t:
printf(" Unable to identify an object ");

}

return O;

S e L

The output of this programis:

Qojects in the root group are:

oject with name Datasetl is a dataset

Ooj ect with name Datatypel is a naned datatype

Qoj ect with name Groupl is a group

+H+++++++H+

Remarks

* Theoperator function in thisexampleis caled file_info. The signature of the operator function is as follows:

herr_t *(H5G operator_t) (hid_group_id, const char* name, void *operator_data)

« Thefirst parameter is a group identifier for the group being iterated over. It is passed to the operator by
theiterator function, H5Giterate.

e The second parameter is the name of the current object. The name is passed to the operator function by
the HDF5 library.

e Thethird parameter is the operator data. It is passed to and from the operator by the iterator, H5Giterate.
The operator function in this example just prints the name and type of the current object and then exits.
Thisinformation can a so be used to open the object and perform different operations or queries. For
example a named datatype object’s name can be used to open the datatype and query its properties.

University of lllinois at Urbana-Champaign 81

HDF5 Tutorial

The operator return value defines the behavior of the iterator.

e A zeroreturn value causes the iterator to continue, returning zero when all group members have been
processed.

e A positive value causes the iterator to immediately return that val ue, indicating a short-circuit success.
The iterator can be restarted at the next group member.

e A negative value causes the iterator to immediately return that value, indicating failure. The iterator can
be restarted at the next group member.

In this example the operator function returns 0, which causes the iterator to continue and go through al group
members.

e Thefunction H5Gget objinfo is used to determine the type of the object. It also returns the modification time,
number of hard links, and some other information.

The signature of this function is as follows:
herr_t H5CGget _objinfo(hid_t loc_id, const char * name, hbool _t follow_link,
H5G stat _t *statbuf)
* Thefirst two arguments specify the object by itslocation and name. This example uses the group
identifier and name relative to the group to specify the object.

» Thethird argument is aflag which indicates whether a symbolic link should be followed or not. A zero
value indicates that information should be returned for the link itself, but not about the object it points
to. The root group in this example does not have objects that are links, so thisflag is not important for
our example.

* Thefourth argument is a buffer to return information in. Type information is returned into the field
"type" of the H5G_stat_t data structure (statbuf.type). Possible values are: H5G_GROUP,
H5G_DATASET, H5G_TYPE, and H5G_LINK.

e The H5Giterate function has the following signature:

int HbGterate(hid_t loc_id, const char *nane , idx,
H5G operator _t operator, void * operator_data)

e Thefirst parameter is the group for the group being iterated over.

e The second parameter is the group name.

e Thethird parameter specifies that iteration begins with the idx object in the group and the next element
to be processed is returned in the idx parameter. In our example NULL is used to start at the first group
member. Since no stopping point is returned in this case, the iterator cannot be restarted if one of the
callsto its operator returns a non-zero value.

e Thefourth parameter is an operator function.

e Thefifth argument is the operator data. We used NULL since no data was passed to and from the
operator.

Last Modified: August 27, 1999

82 National Center for Supercomputing Applications

HDF5 Release 1.2

Utilities (hS5dump, h5ls)

The h5dump and h5ls utilities can be used to examine the contents of an hdf5 file.

h5dump

h5dunmp [-h] [-bb] [-header]
[-1 <names>] [-t <nanes>] <file>

[-a] [-d <nanes>] [-g <names>]

-h Print information on this comand

- bb Di spl ay the content of the boot block. The default is not to display.
- header Di spl ay header only; no data is displayed

-a <nanes> Di splay the specified attribute(s).

-d <nanmes> Di spl ay the specified dataset(s)

-g <names> Di spl ay the specified group(s) and all the menbers

-1 <names> Di spl ays the value(s) of the specified soft link(s).

-t <names> Di spl ay the specified naned data type(s).

<names> i s one or nore appropriate object nanes

h5ls

h5l's [OPTI ONS] FI LE [OBJECTS. . .]

OPTI ONS
-h, -?, --help
-d, --dunp
-f, --full
-1, --1abel
-r, --recursive
-s, --string
-wN, --width=N
-v, --verbose

-V, --version
FI LE

Print
Pri nt
Print
Label
Li st
Pri nt
Set t

a usage nessage and exit

the val ues of datasets

full path names instead of base nanes
menbers of conpound dat asets
all groups recursively, avoiding cycles
1-byte integer datasets as ASCl

he nunber of colums of output

Generate nore verbose out put

Print

versi on nunber and exit

The file nane may include a printf(3C) integer format such as
"o95d" to open a file famly

OBJECTS

The nanmes of zero or nore objects about which information should be

di splayed. If a group is nmentioned then information about each of its
nmenbers i s displayed.
i nformation about al

If no object nanes are specified then
of the objects in the root group is displayed

Last Modified: July 30, 1999

University of Illinois at Urbana-Champaign

83

HDF5 Tutorial

84 National Center for Supercomputing Applications

HDF5 Release 1.2

Glossary

ATTRIBUTE

An HDFS5 attribute is a small dataset that can be used to describe the nature and/or the intended usage of the object it
is attached to.

BOOT BLOCK

HDF5 files are composed of a"boot block™ describing information required to portably access files on multiple
platforms, followed by information about the groupsin afile and the datasets in the file. The boot block contains
information about the size of offsets and lengths of objects, the number of entriesin symbol tables (used to store
groups) and additional version information for the file.

DATASET

An HDF5 dataset is a multi-dimensional array of data elements, together with supporting metadata.

DATASPACE

An HDF5 dataspace is an object that describes the dimensionality of the data array. A dataspace is either aregular N-
dimensiona array of data points, called a simple dataspace, or a more genera collection of data points organized in
another manner, called a complex dataspace.

DATA TYPE

An HDF5 Data Typeis an object that describes the type of the element in an HDF5 multi-dimensional array. There
are two categories of datatypes. atomic and compound data types. An atomic type is a type which cannot be
decomposed into smaller units at the API level. A compound is a collection of one or more atomic types or small
arrays of such types.

DATASET CREATION PROPERTY LIST

The Dataset Creation Property List contains information on how raw datais organized on disk and how the raw data
is compressed. The dataset API partitions these terms by layout, compression, and external storage:

Layout:

e H5D COMPACT: Datais small and can be stored in object header (not implemented yet). This
eliminates disk seek/read requests.

e« H5D_CONTIGUOUS: (default) The dataislarge, non-extendible, non-compressible, non-sparse,
and can be stored externally.

« H5D CHUNKED: The dataislarge and can be extended in any dimension. It is partitioned into
chunks so each chunk is the same logical size.

Compression: (gzip compression)
External Storage Properties. The data must be contiguous to be stored externally. It allows you to store the
data in one or more non-HDF5 files.

University of lllinois at Urbana-Champaign 85

HDF5 Tutorial

DATA TRANSFER PROPERTY LIST

The data transfer property list is used to control various aspects of the I/O, such as caching hints or collective I/0
information.

DDL
DDL isaData Description Language that describes HDF5 objects in Backus-Naur Form.
FILE ACCESSMODES

The file access modes determine whether an existing file will be overwritten. All newly created files are opened for
both reading and writing. Possible values are;

H5F_ACC _RDVR: Allow read and wite access to file.

H5F_ACC RDONLY: All ow read-only access to file.

H5F_ACC TRUNC: Truncate file, if it already exists, erasing all data
previously stored in the file.

H5F_ACC _EXCL: Fail if file already exists.

H5F_ACC DEBUG Print debug information.

H5P_DEFAULT: Apply default file access and creation properties.

FILE ACCESSPROPERTY LIST
File access property lists are used to control different methods of performing I/O on files:

Unbuffered 1/0: Local permanent files can be accessed with the functions described in Section 2 of the Posix
manual, namely open(), Iseek(), read(), write(), and close().

Buffered I/0: Local permanent files can be accessed with the functions declared in the stdio.h header file,
namely fopen(), fseek(), fread(), fwrite(), and fclose().

Memory |/O: Local temporary files can be created and accessed directly from memory without ever creating
permanent storage. The library uses malloc() and freg() to create storage space for thefile

Parallel Filesusing MPI 1/O: Thisdriver allows parallel accessto afile through the MPI /O library. The
parameters which can be modified are the MPI communicator, the info object, and the access mode. The
communicator and info object are saved and then passed to MPI_File_open() during file creation or open. The
access_mode controls the kind of parallel access the application intends.

Data Alignment: Sometimesfile accessis faster if certain things are aligned on file blocks. This can be
controlled by setting alignment properties of afile access property list with the H5Pset_alignment() function.

FILE CREATION PROPERTY LIST
Thefile creation property list is used to control the file metadata. The parameters that can be modified are;

User-Block Size: The "user-block" isafixed length block of datalocated at the beginning of the file which is
ignored by the HDF5 library and may be used to store any data information found to be useful to applications.
Offset and Length Sizes: The number of bytes used to store the offset and length of objectsin the HDF5 file can
be controlled with this parameter. Symbol Table Parameters. The size of symbol table B-trees can be controlled
by setting the 1/2 rank and 1/2 node size parameters of the B-tree.

Indexed Storage Parameters: The size of indexed storage B-trees can be controlled by setting the 1/2 rank and
1/2 node size parameters of the B-tree.

GROUP

A Group is a structure containing zero or more HDF5 objects, together with supporting metadata. The two primary
HDF5 objects are datasets and groups.

86 National Center for Supercomputing Applications

HDF5 Release 1.2

HDF5

HDF5 is an abbreviation for Hierarchical Data Format Version 5. Thisfile format is intended to make it easy to write
and read scientific data

« by including the information needed to understand the data within the file

e by providing alibrary of C, FORTRAN, and other language programs that reduce the work required to
provide efficient writing and reading - even with parallel 10

HDF5FILE

An HDF5 fileisacontainer for storing grouped collections of multi-dimensional arrays containing scientific data.
H5DUMP

h5dump is an HDF5 tool that describes the HDFS5 file contentsin DDL.
HYPERSLAB

A hyperdab is aportion of adataset. A hyperslab selection can be alogically contiguous collection of pointsin a
dataspace, or it can be aregular pattern of points or blocks in a dataspace.

NAMES

HDF5 object names are a dash-separated list of components. A name which begins with a slash is an absolute name
which is accessed beginning with the root group of the file while all other relative names are accessed beginning with
the specified group.

PARALLEL 1/O (HDF5)
The parallel 1/0 version of HDF5 supports parallel file access using MPI (M essage Passing Interface).
THREADSAFE (HDF5)

A "thread-safe" version of HDF-5 (TSHDF5) is one that can be called from any thread of a multi-threaded program.
Any callsto HDF can be made in any order, and each individual HDF call will perform correctly. A calling program
does not have to explicitly lock the HDF library in order to do I/O. Applications programmers may assume that the
TSHDF5 guarantees the following:

e the HDF-5 library does not create or destroy threads.
e the HDF-5 library uses modest amounts of per-thread private memory.

» the HDF-5library only locks/unlocksit's own locks (no locks are passed in or returned from HDF), and the
internal locking is guaranteed to be deadlock free.

These properties mean that the TSHDF5 library will not interfere with an application’s use of threads. A TSHDF5
library isthe same library as regular HDF-5 library, with additional code to synchronize accessto the HDF-5 library’s
internal data structures.

Last Modified: September 1, 1999

University of lllinois at Urbana-Champaign 87

HDF5 Tutorial

88 National Center for Supercomputing Applications

HDF5 Release 1.2

References

» HDFHomePage: http://hdf.ncsa. uiuc. edu/
 HDF5 Home Page and Documentation: htt p:// hdf. ncsa. ui uc. edu/ HDF5/
e« HDF5DDL: http://hdf.ncsa. uiuc. edu/ HDF5/ doc/ ddl . ht m

e Introduction toHDF5: http://hdf. ncsa. ui uc. edu/ HDF5/ doc/ H5. i ntro. ht mi
Overview of HDF5 with example programs.

e Other Miscellaneous HDF5 Example Programs. ht t p: // hdf . ncsa. ui uc. edu/ t r ai ni ng/ ot her - ex5/

Last Modified: September 28, 1999

University of Illinois at Urbana-Champaign

89

HDF5 Tutorial

90 National Center for Supercomputing Applications

HDF5 Release 1.2

Example Programsfrom This Tutorial

As mentioned in the introduction, this tutorial was designed to be used online in an interactive mode. A tar file containing
the exampl e programs supporting thistutorial can be obtained from the following location on the HDF website at NCSA:

htt p:// hdf. ncsa. ui uc. edu/ trai ni ng/ ot her - ex5/ exanpl es. tar

Last Modified: November 10, 1999

University of Illinois at Urbana-Champaign

91

A User’'s Guide for HDF5

Release 1.2
October 1999

Hierarchical Data Format (HDF) Group
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

A User's Guide for HDF5

Copyright Notice and Statement for
NCSA HDF5 (Hierarchical Data Format 5) Software

Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999 by the Board of Trustees of the University of Illinois
All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National
Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip

library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any
purpose (including commercial purposes) provided that the following conditions are met:

1.

Redistributions of source code must retain the above copyright notice, thislist of conditions, and
the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, thislist of conditions,
and the following disclaimer in the documentation and/or materials provided with the
distribution.

In addition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

All publications or advertising materials mentioning features or use of this software are asked,
but not required, to acknowledge that it was developed by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign and to credit the
contributors.

Neither the name of the University nor the names of the Contributors may be used to endorse or
promote products derived from this software without specific prior written permission from the
University or the Contributors.

THIS SOFTWARE ISPROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS "AS
IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. Inno
event shall the University or the Contributors be liable for any damages suffered by the users
arising out of the use of this software, even if advised of the possibility of such damage.

Last modified: 13 October 1999

National Center for Supercomputing Applications

HDF5 Release 1.2

A User’'s Guide for HDF5

1. TheFileInterface (H5F) 1
1.1. Introduction 1
1.2. File access modes 1
1.3. Creating, Opening, and Closing Files 1
1.4. File Property Lists 2

1.4.1. File Creation Properties 2
1.4.2. File Access Property Lists 2
1.5. Examples of using file property lists 3
1.6. Low-level File Drivers 4
1.6.1. Unbuffered Permanent Files 4
1.6.2. Buffered Permanent Files 5
1.6.3. Buffered Temporary Files 5
1.6.4. Parallel Files 6
1.6.5. File Families 6
1.6.6. Split Meta/Raw Files 7

2. The Dataset Interface (H5D) 9
2.1. Introduction 9
2.2. Storage Layout Properties 9
2.3. Compression Properties 12
2.4. External Storage Properties 12
2.5. Datatype 15
2.6. Data Space 15
2.7. Setting Constant or Persistent Properties 15
2.8. Querying Constant or Persistent Properties 16
2.9. Setting Memory and Transfer Properties 16
2.10. Querying Memory or Transfer Properties 17
2.11. Raw Datal/O 17
2.12. Examples 18

3. The Datatype Interface (H5T) 23
3.1. Introduction 23
3.2. General Datatype Operations 23
3.3. Properties of Atomic Types 24

3.3.1. Properties of Integer Atomic Types 26
3.3.2. Properties of Floating-point Atomic Types 26
3.3.3. Properties of Date and Time Atomic Types 27
3.3.4. Properties of Character String Atomic Types 27
3.3.5. Properties of Bit Field Atomic Types 28
3.3.6. Character and String Datatype Issues 28
3.4. Properties of Opague Types 29
3.5. Properties of Compound Types 29
3.6. Predefined Atomic Datatypes 30
3.7. Defining Compound Datatypes 33
3.8. Enumeration Datatypes 35

University of Illinois at Urbana-Champaign

A User's Guide for HDF5

3.9. Variable-length Datatypes 44
3.10. Sharing Datatypes among Datasets 51
3.11. Data Conversion 51
4. The Dataspace I nterface (H5S) 57
4.1. Introduction 57
4.2. General Dataspace Operations 59
4.3. Dataspace Extent Operations 60
4.4. Dataspace Selection Operations 61
4.5. Miscellaneous Dataspace Operations 63
5. The Group Interface (H5G) 65
5.1. Introduction 65
5.2. Names 65
5.3. Creating, Opening, and Closing Groups 66
5.4. Objects with Multiple Names 67
5.5. Comments 68
6. The Reference Interface (H5R) and theIndentifier Interface (H5I) 69
6.1. Introduction 69
6.2. References 69
6.3. Reference Types 70
6.4. Functions 70
6.5. Examples 71
7. The Attribute I nterface (H5A) 75
7.1. Introduction 75
7.2. Creating, Opening, Closing and Deleting Attributes 75
7.3. Attribute I/O Functions 76
7.4. Attribute Inquiry Functions 76
8. TheProperty List Interface (H5P) 79
8.1. Introduction 79
8.2. General Property List Operations 79
9. The Error Handling Interface (H5E) 81
9.1. Introduction 81
9.2. Error Handling Operations 81
10. Filtersin HDF5 85
10.1. Introduction 85
10.2. Defining and Querying the Filter Pipeline 85
10.3. Defining Filters 86
10.4. Predefined Filters 87
10.5. Example 87
10.6. Filter Diagnostics 89
11. HDF5 Palette Specification 91
11.1. HDF5 Palette Overview 91
11.2. Palette Attributes 93
11.3. Specifying a Palette for a Dataset 94
12. Data Caching 95
12.1. Meta Data Caching 95
12.2. Raw Data Chunk Caching 95
12.3. Data Caching Operations 95

National Center for Supercomputing Applications

HDF5 Release 1.2

13. Dataset Chunking I ssues 97
13.1. Introduction 97
13.2. The Raw Data Chunk Cache 98
13.3. Cache Efficiency 99
13.4. Fragmentation 102
13.5. File Storage Overhead 102

14. Mounting Files 103
14.1. Purpose 103
14.2. Definitions 103
14.3. Common Features 103
14.4. Contrasting Features 104
14.5. Functions 105
14.6. Example 106

Tree 106
Graph 106

15. Performance Analysisand | ssues 107
15.1. Introduction 107
15.2. Dataset Chunking 107
15.3. Use of the Pablo Instrumentation of HDF5 107

16. Debugging HDF5 Applications 109
16.1. Introduction 109
16.2. Error Messages 110
16.3. Invariant Conditions 110
16.4. Timings and Statistics 110
16.5. API Tracing 112

17. HDF5 Library Environment Variablesand Configuration Parameters 115
17.1. Environment Variables 115
17.2. Configuration Parameters 115

18. DDL in BNF for HDF5 117
18.1. Introduction 117
18.2. Explanation of Symbols 117
18.3. The DDL 117
18.4. An Example of an HDF5 Filein DDL 121

19. The Ragged Array Interface (H5RA) 125
19.1. Introduction 125
19.2. Opening and Closing 125
19.3. Reading and Writing 126
HDF5 Glossary 127

University of Illinois at Urbana-Champaign

A User's Guide for HDF5

National Center for Supercomputing Applications

HDF5 Release 1.2

1. The FileInterface (H5F)

1.1. Introduction

HDF5 files are composed of a "boot block™ describing information required to portably access files on multiple platforms,
followed by information about the groupsin afile and the datasetsin the file. The boot block contains information about
the size of offsets and lengths of objects, the number of entriesin symbol tables (used to store groups) and additional
version information for thefile.

1.2. File access modes

The HDF5 library assumes that all files are implicitly opened for read access at all times. Passing the H5SF_ ACC_RDWR
parameter to HsFopen() alowswrite accessto afile also. H5Fcr eat e() assumes write access as well as read access,
passing H5F_ACC_TRUNC forces the truncation of an existing file, otherwise H5Fcreate will fail to overwrite an existing
file

1.3. Creating, Opening, and Closing Files

Files are created with the H5Fcr eat e() function, and existing files can be accessed with H5Fopen() . Both functions
return an object ID which should be eventually released by calling H5Fcl ose() .

hid_t HoFcreate (const char *name, uintn flags, hid_t create properties, hid_t
access_properties)

This function creates a new file with the specified name in the current directory. The file is opened with read and
write permission, and if the H5SF_ACC_TRUNC flag is set, any current file is truncated when the new fileis created. If a
file of the same name exists and the H5SF_ACC_TRUNC flag is not set (or the HSF_ACC_EXCL hit is set), this function
will fail. Passing H5P_DEFAULT for the creation and/or access property lists uses the library’s default values for those
properties. Creating and changing the values of a property list is documented further below. The return valueisan ID
for the open file and it should be closed by calling H5Fcl ose() when it'sno longer needed. A negative valueis
returned for failure.

hi d_t H5Fopen (const char *nane, uintn flags, hid_t access_properties)

This function opens an existing file with read permission and write permission if the HSF_ACC_RDWR flag is set. The
access _propertiesis afile access property list ID or H5P_DEFAULT for the default 1/0O access parameters. Creating
and changing the parameters for access property lists is documented further below. Files which are opened more than
once return a unique identifier for each H5Fopen() call and can be accessed through al file IDs. The return valueis
an ID for the open file and it should be closed by calling H5Fcl ose() whenit’'s no longer needed. A negative value
isreturned for failure.

herr _t H5Fclose (hid_t file_ id)

This function rel eases resources used by afile which was opened by H5Fcr eat e() or H5Fopen() . After closing a
filethefile_id should not be used again. This function returns zero for success or a negative value for failure.

University of Illinois at Urbana-Champaign 1

A User's Guide for HDF5

herr _t H5Fflush (hid_t object_id, H5F _scope_t scope)

This function will cause all buffers associated with afile to be immediately flushed to the file. The object_id can be
any object which is associated with afile, including the file itself. scope specifies whether the flushing action isto be
global or local.

1.4. File Property Lists

Additional parametersto HsFcr eat e() or H5Fopen() are passed through property list objects, which are created with
the H5Pcr eat e() function. These objects allow many parameters of afile's creation or access to be changed from the
default values. Property lists are used as a portable and extensible method of modifying multiple parameter values with
simple API functions. There are two kinds of file-related property lists, namely file creation properties and file access
properties.

1.4.1. File Creation Properties

File creation property lists apply to H5Fcr eat e() only and are used to control the file meta-data which is maintained in
the boot block of the file. The parameters which can be modified are:

User-Block Size

The "user-block" is afixed length block of datalocated at the beginning of the file which isignored by the HDF5
library and may be used to store any data information found to be useful to applications. This value may be set to any
power of two equal to 512 or greater (i.e. 512, 1024, 2048, etc). This parameter is set and queried with the

H5Pset _user bl ock() and H5Pget _user bl ock() calls.

Offset and Length Sizes

The number of bytes used to store the offset and length of objects in the HDF5 file can be controlled with this
parameter. Values of 2, 4 and 8 bytes are currently supported to allow 16-bit, 32-bit and 64-bit files to be addressed.
These parameters are set and queried with the H5Pset _si zes() and H5Pget _si zes() cals.

Symbol Table Parameters
The size of symbol table B-trees can be controlled by setting the 1/2 rank and 1/2 node size parameters of the B-tree.
These parameters are set and queried with the H5Pset _sym k() and H5Pget _sym k() cals.

Indexed Storage Parameters

The size of indexed storage B-trees can be controlled by setting the 1/2 rank and 1/2 node size parameters of the B-
tree. These parameters are set and queried with the HsPset _i st ore_k() and H5Pget _i store_k() cals.

1.4.2. File Access Property Lists

File access property lists apply to H5Fcr eat e() or HsFopen() and are used to control different methods of performing
I/0 onfiles.

Unbuffered I/0

Local permanent files can be accessed with the functions described in Section 2 of the Posix manual, namely
open(),lseek(),read(),wite(),andcl ose().Thel seek64() function isused on operating systems that
support it. Thisdriver is enabled and configured with H5Pset _sec2(), and queried with H5Pget _sec2() .

2 National Center for Supercomputing Applications

HDF5 Release 1.2

Buffered I/O

Local permanent files can be accessed with the functions declared in thest di o. h header file, namely f open(),
fseek(),fread(),fwite(),andfcl ose().Thefseek64() function isused on operating systems that support
it. Thisdriver is enabled and configured with H5Pset _st di o() , and queried with H5Pget _st di o() .

Memory 1/0

Local temporary files can be created and accessed directly from memory without ever creating permanent storage.
Thelibrary usesmal | oc() andfree() to create storage space for the file. The total size of the file must be small
enough to fit in virtual memory. The name supplied to H5Fcr eat e() isirrelevant, and H5Fopen() will alwaysfail.

Parallel Filesusing MPI I/O

Thisdriver allows parallel access to afile through the MPI 1/O library. The parameters which can be modified are the
MPI communicator, the info object, and the access mode. The communicator and info object are saved and then
passed to MPI _Fi | e_open() during file creation or open. The access mode controls the kind of parallel accessthe
application intends. (Note that it islikely that the next API revision will remove the access mode parameter and have
access control specified viathe raw data transfer property list of H5Dr ead() and H5Dwr i t e() .) These parameters
are set and queried with the H5Pset _npi () and H5Pget _npi () calls.

Data Alignment
Sometimes file access is faster if certain things are aligned on file blocks. This can be controlled by setting alignment

properties of afile access property list with the H5Pset _al i gnnent () function. Any allocation request at least as
large as some threshold will be alighed on an address which is a multiple of some number.

1.5. Examples of using file property lists

1.5.1. Example of using file creation property lists

This following example shows how to create a file with 64-bit object offsets and lengths:

hid t create_plist;
hid_t file_id;

create_plist = H5Pcreate(H5P_FI LE_CREATE) ;
H5Pset _si zes(create_plist, 8, 8);

file_id = HoFcreate("test. h5", H5F_ACC_TRUNC,
create_plist, H5P_DEFAULT);

i—lSFcI ose(file_id);

University of Illinois at Urbana-Champaign 3

A User's Guide for HDF5

1.5.2. Example of using file creation plist

This following example shows how to open an existing file for independent datasets access by MPI paralel 1/O:

hid_t access_plist;

hidt file id:

access_plist = H5Pcreate(H5P_FI LE_ACCESS) ;
H5Pset _npi (access_plist, MPI _COVM WORLD, MPI | NFO NULL);

/* H5Fopen nust be called collectively */
file_id = HsFopen("test.h5", H5F_ACC RDWR, access_plist);

./* H5Fcl ose nmust be called collectively */
H5Fcl ose(file_id);

1.6. Low-level File Drivers

HDF5 is able to access its address space through various types of low-level file drivers. For instance, an address space
might correspond to asingle file on a Unix file system, multiple files on a Unix file system, multiple files on a paralléel file
system, or a block of memory within the application. Generally, an HDF5 address space is referred to as an "HDF5 file"
regardless of how the spaceis organized at the storage level.

1.6.1. Unbuffered Permanent Files

The sec2 driver uses functions from section 2 of the Posix manual to access files stored on alocal file system. These are
theopen(),cl ose(),read(),wite(),andl seek() functions. If the operating system supports| seek64() then it
isused instead of | seek() . Thelibrary buffers meta data regardless of the low-level driver, but using this driver prevents
data from being buffered again by the lowest layers of the HDF5 library.

HSF _driver_t H5Pget _driver (hid_t access_properties)
This function returns the constant H5F_LOW SEC?2 if the sec2 driver is defined as the low-level driver for the
specified access property list.

herr _t H5Pset _sec2 (hid_t access _properties)
The file access properties are set to use the sec2 driver. Any previously defined driver properties are erased from the
property list. Additional parameters may be added to this function in the future.

herr _t H5Pget _sec2 (hid_t access_properties)

If the file access property list is set to the sec2 driver then this function returns zero; otherwise it returns a negative
value. In the future, additional arguments may be added to this function to match those added to H5Pset _sec2() .

4 National Center for Supercomputing Applications

HDF5 Release 1.2

1.6.2. Buffered Permanent Files

The stdio driver uses the functions declared in the st di 0. h header file to access permanent filesin alocal file system.
These arethef open(),fcl ose(),fread(),fwite(),andfseek() functions. If the operating system supports

f seek64() thenitisusedinstead of f seek() . Use of thisdriver introduces an additional layer of buffering beneath the
HDF5 library.

HSF driver_t H5Pget driver(hid_t access _properties)
This function returns the constant H5SF_LOW STDI Oif the stdio driver is defined as the low-level driver for the
specified access property list.

herr _t H5Pset _stdio (hid_t access_properties)
The file access properties are set to use the stdio driver. Any previously defined driver properties are erased from the
property list. Additional parameters may be added to this function in the future.

herr t H5Pget _stdio (hid_t access _properties)

If the file access property list is set to the stdio driver then this function returns zero; otherwise it returns a negative
value. In the future, additional arguments may be added to this function to match those added to H5Pset _st di o() .

1.6.3. Buffered Temporary Files

Thecoredriver usesnal | oc() andfree() to allocated space for afilein the heap. Reading and writing to afile of this
type results in mem-to-mem copies instead of disk 1/O and as aresult is somewhat faster. However, the total file size must
not exceed the amount of available virtual memory, and only one HDFS5 file handle can access the file (because the name
of such afileisinsignificant and H5SFopen() alwaysfails).

HSF driver _t H5Pget driver (hid_t access _properties)
This function returns the constant HSF_LOW CORE if the core driver is defined as the low-level driver for the
specified access property list.

herr _t H5Pset_core (hid_t access _properties, size_t block size)
The file access properties are set to use the core driver and any previously defined driver properties are erased from
the property list. Memory for the file will always be allocated in units of the specified block size. Additional
parameters may be added to this function in the future.

herr _t H5Pget _core (hid_t access _properties, size_t *block _size)

If the file access property list is set to the core driver then this function returns zero and block_sizeis set to the block
size used for the file; otherwise it returns a negative value. In the future, additional arguments may be added to this
function to match those added to H5Pset _core() .

University of Illinois at Urbana-Champaign 5

A User's Guide for HDF5
1.6.4. Paralle Files

Thisdriver uses MPI /O to provide parallel accessto afile.

HSF _driver_t H5Pget _driver (hid_t access_properties)

This function returns the constant H5SF_LOW MPI if the mpi driver is defined as the low-level driver for the specified
access property list.

herr _t H5Pset _npi (hid_t access _properties, MPI_Conm comm MNPl _info info)

The file access properties are set to use the mpi driver and any previously defined driver properties are erased from
the property list. Additional parameters may be added to this function in the future.

herr _t H5Pget _npi (hid_t access_properties, MPI_Conm *conmm MNPl _info *info)

If the file access property list is set to the mpi driver then this function returns zero and comm, and info are set to the
values stored in the property list; otherwise the function returns a negative value. In the future, additional arguments
may be added to this function to match those added to H5Pset _npi () .

1.6.5. File Families

A single HDF5 address space may be split into multiple files which, together, form a file family. Each member of the
family must be the same logical size although the size and disk storage reported by | s(1) may be substantially smaller.
The name passed to H5Fcr eat e() or H5Fopen() should includeapri nt f (3c) styleinteger format specifier which will
be replaced with the family member number (the first family member is zero).

Any HDF5 file can be split into afamily of files by running the file through spl i t (1) and numbering the output files.
However, because HDF5 is lazy about extending the size of family members, avalid file cannot generally be created by
concatenation of the family members. Additionally, spl it and cat don't attempt to generate files with holes. The

h5r epar t program can be used to repartition an HDF5 file or family into another file or family and preserves holesin the
files.

h5repart [-v] [- b block size[suffix]] [- mmember_size[suffix]] source destination

This program repartitions an HDF5 file by copying the source file or family to the destination file or family
preserving holes in the underlying Unix files. Families are used for the source and/or destination if the name includes
aprint f -styleinteger format such as"%d". The - v switch printsinput and output file names on the standard error
stream for progress monitoring, - b setsthe 1/0O block size (the default is 1kB), and - msets the output member size if
the destination is a family name (the default is 1GB). The block and member sizes may be suffixed with the letters g,
m or k for GB, MB, or kB respectively.

HSF driver _t H5Pget driver (hid_t access _properties)

This function returns the constant HSF_LOW FAM LY if the family driver is defined as the low-level driver for the
specified access property list.

6 National Center for Supercomputing Applications

HDF5 Release 1.2

herr t HoPset family (hid_t access _properties, hsize t nmenb_size, hid_t
nmenber_properties)

The file access properties are set to use the family driver and any previously defined driver properties are erased from
the property list. Each member of the file family will use member_properties asits file access property list. The
memb_size argument gives the logical size in bytes of each family member but the actual size could be smaller
depending on whether the file contains holes. The member sizeis only used when creating a new file or truncating an
existing file; otherwise the member size comes from the size of the first member of the family being opened. Note: if
the size of theof f _t typeisfour bytes then the maximum family member size is usually 2°31-1 because the byte at
offset 2,147,483,647 is generally inaccessable. Additional parameters may be added to this function in the future.

herr _t H5Pget family (hid_t access properties, hsize t *nmenb_size, hid_t
*menber_properties)

If the file access property list is set to the family driver then this function returns zero; otherwise the function returns
anegative value. On successful return, access properties will point to a copy of the member access property list
which should be closed by calling H5Pcl ose() when the application is finished with it. If memb_size is non-null
then it will contain the logical sizein bytes of each family member. In the future, additional arguments may be added
to this function to match those added to H5Pset _fami | y().

1.6.6. Split Meta/Raw Files

On occasion, it might be useful to separate meta data from raw data. Thesplit driver does this by creating two files: one
for meta data and another for raw data. The application provides a base file name to H5Fcr eat e() or H5Fopen() and
this driver appends a file extension which defaultsto ".meta" for the meta datafile and ".raw" for the raw datafile. Each
file can have its own file access property list which allows, for instance, a split file with meta data stored with the core
driver and raw data stored with the sec2 driver.

HSF _driver_t H5Pget _driver (hid_t access_properties)

This function returns the constant H5SF_LOW SPLI T if the split driver is defined as the low-level driver for the
specified access property list.

herr t H5Pset _split (hid_t access properties, const char *neta_extension, hid_t
neta_properties, const char *raw extension, hid_t raw properties)

The file access properties are set to use the split driver and any previously defined driver properties are erased from
the property list. The metafile will have a name which is formed by adding meta_extension (or ".meta") to the end of
the base name and will be accessed according to the meta_properties. The raw file will have a name which isformed
by appending raw_extension (or ".raw") to the base name and will be accessed according to the raw_properties.
Additional parameters may be added to this function in the future.

herr _t H5Pget _split (hid_t access properties, size t nmeta ext_size, const char
*nmeta_extension, hid_t neta properties, size t raw ext_size, const char
*raw _extension, hid_t *raw properties)

If the file access property list is set to the split driver then this function returns zero; otherwise the function returns a
negative value. On successful return, meta_properties and raw_properties will point to copies of the meta and raw
access property lists which should be closed by calling H5Pcl ose() when the application is finished with them, but
if the meta and/or raw file has no property list then a negative value is returned for that property list handle. Also, if
meta_extension and/or raw_extension are non-null pointers, at most meta_ext_size or raw_ext_size characters of the
meta or raw file name extension will be copied to the specified buffer. If the actual name islonger than what was
reguested then the result will not be null terminated (similar to st r ncpy()). In the future, additional arguments may

University of Illinois at Urbana-Champaign 7

A User's Guide for HDF5

be added to this function to match those added to H5Pset _split ().

Last modified: 14 October 1999

8 National Center for Supercomputing Applications

HDF5 Release 1.2

2. The Dataset | nterface (H5D)

2.1. Introduction

The purpose of the dataset interface is to provide a mechanism to describe properties of datasets and to transfer data
between memory and disk. A dataset is composed of a collection of raw data points and four classes of meta datato
describe the data points. The interface is hopefully designed in such away asto alow new features to be added without
disrupting current applications that use the dataset interface.

The four classes of meta data are:
Constant Meta Data

Meta data that is created when the dataset is created and exists unchanged for the life of the dataset. For instance, the
datatype of stored array elements is defined when the dataset is created and cannot be subsequently changed.

Persistent Meta Data

Meta data that is an integral and permanent part of a dataset but can change over time. For instance, the sizein any
dimension can increase over time if such an increase is allowed when the dataset was created.

Memory Meta Data

Meta data that exists to describe how raw data is organized in the application’s memory space. For instance, the data
type of elementsin an application array might not be the same as the datatype of those elements as stored in the
HDF5 file.

Transport Meta Data

Meta data that is used only during the transfer of raw data from one location to another. For instance, the number of
processes participating in a collective 1/0O request or hints to the library to control caching of raw data.

Each of these classes of meta data is handled differently by the library although the same API might be used to create
them. For instance, the datatype exists as constant meta data and as memory meta data; the same API (the H5T API) is
used to manipulate both pieces of meta data but they’re handled by the dataset API (the H5D API) in different manners.

2.2. Storage L ayout Properties

The dataset API partitions these terms on three orthogonal axes (layout, compression, and external storage) and uses a
dataset creation property list to hold the various settings and pass them through the dataset interface. Thisis similar to the
way HDF5 files are created with afile creation property list. A dataset creation property list is always derived from the
default dataset creation property list (use H5Pcr eat e() to get a copy of the default property list) by modifying properties
with various H5Pset _propert y() functions.

herr _t H5Pset layout (hid_t plist_id, H5D layout t [ayout)
The storage layout is a piece of constant meta data that describes what method the library uses to organize the raw

data on disk. The default layout is contiguous storage.

H5D COVPACT (Not yet implemented.)

University of Illinois at Urbana-Champaign 9

A User's Guide for HDF5

The raw datais presumably small and can be stored directly in the object header. Such data is non-extendible, non-
compressible, non-sparse, and cannot be stored externally. Most of these restrictions are arbitrary but are enforced
because of the small size of the raw data. Storing datain this format eliminates the disk seek/read request normally
necessary to read raw data.

H5D_CONTI GUOUS

Theraw datais large, non-extendible, non-compressible, non-sparse, and can be stored externally. Thisis the default
value for the layout property. The term large meansthat it may not be possible to hold the entire dataset in memory.
The non-compressibility is a side effect of the data being large, contiguous, and fixed-size at the physical level, which
could cause partial 1/O requests to be extremely expensive if compression were allowed.

H5D_CHUNKED

Theraw datais large and can be extended in any dimension at any time (provided the data space also allows the
extension). It may be sparse at the chunk level (each chunk is non-sparse, but there might only be a few chunks) and
each chunk can be compressed and/or stored externally. A dataset is partitioned into chunks so each chunk isthe
same logical size. The chunks are indexed by a B-tree and are alocated on demand (although it might be useful to be
able to preallocate storage for parts of a chunked array to reduce contention for the B-tree in a parallel environment).
The chunk size must be defined with H5Pset _chunk() .

others...

Other layout types may be defined later without breaking existing code. However, to be able to correctly read or
modify data stored with one of these new layouts, the application will need to be linked with a new version of the
library. This happens automatically on systems with dynamic linking.

Once the general layout is defined, the user can define properties of that layout. Currently, the only layout that has user-
settable propertiesis the HSD_CHUNKED layout, which needs to know the dimensionality and chunk size.

herr _t H5Pset _chunk (hid_t plist_id, int ndins, hsize t dinf])

This function defines the logical size of achunk for chunked layout. If the layout property is set to H5D_CHUNKED
and the chunk sizeis set to dim. The number of elementsin the dim array isthe dimensionality, ndims. One need not
call H5Dset _| ayout () when using this function since the chunked layout isimplied.

10 National Center for Supercomputing Applications

HDF5 Release 1.2

Example: Chunked Storage

This example shows how atwo-dimensional dataset is partitioned into chunks. The library can manage file memory
by moving the chunks around, and each chunk could be compressed. The chunks are allocated in the file on demand
when datais written to the chunk.

Entire array
5000 = 5000

Single Chunk
1000 = 1000

size t hsize[2] = {1000, 1000};
plist = H5Pcreate (H5P_DATASET_CREATE);
H5Pset _chunk (plist, 2, size);

Although it is most efficient if 1/O requests are aligned on chunk boundaries, thisis not a constraint. The application can
perform I/O on any set of data points as long as the set can be described by the data space. The set on which 1/Ois
performed is called the selection.

University of lllinois a Urbana-Champaign 11

A User's Guide for HDF5

2.3. Compression Properties

Some types of storage layout allow data compression which is defined by the functions described here. Compression is
not implemented yet.

herr _t H5Pset _conpression (hid_t plist_id, H5Z nethod_t net hod)

H5Z _met hod_t H5Pget _conpression (hid_t plist_id)
These functions set and query the compression method that is used to compress the raw data of a dataset. Theplist_id
is adataset creation property list. The possible values for the compression method are:

H5Z_NONE

Thisisthe default and specifies that no compression isto be performed.

H5Z_DEFLATE

This specifies that a variation of the Lempel-Ziv 1977 (LZ77) encoding is used, the same encoding used by the free
GNU gzi p program.

herr _t H5Pset _deflate (hid_t plist_id, int [evel)
int H5Pget _deflate (hid_t plist_id)

These functions set or query the deflate level of dataset creation property list plist_id. The H5Pset _def | at e() sets
the compression method to H5Z_DEFLATE and sets the compression level to some integer between one and nine
(inclusive). One results in the fastest compression while nine results in the best compression ratio. The default value
issix if HoPset _def | at e() isnt called. TheH5Pget _def | at e() returnsthe compression level for the deflate
method, or negative if the method is not the deflate method.

2.4. External Storage Properties

Some storage formats may allow storage of data across a set of non-HDF5 files. Currently, only the H5D_CONTI GUOUS
storage format allows external storage. A set segments (offsets and sizes) in one or more filesis defined as an external file
list, or EFL, and the contiguous logical addresses of the data storage are mapped onto these segments.

herr _t H5Pset _external (hid_t plist, const char *nane, off t offset, hsize t size)

This function adds a new segment to the end of the external file list of the specified dataset creation property list. The
segment begins a byte offset of file name and continues for size bytes. The space represented by this segment is
adjacent to the space already represented by the external file list. The last segment in afilelist may have the size
H5F_UNLI M TED, in which case the external file may be of unlimited size and no more files can be added to the
externd fileslist.

int HoPget external count (hid_t plist)

Calling this function returns the number of segmentsin an external filelist. If the dataset creation property list has no
external datathen zero isreturned.

12 National Center for Supercomputing Applications

HDF5 Release 1.2

herr _t H5Pget _external (hid_t plist, int jidx, size t name_size, char *nane, off _t
*of fset, hsize_ t *size)

Thisisthe counterpart for the H5Pset _ext er nal () function. Given a dataset creation property list and a zero-based
index into that list, the file name, byte offset, and segment size are returned through non-null arguments. At most
name_size characters are copied into the name argument which is not null terminated if the file name is longer than
the supplied name buffer (thisissimilar tost rncpy()).

Example: M ultiple Segments

This example shows how a contiguous, one-dimensional dataset is partitioned into three parts and each of those
partsis stored in a segment of an external file. The top rectangle represents the logical address space of the dataset
while the bottom rectangle represents an external file.

R A I A e
W T T T T T T T T T T T T
R A I A e
W T T T T T T T T T T T T
R A I A e
W T T T T T T T T T T T T
R A A A A A R A A A A A A A A

R A I A e
N ww ww ww ww .
R A I A e
W T T T T T T T T T T T T
R A I A e

AR A A A A A R A A A A A A A A

plist = HoPcreate (H5P_DATASET CREATE);

H5Pset _external (plist, "velocity.data", 3000, 1000);
H5Pset _external (plist, "velocity.data", 0, 2500);
H5Pset _external (plist, "velocity.data", 4500, 1500);

One should note that the segments are defined in order of the logical addresses they represent, not their order within
the external file. It would also have been possible to put the segments in separate files. Care should be taken when
setting up segments in asingle file since the library doesn't automatically check for segments that overlap.

University of lllinois at Urbana-Champaign 13

A User's Guide for HDF5

Example: M ulti-Dimensional

This example shows how a contiguous, two-dimensional dataset is partitioned into three parts and each of those
partsis stored in a separate external file. The top rectangle represents the logical address space of the dataset while
the bottom rectangles represent external files.

OROR AR /1'/ /1'/ /
hr hr AT,
scanl. data
NS NS
SN SN

scand. data

scand. data

plist = HoPcreate (H5P_DATASET CREATE);

H5Pset _external (plist, "scanl.data", 0, 24);
H5Pset _external (plist, "scan2.data", 0, 24);
H5Pset _external (plist, "scan3.data", 0, 16);

The library maps the multi-dimensional array onto a linear address space like normal, and then maps that address
space into the segments defined in the external filelist.

The segments of an external file can exist beyond the end of the file. The library reads that part of a segment as zeros.

When writing to a segment that exists beyond the end of afile, the file is automatically extended. Using this feature, one
can create a segment (or set of segments) which is larger than the current size of the dataset, which allows to dataset to be

extended at a future time (provided the data space also allows the extension).

All referenced external data files must exist before performing raw data 1/0 on the dataset. Thisis normally not a problem

since those files are being managed directly by the application, or indirectly through some other library.

14 National Center for Supercomputing Applications

HDF5 Release 1.2

2.5. Datatype

Raw data has a constant datatype which describes the datatype of the raw data stored in the file, and a memory datatype
that describes the datatype stored in application memory. Both data types are manipulated with the H5T API.

The constant file datatype is associated with the dataset when the dataset is created in a manner described below. Once
assigned, the constant datatype can never be changed.

The memory datatype is specified when data is transferred to/from application memory. In the name of data sharability,
the memory datatype must be specified, but can be the same type identifier as the constant datatype.

During dataset 1/O operations, the library translates the raw data from the constant datatype to the memory datatype or
vice versa. Structured datatypes include member offsets to allow reordering of struct members and/or selection of a subset
of members and array datatypes include index permutation information to allow things like transpose operations (the
prototype does not support array reordering) Permutations are relative to some extrinsic descritpion of the dataset.

2.6. Data Space

The dataspace of a dataset defines the number of dimensions and the size of each dimension and is manipulated with the
H5S API. The simple dataspace consists of maximum dimension sizes and actual dimension sizes, which are usually the
same. However, maximum dimension sizes can be the constant HSD_UNLI M TED in which case the actual dimension size
can be incremented with callsto H5Dext end() . The maximium dimension sizes are constant meta data while the actual
dimension sizes are persistent meta data. Initial actual dimension sizes are supplied at the same time as the maximum
dimension sizes when the dataset is created.

The dataspace can also be used to define partial 1/0 operations. Since I/O operations have two end-points, the raw data
transfer functions take two data space arguments. one which describes the application memory data space or subset
thereof and another which describes the file data space or subset thereof.

2.7. Setting Constant or Persistent Properties

Each dataset has a set of constant and persistent properties which describe the layout method, pre-compression
transformation, compression method, datatype, external storage, and data space. The constant properties are set as
described above in a dataset creation property list whose identifier is passed to H5Dcr eat e() .

hid_t H5Dcreate (hid_t file id, const char *nane, hid_t type id, hid_t space id, hid_t
create_plist_id)

A dataset is created by calling H5Dcr eat e with afile identifier, a dataset name, a datatype, a data space, and constant
properties. The datatype and data space are the type and space of the dataset as it will exist in the file, which may be
different than in application memory. The create plist idisaH5P_DATASET CREATE property list created with
H5Pcr eat e() and initialized with the various functions described above. H5Dcr eat e() returns adataset handle for
success or negative for failure. The handle should eventually be closed by calling H5Dcl ose() to release resources it
uses.

hid_t HeDopen (hid_t file id, const char *nane)

An existing dataset can be opened for access by calling this function. A dataset handle is returned for success or a
negative value is returned for failure. The handle should eventually be closed by calling H5Dcl ose() to release
resources it uses.

University of lllinois at Urbana-Champaign 15

A User's Guide for HDF5
herr _t H5Dcl ose (hid_t dataset_id)

This function closes a dataset handle and releases all resources it might have been using. The handle should not be
used in subsequent callsto the library.

herr _t H5Dextend (hid_t dataset id, hsize t dinj])

This function extends a dataset by increasing the size in one or more dimensions. Not all datasets can be extended.

2.8. Querying Constant or Persistent Properties

Constant or persistent properties can be queried with a set of three functions. Each function returns an identifier for a copy
of the requested properties. The identifier can be passed to various functions which modify the underlying object to derive
anew object; the original dataset is completely unchanged. The return values from these functions should be properly
destroyed when no longer needed.

hid_t HoDget type (hid_t dataset _id)
Returns an identifier for a copy of the dataset permanent datatype or negative for failure.
hid_t H5Dget _space (hid_t dataset _id)

Returns an identifier for a copy of the dataset permanent data space, which also contains information about the
current size of the dataset if the data set is extendable with H5Dext end() .

hid_t H5Dget _create_plist (hid_t dataset _id)

Returns an identifier for a copy of the dataset creation property list. The new property list is created by examining
various permanent properties of the dataset. Thisis mostly a catch-all for everything but type and space.

2.9. Setting Memory and Transfer Properties

A dataset also has memory properties which describe memory within the application, and transfer properties that control
various aspects of the 1/0 operations. The memory can have a datatype different than the permanent file datatype
(different number types, different struct member offsets, different array element orderings) and can also be a different size
(memory is a subset of the permanent dataset elements, or vice versa). The transfer properties might provide caching hints
or collective 1/O information. Therefore, each |/O operation must specify memory and transfer properties.

The memory properties are specified with type id and space _id arguments while the transfer properties are specified with
the transfer_id property list for the H5Dr ead() and H5Dwr i t e() functions (these functions are described below).

herr t H5Pset _buffer (hid_t xfer_plist, size t max_buf_size, void *tconv_buf, void
*bkg_buf)

size_t H5Pget _buffer (hid_t xfer_plist, void **tconv_buf, void **bkg_ buf)

Sets or retrieves the maximum size in bytes of the temporary buffer used for datatype conversion in the I/O pipeline.
An application-defined buffer can also be supplied as the tconv_buf argument, otherwise a buffer will be allocated
and freed on demand by the library. A second temporary buffer bkg_buf can also be supplied and should be the same
size asthe tconv_buf. The default values are IMB for the maximum buffer size, and null pointers for each buffer
indicating that they should be allocated on demand and freed when no longer needed. The H5Pget _buf f er ()
function returns the maximum buffer size or zero on error.

If the maximum size of the temporary /O pipeline buffersistoo small to hold the entire I/O request, then the I/O request
will be fragmented and the transfer operation will be strip mined. However, certain restrictions apply to the strip mining.

16 National Center for Supercomputing Applications

HDF5 Release 1.2

For instance, when performing I/O on a hyperslab of a simple data space the strip mining isin terms of the slowest
varying dimension. So if a 100x200x300 hyperdab is requested, the temporary buffer must be large enough to hold a
1x200x300 sub-hyperdab.

To prevent strip mining from happening, the application should use H5Pset _buf f er () to set the size of the temporary
buffer so it's large enough to hold the entire request.

Example

This example shows how to define a function that sets a dataset transfer property list so that strip mining does not
occur. It takes an (optional) dataset transfer property list, a dataset, a data space that describes what data points are
being transfered, and a datatype for the data pointsin memory. It returns a (new) dataset transfer property list with
the temporary buffer size set to an appropriate value. The return value should be passed as the fifth argument to
H5Dr ead() or H5Dwri te() .

1 hid_t

2 disable_strip_mning (hid_t xfer_plist, hid_t dataset,

3 hid_t space, hid_t nemtype)

4 {

5 hidt file_type; /* File datatype */

6 size_t type_si ze; /* Sizeof larger type */

7 size_t size; /* Temp buffer size */

8 hid_t xfer_plist; /* Return value */

9

10 file_type = HoDget _type (dataset);

11 type_size = MAX(H5Tget _size(file_type), H5Tget_ size(memtype));
12 H5Tcl ose (file_type);

13 size = H5Sget _npoi nts(space) * type_size;

14 if (xfer_plist<0) xfer_plist = H5Pcreate (H5P_DATASET_XFER);
15 H5Pset _buffer(xfer_plist, size, NULL, NULL);

16 return xfer_plist;

17 }

2.10. Querying Memory or Transfer Properties

Unlike constant and persistent properties, a dataset cannot be queried for it's memory or transfer properties. Memory
properties cannot be queried because the application already stores those properties separate from the buffer that holds the
raw data, and the buffer may hold multiple segments from various datasets and thus have more than one set of memory
properties. The transfer properties cannot be queried from the dataset because they’re associated with the transfer itself
and not with the dataset (but one can call HsPget _pr opert y() to query transfer properties from atempal ate).

2.11. Raw Data |/O

All raw data I/O is accomplished through these functions which take a dataset handle, a memory datatype, a memory data
space, afile data space, transfer properties, and an application memory buffer. They trandate data between the memory
datatype and space and the file datatype and space. The data spaces can be used to describe partial 1/O operations.

herr t HoDread (hid_t dataset id, hidt nemtype id, hidt nemspace id, hid_t
file space id, hid_ t xfer_plist _id, void *bufl/*out*/)

Reads raw data from the specified dataset into buf converting from file datatype and space to memory datatype and
space.

University of lllinois at Urbana-Champaign 17

A User's Guide for HDF5

herr t HoDwite (hid_t dataset_id, hid_t nemtype id, hid_t nemspace id, hid_t

file space id, hid_ t xfer_plist _id, const void *buf)

Writes raw data from an application buffer buf to the specified dataset converting from memory datatype and space to

file datatype and space.

In the name of sharability, the memory datatype must be supplied. However, it can be the same identifier as was used to
create the dataset or as was returned by Hs5Dget _t ype() ; the library will not implicitly derive memory datatypes from

constant datatypes.

For compl ete reads of the dataset one may supply H5S_ALL as the argument for the file data space. If H5S_ALL isaso
supplied as the memory data space then no data space conversion is performed. This is a somewhat dangerous situation

since the file data space might be different than what the application expects.

2.12. Examples

The examples in this section illustrate some common dataset practices.

This example shows how to create a dataset which is stored in memory as a two-dimensional array of native doubl e
valuesbut is stored in the filein Cray f | oat format using LZ77 compression. The dataset is written to the HDF5 file and

then read back as atwo-dimensiona array of f | oat values.

Example 1
1 hid t file, data_space, dataset, properties;
2 doubl e dd[500][600];
3 float ff[500][600];
4 hsize_t dims[2], chunk_size[2];
5
6 /* Describe the size of the array */
7 dins[0] = 500;
8 dinms[1] = 600;
9 data_space = H5Screate_sinple (2, dins);
10
11
12 /*

13 * Create a new file using with read/wite access,

15 * access properties.

26 chunk_si ze[0] = chunk_size[1l] = 100;
27 properties = H5Pcreate (HSP_DATASET_CREATE);
28 HoPset chunk (properties, 2, chunk_size);

14 * default file creation properties, and default file

16 */

17 file = H5Fcreate ("test.h5", H5F_ACC RDWR, H5P_DEFAULT,
18 H5P_DEFAULT) ;

19

20 /*

21 * Set the dataset creation plist to specify that

22 * the raw data is to be partitioned into 100x100 el enent
23 * chunks and that each chunk is to be conpressed with
24 * LZ77.

25 */

29 H5Pset _conpression (properties, H5D COVPRESS LZ77);

30

31 /*

32 * Create a new dataset within the file. The datatype
33 * and data space describe the data on disk, which may
34 * be different than the format used in the application's
35 * menory.

18

National Center for Supercomputing Applications

HDF5 Release 1.2

36 */

37 dataset = HoDcreate (file, "dataset”, H5T_CRAY_FLQAT,
38 dat a_space, properties);

39

40 | *

41 * Wite the array to the file. The datatype and data
42 * space describe the format of the data in the ‘dd’
43 * buffer. The raw data is translated to the format
44 * required on disk defined above. W use default raw
45 * data transfer properties.

46 */

47 HoDwrite (dataset, HS5T_NATIVE_DOUBLE, H5S ALL, H5S _ALL,
48 H5P_DEFAULT, dd);

49

50 /*

51 * Read the array as floats. This is simlar to witing
52 * data except the data flows in the opposite direction.

53 */

54 H5Dread (dataset, H5T_NATIVE FLOAT, H5S ALL, H5S ALL,
55 H5P_DEFAULT, ff);

56

64 H5Dcl ose (dataset);
65 H5Scl ose (data_space);
66 H5Pcl ose (properties);
67 H5Fcl ose (file);

This example uses the file created in Example 1 and reads a hyperslab of the 500x600 file dataset. The hyperdab sizeis
100x200 and it is located beginning at element <200,200>. We read the hyperdab into an 200x400 array in memory
beginning at element <0,0> in memory. Visually, the transfer looks something like this:

Raw Data Transfer

File Dataset kiemaory Dataset

University of lllinois at Urbana-Champaign 19

A User's Guide for HDF5

Example 2

1 hidt file, nemspace, file_space, dataset;
2 doubl e dd[200] [400];

3 hssize t offset[2];

4 hsize size[2];

5

6 /*

7 * Qpen an existing file and its dataset.

8 */

9 file = H5Fopen ("test.h5", H5F_ACC RDONLY, H5P_DEFAULT);
10 dataset = H5Dopen (file, "dataset");
11
12 /*
13 * Describe the file data space
14 */

15 of fset[0] 200; /*offset of hyperslab in file*/
16 of fset[1] 200

17 size[0] = 100; / *size of hyperslab*/

18 size[1l] = 200;

19 file_space = H5Dget _space (dataset);

20 H5Sset _hyperslab (file_space, 2, offset, size);

21

22 | *

23 * Describe the nenory data space

24 */

25 size[0] = 200; /*size of menory array*/
26 size[l] = 400

27 mem space = H5Screate_sinple (2, size);
28

29 offset[0] = 0; /*offset of hyperslab in nenory*/
30 offset[1] = O;

31 size[0] = 100; /*size of hyperslab*/

32 size[l] = 200;

33 H5Sset _hyperslab (nmem space, 2, offset, size);

35 /*

36 * Read the dataset.

37 */

38 HoDread (dataset, HS5T_NATI VE_DOUBLE, nmem space
39 file_space, H5P_DEFAULT, dd);

41 | *

42 * Cl ose/rel ease resources
43 */

44 H5Dcl ose (dataset);

45 H5Scl ose (nmem space);

46 H5Scl ose (fil e_space);

47 H5Fcl ose (file);

If the file contains a compound data structure one of whose membersis a floating point value (call it "delta") but the
application isinterested in reading an array of floating point values which are just the "delta" values, then the application
should cast the floating point array as a struct with asingle "delta’ member.

20 National Center for Supercomputing Applications

HDF5 Release 1.2

Example 3
1 hidt file, dataset, type;
2 doubl e delta[200];
3
4 |*
5 * Open an existing file and its dataset.
6 */
7 file = H5Fopen ("test.h5", H5F _ACC RDONLY, H5P_DEFAULT);
8 dataset = HsDopen (file, "dataset");
9
10 /*

11 * Describe the nenory datatype, a struct with a single
12 * "delta" nenber.

13 =/

14 type = H5Tcreate (HS5T_COVPOUND, si zeof (double));

15 H5Tinsert (type, "delta", 0, H5T_NATI VE_DOUBLE);

17 | *

18 * Read the dataset.

19 */

20 HoDread (dataset, type, H5S ALL, H5S ALL,
21 H5P_DEFAULT, dd);

23 /*

24 * Cl osel/rel ease resources.
25 */

26 H5Dcl ose (dataset);

27 H5Tcl ose (type);

28 HoFcl ose (file);

Last modified: 14 October 1999

University of Illinois at Urbana-Champaign 21

A User's Guide for HDF5

22 National Center for Supercomputing Applications

HDF5 Release 1.2

3. The Datatype Interface (H5T)

3.1. Introduction

The datatype interface provides a mechanism to describe the storage format of individual data points of adata set and is
hopefully designed in such away as to allow new features to be easily added without disrupting applications that use the
datatype interface. A dataset (the H5D interface) is composed of a collection or raw data points of homogeneous type
organized according to the data space (the H5S interface).

A datatype is a collection of datatype properties, all of which can be stored on disk, and which when taken as a whole,
provide complete information for data conversion to or from that datatype. The interface provides functions to set and
query properties of a datatype.

A data point is an instance of a datatype, which is an instance of atype class. We have defined a set of type classes and
properties which can be extended at a later time. The atomic type classes are those which describe types which cannot be
decomposed at the datatype interface level; all other classes are compound.

3.2. General Datatype Oper ations

The functions defined in this section operate on datatypes as a whole. New datatypes can be created from scratch or
copied from existing datatypes. When a datatype is no longer needed its resources should be released by calling
H5Tcl ose() .

Datatypes come in two flavors: named datatypes and transient datatypes. A named datatype is stored in afile while the
transient flavor isindependent of any file. Named datatypes are always read-only, but transient types come in three
varieties: modifiable, read-only, and immutable. The difference between read-only and immutable typesis that immutable
types cannot be closed except when the entire library is closed (the predefined types like H5T_NATI VE_| NT are
immutable transient types).

hid_t H5Tcreate (H5T class_t class, size t Size)

Datatypes can be created by calling this function, where classis a datatype class identifier. However, the only class
currently allowed is H5T_COVPOUND to create a new empty compound datatype where size is the total sizein bytes of
an instance of this datatype. Other datatypes are created with H5Tcopy() . All functions that return datatype
identifiers return a negative value for failure.

hid_t H5Topen (hid_t /ocation, const char *nane)

A named datatype can be opened by calling this function, which returns a datatype identifier. The identifier should
eventually be released by calling H5Tcl ose() to release resources. The named datatype returned by this functionis
read-only or a negative valueis returned for failure. The location is either afile or group identifier.

herr_t H5Tcommit (hid_t /ocation, const char *nane, hid_t type)
A transient datatype (not immutable) can be committed to afile and turned into a named datatype by calling this

function. The location is either afile or group identifier and when combined with name refers to a new named
datatype.

University of lllinois at Urbana-Champaign 23

A User's Guide for HDF5

htri_t HsTcommitted (hid_t type)

A type can be queried to determine if it is a named type or atransient type. If this function returns a positive value
then the type is named (that is, it has been committed perhaps by some other application). Datasets which return
committed datatypes with H5Dget _t ype() are able to share the datatype with other datasets in the same file.

hi d_t H5Tcopy (hid_t type)

This function returns a modifiable transient datatype which is a copy of type or a negative value for failure. If typeis
adataset identifier then the type returned is a modifiable transient copy of the datatype of the specified dataset.

herr_t H5Tcl ose (hid_t type)

Rel eases resources associated with a datatype. The datatype identifier should not be subsequently used since the
results would be unpredictable. It isillegal to close an immutable transient datatype.

htri t H5Tequal (hid_t typel, hid_t type2)

Determines if two types are equal. If typel and type2 are the same then this function returns TRUE, otherwise it
returns FALSE (an error results in a negative return value).

herr_t H5Tlock (hid_t type)

A transient datatype can be locked, making it immutable (read-only and not closable). The library does thisto all
predefined types to prevent the application from inadvertently modifying or deleting (closing) them, but the
application is also alowed to do this for its own datatypes. Immutable datatypes are closed when the library closes
(either by H5cl ose() or by normal program termination).

3.3. Properties of Atomic Types

An atomic type is a type which cannot be decomposed into smaller units at the API level. All atomic types have a
common set of properties which are augmented by properties specific to a particular type class. Some of these properties
also apply to compound datatypes, but we discuss them only as they apply to atomic datatypes here. The properties and
the functions that query and set their values are:

H5T_cl ass_t H5Tget_class (hid_t type)

This property holds one of the classnames: H5T_| NTEGER, H5T_FLOAT, H5T_TIME, H5T_STRING or

H5T_BI TFI ELD. This property is read-only and is set when the datatype is created or copied (see H5Tcr eat e() ,
H5Tcopy()). If thisfunction failsit returns H5T_NO_CLASS which has a negative value (all other class constants are
non-negative).

size_t H5Tget _size (hid_t type)
herr _t H5Tset_size (hid_t type, size_t size)

This property istotal size of the datum in bytes, including padding which may appear on either side of the actual
value. If this property isreset to a smaller value which would cause the significant part of the data to extend beyond
the edge of the datatype then the of f set property is decremented a bit at atime. If the offset reaches zero and the
significant part of the data still extends beyond the edge of the datatype then thepr eci si on property is decremented
abit at atime. Decreasing the size of a datatype may fail if the H5T_FLOAT bit fields would extend beyond the

24 National Center for Supercomputing Applications

HDF5 Release 1.2

significant part of the type. Adjusting the size of an H5T_STRI NG automatically adjusts the precision aswell. On
error, H5Tget _si ze() returns zero which is never avalid size.

H5T _order _t H5Tget_order (hid_t type)
herr t H5Tset _order (hid_t type, H5T order_t order)

All atomic datatypes have a byte order which describes how the bytes of the datatype are layed out in memory. If the
lowest memory address contains the least significant byte of the datum then it is said to belittle-endian or
H5T_ORDER_LE. If the bytes are in the oposite order then they are said to be big-endian or H5T_ORDER_BE. Some
datatypes have the same byte order on all machines and are H5T_ORDER_NONE (like character strings). If

H5Tget _or der () failsthenit returnsH5T_ORDER ERRORwhich is a negative value (all successful return values are
non-negative).

size_t H5Tget _precision (hid_t type)
herr _t H5Tset _precision (hid_t type, size_t precision)

Some datatypes occupy more bytes than what is needed to store the value. For instance, ashort onaCray is 32
significant bitsin an eight-byte field. The pr eci si on property identifies the number of significant bits of a datatype
and the of f set property (defined below) identifiesitslocation. Thesi ze property defined above represents the
entire size (in bytes) of the datatype. If the precision is decreased then padding bits are inserted on the MSB side of
the significant bits (thiswill fail for H5T_FLOAT typesif it resultsin the sign, mantissa, or exponent bit field
extending beyond the edge of the significant bit field). On the other hand, if the precision isincreased so that it
"hangs over" the edge of the total size then theof f set property is decremented a bit at atime. If the of f set reaches
zero and the significant bits still hang over the edge, then the total sizeisincreased a byte at atime. The precision of
an H5T_STRI NGisread-only and is always eight times the value returned by H5Tget _si ze() .

H5Tget _pr eci si on() returns zero on failure since zero is never avalid precision.

size_t H5Tget _offset (hid_t type)
herr_t H5Tset _offset (hid_t type, size_ t offset)

Whilethepr eci si on property defines the number of significant bits, the of f set property defines the location of
those bits within the entire datum. The bits of the entire data are numbered beginning at zero at the least significant
bit of the least significant byte (the byte at the lowest memory address for alittle-endian type or the byte at the
highest address for a big-endian type). The of f set property defines the bit location of the least signficant bit of a bit
field whose lengthis pr eci si on. If the offset isincreased so the significant bits "hang over" the edge of the datum,
then the si ze property is automatically incremented. The offset is aread-only property of an H5T_STRI NGand is
always zero. HoTget _of f set () returns zero on failure which is also avalid offset, but is guaranteed to succeed if a
call to H5Tget _preci si on() succeeds with the same arguments.

herr t H5Tget pad (hid_t type, H5T _pad_t */sb, H5T pad_t *nsb)
herr t H5Tset _pad (hid_t type, H5T pad_ t /sb, H5T pad_t nsb)

The bits of a datum which are not significant as defined by the pr eci si on and of f set properties are called
padding. Padding fallsinto two categories. padding in the low-numbered bitsis|sb padding and padding in the high-
numbered bits is msb padding (bits are numbered according to the description for the of f set property). Padding bits
can always be set to zero (H5T_PAD_ZERO) or always set to one (H5T_PAD_ONE). The current pad types are returned
through arguments of H5Tget _pad() either of which may be null pointers.

University of lllinois at Urbana-Champaign 25

A User's Guide for HDF5

3.3.1. Properties of Integer Atomic Types

Integer atomic types (cl ass=H5T_| NTEGER) describe integer number formats. Such types include the following
information which describes the type completely and allows conversion between various integer atomic types.

H5T_sign_t H5Tget_sign (hid_t type)
herr _t H5Tset_sign (hid_t type, H5T_sign_t sign)

Integer data can be signed two’'s complement (H5T_SGN_2) or unsigned (H5T_SGN_NONE). Whether datais signed or
not becomes important when converting between two integer datatypes of differing sizes asit determines how values
are truncated and sign extended.

3.3.2. Properties of Floating-point Atomic Types

The library supports floating-point atomic types (cl ass=H5T_FLOAT) as long as the bits of the exponent are contiguous
and stored as a biased positive number, the bits of the mantissa are contiguous and stored as a positive magnitude, and a
sign bit exists which is set for negative values. Properties specific to floating-point types are:

herr t H5Tget fields (hid_t type, size t *spos, size t *epos, size t *esize, size_t
*npos, size t *nsize)

herr _t H5Tset _fields (hid_t type, size_t spos, size_t epos, size_t esize, size_t npos,
size_t nsize)

A floating-point datum has hit fields which are the exponent and mantissa as well as a mantissasign bit. These
properties define the location (bit position of least significant bit of the field) and size (in bits) of each field. The bit
positions are numbered beginning at zero at the beginning of the significant part of the datum (see the descriptions of
thepreci si on and of f set properties). The sign bit is always of length one and none of the fields are allowed to
overlap. When expanding a floating-point type one should set the precision first; when decreasing the size one should
set the field positions and sizes first.

size_t H5Tget _ebias (hid_t type)

herr t H5Tset _ebias (hid_t type, size_t ebias)

The exponent is stored as a non-negative value which isebi as larger than the true exponent. H5Tget _ebi as()
returns zero on failure which is also a valid exponent bias, but the function is guaranteed to succeed if
H5Tget _preci si on() succeeds when called with the same arguments.

H5T_normt H5Tget_norm (hid_t type)
herr_t H5Tset_norm (hid_t type, H5T_normt nornm
This property determines the normalization method of the mantissa
e |f thevalueisH5T_NORM MSBSET then the mantissais shifted left (if non-zero) until the first bit after the
radix point is set and the exponent is adjusted accordingly. All bits of the mantissa after the radix point are

stored.

e [IfitsvalueisH5T_NORM | MPLI ED then the mantissais shifted left (if non-zero) until the first bit after the
radix point is set and the exponent is adjusted accordingly. Thefirst bit after the radix point is not stored
sinceit's aways set.

26 National Center for Supercomputing Applications

HDF5 Release 1.2

o IfitsvalueisH5T_NORM _NONE then the fractional part of the mantissais stored without normalizing it.

H5T _pad_t H5Tget _inpad (hid_t type)
herr _t H5Tset _inpad (hid_t type, H5T pad_t i npad)

If any internal bits (that is, bits between the sign bit, the mantissa field, and the exponent field but within the
precision field) are unused, then they will be filled according to the value of this property. The inpad argument can be
H5T_PAD_ZEROif the internal padding should always be set to zero, or H5T_PAD_ONE if it should aways be set to
one. H5Tget _i npad() returnsH5T_PAD_ERROR on failure which is a negative value (successful return is always
non-negative).

3.3.3. Properties of Dateand Time Atomic Types
Dates and times (cl ass=H5T_TI ME) are stored as character stringsin one of the 1SO-8601 formats like " 1997-12-05
16:25:30"; as character strings using the Unix asctime(3) format like "Thu Dec 05 16:25:30 1997"; as an integer value by

juxtaposition of the year, month, and day-of-month, hour, minute and second in decimal like 19971205162530; as an
integer value in Unix time(2) format; or other variations.

3.3.4. Properties of Character String Atomic Types

Fixed-length character string types are used to store textual information. The of f set property of astring is always zero
and the pr eci si on property is eight times as large as the value returned by H5Tget _si ze() (since precisionis
measured in bits while size is measured in bytes). Both properties are read-only.

H5T_cset _t H5Tget_cset (hid_t type)
herr_t H5Tset_cset (hid_t type, H5T_cset_t cset)

HDF5 is able to distinguish between character sets of different nationalities and to convert between them to the extent
possible. The only character set currently supported isH5T_CSET_ASCI | .

H5T _str_t H5Tget _strpad (hid_t type)
herr_t H5Tset_strpad (hid_t type, H5T_str_t strpad)

The method used to store character strings differs with the programming language: C usually null terminates strings
while Fortran left-justifies and space-pads strings. This property defines the storage mechanism and can be

H5T_STR_NULLTERM
A C-style string which is guaranteed to be null terminated. When converting from alonger string the value will be
truncated and then anull character appended.

H5T_STR_NULLPAD

A C-style string which is padded with null characters but not necessarily null terminated. Conversion from along
string to a shorter H5T_STR_NULLPAD string will truncate but not null terminate. Conversion from a short valueto a
longer value will append null characters as with H5T_STR_NULLTERM

H5T_STR_SPACEPAD

A Fortran-style string which is padded with space characters. Thisisthe same asH5T_STR_NULLPAD except the

University of lllinois at Urbana-Champaign 27

A User's Guide for HDF5

padding character is a space instead of a null.

H5Tget _strpad() returnsH5T_STR_ERROR on failure, a negative value (all successful return values are non-negative).

3.3.5. Properties of Bit Field Atomic Types

Converting abit field (cl ass=H5T_BI TFI ELD) from one type to another simply copies the significant bits. If the
destination is smaller than the source then bits are truncated. Otherwise new bits are filled according to the nsb padding

type.
3.3.6. Character and String Datatype | ssues

The H5T_NATI VE_CHAR and H5T_NATI VE_UCHAR datatypes are actually numeric data (1-byte integers). If the
application wishes to store character data, then an HDF5 string datatype should be derived from H5T_C_S1 instead.

M otivation

HDF5 defines at |east three classes of datatypes: integer data, floating point data, and character data. However, the C
language defines only integer and floating point datatypes; character datain C is overloaded on the 8- or 16-bit integer
types and character strings are overloaded on arrays of those integer types which, by convention, are terminated with a
zero element. In C, the variable unsi gned char s[256] iseither an array of numeric data, a single character string
with at most 255 characters, or an array of 256 characters, depending entirely on usage. For uniformity with the other
H5T_NATI VE _ types, HDF5 uses the numeric interpretation of H5T_NATI VE_CHAR and H5T_NATI VE_UCHAR.

Usage

To storeunsi gned char s[256] dataasan array of integer values, use the HDF5 datatype H5T_NATI VE_UCHAR and a
data space that describes the 256-element array. Some other application that reads the data will then be able to read, say, a
256-element array of 2-byte integers and HDF5 will perform the numeric trandation. To store unsi gned char s[256]
data as a character string, derive afixed length string datatype from H5T_C_S1 by increasing its size to 256 characters.
Some other application that reads the data will be able to read, say, a space padded string of 16-bit characters and HDF5
will perform the character and padding translations.

hid_t s256 = H5Tcopy(H5T_C_S1);
H5Tset _si ze(s256, 256);

To storeunsi gned char s[256] dataasan array of 256 ASCI| characters, use an HDF5 data space to describe the
array and derive a one-character string type fromH5T_C_S1. Some other application will be able to read a subset of the
array as 16-hit characters and HDF5 will perform the character translations. The H5ST_STR_NULLPAD is necessary because
if H5T_STR_NULLTERMwere used (the default) then the single character of storage would be for the null terminator and
no useful data would actually be stored (unless the length were incremented to more than one character).

hid_t s1 = H5Tcopy(H5T_C S1);
H5Tset _strpad(sl, H5T_STR NULLPAD);

Summary

The C language uses the term char to represent one-byte numeric data and does not make character strings afirst-class
datatype. HDF5 makes a distinction between integer and character data and maps the C si gned char
(H5T_NATI VE_CHAR) and unsi gned char (H5T_NATI VE_UCHAR) datatypes to the HDF5 integer type class.

28 National Center for Supercomputing Applications

HDF5 Release 1.2

3.4. Properties of Opaque Types

Opaque types (cl ass=H5T_OPAQUE) provide the application with a mechanism for describing data which cannot be
otherwise described by HDF5. The only properties associated with opague types are asize in bytes and an ASCI| tag
which is manipulated with H5Tset _t ag() and H5Tget _t ag() functions. The library contains no predefined conversion
functions but the application is free to register conversions between any two opaque types or between an opague type and
some other type.

3.5. Properties of Compound Types

A compound datatypeis similar to ast r uct in C or acommon block in Fortran: it is a collection of one or more atomic
types or small arrays of such types. Each member of a compound type has a name which is unique within that type, and a
byte offset that determines the first byte (smallest byte address) of that member in a compound datum. A compound
datatype has the following properties:

H5T_cl ass_t H5Tget_class (hid_t type)

All compound datatypes belong to the type class H5T_COMPOUND. This property isread-only and is defined when a
datatypeis created or copied (see H5Tcr eat e() or H5Tcopy()).

size_t H5Tget _size (hid_t type)

Compound datatypes have a total size in bytes which is returned by this function. All members of a compound
datatype must exist within this size. A value of zero is returned for failure; all successful return values are positive.

int HS5Tget _nnenbers (hid_t type)

A compound datatype consists of zero or more members (defined in any order) with unique names and which occupy
non-overlapping regions within the datum. In the functions that follow, individual members are referenced by an
index number between zero and N-1, inclusive, where N is the value returned by this function. H5Tget _nmenber s()
returns -1 on failure.

char *H5Tget _menber _name (hid_t type, int nenbno)

Each member has a name which is unique among its siblings in a compound datatype. This function returns a pointer
to anull-terminated copy of the name allocated with mal | oc() or the null pointer on failure. The caller is
responsible for freeing the memory returned by this function.

size_t HoTget menber offset (hid_t type, int menbno)

The byte offset of member number membno with respect to the beginning of the containing compound datum is
returned by this function. A zerois returned on failure which is also avalid offset, but this function is guaranteed to
succeed if acall to H5Tget _nmenber _di ms() succeeds when called with the same type and membno arguments.

int H5Tget _nenber _dinms (hid_t type, int menbno, int dins[4], int perni4])

Each member can be a small array of up to four dimensions, making it convenient to describe things like
transposition matrices. The dimensionality of the member is returned (or negative for failure) and the sizein each
dimension isreturned through the dims argument. The perm argument describes how the array’s elements are mapped
to the linear address space of memory with respect to some reference order (the reference order is specified in natural

University of lllinois at Urbana-Champaign 29

A User's Guide for HDF5

language documentation which describes the compound datatype). The application which "invented" the type will
often use the identity permutation and other applications will use a permutation that causes the elements to be
rearranged to the desired order. Only the first few elements of dims and perm areinitialized according to the
dimensionality of the member. Scalar members have dimensionality zero. The only per mutations supported at this
time are the identity per mutation and the transpose per mutation (in the 4d case, {0,1,2,3} and {3,2,1,0}).

hid_t H5Tget _menber _type (hid_t type, int nmenbno)

Each member has its own datatype, a copy of which is returned by this function. The returned datatype identifier
should be released by eventually calling H5Tcl ose() on that type.

Properties of members of a compound datatype are defined when the member is added to the compound type (see
H5Ti nsert ()) and cannot be subsequently modified. This makes it imposible to define recursive data structures.

3.6. Predefined Atomic Datatypes

The library predefines a modest number of datatypes having nameslike H5T_ar ch_base where arch is an architecture
name and base is a programming type name. New types can be derived from the predifined types by copying the
predefined type (see H5Tcopy()) and then modifying the result.

Architecture

Name Description

| EEE This architecture defines standard floating point typesin various byte orders.

STD Thisis an architecture that contains semi-standard datatypes like signed two’s
complement integers, unsigned integers, and bitfields in various byte orders.

UNI X Types which are specific to Unix operating systems are defined in this
architecture. The only type currently defined is the Unix date and time types
(time_t).

C Types which are specific to the C or Fortran programming languages are defined

FORTRAN in these architectures. For instance, H5T_C_STRI NG defines a base string type
with null termination which can be used to derive string types of other lengths.

NATI VE This architecture contains C-like datatypes for the machine on which the library
was compiled. The types were actually defined by running the H5det ect
program when the library was compiled. In order to be portable, applications
should almost always use this architecture to describe things in memory.

CRAY Cray architectures. These are word-addressable, big-endian systems with non-
| EEE floating point.

I NTEL All Intel and compatible CPU’s including 80286, 80386, 80486, Pentium,
Pentium-Pro, and Pentium-I1. These are little-endian systems with |EEE floating-
point.

M PS All MIPS CPU’s commonly used in SGI systems. These are big-endian systems
with | EEE floating-point.

ALPHA All DEC Alpha CPU’s, little-endian systems with | EEE floating-point.

30 National Center for Supercomputing Applications

HDF5 Release 1.2

The base name of most types consists of aletter, aprecision in bits, and an indication of the byte order. The letters are:

B Bitfield

D Date and time
F Floating point
I Signed integer
R References

S Character string

U Unsigned integer

The byte order is atwo-letter sequence:

BE Big endian

LE Little endian

VX \Vax order

Example Description
H5T_| EEE_F64LE Eight-byte, little-endian, | EEE floating-point
H5T_| EEE_F32BE Four-byte, big-endian, | EEE floating point
HS5T_STD | 32LE Four-byte, little-endian, signed two’s complement integer
H5T_STD U16BE Two-byte, big-endian, unsigned integer

H5T_UNI X_D32LE Four-byte, little-endian, time_t

H5T_C S1 One-byte, null-terminated string of eight-bit characters
H5T_| NTEL_B64 Eight-byte bit field on an Intel CPU

H5T_CRAY_F64 Eight-byte Cray floating point

H5T_STD_ROBJ Reference to an entire object in afile

University of Illinois at Urbana-Champaign 31

A User's Guide for HDF5

The NATI VE architecture has base names which don't follow the same rules as the others. Instead, native type names are
similar to the C type names. Here are some examples:

Example
H5T_NATI VE_CHAR
H5T_NATI VE_SCHAR
H5T_NATI VE_UCHAR
H5T_NATI VE_SHORT
H5T_NATI VE_USHORT
H5T_NATI VE_I NT
H5T_NATI VE_UI NT
H5T_NATI VE_LONG
H5T_NATI VE_ULONG
H5T_NATI VE_LLONG
H5T_NATI VE_ULLONG
H5T_NATI VE_FLQAT
H5T_NATI VE_DOUBLE
H5T_NATI VE_LDOUBLE
H5T_NATI VE_HSI ZE
H5T_NATI VE_HSSI ZE
H5T_NATI VE_HERR

H5T_NATI VE_HBOOL

Corresponding C Type
char
si gned char
unsi gned char
short
unsi gned short
i nt
unsi gned
| ong
unsi gned | ong
| ong | ong
unsi gned | ong | ong
fl oat
doubl e
| ong doubl e
hsi ze_t
hssi ze_t
herr _t

hbool _t

Example: A 128-bit integer

To create a 128-hit, little-endian signed integer type one could use the following (increasing the precision of atype
automatically increases the total size):

hi d_t new_ type = H5Tcopy (HS5T_NATIVE_I NT);
H5Tset _preci sion (new_ type, 128);
H5Tset _order (new_type, HS5T_ORDER _LE)

32 National Center for Supercomputing Applications

HDF5 Release 1.2

Example: An 80-character string

To create an 80-byte null terminated string type one might do this (the offset of a character string is always zero and
the precision is adjusted automatically to match the size):

hid t str80 = H5Tcopy (H5T_C S1);
H5Tset _size (str80, 80);

3.7. Defining Compound Datatypes

Unlike atomic datatypes which are derived from other atomic datatypes, compound datatypes are created from scratch.
First, one creates an empty compound datatype and specifiesit's total size. Then members are added to the compound
datatype in any order.

Usually a C struct will be defined to hold a data point in memory, and the offsets of the membersin memory will be the
offsets of the struct members from the beginning of an instance of the struct.

HOFFSET(s, m
This macro computes the offset of member mwithin a struct s.
of fsetof (s, m
This macro defined in st ddef . h does exactly the same thing as the HOFFSET() macro.

Each member must have a descriptive name which is the key used to uniquely identify the member within the compound
datatype. A member name in an HDF5 datatype does not necessarily have to be the same as the name of the member in
the C struct, although this is often the case. Nor does one need to define all members of the C struct in the HDF5
compound datatype (or vice versa).

Example: A simple struct

An HDF5 datatype is created to describe complex numbers whose type is defined by the conpl ex_t struct.

t ypedef struct {

doubl e re; [*real part*/
double im /*imagi nary part*/
} conplex_t;

hid_t conplex_id = H5Tcreate (H5T_COVPOUND, sizeof tnp);

H5Ti nsert (conplex_id, "real", HOFFSET(conplex t,re),
H5T_NATI VE_DOUBLE) ;

H5Ti nsert (conplex_id, "imaginary", HOFFSET(conplex_ t,im,
H5T_NATI VE_DOUBLE) ;

Member alignment is handled by the HOFFSET macro. However, data stored on disk does not require alignment, so
unaligned versions of compound data structures can be created to improve space efficiency on disk. These unaligned
compound datatypes can be created by computing offsets by hand to eliminate inter-member padding, or the members can
be packed by calling H5Tpack() (which modifies adatatype directly, so it is usually preceded by acall to H5Tcopy()):

University of lllinois at Urbana-Champaign 33

A User's Guide for HDF5

Example: A packed struct

This example shows how to create a disk version of a compound datatype in order to store data on disk in as
compact a form as possible. Packed compound datatypes should generally not be used to describe memory as they
may violate alignment constraints for the architecture being used. Note also that using a packed datatype for disk
storage may involve a higher data conversion cost.

hid_t conplex_disk_id = H5Tcopy (conplex_id);
H5Tpack (conpl ex_disk_id);

Example: A flattened struct

Compound datatypes that have a compound datatype member can be handled two ways. This example shows that
the compound datatype can be flattened, resulting in a compound type with only atomic members.

t ypedef struct {
conpl ex_t x;
conplex_t vy;

} surf_t;

hid t surf_id = H5Tcreate (HS5T_COVPOUND, sizeof tnp);

H5Ti nsert (surf_id, "x-re", HOFFSET(surf _t,x.re),
HS5T_NATI VE_DOUBLE) ;

H5Ti nsert (surf_id, "x-int', HOFFSET(surf _t,x.im,
H5T_NATI VE_DOUBLE) ;

H5Ti nsert (surf_id, "y-re", HOFFSET(surf_t,y.re),
H5T_NATI VE_DOUBLE) ;

H5Ti nsert (surf_id, "y-im', HOFFSET(surf_t,y.im,
H5T_NATI VE_DOUBLE) ;

Example: A nested struct

However, when the conpl ex_t isused often it becomes inconvenient to list its members over and over again. So
the alternative approach to flattening is to define a compound datatype and then use it as the type of the compound
members, asis done here (the typedefs are defined in the previous examples).

hid t conplex_id, surf_id; /*hdf5 datatypes*/

conplex_id = H5Tcreate (H5T_COVPOUND, sizeof c);

H5Ti nsert (conplex_id, "re", HOFFSET(conplex_t,re),
H5T_NATI VE_DOUBLE) ;

H5Ti nsert (conplex_id, "inf, HOFFSET(complex_t,im,
H5T_NATI VE_DOUBLE) ;

surf_id = HoTcreate (H5T_COVPOUND, sizeof s);
H5Ti nsert (surf_id, "x", HOFFSET(surf_t,x), conplex_id);
H5Ti nsert (surf_id, "y", HOFFSET(surf_t,y), conplex_id);

34 National Center for Supercomputing Applications

HDF5 Release 1.2

3.8. Enumeration Datatypes
3.8.1. Introduction

An HDF enumeration datatype is a 1:1 mapping between a set of symbols and a set of integer values, and an order is
imposed on the symbols by their integer values. The symbols are passed between the application and library as character
strings and all the values for a particular enumeration type are of the same integer type, which is not necessarily a native

type.
3.8.2. Creation

Creation of an enumeration datatype resembles creation of a compound datatype: first an empty enumeration typeis
created, then members are added to the type, then the type is optionally locked.

hid_t H5Tcreate(H5T class_t type class, size_t size)

This function creates a new empty enumeration datatype based on a native signed integer type. The first argument is
the constant H5T_ENUMand the second argument is the size in bytes of the native integer on which the enumeration
typeis based. If the architecture does not support a native signed integer of the specified size then an error is
returned.

/* Based on a native signed short */
hid_t hdf_en_colors = H5Tcreate(H5T_ENUM si zeof (short));

hid_t H5Tenumcreate(hid_t base)

This function creates a new empty enumeration datatype based on some integer datatype base and is a generalization
of the H5Tcr eat e() function. Thisfunction is useful when creating an enumeration type based on some non-native
integer datatype, but it can be used for native types as well.

/* Based on a native unsigned short */
hid_ t hdf_en_colors_1 = H5Tenum creat e(H5T_NATI VE_USHORT) ;

/* Based on a MPS 16-bit unsigned integer */
hid_t hdf_en_colors_2 = H5Tenum create(H5T_M PS_UI NT16) ;

/* Based on a big-endian 16-bit unsigned integer */
hid_t hdf_en_colors_3 = H5Tenum create(H5T_STD U16BE);

herr _t H5Tenum.insert(hid_t etype, const char *synbol, void *val ue)

Members are inserted into the enumeration datatype etype with this function. Each member has a symbolic name
symbol and some integer representation value. The value argument must point to a value of the same datatype as
specified when the enumeration type was created. The order of member insertion is not important but all symbol

names and values must be unique within a particular enumeration type.

short val;

H5Tenum i nsert (hdf _en_col ors, "RED', (val =0, &val));

H5Tenum i nsert (hdf _en_colors, "GREEN', (val =1, &val));

H5Tenum. i nsert (hdf _en_col ors, "BLUE"', (val =2, &val));
1))
1))

H5Tenum_ i nsert (hdf _en_colors, "WHI TE", (val =3, &a
H5Tenum_ i nsert (hdf _en_col ors, "BLACK", (val =4, &a

University of lllinois at Urbana-Champaign 35

A User's Guide for HDF5

herr_t H5Tl ock(hid_t etype)

This function locks a datatype so it cannot be modified or freed unless the entire HDF5 library is closed. Itsuseis
completely optional but using it on an application datatype makes that datatype act like a predefined datatype.

H5TI ock(hdf _en_col ors);
3.8.3. Integer Operations

Because an enumeration datatype is derived from an integer datatype, any operation which can be performed on integer
datatypes can also be performed on enumeration datatypes. This includes:

H5Topen() H5Tcr eat e() H5Tcopy() H5Tcl ose()
H5Tequal () H5TIl ock() H5Tcommi t () H5Tconmi tted()
H5Tget _cl ass() H5Tget _si ze() H5Tget _order () H5Tget _pad()
H5Tget _preci sion() H5Tget _of fset () H5Tget _si gn() H5Tset _si ze()
H5Tset _order () H5Tset _preci sion() H5Tset _of fset () H5Tset _pad()

H5Tset _si gn()

In addition, the new function H5Tget _super () will be defined for all datatypes that are derived from existing types
(currently just enumeration types).

hi d_t H5Tget _super(hid_t type)

Return the datatype from which type is derived. When type is an enumeration datatype then the returned value will be
an integer datatype but not necessarily a native type. One use of this function would be to create a new enumeration
type based on the same underlying integer type and values but with possibly different symbols.

hid t itype = HoTget _super (hdf _en_col ors);
hid t hdf _fr_colors = HsTenum create(itype);
H5Tcl ose(itype);

short val

H5Tenum_ i nsert (hdf _fr_colors, "ouge", (val=0, &val))
H5Tenum. i nsert (hdf _fr_colors, "vert", (val=1, &val));
H5Tenum_ i nsert (hdf _fr_colors, "bleu", (val=2,&val))
H5Tenum.i nsert (hdf _fr_col ors, "blanc", (val =3, &val));
H5Tenum i nsert (hdf _fr_colors, "noir", (val=4,&val))
H5Tl ock(hdf _fr_col ors);

3.8.4. Type Functions

A small set of functionsis available for querying properties of an enumeration type. These functions are likely to be used
by browsers to display datatype information.

int H5Tget _nnenbers(hid_t etype)

When given an enumeration datatype etype this function returns the number of members defined for that type. This
function is already implemented for compound datatypes.

36 National Center for Supercomputing Applications

HDF5 Release 1.2

char *H5Tget _menber _name(hid_t etype, int nenbno)

Given an enumeration datatype etype this function returns the symbol name for the member indexed by membno.
Members are numbered from zero to N-1 where N is the return value from H5Tget _nnenber s() . The members are
stored in no particular order. This function is already implemented for compound datatypes. If an error occurs then
the null pointer is returned. The return value should be freed by calling f ree() .

herr _t H5Tget nenber val ue(hid_t etype, int nenbno, void *val uel *out*/)

Given an enumeration datatype etype this function returns the value associated with the member indexed by membno
(asdescribed for H5Tget _menber _name()). The value returned isin the domain of the underlying integer datatype
which is often a native integer type. The application should ensure that the memory pointed to by valueislarge
enough to contain the result (the size can be obtained by calling H5Tget _si ze() on either the enumeration type or
the underlying integer type when the type is not known by the C compiler.

int i, n = H5Tget nnenbers(hdf_en_col ors);

for (i=0; i<n; i++) {
char *synbol = H5Tget nenber _nane(hdf _en_colors, i);
short val;
H5Tget _nenber _val ue(hdf _en_colors, i, &val);
printf("#% 9%®0s = %\ n", i, synbol, val);
free(synbol);

}

Output:

#0 BLACK = 4

#1 BLUE = 2

#2 CREEN = 1

#3 RED = 0

#4 VWH TE = 3

3.8.5. Data Functions

In addition to querying about the enumeration type properties, an application may want to make queries about enumerated
data. These functions perform efficient mappings between symbol names and values.

herr _t H5Tenum val ueof (hid_t etype, const char *synbol, void *val uel *out*/)

Given an enumeration datatype etype this function returns through value the bit pattern associated with the symbol
name symbol. The value argument should point to memory which islarge enough to hold the result, which is returned
as the underlying integer datatype specified when the enumeration type was created, often a native integer type.

herr _t H5Tenum naneof (hid_t etype, void *val ue, char *synbol, size_t size)

Thisfunction trandates a bit pattern pointed to by value to a symbol name according to the mapping defined in the
enumeration datatype etype and stores at most size characters of that name (counting the null terminator) to the
symbol buffer. If the name islonger than the result buffer then the result is not null terminated and the function
returns failure. If value points to a bit pattern which is not in the domain of the enumeration type then the first byte of
the symbol buffer is set to zero and the function fails.

short data[1000] = {4, 2, O, O, 5, 1, ...};

i nt

char synbol [32] ;

for

(i=0; i<1000; i++) {

University of lllinois at Urbana-Champaign 37

A User's Guide for HDF5

i f (H5Tenum naneof (hdf _en_col ors, data+i,
si zeof synbol))<0) ({
if (symbol[0]) {
strcpy(synbol +si zeof (synbol) - 4,
} else {
strcpy(synbol, "UNKNOMW") ;
}

}
printf("%l 9%\n", data[i], synbol);

printf("}\n");
Output:

BLACK
BLUE
RED

RED
UNKNOWN
GREEN

RPOIOOND

3.8.6. Conversion

synbol ,

Enumerated data can be converted from one type to another provided the destination enumeration type contains all the
symbols of the source enumeration type. The conversion operates by matching up the symbol names of the source and
destination enumeration types to build a mapping from source value to destination value. For instance, if we are
translating from an enumeration type that defines a sequence of integers as the values for the colors to a type that defines
adifferent bit for each color then the mapping might look like this:

0 RED - RED 00001
1 GREEN = GREEN 0x=0002Z2
Z ELUE - ELUE 0Ox0004
3 WHITE = WHITE 0x=0008%
4 EBLACK = ELACE 0x=0010

That is, a source value of 2 which corresponds to BLUE would be mapped to 0x0004. The following code snippet builds
the second datatype, then converts araw data array from one datatype to another, and then prints the result.

/* Create a new enuneration type */

short val;
hid t bits = H5Tcreate(HS5T_ENUM si zeof val);
H5Tenum. i nsert(bits, "RED', (val =0x0001, &val));

))
H5Tenum i nsert(bits, "GREEN', (val =0x0002, &val));
H5Tenum i nsert(bits, "BLUE', (val=0x0004, &val));
H5Tenum.i nsert(bits, "WH TE"', (val =0x0008, &val))
H5Tenum_i nsert(bits, "BLACK', (val =0x0010, &val))

/* The data */
short data[6] = {1, 4, 2, 0, 3, 5};

/* Convert the data fromone type to another */
H5Tconvert (hdf _en_colors, bits, 5, data, NULL);

/* Print the data */
for (i=0; i<6; i++) {

printf("0x%®4x\n", (unsigned)(data[i]));
}

38

National Center for Supercomputing Applications

HDF5 Release 1.2

Output:

0x0002
0x0010
0x0004
0x0001
0x0008
Oxffff

If the source data stream contains val ues which are not in the domain of the conversion map then an overflow exceptionis
raised within the library, causing the application defined overflow handler to be invoked (see H5Tset _overfl ow()). If
no overflow handler is defined then al bits of the destination value will be set.

The HDF library will not provide conversions between enumerated data and integers although the application is free to do
so (thisisapolicy we apply to all classes of HDF datatypes). However, since enumeration types are derived from integer
typesit is permissible to treat enumerated data as integers and perform integer conversions in that context.

3.8.7. Symbol Order

Symbol order is determined by the integer values associated with each symbol. When the integer datatype is a native type,
testing the relative order of two symbolsis an easy process. simply compare the values of the symbols. If only the symbol
names are available then the values must first be determined by calling H5Tenum val ueof () .

short val 1, val 2;
H5Tenum val ueof (hdf _en_col ors, "WH TE', &val 1);
H5Tenum val ueof (hdf _en_col ors, "BLACK", &val 2);
if (vall < val2)

When the underlying integer datatype is not a native type then the easiest way to compare symbolsisto first create a
similar enumeration type that contains all the same symbols but has a native integer type (HDF type conversion features
can be used to convert the non-native values to native values). Once we have a native type we can compare symbol order
asjust described. If f or ei gn is some non-native enumeration type then a native type can be created as follows:

int n = H5Tget _nmenbers(foreign);

hid t itype = HoTget _super(foreign);

void *val = malloc(n * MAX(H5Tget _size(itype), sizeof(int)));
char *name = malloc(n * sizeof (char*));

int i;

/* Get foreign type information */
for (i=0; i<n; i++) {
name[i] = H5Tget _menber_nanme(foreign, i);
H5Tget _nenber _val ue(foreign, i,
(char*)val +i *H5Tget _si ze(foreign));

}

/* Convert integer values to new type */
H5Tconvert (i type, HS5T_NATIVE_INT, n, val, NULL);

/* Build a native type */

hid_t native = H5Tenum creat e(HST_NATI VE_I NT) ;

for (i=0; i<n; i++) {
H5Tenum.i nsert(native, name[i], ((int*)val)[i]);
free(nane[il]);

free(nane);
free(val);

University of lllinois at Urbana-Champaign 39

A User's Guide for HDF5

It isalso possible to convert enumerated data to a new type that has a different order defined for the symbols. For
instance, we can define a new type, r ever se that defines the same five colors but in the reverse order.

short val;
int i;
char syni8];

short data[5]

{o, 1, 2, 3, 4};

hid t reverse = H5Tenum creat e(H5T_NATI VE_SHORT) ;
H5Tenum_ i nsert (reverse, "BLACK', (val =0, &val));
H5Tenum_ i nsert(reverse, "WH TE", (val =1, &val));

H5Tenum. i nsert (reverse, "BLUE', (val=2,&val));
H5Tenum i nsert (reverse, "GREEN', (val =3, &val));
H5Tenum. i nsert (reverse, "RED', (val =4, &val));

/* Print data */

for (i=0; i<5; i++) {
H5Tenum naneof (hdf _en_col ors, data+i, sym sizeof sym);
printf ("% %\n", data[i], sym;

}

puts("Converting...");
H5Tconvert (hdf _en_col ors, reverse, 5, data, NULL);

[* Print data */

for (i=0; i<5; i++) {
H5Tenum naneof (reverse, data+i, sym sizeof synj;
printf ("% %\n", data[i], sym;

}

Output:

0 RED
1 GREEN
2 BLUE
3 WH TE
4 BLACK
Converting. ..
4 RED
3 CREEN
2 BLUE
1 WHTE
0 BLACK

3.8.8. Equality

The order that members are inserted into an enumeration type is unimportant; the important part is the associations
between the symbol names and the values. Thus, two enumeration datatypes will be considered equal if and only if both
types have the same symbol/val ue associations and both have equal underlying integer datatypes. Type equality is tested
with the H5Tequal () function.

40 National Center for Supercomputing Applications

HDF5 Release 1.2

3.8.9. Interacting with C’'senumType

Although HDF enumeration datatypes are similar to C enumdatatypes, there are some important differences:

Difference

M otivation/Implications

Symbols are unguoted in C but quoted in HDF.

This alows the application to manipulate symbol
names in ways that are not possible with C.

The C compiler automatically replaces al symbols
with their integer values but HDF requires explicit
callsto do the same.

C resolves symbols at compile time while HDF
resolves symbols at run time.

The mapping from symbolstointegersisN:1in C
but 1:1 in HDF.

HDF can trandlate from value to name uniquely and
large swi t ch statements are not necessary to print
values in human-readable format.

A symbol must appear in only one C enumtype but
may appear in multiple HDF enumeration types.

The tranglation from symbol to valuein HDF
requires the datatype to be specified whilein C the
datatype is not necessary because it can be inferred
from the symbol.

The underlying integer value is always a native
integer in C but can be aforeign integer typein
HDF.

This allows HDF to describe data that might reside
on aforeign architecture, such as datastored in a
file.

The sign and size of the underlying integer datatype
is chosen automatically by the C compiler but must
be fully specified with HDF.

Since HDF doesn't require finalization of a datatype,
complete specification of the type must be supplied
before the type is used. Requiring that information
at the time of type creation was a design decision to

simplify thelibrary.

The examples below use the following C datatypes:

/* English color nanes */
typedef enum {

RED,

GREEN,

BLUE,

VWHI TE,

BLACK
} c_en_col ors;

/* Spani sh col or nanes, reverse order */
typedef enum {

NEGRO

BLANCO,

AZUL,

VERDE,

RQIO,
} c_sp_colors;

/* No enumdefinition for French names */

University of Illinois at Urbana-Champaign

41

A User's Guide for HDF5

Creating HDF Typesfrom C Types

An HDF enumeration datatype can be created from a C enumtype simply by passing pointersto the C enumvaluesto
H5Tenum i nsert () . For instance, to create HDF types for thec_en_col or s type shown above:

c_en_col ors val;

hid_t hdf _en_colors = H5Tcreate(H5T_ENUM si zeof (c_en_colors));
H5Tenum i nsert (hdf _en_col ors, "RED', (val =RED, &val));
H5Tenum i nsert (hdf _en_col ors, "GREEN', (val =GREEN, &val));
H5Tenum.i nsert (hdf _en_col ors, "BLUE", (val=BLUE, &val));
H5Tenum.i nsert (hdf _en_colors, "WH TE", (val =WH TE, &val));
H5Tenum.i nsert (hdf _en_col ors, "BLACK"', (val =BLACK, &val));

Name Changes between Applications

Occassionally two applicatons wish to exchange data but they use different names for the constants they exchange. For
instance, an English and a Spanish program may want to communicate color names although they use different symbolsin
the C enumdefinitions. The communication is still possible although the applications must agree on common terms for
the colors. The following example shows the Spanish code to read the values assuming that the applications have agreed
that the color information will be exchanged using Enlish color names:

c_sp_colors val, data[1000];

hid_t hdf _sp_colors = H5Tcreate(HST_ENUM si zeof (c_sp_colors));
H5Tenum i nsert (hdf _sp_col ors, "RED', (val =RQIO, &val));
H5Tenum i nsert (hdf _sp_col ors, "GREEN', (val =VERDE, &val));
H5Tenum i nsert (hdf _sp_col ors, "BLUE", (val =AZUL, &val));
H5Tenum i nsert (hdf _sp_colors, "WH TE", (val =BLANCO, &val));
H5Tenum i nsert (hdf _sp_col ors, "BLACK", (val =NEGRO, &val));

H5Dr ead(dat aset, hdf_sp_col ors, H5S ALL, H5S ALL, H5P_DEFAULT, data);
Symbol Ordering across Applications

Since symbol ordering is completely determined by the integer values assigned to each symbol in the enumdefinition,
ordering of enumsymbols cannot be preserved across files like with HDF enumeration types. HDF can convert from one
application’s integer values to the other’s so a symbol in one application’s C enumgets mapped to the same symbol in the
other application’s C enum but the relative order of the symbolsis not preserved.

For example, an application may be defined to use the definition of c_en_col or s defined above where WHI TE isless
than BLACK, but some other application might define the colors in some other order. If each application defines an HDF
enumeration type based on that application’s C enumtype then HDF will modify the integer values asdatais
communicated from one application to the other so that a RED value in the first application is also a RED value in the other
application.

A case of this reordering of symbol names was also shown in the previous code snippet (as well as a change of language),
where HDF changed the integer values so 0 (RED) in the input file became 4 (RQJO) in the dat a array. In theinput file,
VHI TE was less than BLACK; in the application the oppositeis true.

In fact, the ability to change the order of symbolsis often convenient when the enumeration type is used only to group
related symbols that don't have any well defined order relationship.

42 National Center for Supercomputing Applications

HDF5 Release 1.2

Internationalization

The HDF enumeration type conversion features can also be used to provide internationalization of debugging output. A
program written with the c_en_col or s datatype could define a separate HDF datatype for languages such as English,
Spanish, and French and cast the enumerated value to one of these HDF types to print the result.

c_en_colors val, *data=...;

hid_ t hdf_sp _colors =

H5Tcreat e(HST_ENUM si zeof val);

H5Tenum.i nsert (hdf _sp_col ors, "RQIO', (val =RED, &val));
H5Tenum i nsert (hdf _sp_col ors, "VERDE', (val =GREEN, &val));
H5Tenum.i nsert (hdf _sp_col ors, "AzZUL", (val =BLUE, &val));
H5Tenum i nsert (hdf _sp_col ors, "BLANCO', (val =WHI TE, &val));
H5Tenum i nsert (hdf _sp_col ors, "NEGRO', (val =BLACK, &val));

hid t hdf _fr_colors =

H5Tcreat e(HST_ENUM si zeof val);

H5Tenum.i nsert (hdf _fr_col ors, "OQUGE"', (val =RED, &val));
H5Tenum i nsert (hdf _fr_colors, "VERT", (val =GREEN, &val));
H5Tenum.i nsert (hdf _fr_col ors, "BLEU', (val=BLUE, &val));
H5Tenum i nsert (hdf _fr_colors, "BLANC', (val =WH TE, &val));
H5Tenum.i nsert (hdf _fr_colors, "NOR', (val =BLACK, &val));

voi d

naneof (1 ang_t | anguage, c_en_colors val, char *nane, size_t size)
{

switch (language) {
case ENGLI SH:

H5Tenum naneof (hdf _en_col ors,

br eak;
case SPAN SH:

H5Tenum naneof (hdf _sp_col ors,

br eak;
case FRENCH:

H5Tenum naneof (hdf _fr_col ors,

br eak;

}

&val ,

&val ,

&val ,

name,

nane,

name,

si ze);

size);

si ze);

3.8.10. Goals That Have Been M et

The main goal of enumeration typesis to provide communication of enumerated data using symbolic equivalence. That is,

asymbol written to a dataset by one application should be read as the same symbol by some other application.

Architecture
Independence

Preservation of Order

Relationship

Order Independence

Subsets

Two applications shall be able to exchange enumerated data even when the underlying
integer val ues have different storage formats. HDF accomplishes this for enumeration types
by building them upon integer types.

Therelative order of symbols shall be preserved between two applications that use
equivalent enumeration datatypes. Unlike numeric values that have an implicit ordering,
enumerated data has an explicit order defined by the enumeration datatype and HDF
records this order in thefile.

An application shall be able to change the relative ordering of the symbolsin an
enumeration datatype. Thisis accomplished by defining a new type with different integer
values and converting data from one type to the other.

An application shall be able to read enumerated data from an archived dataset even after the
application has defined additional members for the enumeration type. An application shall

University of Illinois at Urbana-Champaign

43

A User's Guide for HDF5

be able to write to a dataset when the dataset contains a superset of the members defined by
the application. Similar rules apply for in-core conversions between enumerated datatypes.

Targetable An application shall be able to target a particular architecture or application when storing
enumerated data. Thisis accomplished by allowing non-native underlying integer types and
converting the native data to non-native data.

Efficient Data Transfer ~ An application that defines a file dataset that corresponds to some native C enumerated data
array shall be able to read and write to that dataset directly using only Posix read and write
functions. HDF already optimizes this case for integers, so the same optimization will apply
to enumerated data.

Efficient Storage Enumerated data shall be stored in a manner which is space efficient. HDF stores the
enumerated data as integers and allows the application to chose the size and format of those
integers.

3.9. Variable-length Datatypes
3.9.1. Overview And Justification

Variable-length (VL) datatypes are sequences of an existing datatype (atomic, VL, or compound) which are not fixed in
length from one dataset location to another. In essence, they are similar to C character strings -- a sequence of atype
which is pointed to by a particular type of pointer -- although they are implemented more closely to FORTRAN strings by
including an explicit length in the pointer instead of using a particular value to terminate the sequence.

VL datatypes are useful to the scientific community in many different ways, some of which are listed below:

« Ragged arrays: Multi-dimensional ragged arrays can be implemented with the last (fastest changing) dimension
being ragged by using a VL datatype as the type of the element stored. (Or as afield in a compound datatype.)

» Fracta arrays: If acompound datatype hasa VL field of another compound type with VL fields (anested VL
datatype), this can be used to implement ragged arrays of ragged arrays, to whatever nesting depth is required for
the user.

« Polygonlists: A common storage regquirement isto efficiently store arrays of polygons with different numbers of
vertices. VL datatypes can be used to efficiently and succinctly describe an array of polygons with different
numbers of vertices.

e Character strings. Perhaps the most common use of VL datatypes will be to store C-like VL character stringsin
dataset elements or as attributes of objects.

* Indices: An array of VL object references could be used as an index to all the objectsin afile which contain a
particular sequence of dataset values. Perhaps an array something like the following:

Val uel: Objectl, hject3, hject9

Val ue2: Object0, hjectl2, hjectld, Object2l, Object22
Val ue3: Object2

Val ue4: <none>

Val ue5: Objectl, hjectl0, Ohjectl2

« Object Tracking: An array of VL dataset region references can be used as a method of tracking objects or
features appearing in a sequence of datasets. Perhaps an array of them would look like:

44 National Center for Supercomputing Applications

HDF5 Release 1.2

Featurel: Datasetl: Region, Dataset3:Region, Dataset9:Region

Feat ure2: Dataset0: Regi on, Dataset12: Regi on, Dataset 14: Regi on,
Dat aset 21: Regi on, Dat aset 22: Regi on

Feat ure3: Dat aset 2: Regi on

Feat ure4: <none>

Feature5: Dataset1: Regi on, Dataset10: Regi on, Dataset 12: Regi on

3.9.2. Variable-length Datatype Memory M anagement

With each element possibly being of different sequence lengths for a dataset with a VL datatype, the memory for the VL
datatype must be dynamically allocated. Currently there are two methods of managing the memory for VL datatypes: the
standard C malloc/free memory allocation routines or a method of calling user-defined memory management routines to
allocate or free memory. Since the memory allocated when reading (or writing) may be complicated to release, an HDF5
routineis provided to traverse a memory buffer and free the VL datatype information without |eaking memory.

Variable-length datatypes cannot be divided

VL datatypes are designed so that they cannot be subdivided by the library with selections, etc. This design was chosen
due to the complexities in specifying selections on each VL element of a dataset through a selection API that is easy to
understand. Also, the selection APIswork on dataspaces, not on datatypes. At some point in time, we may want to create
away for dataspaces to have VL components to them and we would need to allow selections of those VL regions, but that
is beyond the scope of this document.

What happensif thelibrary runsout of memory while reading?

It ispossible for acall to H5Dr ead to fail while reading in VL datatype information if the memory required exceeds that
which isavailable. In this case, the H5Dr ead call will fail gracefully and any VL data which has been allocated prior to
the memory shortage will be returned to the system via the memory management routines detailed below. It may be
possible to design apartial read API function at alater date, if demand for such a function warrants.

Strings as variable-length datatypes

Since character strings are a special case of VL datathat isimplemented in many different ways on different machines
and in different programming languages, they are handled somewhat differently from other VL datatypesin HDF5.

HDF5 has native VL strings for each language API, which are stored the same way on disk, but are exported through each
language API in anatural way for that language. When retrieving VL strings from a dataset, users may choose to have
them stored in memory asanative VL string or in HDF5'shvl _t struct for VL datatypes.

VL strings may be created in one of two ways: by creating a VL datatype with a base type of H5T_NATI VE_ASCI |,
H5T_NATI VE_UNI CODE, etc., or by creating a string datatype and setting its length to H5T_STRI NG_VARI ABLE. The
second method is used to access native VL stringsin memory. The library will convert between the two types, but they
are stored on disk using different datatypes and have different memory representations.

Multi-byte character representations, such as UNICODE or wide charactersin C/C++, will need the appropriate character
and string datatypes created so that they can be described properly through the datatype API. Additional conversions
between these types and the current ASCI| characters will also be required.

Variable-width character strings (which might be compressed data or some other encoding) are not currently handled by
this design. We will evaluate how to implement them based on user feedback.

University of lllinois at Urbana-Champaign 45

A User’s Guide for HDF5
3.9.3. Variable-length Datatype API

Creation

VL datatypes are created with the H5Tvl en_cr eat e() function as follows:

type id=H5Tvl en_creat e(hid_tbase_type_i d);
The base datatype will be the datatype that the sequence is composed of, characters for character strings, vertex
coordinates for polygon lists, etc. The base datatype specified for the VL datatype can be of any HDF5 datatype,
including another VL datatype, a compound datatype, or an atomic datatype.
Query base datatype of VL datatype

It may be necessary to know the base datatype of a VL datatype before memory is allocated, etc. The base datatypeis
queried with the H5Tget _super () function, described in the HST documentation.

Query minimum memory required for VL information

It order to predict the memory usage that H5Dr ead may need to allocate to store VL data while reading the data, the
HoDget _vl en_si ze() function is provided:

herr_t H5Dget _vl en_buf _si ze(hid tdat aset _i d, hid_ttype_i d, hid_tspace_i d, hsize t *si ze)
(Thisfunction is not implemented in Release 1.2.)

This routine checks the number of bytes required to store the VL data from the dataset, using thespace_i d for the
selection in the dataset on disk and thet ype_i d for the memory representation of the VL datain memory. The *si ze
value is modified according to how many bytes are required to store the VL datain memory.

Specifying how to manage memory for the VL datatype

The memory management method is determined by dataset transfer properties passed into the H5Dr ead and H5Dwr i t e
functions with the dataset transfer property list.

Default memory management is set by using H5P_DEFAULT for the dataset transfer property list identifier. If
H5P_DEFAULT isused with H5Dr ead, the system nmal | oc and f r ee calls will be used for alocating and freeing memory.
In such acase, H5P_DEFAULT should also be passed as the property list identifier to H5SDvl en_r ecl ai m

The rest of this subsection isrelevant only to those who choose not to use default memory management.

The user can choose whether to use the system mal | oc and f r ee calls or user-defined, or custom, memory management
functions. If user-defined memory management functions are to be used, the memory allocation and free routines must be
defined viaH5Pset _vl en_mem nmanager (), asfollows:

herr_t H5Pset _vl en_nem manager (hid_t pli st _i d, HSMM_allocate t al | oc, void *al | oc_i nf o,
H5MM_free tfree, void *free_i nf o)

Theal | oc and f r ee parameters identify the memory management routines to be used. If the user has defined custom
memory management routines, al | oc and/or f r ee should be set to make those routine calls (i.e., the name of the routine
is used as the value of the parameter); if the user prefersto use the system’'s mal | oc and/or f r ee, theal | oc andfr ee
parameters, respectively, should be set to NULL

The prototypes for the user-defined functions would appear as follows:

t ypedef void *(*H5MM al | ocat e_t)(size_t si ze, void *i nf 0) ;

46 National Center for Supercomputing Applications

HDF5 Release 1.2

t ypedef void (*H5SMM f r ee_t)(void *mem void *f r ee_i nf 0) ;

Theal | oc_i nf o andfr ee_i nf o parameters can be used to pass along any required information to the user’s memory
management routines.

In summary, if the user has defined custom memory management routines, the name(s) of the routines are passed in the

al | oc and f r ee parameters and the custom routines' parameters are passed intheal | oc_i nfoandfree_i nfo
parameters. If the user wishes to use the system mal | oc and f r ee functions, the al | oc and/or f r ee parameters are set to
NULL and theal | oc_i nf o and f r ee_i nf o parameters are ignored.

Recovering memory from VL buffersread in

The complex memory buffers created for a VL datatype may be reclaimed with the H5Dvl en_r ecl ai n() function call,
asfollows:

herr_t H5Dvl en_r ecl ai n(hid_ttype_i d, hid_t space_i d, hid_t pl i st _i d, void *buf);

Thet ype_i d must be the datatype stored in the buffer, space_i d describes the selection for the memory buffer to free
the VL datatypes within, pl i st _i d isthe dataset transfer property list which was used for the I/O transfer to create the
buffer, and buf isthe pointer to the buffer to free the VL memory within. The VL structures (hvl _t) in the user’s buffer
are modified to zero out the VL information after it has been freed.

If nested VL datatypes were used to create the buffer, this routine frees them from the bottom up, releasing all the
memory without creating memory leaks.

3.9.4. Code Examples

The following example creates the following one-dimensional array of size 4 of variable-length datatype.

0 10 20 30
11 21 31
22 32

33

Each element of the VL datatypeis of H5T_NATIVE_UINT type.

The array is stored in the dataset and then read back into memory. Default memory management routines are used for
writing the VL data. Custom memory management routines are used for reading the VL data and reclaiming memory
space.

Example: Variable-length Datatypes

#i ncl ude

#define FILE "tvltypes. h5"
#def i ne MAX(X, Y) ((X)>(N?2(X:(Y))

/* 1-D dataset with fixed di nensions */
#def i ne SPACE1_NAME " Spacel"
#def i ne SPACE1_RANK 1
#def i ne SPACE1_DI ML 4

voi d *vltypes_all oc_custon(size_ t size, void *info);
voi d vltypes_free_custon(void *mem void *info);

/**

University of lllinois at Urbana-Champaign 47

A User's Guide for HDF5

* %

* *

vltypes_al |l oc_custon():
al l ocation routine.

x %
x %
[x * al | ocat ed.

* *

voi d *ret_val ue=NULL;
int *mem_used=(int
size_t extra;

/*
* This weird contorti
* alignnent correct.

*/

*mem used+=si ze;
} /* end if */

return(ret_val ue);

* *

* %

vltypes_free_custom():
al l ocation routine.
rel ease the nenory
al | ocat ed.

* *

* %

* *

* %

all ocate the nmenory and increments the anount of nmenory

**/

void *vltypes_al | oc_custon(size_t size,

*)i nf o;

extra=MAX(si zeof (void *), sizeof (int));
i f((ret_value=nalloc(extrat+size))!=NULL) {

*(int *)ret_val ue=si ze;

ret _val ue=((unsi gned char *)ret_val ue)+extra;

R bk S R Rk R o kb S S R kO S R R R b o I O R ok b S

**/

voi d vlitypes _free_custon(void *_nmem void *info)

VL dat atype custom nmenory
This routine just uses malloc to

voi d *i nfo)

/* Pointer to return */
/* Get the pointer to the menory used */
/* Extra space needed */

on is required on the DEC Al pha to keep the

VL dat atype custom nenory
This routine just uses free to
and decrenents the anpbunt of nenory

{
unsi gned char *mem
int *memused=(int *)info, /* Get the pointer to the nmenory used */
size_t extra; /* Extra space needed */
/*
* This weird contortion is required on the DEC Al pha to keep the
* alignnent correct.
*/
ext ra=MAX(si zeof (void *),sizeof (int));
i f(_mem =NULL) {
mem=((unsi gned char *)_men)-extra;
mem used-=(int *)nem
free(mem;
} /* end if */
}
i nt mai n(voi d)
{
hvl _t wdat a[SPACE1_DI ML] ; /* Information to wite */
hvl _t rdata[SPACEL1_DI ML] ; [* Information read in */
hi d_t fidl; /* HDF5 File IDs */
hid_t dataset; /* Dataset |ID */
hid_t si di; /* Dataspace |ID */
hid_t tidl; /* Datatype |ID */
48 National Center for Supercomputing Applications

HDF5 Release 1.2

hid_t xfer_pid; /* Dataset transfer property list ID*/
hsi ze_t dimsl[] = {SPACE1_DI ML};

ui nt i,j; /* counting variables */

i nt mem used=0; /* Menory used during allocation */

herr _t ret; /* Generic return val ue
/*

* Allocate and initialize VL data to wite

*/

for(i=0; i<SPACEl DI M; i++) {

wdat a[i]. p=mal | oc((i+1)*sizeof (unsigned int));
wdat a[i] .| en=i +1;
for(j=0; j<(i+l); j++)
((unsigned int *)wdata[i].p)[]j]=i*10+4j;
} /* end for */

/*
* Create file.
*/
fidl = H5Fcreate(FILE, H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
/*
* Create dataspace for datasets.
*/
sidl = H5Screat e_si npl e(SPACE1_RANK, dinmsl, NULL);
/*
* Create a datatype to refer to.
*/
tidl = H5Tvl en_create (HS5T_NATIVE_ U NT);
/*
* Create a dataset.
*/
dat aset =H5Dcr eat e(fi d1, "Dat aset 1", ti d1, si d1, H5P_DEFAULT) ;
/*
* Wite dataset to disk.
*/
ret=HoDwri t e(dataset,tidl, H5S ALL, H5S ALL, H5P_DEFAULT, wdat a) ;
/*
* Change to the custom nenory allocation routines for reading VL data
*/

xf er _pi d=H5Pcr eat e(H5P_DATASET_XFER) ;

ret =H5Pset _vl en_mem manager (xfer _pid, vltypes_al |l oc_cust om
&rem used, vl types_free_cust om &em used);

/*
* Read dataset fromdisk. vltypes_alloc_custom and
* will be used to manage nenory.
*/
ret =H5Dr ead(dat aset, ti dl, H5S_ALL, H5S_ALL, xfer _pi d, rdata);

/*
* Display data read in
*/
for(i=0; i<SPACELl_ DI M; i++) {
printf("%l-th element length is % \n", i, (unsigned) rdatal[i].len);

*/

University of Illinois at Urbana-Champaign

49

A User's Guide for HDF5

for(j=0; j<rdata[i].len; j++)
printf(" %l ", ((unsigned int *)rdatali]l.p)[j]);

}
printf("\n");
} /* end for */

/*
* Reclaimthe read VL data. vltypes free_customw |l be used
* to reclaimthe space.
*/

ret =H5Dvl en_recl ai n(tidl, si dl, xfer_pid, rdata);

/*
* Reclaimthe wite VL data. C language free function will be used
* to recl ai mspace.
*/

ret=H5Dvl en_recl ai m(tidl, si dl, H5SP_DEFAULT, wdat a) ;

/*

* Cl ose Dataset

*/

ret = H5Dcl ose(dat aset);
/*

* (Cl ose datatype

*/

ret = H5Tclose(tidl);

/*

* Cl ose di sk dataspace
*/

ret = H5Scl ose(sidl);

/*

* Close dataset transfer property |ist
*/

ret = H5Pcl ose(xfer_pid);
/*

* Close file

*/

ret = H5Fcl ose(fidl);

And the output from this sample code would be as follows:

Example: Variable-length Datatypes, Sample Output

O-th element length is 1

0

1-th elenent length is 2
10 11

2-th el enent length is 3
20 21 22

3-th element length is 4
30 31 32 33

For further samples of VL datatype code, seethetestsint est/tvl t ypes. ¢ inthe HDF5 distribution.

50 National Center for Supercomputing Applications

HDF5 Release 1.2

3.10. Sharing Datatypes among Datasets

If afile haslots of datasets which have a common datatype then the file could be made smaller by having all the datasets
share a single datatype. Instead of storing a copy of the datatype in each dataset object header, a single datatypeis stored
and the object headers point to it. The space savingsis probably only significant for datasets with a compound datatype
since the simple datatypes can be described with just a few bytes anyway.

To create a bunch of datasets that share a single datatype just create the datasets with a committed (named) datatype.

Example: Shared Types

To create two datasets that share a common datatype one just commits the datatype, giving it a name, and then uses
that datatype to create the datasets.

hidt t1 = ...sone transient type...;
H5Tcommit (file, "shared_type", t1);
hi d_t dsetl H5Dcreate (file, "dsetl", tl1, space, H5P_DEFAULT);
hid t dset2 H5Dcreate (file, "dset2", tl1, space, H5P_DEFAULT);

And to create two additional datasets |ater which share the same type as the
first two datasets:

hi d_t dsetl = H5Dopen (file, "dsetl");

hid t t2 = HoDget type (dsetl);

hi d_t dset3 H5Dcreate (file, "dset3", t2, space, H5P_DEFAULT);
hid t dset4 HoDcreate (file, "dset4", t2, space, H5P_DEFAULT);

3.11. Data Conversion

Thelibrary is capable of converting data from one type to another and does so automatically when reading or writing the
raw data of a dataset, attribute data, or fill values. The application can also change the type of data stored in an array.

In order to insure that data conversion exceeds disk 1/0 rates, common data conversion paths can be hand-tuned and
optimized for performance. The library contains very efficient code for conversions between most native datatypes and a
few non-native datatypes, but if a hand-tuned conversion function is not available, then the library falls back to a slower
but more general conversion function. The application programmer can define additional conversion functions when the
libraries repertoire isinsufficient. In fact, if an application does define a conversion function which would be of general
interest, we request that the function be submitted to the HDF5 development team for inclusion in the library.

Note: The HDF5 library contains a deliberately limited set of conversion routines. It can convert from one integer format
to another, from one floating point format to another, and from one struct to another. It can also perform byte swapping
when the source and destination types are otherwise the same. The library does not contain any functions for converting
data between integer and floating point formats. It is anticipated that some users will find it necessary to develop float to
integer or integer to float conversion functions at the application level; users areinvited to submit those functions to be
considered for inclusion in future versions of the library.

A conversion path contains a source and destination datatype and each path contains a hard conversion function and/or a
soft conversion function. The only difference between hard and soft functions is the way in which the library chooses
which function applies: A hard function appliesto a specific conversion path while a soft function may apply to multiple
paths. When both hard and soft functions apply to a conversion path, then the hard function is favored and when multiple
soft functions apply, the one defined last is favored.

University of lllinois at Urbana-Champaign 51

A User's Guide for HDF5

A data conversion function is of type H5T_conv_t which isdefined as:

typedef herr_t (*H5T_conv_t)(hid_t src_type,
hid_t dest_type,
H5T cdata_t *cdat a,
size_t nelnts,
void *buffer,
voi d *background);

The conversion function is called with the source and destination datatypes (src_type and dst_type), path-constant data
(cdata), the number of instances of the datatype to convert (nelmts), a buffer which initially contains an array of data
having the source type and on return will contain an array of data having the destination type (buffer), and atemporary or
background buffer (background). Functions return a negative value on failure and some other val ue on success.

The conmand field of the cdata argument determines what happens within the conversion function. It’s values can be:

H5T _CONV_INI T

This command is to hard conversion functions when they're registered or soft conversion functions when the library
isdetermining if a conversion can be used for a particular path. The src_type and dst_type are the end-points of the
path being queried and cdata is all zero. The library should examine the source and destination types and return zero
if the conversion is possible and negative otherwise (hard conversions need not do this since they've presumably been
registered only on paths they support). If the conversion is possible the library may allocate and initialize private data
and assign the pointer to the pri v field of cdata (or private data can be initialized |ater). It should also initialize the
need_bkg field described below. The buf and background pointers will be null pointers.

H5T_CONV_CONV

This command indicates that data points should be converted. The conversion function should initialize the pri v
field of cdata if it wasn't initialize during the H5ST_CONV_I NI T command and then convert nelmts instances of the
src_typeto the dst_type. The buffer serves as both input and output. The background buffer is supplied according to
the value of the need_bkg field of cdata (the values are described below).

H5T_CONV_FREE
The conversion function is about to be removed from some path and the private data (the cdat a- pri v pointer)
should be freed and set to null. All other pointer arguments are null, the src_type and dst_type are invalid (negative),
and the nelmts argument is zero.

Others...

Other commands might be implemented later and conversion functions that don't support those commands should
return a negative value.

Whether a background buffer is supplied to a conversion function, and whether the background buffer isinitialized
depends on the value of cdat a- need_bkg which the conversion function should have initialized during the
H5T_CONV _INIT command. It can have one of these values:

H5T_BKG_NONE

No background buffer will be supplied to the conversion function. This is the default.

52 National Center for Supercomputing Applications

HDF5 Release 1.2

H5T_BKG_TEMP

A background buffer will be supplied but it will not be initialized. Thisis useful for those functions requiring some
extra buffer space as the buffer can probably be allocated more efficiently by the library (the application can supply
the buffer as part of the dataset transfer property list).

H5T_BKG_YES

Aninitialized background buffer is passed to the conversion function. The buffer isinitialized with the current values
of the destination for the data which is passed in through the buffer argument. It can be used to "fill in between the
cracks'. For instance, if the destination type is a compound datatype and we areinitializing only part of the
compound datatype from the source type then the background buffer can be used to initialize the other part of the
destination.

Ther ecal c field of cdata is set when the conversion path table changes. It can be used by conversion function that cache
other conversion paths so they know when their cache needs to be recomputed.

Once a conversion function iswritten it can be registered and unregistered with these functions:

herr t H5Tregi ster (H5T pers_t pers, const char *nane, hid_t src_type, hid_t dest_type,
H5T conv_t func)

Once a conversion function is written, the library must be notified so it can be used. The function can be registered as
ahard (H5T_PERS_HARD) or soft (H5T_PERS_SOFT) conversion depending on the value of pers, displacing any
previous conversions for all applicable paths. The name is used only for debugging but must be supplied. If persis
H5T_PERS_SOFT then only the type classes of the src_type and dst_type are used. For instance, to register a general
soft conversion function that can be applied to any integer to integer conversion one could say:

H5Tr egi st er (H5T_PERS_SOFT, "i2i", HST_NATIVE | NT, H5T_NATIVE_ I NT, convert _i2i).One
special conversion path called the "no-op" conversion path is always defined by the library and used as the
conversion function when no data transformation is necessary. The application can redefine this path by specifying a
new hard conversion function with a negative value for both the source and destination datatypes, but the library
might not call the function under certain circumstances.

herr_t H5Tunregi ster (H5T_pers_t pers, const char *nane, hid_t src_type, hid_t
dest _type, H5T_conv_t func)

Any conversion path or function that matches the critera specified by a call to this function is removed from the type
conversion table. All fields have the same interpretation as for H5Tr egi st er () with the added feature that any (or
all) may be wild cards. The H5T_PERS DONTCARE constant should be used to indicate awild card for the pers
argument. The wild card name is the null pointer or empty string, the wild card for the src_type and dest_type
arguments is any negative value, and the wild card for the func argument is the null pointer. The special no-op
conversion path is never removed by this function.

Example: A conversion function

Here's an example application-level function that converts Cray unsi gned short to any other 16-bit unsigned
big-endian integer. A cray short isabig-endian value which has 32 bits of precision in the high-order bits of a 64-
bit word.

1 typedef struct {

2 size_t dst_size;
3 int direction;

4 } cray_ushort2be t;
5

6 herr _t

University of lllinois at Urbana-Champaign 53

A User's Guide for HDF5

7 cray_ushort2be (hid_t src, hid_ t dst,

8 H5T_cdata_t *cdata,

9 size_t nelnts, void *buf,

10 const void *background)

11 {

12 unsi gned char *src = (unsigned char *)buf;

13 unsi gned char *dst = src;

14 cray_ushort2be_t *priv = NULL;

15

16 switch (cdata->command) {

17 case H5T_CONV_INT:

18 /*

19 * W& are being queried to see if we handle this
20 * conversion. W can handl e conversion from
21 * Cray unsigned short to any other big-endian
22 * unsigned integer that doesn’t have paddi ng.
23 */

24 if (!'H5Tequal (src, H5T_CRAY_USHORT) ||

25 H5T_ORDER BE ! = H5Tget _order (dst) ||

26 HS5T_SGN_NONE ! = H5Tget _signed (dst) ||

27 8*H5Tget _size (dst) != H5Tget _precision (dst)) {
28 return -1;

29 }

30

31 /*

32 * |nitialize private data. |If the destination size
33 * is larger than the source size, then we nust
34 * process the elenents fromright to left.

35 */

36 cdata->priv = priv = malloc (sizeof(cray_ushort2be t));
37 priv->dst_size = H5Tget_size (dst);

38 if (priv->dst_size>8) {

39 priv->direction = -1;

40 } else {

41 priv->direction = 1;

42 }

43 br eak;

44

45 case H5T_CONV_FREE:

46 /*

47 * Free private data.

48 */

49 free (cdata->priv);

50 cdata->priv = NULL;

51 br eak;

52

53 case H5T_CONV_CONV:

54 /*

55 * Convert each el enent, watch out for overlap src
56 * with dst on the left-nost elenent of the buffer.
57 */

58 priv = (cray_ushort2be_t *)(cdata->priv);

59 if (priv->direction<0) {

60 src += (nelms - 1) * 8§;

61 dst += (nelms - 1) * dst_si ze;

62 }

63 for (i=0; i<n; i++) {

64 if (src==dst && dst_size<4) {

65 for (j=0; j<dst_size; j++) {

66 dst[j] = src[j+4-dst_size];

67 }

68 } else {

54 National Center for Supercomputing Applications

HDF5 Release 1.2

70 dst[dst_size-(j+1)] =
71 }

74 }

75 }

76 src += 8 * direction;

77 dst += dst_size * direction;
78 }

79 br eak;

81 defaul t:

82 /*

83 * Unknown comrand.
84 */

85 return -1;

87 return O;
88 }

69 for (j=0; j<4 && j<dst_si ze;

72 for (j=4; j<dst_size; j++) {
73 dst[dst_size-(j+1)] = 0;

The background argument isignored since it's generally not applicable to atomic datatypes.

Example: Soft Registration

H5Tr egi st er (HST_PERS_SOFT, "cus2be",
H5T_NATI VE_I NT, H5T_NATI VE I NT,
cray_ushort 2be);

The convesion function described in the previous example applies to more than one conversion path. Instead of
enumerating all possible paths, we register it as a soft function and allow it to decide which pathsit can handle.

This causesit to be consulted for any conversion from an integer type to another integer type. The first argument is
just ashort identifier which will be printed with the datatype conversion statistics.

NOTE: The idea of a master soft list and being able to query conversion functions for their abilities tries to overcome
problems we saw with AlO. Namely, that there was a dichotomy between generic conversions and specific conversions
that made it very difficult to write a conversion function that operated on, say, integers of any size and order aslong as

they don't have zero padding. The A1O mechanism required such a function to be explicitly registered (like

H5Tr egi st er _har d()) for each an every possible conversion path whether that conversion path was actually used or

not.

Last modified: 14 October 1999

University of Illinois at Urbana-Champaign

55

A User's Guide for HDF5

56 National Center for Supercomputing Applications

HDF5 Release 1.2

4. The Dataspace I nterface (H5S)

4.1. Introduction

The dataspace interface (H5S) provides a mechanism to describe the positions of the elements of a dataset and is designed
in such away as to allow new features to be easily added without disrupting applications that use the dataspace interface.
A dataset (defined with the dataset interface) is composed of a collection of raw data points of homogeneous type, defined
in the datatype (H5T) interface, organized according to the dataspace with this interface.

A dataspace describes the |ocations that dataset elements are located at. A dataspace is either aregular N-dimensional
array of data points, called a simple dataspace, or amore general collection of data points organized in another manner,
called a complex dataspace. A scalar dataspace is a special case of the simple data space and is defined to be a 0-
dimensiona single data point in size. Currently only scalar and simple dataspaces are supported with this version of the
H5S interface. Complex dataspaces will be defined and implemented in a future version. Complex dataspaces are intended
to be used for such structures which are awkward to express in simple dataspaces, such asirregularly gridded data or
adaptive mesh refinement data. This interface provides functions to set and query properties of a dataspace.

Operations on a dataspace include defining or extending the extent of the dataspace, selecting portions of the dataspace
for 1/O and storing the dataspacesin the file. The extent of a dataspace is the range of coordinates over which dataset
elements are defined and stored. Dataspace selections are subsets of the extent (up to the entire extent) which are selected
for some operation.

For example, a 2-dimensional dataspace with an extent of 10 by 10 may have the following very simple selection:

Olo|N|O|O|R|W|IN|FL]|O
1

Example 1. Contiguousrectangular selection

University of lllinois at Urbana-Champaign 57

A User's Guide for HDF5

Or, amore complex selection may be defined:

ol-1-1-1-1-1-1-1-1-1-
1] -xIxIx]-1-Ix]-1-1-
2 - Ix|-Ix|-1-1-1-1-1-
s|-Ix|-Ix|-1-1x]-1-1-
al-Ix]-Ix]-1-1-1-1-1-
s-Ix|xIx|-1-|x]-]-1-
6l -1-1-1-1-1-1-1-1-1-
7-1-IxIx|xIx|-1-]-1-
gl -1-1-1-1-1-1-1-1-1-
9__________

Example 2: Non-contiguous selection

Selections within dataspaces have an offset within the extent which is used to locate the selection within the extent of the
dataspace. Selection offsets default to 0 in each dimension, but may be changed to move the selection within a dataspace.
In example 2 above, if the offset was changed to 1,1, the selection would look like this:

oj1]2]3]a|s]6]7]|8]9
ol-1-1-1-1-1-1-1-1-1-
11-1-1-1-1-1-1-1-1-1-
20 - - IxIxIx|-1-1x]-1-
sl--Ix]-Ix]-1-1-1-1-
al-1-Ix]-Ix]-1-1x]-1-
s-1-Ix]-Ix]-1-1-1-1-
6| -|-IxIx|Ix|-1-1x]-1-
7__________
sl -|-]-IxIx[xIx]-]-1-
9l -1l-1-1-1-1-1-1-1-1-

Example 3: Non-contiguous selection with 1,1 offset

Selections also have a linearization ordering of the points selected (defaulting to "C" order, ie. last dimension changing
fastest). The linearization order may be specified for each point or it may be chosen by the axis of the dataspace. For
example, with the default "C" ordering, example 1's selected points are iterated through in this order: (1,1), (1,2), (1,3),
(2,), (2,2), etc. With "FORTRAN" ordering, example 1's selected points would be iterated through in this order: (1,1),
(2,2), (32), (4,2), (5,1), (1,2), (2,2), etc.

A dataspace may be stored in the file as a permanent object, to allow many datasets to use a commonly defined dataspace.
Dataspaces with extendabl e extents (ie. unlimited dimensions) are not able to be stored as permanent dataspaces.

Dataspaces may be created using an existing permanent dataspace as a container to locate the new dataspace within.
These dataspaces are complete dataspaces and may be used to define datasets. A dataspaces with a"parent” can be
gueried to determine the parent dataspace and the location within the parent. These dataspaces must currently be the same
number of dimensions as the parent dataspace.

58 National Center for Supercomputing Applications

HDF5 Release 1.2

4.2. General Dataspace Oper ations

The functions defined in this section operate on dataspaces as a whole. New dataspaces can be created from scratch or
copied from existing data spaces. When a dataspace is no longer needed its resources should be released by calling
H5Scl ose() .

hid t H5Screate(H5S class_t type)

This function creates a new dataspace of a particular type. The types currently supported are H5S SCALAR and
H5S_SIMPLE; others are planned to be added later.

hid t H5Sopen(hid_t /ocation, const char *nane)

This function opens a permanent dataspace for use in an application. The location argument is afile or group ID and
name is an absolute or relative path to the permanent dataspace. The dataspace ID which isreturned isahandleto a
permanent dataspace which can't be modified.

hid t H5Scopy (hid_t space)
This function creates a new dataspace which is an exact copy of the dataspace space.
hid_t H5Ssubspace (hid_t space)

This function uses the currently defined selection and offset in space to create a dataspace which is located within
space. The space dataspace must be a sharable dataspace located in the file, not a dataspace for a dataset. The
relationship of the new dataspace within the existing dataspace is preserved when the new dataspace is used to create
datasets. Currently, only subspaces which are equivalent to simple dataspaces (ie. rectangular contiguous areas) are
allowed. A subspaceis not "simplified" or reduced in the number of dimensions used if the selection is"flat" in one
dimension, they always have the same number of dimensions as their parent dataspace.

herr_t H5Scomit (hid_t /ocation, const char *name, hid_t space)
The dataspaces specified with space is stored in the file specified by location. Location may be either afile or group
handle and name is an absolute or relative path to the location to store the dataspace. After this call, the dataspace is
permanent and can't be modified.

herr_t H5Scl ose (hid_t space)

Rel eases resources associated with a dataspace. Subsequent use of the dataspace identifier after this call is undefined.

University of lllinois at Urbana-Champaign 59

A User's Guide for HDF5

4.3. Dataspace Extent Operations

These functions operate on the extent portion of a dataspace.

herr _t H5Sset _extent_sinple (hid t space, int rank, const hsize t *current_size,
const hsize t *naxi num size)

Sets or resets the size of an existing dataspace, where rank is the dimensionality, or number of dimensions, of the
dataspace. current_size is an array of size rank which contains the new size of each dimension in the dataspace.
maximum_sizeis an array of size rank which contains the maximum size of each dimension in the dataspace. Any
previous extent is removed from the dataspace, the dataspace typeis set to H5S SIMPLE and the extent is set as
specified.

herr_t H5Sset _extent_none (hid_t space)
Removes the extent from a dataspace and sets the type to H5S NO_CLASS.
herr_t H5Sextent copy (hid_t dest _space, hid_t source _space)

Copies the extent from source_space to dest_space, which may change the type of the dataspace. Returns non-
negative on success, negative on failure.

hsize_ t H5Sget sinple_extent npoints (hid_ t space)

This function determines the number of elements in a dataspace. For example, a simple 3-dimensional dataspace with
dimensions 2, 3 and 4 would have 24 elements. Returns the number of elementsin the dataspace, negative on failure.

int H5Sget sinple_extent_ndims (hid_t space)

This function determines the dimensionality (or rank) of a dataspace. Returns the number of dimensionsin the
dataspace, negative on failure.

herr _t H5Sget sinple extent _dinms (hid t space, hsize t *dins, hsize_ t *nax)

The function retrieves the size of the extent of the dataspace space by placing the size of each dimension in the array
dims. Also retrieves the size of the maximum extent of the dataspace, placing the results in max. Returns non-
negative on success, negative on failure.

60 National Center for Supercomputing Applications

HDF5 Release 1.2

4.4. Dataspace Selection Operations

Selections are maintained separately from extents in dataspaces and operations on the selection of a dataspace do not
affect the extent of the dataspace. Selections are independent of extent type and the boundaries of selections are

reconciled with the extent at the time of the data transfer. Selection offsets apply a selection to alocation within an extent,
allowing the same selection to be moved within the extent without requiring a new selection to be specified. Offsets
default to O when the dataspace is created. Offsets are applied when an /O transfer is performed (and checked during calls
to H5Sselect_valid). Selections have an iteration order for the points selected, which can be any permutation of the
dimensions involved (defaulting to 'C’ array order) or a specific order for the selected points, for selections composed of
single array elements with H5Sselect_elements. Selections can also be copied or combined together in various ways with
H5Sselect_op. Further methods of selecting portions of a dataspace may be added in the future.

herr _t H5Ssel ect _hyperslab (hid_t space, h5s_selopt_t op, const hssize t * start,
const hsize t * stride, const hsize t * count, const hsize t * bl ock)

This function selects a hyperslab region to add to the current selected region for the space dataspace. The start, stride,
count and block arrays must be the same size as the rank of the dataspace. The selection operator op determines how
the new selection is to be combined with the already existing selection for the dataspace. Currently, The following

operators are supported:

Ho5S_SELECT_SET Replaces the existing selection with the parameters from this call. Overlapping
blocks are not supported with this operator.

H5S_SELECT_OR Adds the new selection to the existing selection.

The start array determines the starting coordinates of the hyperslab to select. The stride array chooses array locations
from the dataspace with each value in the stride array determining how many elements to move in each dimension.
Setting avalue in the stride array to 1 moves to each element in that dimension of the dataspace, setting a value of 2
in alocation in the stride array moves to every other element in that dimension of the dataspace. In other words, the
stride determines the number of elements to move from the start location in each dimension. Stride values of 0 are
not allowed. If the stride parameter is NULL, a contiguous hyperslab is selected (asif each value in the stride array
was set to al 1's). The count array determines how many blocks to select from the dataspace, in each dimension. The
block array determines the size of the element block selected from the dataspace. If the block parameter is set to
NULL, the block size defaults to a single element in each dimension (as if the block array was set to al 1's).

For example, in a2-dimensional dataspace, setting start to [1,1], stride to [4,4], count to [3,7] and block to [2,2]
selects 21 2x2 blocks of array elements starting with location (1,1) and selecting blocks at locations (1,1), (5,1), (9,1),
(1,5), (5,5), etc.

Regions selected with this function call default to 'C’ order iteration when I/O is performed.

herr_t H5Ssel ect _elenents (hid_t space, h5s_selopt_t op, const size_t
num el enents, const hssize_t *coord[])

This function selects array elements to be included in the selection for the space dataspace. The number of elements
selected must be set with the num_elements. The coord array is atwo-dimensional array of size <dataspace rank> by
<num_elements> in size (ie. alist of coordinates in the array). The order of the element coordinates in the coord array
also specifiesthe order that the array elements are iterated through when /O is performed. Duplicate coordinate
locations are not checked for.

University of lllinois at Urbana-Champaign 61

A User's Guide for HDF5

The selection operator op determines how the new selection is to be combined with the already existing selection for
the dataspace. The following operators are supported:

H5S_SELECT_SET Replaces the existing selection with the parameters from this call.
Overlapping blocks are not supported with this operator.

H5S_SELECT_OR Adds the new selection to the existing selection.

When operators other than H5S SELECT SET are used to combine a new selection with an existing selection, the
selection ordering isreset to 'C’ array ordering.

herr_t H5Sselect_all (hid_t space)

This function selects the special H5S SELECT_ALL region for the space dataspace. H5S SELECT ALL selectsthe
entire dataspace for any dataspace isis applied to.

herr _t H5Ssel ect _none (hid_t space)
This function resets the selection region for the space dataspace not to include any elements.
herr_t H5Sselect _op (hid_t spacel, h5s_selopt_t op, hid_t space?2)
Uses space2 to perform an operation on spacel. The valid operations for op are:
H5S SELECT_COPY

Copies the selection from space? into spacel, removing any previoudly defined selection for spacel. The selection
order and offset are also copied to spacel

H5S SELECT_UNION

Performs a set union of the selection of the dataspace space2 with the selection from the dataspace spacel, with the
result being stored in spacel. The selection order for spacel is reset to 'C’ order.

H5S_SELECT_INTERSECT

Performs an set intersection of the selection from space2 with spacel, with the result being stored in spacel. The
selection order for spacel isreset to 'C’ order.

H5S_SELECT_DIFFERENCE

Performs a set difference of the selection from space2 with spacel, with the result being stored in spacel. The
selection order for spacel isreset to 'C’ order.

herr _t H5Ssel ect _order (hid t space, hsize t permvector[])

This function selects the order to iterate through the dimensions of a dataspace when performing 1/0O on a selection. If
a specific order has already been selected for the selection with H5Sselect_elements, this function will remove it and
use adimension oriented ordering on the selected elements. The elements of the perm_vector array must be unique
and between 0 and the rank of the dataspace, minus 1. The order of the elementsin perm_vector specify the order to
iterate through the selection for each dimension of the dataspace. To iterate through a 3-dimensional dataspace
selection in 'C’ order, specify the elements of the perm vector as [0, 1, 2], for FORTRAN order they would be[2, 1,
0]. Other orderings, such as[1, 2, 0] are also possible, but may execute slower.

htri _t H5Sselect_valid (hid_t space)

This function verifies that the selection for a dataspace is within the extent of the dataspace, if the currently set offset
for the dataspace is used. Returns TRUE if the selection is contained within the extent, FALSE if it is not contained
within the extent and FAIL on error conditions (such asif the selection or extent is not defined).

62 National Center for Supercomputing Applications

HDF5 Release 1.2

hsi ze t H5Sget select _npoints (hid_t space)
This function determines the number of € ementsin the current selection of a dataspace.
herr _t H5Soffset _sinple (hid_t space, const hssize t * offset)

Sets the offset of a simple dataspace space. The offset array must be the same number of elements as the number of
dimensions for the dataspace. If the offset array is set to NULL, the offset for the dataspaceisreset to O.

4.5. Miscellaneous Dataspace Oper ations
herr_t H5Slock (hid_t space)

Locks the dataspace so that it cannot be modified or closed. When the library exits, the dataspace will be unlocked and
closed.

hid t H5Screate_sinple(int rank, const hsize t *current_size, const hsize t
*maxi num si ze)

Thisfunction isa"convenience" wrapper to create a simple dataspace and set it's extent in one call. It isequivalent to
calling H5Screate and H5Sset_extent_simple() in two steps.

int H5Si s_subspace(hid_t space)
Thisfunction returns positive if spaceis located within another dataspace, zero if it is not, and negative on a failure.
char *H5Ssubspace_nane(hid t space)

This function returns the name of the named dataspace that space is located within. If spaceis not located within another
dataspace, or an error occurs, NULL isreturned. The application is responsible for freeing the string returned.

herr_t H5Ssubspace_l ocation(hid_t space, hsize_ t */oc)

If space is located within another dataspace, this function puts the location of the origin of spacein theloc array. The loc
array must be at least as large as the number of dimensions of space. If space is not located within another dataspace or an
error occurs, a negative value is returned, otherwise a non-negative value is returned.

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 63

A User's Guide for HDF5

64 National Center for Supercomputing Applications

HDF5 Release 1.2

5. The Group Interface (H5G)

5.1. Introduction

An object in HDF5 consists of an object header at afixed file address that contains messages describing various properties
of the object such asiits storage location, layout, compression, etc. and some of these messages point to other data such as

the raw data of a dataset. The address of the object header is also known as an OID and HDF5 has facilities for trandlating

names to OIDs.

Every HDF5 object has at least one name and a set of names can be stored together in a group. Each group implements a
name space where the names are any length and unique with respect to other names in the group.

Since agroup is atype of HDF5 object it has an object header and a name which exists as a member of some other group.
In this way, groups can be linked together to form a directed graph. One particular group is called the Root Group and is
the group to which the HDF5 file boot block points. Its nameis"/" by convention. The full name of an object is created by
joining component names with slashes much like Unix.

The name "/Foo/Bar/Baz"
Group 1 Crroup 2 Crroup 3
r ", r ", e ",
| Barﬁ/ |

Foo —

)) ﬁaz —
R R R
Some Ohject
Chject
Header

However, unlike Unix which arranges directories hierarchically, HDF5 arranges groups in a directed graph. Therefore,
thereisno ".." entry in agroup since a group can have more than one parent. Thereisno "." entry either but the library
understands it internally.

5.2. Names

HDF5 places few restrictions on names: component names may be any length except zero and may contain any character
except dash (/") and the null terminator. A full name may be composed of any number of component names separated by
slashes, with any of the component names being the special name".". A name which begins with aslash is an absolute

University of lllinois at Urbana-Champaign 65

A User's Guide for HDF5

name which islooked up beginning at the root group of the file while all other relative names are looked up beginning at
the specified group. Multiple consecutive slashesin afull name are treated as single slashes and trailing slashes are not
significant. A special caseisthe name"/" (or equivalent) which refers to the root group.

Functions which operate on names generally take alocation identifier which is either afile ID or agroup 1D and perform
the lookup with respect to that location. Some possibilities are;

Location Type | Object Name Description

FileID / f oo/ bar The object bar ingroup f oo in the root group.
The object bar ingroup f oo in the root group of the file containing the

Group ID / f oo/ bar fsﬁfﬁed group. In other words, the group I1D’s only purpose isto supply a
FileID / The root group of the specified file.
Group ID / The root group of the file containing the specified group.
FileID f oo/ bar The object bar in group f oo in the specified group.
Group ID f oo/ bar The object bar ingroup f oo in the specified group.
FileID . The root group of thefile.
Group ID . The specified group.
Other ID . The specified object.

5.3. Creating, Opening, and Closing Groups

Groups are created with the H5Ger eat e() function, and existing groups can be access with HsGopen() . Both functions
return an object 1D which should be eventually released by calling H5Gel ose() .

hid t HsGereate (hid_t /ocation_id, const char *nane, size t size hint)

This function creates a new group with the specified name at the specified location which is either afile ID or agroup
ID. The name must not already be taken by some other object and all parent groups must already exist. The size_hint
isahint for the number of bytes to reserve to store the names which will be eventually added to the new group.
Passing avalue of zero for size_hint is usually adequate since the library is able to dynamically resize the name heap,
but a correct hint may result in better performance. The return value is a handle for the open group and it should be
closed by calling H5Gel ose() when it's no longer needed. A negative valueis returned for failure.

hid_t H5Gopen (hid_t [ocation_id, const char *nane)

This function opens an existing group with the specified name at the specified location which is either afile ID or a
group ID and returns an object ID. The object ID should be released by calling H5Gel ose() whenitisno longer
needed. A negative value isreturned for failure.

herr _t H5Gcl ose (hid_t group_id)

This function releases resources used by an group which was opened by H5Ger eat e() or H5Gopen() . After closing
agroup the group_id should not be used again. This function returns zero for success or a negative value for failure.

66 National Center for Supercomputing Applications

HDF5 Release 1.2

5.4. Objectswith Multiple Names

An object (including a group) can have more than one name. Creating the object givesit the first name, and then functions
described here can be used to give it additional names. The association between a name and the object is called alink and
HDF5 supports two types of links: a hard link is a direct association between the name and the object where both exist in
asingle HDF5 address space, and a soft link is an indirect association.

Object Creation

The creation of an object creates ahard link which is indistinguishable from other hard links that might be added
later.

herr t H56@ink (hid_t file id, WG link_t |ink type, const char *current_name, const
char *new_nane)

Creates a new name for an object that has some current name (possibly one of many namesiit currently has). If the
link_typeisH5G_LI NK_HARD then anew hard link is created. Otherwiseif link_typeisH5T_LI NK_SOFT asoft link is
created which is an alias for the current_name. When creating a soft link the object need not exist. This function returns
zero for success or negative for failure.

herr_t H5G@unlink (hid_t file_id, const char *nane)
This function removes an association between a name and an object. Object headers keep track of how many hard

links refer to the object and when the hard link count reaches zero the object can be removed from the file (but
objects which are open are not removed until al handles to the object are closed).

Hard Link Example

Giroup 1

hard link

University of lllinois at Urbana-Champaign 67

A User's Guide for HDF5

Soft Link Example

Group 1 Some
Ohject

Group 2

= "Foo"

soft link

5.5. Comments

Objects can have a comment associated with them. The comment is set and queried with these two functions:

herr _t H5Gset _comment (hid_t /oc_id, const char *nane, const char *conment)

The previous comment (if any) for the specified object is replace with a new comment. If the comment argument is
the empty string or a null pointer then the comment message is removed from the object. Comments should be
relatively short, null-terminated, ASCII strings.

herr _t H5CGget _comment (hid_t /oc _id, const char *nane, size_t bufsize, char *conment)
The comment string for an object is returned through the comment buffer. At most bufsize characters including a null

terminator are copied, and the result is not null terminated if the comment islonger than the supplied buffer. If an
object doesn't have a comment then the empty string is returned.

Last modified: 14 October 1999

68 National Center for Supercomputing Applications

HDF5 Release 1.2

6. The Reference I nterface (H5R) and
the Indentifier Interface (H5I)

6.1. Introduction

This document discusses the kinds of references implemented (and planned) in HDF5 and the functions implemented (and
planned) to support them.

6.2. References

This section contains an overview of the kinds of references implemented, or planned for implementation, in HDF5.

Object reference

Reference to an entire object in the current HDF5 file.
The only kind of reference currently implemented.

An object reference points to an entire object in the current HDF5 file by storing the relative file address (OID) of the
object header for the object pointed to. The relative file address of an object header is constant for the life of the
object. An object referenceis of afixed sizein thefile.

Dataset region reference

Reference to a specific dataset region.
Not yet implemented.

A dataset region reference points to aregion of adataset in the current HDF5 file by storing the OID of the dataset
and the global heap offset of the region referenced. The region referenced is located by retrieving the coordinates of
the areas in the region from the global heap. A dataset region reference is of avariable size in thefile.

Internal dataset region reference

Reference to aregion within the current dataset.
Not yet implemented.

Aninternal dataset region reference points to aregion of the current dataset by storing the coordinates of the region.
Aninternal dataset region reference is of afixed sizein thefile.

Note: All references are treated as soft links for the purposes of reference counting. The library does not keep track of
reference links and they may dangle if the object they refer to is deleted, moved, or not yet available.

University of lllinois at Urbana-Champaign 69

A User's Guide for HDF5

6.3. Reference Types

This section lists valid HDF5 reference types for use in the H5R functions.

Reference Type Value Description
H5R_BADTYPE -1 Invalid reference type
H5R_OBJECT 0 Object reference
H5R_DATASET REG ON 1 Dataset region reference
H5R_| NTERNAL 2 Internal reference

6.4. Functions

Four functions, three in the H5R interface and one in the H5I interface, have been implemented to support references. The
H5I function is also useful outside the context of references.

herr_t H5Rcr eat e(void *r ef erence, hid_tl oc_i d, const char *name, H5R type ttype, hid tspace_i d)

H5Rer eat e creates an object which is a particular type of reference (specified with thet ype parameter) to some file
object and/or location specified with the space_i d parameter. For dataset region references, the selection specified
in the dataspace is the portion of the dataset which will be referred to.

hid_t H5Rder ef er ence(hid_tdset, H5R type trtype, void*ref er ence)

H5Rder ef er ence opens the object referenced and returns an identifier for that object. The parameter r ef er ence
specifies areference of typert ype that is stored in the dataset dset .

H5S t H5Rget _r egi on(H5D _t dat aset, H5R type ttype, void *ref erence)
H5Rget _r egi on creates a copy of dataspace of the dataset that is pointed to and defines a selection in the copy
which is the location (or region) pointed to. The parameter r ef specifies areference of typert ype that isstored in
the dataset dset .

H5I_type t H5l get _type(hid ti d)

Returns the type of object referred to by the identifier i d. Valid return values appear in the following list:

H51 _BADI D Invalid ID

H51 _FI LE File objects

H51 _GROUP Group objects

H5| _DATATYPE Datatype objects
H51 _DATASPACE Dataspace objects
H51 _DATASET Dataset objects
H51 _ATTR Attribute objects

This function was inspired by the need of users to figure out which type of object closing function (H5Dcl ose,
H5Gel ose, etc.) to call after acall to HoRder ef er ence, but it is also of general use.

70 National Center for Supercomputing Applications

HDF5 Release 1.2

6.5. Examples

Object Reference Writing Example
Create a dataset which has links to other datasets as part of its raw data and write the dataset to the file.

hid_t filel;

hid_t datasetl;

hid_t datatype, dataspace;
char buf[128];

hobj _ref _t 1ink;

hobj ref_t data[10][10];
int rank;

size_t dinsf[2];

int i, j;

/* Open the file */
fil el=H5Fopen("exanpl e. h5", H5F_ACC RDWR, H5P_DEFAULT);

/* Describe the size of the array and create the data space */
rank=2;

di msf [0] 10;

di msf [1] 10;

dat aspace = H5Screate_sinpl e(rank, dinsf, NULL);

/* Define datatype */
dat at ype = H5Tcopy(H5T_STD_REF_OBJ);

/* Create a dataset */
dat aset 1=H5Dcreat e(fil el, "Dat aset One", dat at ype, dat aspace, H5P_DEFAULT) ;

/* Construct array of O Ds for other datasets in the file */
/* sonmewhat hokey and artificial, but denonstrates the point */
for(i=0; i<10; i++)

for(j=0; j<10; i++)

sprintf(buf,"/Goup/Linked Set %d-%",i,j);
i f(HoRcreate(& ink,filel, buf, HBR OBJECT, - 1) 0)
data[i][j]=Iink;
} /* end for */

/* Wite the data to the dataset using default transfer properties. */
H5Dwr i t e(dat aset, H5T_STD REF_OBJ, H5S ALL, H5S_ALL, H5P_DEFAULT, data);

/* O ose everything */
H5Scl ose(dat aspace) ;
H5Tcl ose(dat at ype);
H5Dcl ose(dat aset 1) ;
H5Fcl ose(fil el);

University of lllinois at Urbana-Champaign 71

A User's Guide for HDF5

Object Reference Reading Example
Open a dataset which has links to other datasets as part of its raw data and read in those links.

hid_t filel;
hid t datasetl, tnp_dset;
href t data[10][10];

int i, j;

/* Open the file */
fil el=H5Fopen("exanpl e. h5", H5F_ACC RDWR, H5P_DEFAULT);

/* COpen the dataset */
dat aset 1=H5Dopen(fil el, "Dat aset One", H5P_DEFAULT) ;

/*

* Read the data to the dataset using default transfer properties.

* (we are assuming the dataset is the sane and not querying the

* dinmensions, etc.)

*/

H5Dr ead(dat aset, H5T_STD REF _OBJ, H5S ALL, H5S ALL, H5P_DEFAULT, data);

/* Analyze array of O Ds of |linked datasets in the file */
/* sonmewhat hokey and artificial, but denonstrates the point */
for(i=0; i<10; i++)
for(j=0; j<10; i++)
{
i f((tnmp_dset =H5Rder ef erence(dataset, H5T_STD REF _OBJ, data[i][j]))O0)

{

Y} /* end if */
H5Dcl ose(t np_dset) ;
} /* end for */

/* C ose everything */
H5Dcl ose(dat aset 1) ;
H5Fcl ose(fil el);

72 National Center for Supercomputing Applications

HDF5 Release 1.2

Dataset Region Reference Writing Example
Create a dataset which has links to other dataset regions (single elementsin this case) as part of its raw data and write the
dataset to thefile.

hid_t filel;

hid t datasetl, dataset?2;

hid_t datatype, dataspacel, dataspace2;

char buf[128];

href _t |ink;

href t data[10][10]; /* HDF5 reference type */
int rank;

size_t dinsf[2];

hssize_t start[3],count[3];

int i, j;

/* Open the file */
fil el=H5Fopen("exanpl e. h5", H5F_ACC RDWR, H5P_DEFAULT);

/* Describe the size of the array and create the data space */
rank=2;

dimsf[0] =
dimsf[1] =
dat aspacel

10;
10;
= H5Screate_sinpl e(rank, dinsf, NULL);

/* Define Dataset Region Reference datatype */
dat at ype = H5Tcopy(H5T_STD_REF_DATAREQG) ;

/* Create a dataset */
dat aset 1=H5Dcreat e(fil el, "Dat aset One", dat at ype, dat aspacel, H5P_DEFAULT) ;

/* Construct array of O Ds for other datasets in the file */
/* (somewhat artificial, but denonstrates the point) */
for(i=0; i<10; i++)
for(j=0; j<10; i++)
{

sprintf(buf,"/Goup/Linked Set %d-%",i,j);

/* Get the dataspace for the object to point to */
dat aset 2=H5Dopen(fi |l el, buf, H5P_DEFAULT) ;
dat aspace2=H5Dget _space(dat aspace?);

/* Select the region to point to */

/* (could be different region for each pointer) */

start[0] =5; start[1]=4; start[2]=3;

count[0] =2; count[1]=4; count][2]=1;

H5Ssel ect _hyper sl ab(dat aspace2, H5S_SELECT_SET, start, NULL, count, NULL) ;

i f(HoRcreate(& ink,filel, buf, SR REF_DATAREG, dat aspace?2) 0)
/* Store the reference */
datal[i][j]=link;

H5Scl ose(dat aspace?2) ;
H5Dcl ose(dat aspace?) ;
} /* end for */

/* Wite the data to the dataset using default transfer properties. */
H5Dwri t e(dat aset, HS5T_STD REF DATAREG H5S ALL, H5S ALL, H5P_DEFAULT, data);

/* C ose everything */
H5Scl ose(dat aspace) ;

University of lllinois at Urbana-Champaign 73

A User's Guide for HDF5

H5Tcl ose(dat at ype) ;
H5Dcl ose(dat aset 1) ;
H5Fcl ose(fil el);

Dataset Region Reference Reading Example
Open a dataset which has links to other datasets regions (single elementsin this case) as part of its raw dataand read in
those links.

{
hid_t filel;
hid_t datasetl, tnp_dset;
hi d_t dat aspace;
href t data[10][10]; /* HDF5 reference type */
int i, j;
/* Open the file */
fil el=H5Fopen("exanpl e. h5", H5F_ACC RDWR, H5P_DEFAULT);
/* COpen the dataset */
dat aset 1=H5Dopen(fil el, "Dat aset One", H5P_DEFAULT) ;
/*
* Read the data to the dataset using default transfer properties.
* (we are assuming the dataset is the sane and not querying the
* dimensions, etc.)
*/
H5Dr ead(dat aset, H5T_STD REF_DATAREG, H5S ALL, H5S ALL, H5P_DEFAULT, data);
/* Analyze array of O Ds of linked datasets in the file */
/* (somewhat artificial, but denonstrates the point) */
for(i=0; i<10; i++)
for(j=0; j<10; i++)
i f((tnmp_dset =H5Rder ef erence(dataset, H5D STD REF _DATAREG datal[i][j]))0)
{
/* CGet the dataspace with the pointed to region selected */
dat aspace=H5Rget _space(datali][j]);
H5Scl ose(dat aspace) ;
} /* end if */
H5Dcl ose(t np_dset);
} /* end for */
/* O ose everything */
H5Dcl ose(dat aset 1) ;
H5Fcl ose(fil el);
}

Last modified: 14 October 1999

74 National Center for Supercomputing Applications

HDF5 Release 1.2

/. TheAttribute Interface (H5A)

7.1. Introduction

The attribute API (H5A) is primarily designed to easily allow small datasets to be attached to primary datasets as
metadata information. Additional goals for the H5A interface include keeping storage requirements for each attribute to a
minimum and easily sharing attributes among datasets.

Because attributes are intended to be small objects, large datasets intended as additional information for a primary dataset
should be stored as supplemental datasetsin a group with the primary dataset. Attributes can then be attached to the group
containing everything to indicate a particular type of dataset with supplemental datasetsislocated in the group. How
small is"small" is not defined by the library and is up to the user’s interpretation.

Attributes are not separate objects in the file, they are always contained in the object header of the object they are attached
to. The I/O functions defined below are required to read or write attribute information, not the HSD 1/0 routines.

7.2. Creating, Opening, Closing and Deleting Attributes

Attributes are created with the H5Acr eat e() function, and existing attributes can be accessed with either the
H5Aopen_nane() or H5Aopen_i dx() functions. All three functions return an object 1D which should be eventually
released by calling H5Acl ose() .

hid_t H5Acreate (hid_t /oc_id, const char *nane, hid_t type id, hid_t space id, hid_t
create_plist_id)

This function creates an attribute which is attached to the object specified with loc_id. The name specified with name
for each attribute for an object must be unique for that object. The type id and space id are created with the H5T and
H5S interfaces respectively. Currently only simple dataspaces are allowed for attribute dataspaces. The

create plist_id property list is currently unused, but will be used in the future for optional properties of attributes.
The attribute 1D returned from this function must be released with H5Aclose or resource leaks will develop.
Attempting to create an attribute with the same name as an already existing attribute will fail, leaving the pre-existing
attribute in place. This function returns an attribute ID for success or negative for failure.

hid_t H5Aopen_name (hid_t /oc_id, const char *nane)
This function opens an attribute which is attached to the object specified with loc_id. The name specified with name
indicates the attribute to access. The attribute ID returned from this function must be released with H5Aclose or
resource leaks will develop. This function returns an attribute ID for success or negative for failure.

hid_t HsAopen_idx (hid_t /oc_id, unsigned idx)
This function opens an attribute which is attached to the object specified with loc_id. The attribute specified with idx
indicates the idxth attribute to access, starting with ‘0. The attribute ID returned from this function must be released
with H5Aclose or resource leaks will develop. This function returns an attribute 1D for success or negative for failure.

herr _t H5Aclose (hid_t attr_id)

This function releases an attribute from use. Further use of the attribute ID will result in undefined behavior. This
function returns non-negative on success, negative on failure.

University of lllinois at Urbana-Champaign 75

A User's Guide for HDF5

herr _t H5Adelete (hid_t /oc_id, const char *nane)

This function removes the named attribute from a dataset or group. This function should not be used when attribute
IDs are open onloc_id asit may cause the internal indexes of the attributes to change and future writes to the open
attributes to produce incorrect results. Returns non-negative on success, negative on failure.

7.3. Attribute I/O Functions

Attributes may only be written as an entire object, no partial I/O is currently supported.
herr_t HoAwrite (hid_t attr_id, hid_t nemtype id, void *buf)
This function writes an attribute, specified with attr_id, with mem_type _id specifying the datatype in memory. The
entire attribute is written from buf to the file. This function returns non-negative on success, negative on failure.
herr t HSAread (hid_t attr_id, hid_t nemtype id, void *buf)

This function read an attribute, specified with attr_id, with mem type id specifying the datatype in memory. The
entire attribute is read into buf from the file. This function returns non-negative on success, negative on failure.

7.4. Attribute Inquiry Functions

int HbAiterate (hid_t /oc _id, unsigned *attr_nunmber, H5A operator operator, void
*oper at or _dat a)

This function iterates over the attributes of the dataset or group specified with loc_id. For each attribute of the object,
the operator_data and some additional information (specified below) are passed to the operator function. The
iteration begins with the *attr_number object in the group and the next attribute to be processed by the operator is
returned in *attr_number.

The iterator returns a negative value if something is wrong, the return value of the last operator if it was non-zero, or
zero if all attributes were processed.

The prototype for HS5A_operator_tis:
typedef herr_t (*H5A operator_t)(hid_t /oc_id, const char *attr_nane, void
*oper at or _dat a) ;

The operation receives the ID for the group or dataset being iterated over (loc_id), the name of the current attribute
about the object (attr_name) and the pointer to the operator data passed in to H5Aiterate (operator_data). Thereturn
values from an operator are:

e Zero causesthe iterator to continue, returning zero when all attributes have been processed.

» Positive causes the iterator to immediately return that positive value, indicating short-circuit success. The
iterator can be restarted at the next attribute.

« Negative causes the iterator to immediately return that value, indicating failure. The iterator can be restarted
at the next attribute.

hid_t H5Aget space (hid_t attr_id)

This function retrieves a copy of the dataspace for an attribute. The dataspace ID returned from this function must be
released with H5Sclose or resource leaks will develop. This function returns a dataspace ID for success or negative

76 National Center for Supercomputing Applications

HDF5 Release 1.2

for failure.

hid t HoAget type (hid_t attr_id)

Thisfunction retrieves a copy of the datatype for an attribute. The datatype ID returned from this function must be

released with H5T close or resource leaks will develop. This function returns a datatype 1D for success or negative for
failure.

ssize_t H5Aget name (hid_t attr_id, size t buf_size, char *buf)
This function retrieves the name of an attribute for an attribute ID. Up to buf_size characters are stored in buf
followed by a"\O’ string terminator. If the name of the attribute is longer than buf_size-1, the string terminator is

stored in the last position of the buffer to properly terminate the string. This function returns the length of the
attribute’'s name (which may be longer than buf_size) on success or negative for failure.

int HoAget _num attrs (hid_t /oc_id)

This function returns the number of attributes attached to a dataset or group, loc_id. This function returns non-
negative for success or negative for failure.

Last modified: 14 October 1999

University of Illinois at Urbana-Champaign 17

A User's Guide for HDF5

78 National Center for Supercomputing Applications

HDF5 Release 1.2

8. The Property List Interface (H5P)

8.1. Introduction

The property list (ak.a., template) interface provides a mechanism for default named arguments for a C function interface.
A property list is a collection of name/value pairs which can be passed to various other HDF5 functions to control features
that are typically unimportant or whose default values are usually used.

For instance, file creation needs to know various things such as the size of the user-block at the beginning of thefile, or
the size of various file data structures. Wrapping this information in a property list simplifiesthe API by reducing the
number of argumentsto H5Fcr eat e() .

8.2. General Property List Operations

Property lists follow the same create/open/close paradigm as the rest of the library.

hid_t H5Pcreate (H5P_class_t cl ass)

A new property list can be created as an instance of some property list class. The new property list isinitialized with
default values for the specified class. The classes are:

H5P_FI LE_CREATE
Properties for file creation. See the H5F documentation for details about the file creation properties.
H5P_FI LE_ACCESS
Properties for file access. See the H5F documentation for details about the file creation properties.
H5P_DATASET CREATE
Properties for dataset creation. See the H5D documentation for details about dataset creation properties.
H5P_DATASET_XFER
Properties for raw data transfer. See the H5D documentation for details about raw data transfer properties.
hid_t HsPcopy (hid_ t plist)

A property list can be copied to create a new property list. The new property list has the same properties and values
asthe original property list.

herr _t H5Pcl ose (hid_t plist)

All property lists should be closed when the application is finished accessing them. This frees resources used by the
property list.

H5P_cl ass_t H5Pget _class (hid_t plist)

The class of which the property list is a member can be obtained by calling this function. The property list classes are
defined above for H5Pcr eat e() .

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 79

A User's Guide for HDF5

80 National Center for Supercomputing Applications

HDF5 Release 1.2

9. The Error Handling Interface (H5E)

9.1. Introduction

When an error occurs deep within the HDF5 library arecord is pushed onto an error stack and that function returns a
failure indication. Its caller detects the failure, pushes another record onto the stack, and returns afailure indication. This
continues until the application-called API function returns a failure indication (anegative integer or null pointer). The
next API function which is called (with afew exceptions) resets the stack.

9.2. Error Handling Operations

In normal circumstances, an error causes the stack to be printed on the standard error stream. The first item, number
"#000" is produced by the API function itself and is usually sufficient to indicate to the application programmer what
went wrong.

Example: An Error Message

If an application calls H5Tcl ose on a predefined datatype then the following message is printed on the standard
error stream. Thisisasimple error that has only one component, the API function; other errors may have many
components.

HDF5- DI AG Error detected in thread 0. Back trace foll ows.
#000: H5T.c line 462 in H5Tcl ose(): predefined datatype
maj or (0O1): Function argunent
m nor (05): Bad val ue

The error stack can also be printed and manipulated by these functions, but if an application wishes make explicit callsto
H5Epri nt () then the automatic printing should be turned off to prevent error messages from being displayed twice (see
H5Eset _aut o() below).

herr_t H5Eprint (FILE *stream
The error stack is printed on the specified stream. Even if the error stack is empty a one-line message will be printed:
HDF5- DI AG Error detected in thread O.

herr_t H5Ecl ear (void)

The error stack can be explicitly cleared by calling this function. The stack is also cleared whenever an API function
is called, with certain exceptions (for instance, H5Epri nt ()).

Sometimes an application will call afunction for the sake of its return value, fully expecting the function to fail. Under
these conditions, it would be misleading if an error message were automatically printed. Automatic printing of messages
iscontrolled by the H5Eset _aut o() function:

herr _t H5Eset _auto (herr_t(*func)(void*), void *client_data)

If func is not anull pointer, then the function to which it points will be called automatically when an API functionis
about to return an indication of failure. The function is called with a single argument, the client_data pointer. When
thelibrary isfirst initialized the auto printing function is set to H5Epri nt () (cast appropriately) and client_data is
the standard error stream pointer, st derr .

University of lllinois at Urbana-Champaign 81

A User's Guide for HDF5

herr _t H5Eget _auto (herr_t(**func)(void*), void **client_data)

This function returns the current automatic error traversal settings through the func and client_data arguments. Either
(or both) arguments may be null pointersin which case the corresponding information is not returned.

Example: Error Control

An application can temporarily turn off error messages while "probing" afunction.

* Save old error handler */
herr_t (*ol d_func)(void*);
voi d *old _client _data;
H5Eget _aut o(&l d_func, &ol d_client_data);

/* Turn off error handling */
H5Eset _aut o(NULL, NULL);

* Probe. Likely to fail, but that’s okay */
status = H5Fopen (......)

/* Restore previous error handler */
H5Eset _auto(ol d_func, old_client_data);

Or automatic printing can be disabled altogether and error nessages can be
explicitly printed.

/* Turn of f error handling permanently */
H5Eset _auto (NULL, NULL);

/* |If failure, print error message */
if (H5Fopen (....)<0) {

H5Eprint (stderr);

exit (1);

The application is allowed to define an automatic error traversal function other than the default H5Epri nt () . For
instance, one could define a function that prints a simple, one-line error message to the standard error stream and then
exits.

Example: Simple M essages

The application defines a function to print a simple error message to the standard error stream.

herr _t
ny_hdf5_error_handl er (void *unused)

{
fprintf (stderr, "An HDF5 error was detected. Bye.\n");
exit (1);

The function is installed as the error handler by saying

H5Eset _auto (ny_hdf5_error_handl er, NULL);

82 National Center for Supercomputing Applications

HDF5 Release 1.2

TheHsEpri nt () functionisactually just awrapper around the more complex H5Ewal k() function which traverses an
error stack and calls a user-defined function for each member of the stack.

herr t H5Ewal k (HSE direction_t direction, HSE wal k_t func, void *client_data)

The error stack is traversed and func is called for each member of the stack. Its arguments are an integer sequence
number beginning at zero (regardless of direction), a pointer to an error description record, and the client_data
pointer. If direction isHSE_WALK _UPWARD then traversal begins at the inner-most function that detected the error and
concludes with the API function. The opposite order isHSE_WALK_DOANWARD.

typedef herr_t (*HSE wal k_t)(int n, HSE error_t *eptr, void *client_data)

An error stack traversal callback function takes three arguments: n is a sequence number beginning at zero for each
traversal, eptr isa pointer to an error stack member, and client_data is the same pointer passed to H5SEwal k() .

typedef struct {
H5E _maj or _t naj _num
H5E_mi nor _t mn_num
const char *func_nane;
const char *file_nang;
unsi gned I'i ne;
const char *desc;

} HS5E error_t;

The maj_numand min_num are major and minor error numbers, func_name is the name of the function where the
error was detected, file_name and line locate the error within the HDF5 library source code, and desc pointsto a
description of the error.

const char *H5Eget _mmj or (HS5E nmjor_t num

const char *H5Eget _minor (HS5E minor_t num

These functions take a major or minor error number and return a constant string which describesthe error. If numis
out of range than a string like "Invalid major error number" is returned.

Example: H5Ewalk_cb

Thisis the implementation of the default error stack traversal callback.

herr _t
H5Ewal k_cb(int n, HSE error_t *err_desc, void *client_data)
{

FI LE *stream = (FILE *)client_data;

const char *maj _str = NULL;

const char *mon_str = NULL;

const int i ndent = 2;

/* Check argunents */
assert (err_desc);
if ('client_data) client_data = stderr;

/* Get descriptions for the major and mnor error nunbers */
maj _str H5Eget _maj or (err_desc->nmaj _num;
mn_str H5Eget _m nor (err_desc->m n_nunj;

/* Print error nmessage */
fprintf (stream "%Ws#%03d: % line % in %(): %\n",

University of lllinois at Urbana-Champaign 83

A User's Guide for HDF5

indent, "", n,

fprintf (stream "% smgjor(%®2d): %\n",
indent*2, ""

fprintf (stream "% sm nor(%®2d): %\n",
indent*2, ""

return O;

err_desc->file_nane,

err_desc->line,
err_desc->func_nane, err_desc->desc);

, err_desc->maj _num naj_str);

, err_desc->mn_num mn_str);

Last modified: 14 October 1999

National Center for Supercomputing Applications

HDF5 Release 1.2

10. Filtersin HDF5

Note: Transient pipelines described in this document have not been implemented.

10.1. Introduction

HDF5 allows chunked data to pass through user-defined filters on the way to or from disk. The filters operate on chunks
of an H5D_CHUNKED dataset can be arranged in a pipeline so output of one filter becomes the input of the next filter.

Each filter has atwo-byte identification number (typeH5Z filter _t) alocated by NCSA and can aso be passed
application-defined integer resources to control its behavior. Each filter also has an optional ASCII comment string.

Valuesfor H5Z filter t
Value Description

These values are reserved for filters predefined and registered by
0- 255 the HDF5 library and of use to the general public. They are
described in a separate section below.

Filter numbersin this range are used for testing only and can be
used temporarily by any organization. No attempt is made to
resolve numbering conflicts since al definitions are by nature
temporary.

256-511

Reserved for future assignment. Please contact the HDF5
512- 65535 development team (hdf 5dev@csa. ui uc. edu) to reserve a
value or range of valuesfor use by your filters.

10.2. Defining and Querying the Filter Pipeline

Two types of filters can be applied to raw data 1/O: permanent filters and transient filters. The permanent filter pipelineis
defned when the dataset is created while the transient pipeline is defined for each /O operation. During an H5Dwr i t e()
the transient filters are applied first in the order defined and then the permanent filters are applied in the order defined. For
an H5Dr ead() the opposite order is used: permanent filtersin reverse order, then transient filtersin reverse order. An
H5Dr ead() must result in the same amount of data for a chunk asthe original H5Dwri t e() .

The permanent filter pipelineis defined by calling H5Pset _fi |l t er () for adataset creation property list while the
transient filter pipeline is defined by calling that function for a dataset transfer property list.

herr _t HoPset _filter (hid_t plist, H5Z filter_t filter, unsigned int flags, size_t
cd _nel nts, const unsigned int cd _val ues[])

This function adds the specified filter and corresponding properties to the end of the transient or permanent output
filter pipeline (depending on whether plist is a dataset creation or dataset transfer property list). The flags argument
specifies certain general properties of the filter and is documented below. The cd_valuesis an array of cd_nelmts
integers which are auxiliary datafor the filter. The integer values will be stored in the dataset object header as part of
the filter information.

University of lllinois at Urbana-Champaign 85

A User's Guide for HDF5

int HSPget_nfilters (hid_t plist)

This function returns the number of filters defined in the permanent or transient filter pipeline depending on whether
plist is adataset creation or dataset transfer property list. In each pipeline the filters are numbered from 0 through N-1
where N is the value returned by this function. During output to the file the filters of apipeline are applied in
increasing order (theinverseistruefor input). Zero is returned if there are no filtersin the pipeline and a negative
valueisreturned for errors.

HoZ filter_t HoPget filter (hid_t plist, int filter_nunber, unsigned int *f/ags, size_t
*cd_nel nts, unsigned int *cd val ues, size_t nanelen, char name[])

Thisisthe query counterpart of HsPset _fi | t er () and returnsinformation about a particular filter number in a
permanent or transient pipeline depending on whether plist is a dataset creation or dataset transfer property list. On
input, cd_nelmts indicates the number of entriesin the cd_values array allocated by the caller while on exit it contains
the number of values defined by the filter. Thefilter_number should be a value between zero and N-1 as described for
H5Pget _nfilters() and the function will return failure (a negative value) if the filter number is out of range. If
name is apointer to an array of at least namelen bytes then the filter name will be copied into that array. The name
will be null terminated if the namelen is large enough. The filter name returned will be the name appearing in the file
or else the name registered for the filter or else an empty string.

The flags argument to the functions above is a bit vector of the following fields:
Valuesfor the flags argument
Value Description

H5Z_FLAG_OPTI ONAL If this bit is set then the filter is optional. If the filter fails (see
below) during an H5Dwr i t e() operation then thefilter isjust
excluded from the pipeline for the chunk for which it failed; the
filter will not participate in the pipeline during an H5Dr ead() of
the chunk. Thisis commonly used for compression filters: if the
compression result would be larger than the input then the
compression filter returns failure and the uncompressed datais
stored in thefile. If thisbit is clear and afilter fails then the
H5Dwri t e() or H5Dr ead() also fails.

10.3. Defining Filters

Each filter is bidirectional, handling both input and output to the file, and aflag is passed to the filter to indicate the
direction. In either case the filter reads a chunk of data from a buffer, usually performs some sort of transformation on the
data, places the result in the same or new buffer, and returns the buffer pointer and size to the caller. If something goes
wrong the filter should return zero to indicate afailure.

During output, afilter that fails or isn't defined and is marked as optional is silently excluded from the pipeline and will
not be used when reading that chunk of data. A required filter that fails or isn't defined causes the entire output operation
to fail. During input, any filter that has not been excluded from the pipeline during output and fails or is not defined will
cause the entire input operation to fail.

Filters are defined in two phases. The first phase is to define afunction to act as the filter and link the function into the
application. The second phase isto register the function, associating the function withan H5Z_fi | t er _t identification
number and a comment.

86 National Center for Supercomputing Applications

HDF5 Release 1.2

typedef size t (*H5Z func_t)(unsigned int flags, size_t cd nelnts, const unsigned int
cd _val ues[], size_t nbytes, size_t *buf_size, void **buf)

Theflags, cd_nelmts, and cd_values are the same asfor the H5Pset _fi | ter () function with the additional flag
H5Z_FLAG_REVERSE which is set when the filter is called as part of the input pipeline. The input buffer is pointed to
by *buf and has a total size of *buf_size bytes but only nbytes are valid data. The filter should perform the
transformation in place if possible and return the number of valid bytes or zero for failure. If the transformation
cannot be done in place then the filter should allocate a new buffer with mal | oc() and assign it to *buf, assigning
the allocated size of that buffer to *buf_size. The old buffer should be freed by caling free() .

herr _t H5Zregister (H5Z filter_t filter_id, const char *comment, H5Z func_t filter)

Thefilter function is associated with a filter number and a short ASCII comment which will be stored in the hdf5 file
if the filter is used as part of a permanent pipeline during dataset creation.

10.4. Predefined Filters

If zI i b version 1.1.2 or later was found during configuration then the library will define afilter whose H5Z_fi | ter _t
number isH5Z_FI LTER DEFLATE. Since this compression method has the potential for generating compressed data
which islarger than the original, the H5Z_FLAG_OPTI ONAL flag should be turned on so such cases can be handled
gracefully by storing the original datainstead of the compressed data. The cd_nvalues should be one with cd value[0]
being a compression agression level between zero and nine, inclusive (zero is the fastest compression while nine resultsin
the best compression ratio).

A convenience function for adding the H5Z_FI LTER _DEFLATE filter to apipelineis:
herr _t H5Pset _deflate (hid_t pl/ist, unsigned aggression)

The deflate compression method is added to the end of the permanent or transient filter pipeline depending on
whether plist is a dataset creation or dataset transfer property list. The aggression is a number between zero and nine
(inclusive) to indicate the tradeoff between speed and compression ratio (zero is fastest, nineis best ratio).

Evenif thezl i b isn't detected during configuration the application can define H5Z_FI LTER_DEFLATE as a permanent
filter. If the filter is marked as optional (as with H5Pset _def | at e()) then it will always fail and be automatically
removed from the pipeline. Applications that read data will fail only if the datais actually compressed; they won't fail if
H5Z FI LTER DEFLATE was part of the permanent output pipeline but was automatically excluded because it didn't exist
when the data was written.

10.5. Example

This example shows how to define and register asimple filter that adds a checksum capability to the data stream.

The function that acts as the filter always returns zero (failure) if the nd5() function was not detected at configuration
time (left as an excercise for the reader). Otherwise the function is broken down to an input and output half. The output
half calculates a checksum, increases the size of the output buffer if necessary, and appends the checksum to the end of
the buffer. The input half calculates the checksum on the first part of the buffer and compares it to the checksum already
stored at the end of the buffer. If the two differ then zero (failure) is returned, otherwise the buffer sizeis reduced to
exclude the checksum.

University of lllinois at Urbana-Champaign 87

A User's Guide for HDF5

size t

nd5 _filter(unsigned int flags, size_t cd _nelnts,
const unsigned int cd_values[], size_t nbytes,
size_t *buf_size, void **buf)

{
#i f def HAVE _MD5
unsi gned char cksuni 16] ;

if (flags & H5Z REVERSE) {
[* Input */
assert (nbyt es=16);
nmd5(nbyt es-16, *buf, cksun);

/* Conpare */

i f (mencnp(cksum (char*) (*buf)+nbytes-16, 16)) {
return 0; /*fail*/

}

[* Strip off checksum */
return nbytes- 16;

} else {
[* Qutput */
nmd5(nbytes, *buf, cksum;

/* Increase buffer size if necessary */
i f (nbytes+16*buf_size) {

*buf _size = nbytes + 16;

*buf = realloc(*buf, *buf_size);

}

/* Append checksum */
mencpy((char*) (*buf) +nbytes, cksum 16);
return nbytes+16;
}
#el se
return 0; /*fail*/
#endi f
}

Once the filter function is defined it must be registered so the HDF5 library knows about it. Since we're testing this filter
we choose one of the H5Z_fi | t er _t numbers from the reserved range. Well randomly choose 305.

#define FILTER_MD5 305
herr t status = H5Zregister(FILTER MD5, "md5 checksunt, nd5 filter);

Now we can use the filter in a pipeline. We could have added the filter to the pipeline before defining or registering the
filter aslong as the filter was defined and registered by time we tried to use it (if the filter is marked as optional then we
could have used it without defining it and the library would have automatically removed it from the pipeline for each
chunk written before the filter was defined and registered).

88 National Center for Supercomputing Applications

HDF5 Release 1.2

hid t dcpl = H5Pcreat e(HS5P_DATASET CREATE) ;

hsi ze_t chunk_size[3] = {10, 10, 10};

H5Pset _chunk(dcpl, 3, chunk_size);

H5Pset _filter(dcpl, FILTER MD5, 0O, 0O, NULL);

hi d_t dset = H5Dcreate(file, "dset", HS5T_NATIVE DOUBLE, space, dcpl);

10.6. Filter Diagnostics

If the library is compiled with debugging turned on for the H5Z layer (usually as aresult of confi gure --enabl e-
debug=z) then filter statistics are printed when the application exits normally or thelibrary is closed. The statistics are
written to the standard error stream and include two lines for each filter that was used: one for input and one for output.
The following fields are displayed:

Field Name Description

Method Thisisthe name of the method as defined with H5Zr egi st er ()
with the charaters "< or ">" prepended to indicate input or output.

Tota The total number of bytes processed by the filter including errors.
Thisis the maximum of the nbytes argument or the return value.

Errors Thisfield shows the number of bytes of the Total column which can
be attributed to errors.

User, System, Elapsed These are the amount of user time, system time, and elapsed time in
seconds spent in the filter function. Elapsed time is sensitive to
system load. These times may be zero on operating systems that
don't support the required operations.

Bandwidth Thisisthe filter bandwidth which isthe total number of bytes
processed divided by elapsed time. Since elapsed time is subject to
system load the bandwidth numbers cannot always be trusted.
Furthermore, the bandwidth includes bytes attributed to errors which
may significanly taint the value if the function is able to detect errors
without much expense.

Example: Filter Statistics

H5Z: filter statistics accunulated over life of library:

Met hod Total Errors User System El apsed Bandwi dth
deflate 160000 40000 O0.62 0.74 1.33 117.5 kBs
<defl ate 120000 0 0.11 0. 00 0.12 1.000 MBs

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 89

A User's Guide for HDF5

90 National Center for Supercomputing Applications

HDF5 Release 1.2

11.

HDF5 Palette Specification

This section isawork in progress. Please send commentsto the HDF5 development team (hdf 5dev@csa. ui uc. edu) .
Anything and everything on this page may be changed.

Questionsregarding this specification:

Currently, the range index is referred to as an attribute of the palette. I'm wondering if it makes more sense for
thisto be an attribute of the dataset... If a paletteis to be shared by multiple data sets and each dataset hasit's
own range index mapping, then maybe one would want the index range to be an attribute of the palette.

Should the range index be separate from the palette, or it be incorporated into a 4 column array?

I's this method of specifying attributes satisfactory (string name identifier with corresponding value), or should
they be specified as a struct that isread in and written out? The number of attributesis currently at 5.

Changes made since last revision

What was previoudly called the FLOATRANGE index array has been changed to the RANGEINDEX array, and
can be of any type, preferably matching that of the data set type.

A range value min/max attribute for the color numeric may be specified. i.e. the red component value of an RGB
will be between 0 and 1.

A dataset may specify an array of palettes that it may be used with now. previously it was just one.

CMYK and Y CbCr color models have been added.

11.1. HDF 5.0 Palette Overview:

HDF 5.0 adds the following new features to what existed in earlier HDF versions:

palettes of varying length.
definable arbitrary index range
definable color model type (RGB, YUV, HSV, CMY, etc.)

definable color numeric type

A palette is the means by which color is applied to an image and is a so referred to as a color lookup table. It isatablein
which every row contains the numerical representation of a particular color. In the example of an 8-bit standard RGB
color model palette, this numerical representation of a color is presented as atriplet specifying the intensity of red, green,
and blue components that make up each color.

University of lllinois at Urbana-Champaign 91

A User's Guide for HDF5

Enity Re=d Dhmah Bhe=
] Q000000 | CO000000 | CO0D0000

1 00000001 | CO0000OL | 00000001
2 QOOCO0L0 | 00000 10 | 000000 10

i il T o2 | 11000000 | LI000000 | Llooo000
253 ooeenet |ooeet | et
s |oeeetete |ooeeeee | e
385 [LLLCLLLL | LeeLeeet | ceeeeent
8-bil Hasler Image Phuel Color Look-up Table {Color Componernis) Paletie

In this example, the color component numeric type is an 8-bit unsigned integer. While thisis most common and
recommended for general use, other component color numeric datatypes, such as a 16-bit unsigned integer , may be used.
Thistype is specified as the type attribute of the palette dataset. (see H5Tget_type(), H5Tset_type())

The minimum and maximum val ues of the component color numeric are specified as attribute of the pal ette dataset. See
below (attributes PAL_MINNUMERIC, PAL_MAXNUMERIC). If these attributes do not exist, it is assumed that the
range of values will fill the space of the color numeric type. i.e. with an 8-bit unsigned integer, the valid range would be O
to 255 for each color component.

The HDF 5.0 palette specification additionally allows for color models beyond RGB. YUV, HSV, CMY, CMYK, Y CbCr
color models are supported, and may be specified as a color model attribute of the pal ette dataset. (see " Palette Attributes”
for details).

In HDF 4 and earlier, palettes were limited to 256 colors. The HDF 5.0 pal ette specification allows for palettes of varying
length. The length is specified as the number of rows of the palette dataset.

In astandard palette, the color entries are indexed directly. HDF 5.0 supports the notion of arange index table. Such a
table defines an ascending ordered of ranges that map dataset values to the palette. If arange index table exists for the
palette, the PAL_TY PE attribute will be set to "RANGEINDEX", and the PAL_RANGEINDEX attribute will contain an
object reference to arange index table array. If not, the PAL_TY PE attribute either does not exist, or will be set to
"STANDARD".

The range index table array consists of a one dimensional array with the same length as the palette dataset - 1. Idedlly, the
range index would be of the same type as the dataset it refers to, however thisis not a requirement.

Example 2; A rangeindex array of type floating point

Paletle

Example
Floal Hange Fed Creen Bloe

Yaloes

0108 ——= | 01255 —= | 253 235 235

03278 —=| 192 230 18
29875 —= |54 o @7
42,8357 —=| 113 5 18

TOA82—== | 20000 —=| 57 43 83

100000, —= |0 52 13
235 50 &0

200000 -

The range index array attribute defines the "to" of the range. Notice that the range index array attributeis one less entry in
size than the palette. The first entry of 0.1259, specifies that all values below and up to 0.1259 inclusive, will map to the
first palette entry. The second entry signifies that all values greater than 0.1259 up to 0.3278 inclusive, will map to the

92 National Center for Supercomputing Applications

HDF5 Release 1.2

second palette entry, etc. All value greater than the last range index array attribute (100000) map to the last entry in the
palette.

11.2. Palette Attributes

A palette existsin an HDF file as an independent data set with accompanying attributes.
These attributes are defined as follows:
Attribute name="CLASS"

Thisattribute is of type HST_STR_NULLTERM.

For all palettes, the value of this attribute is"PALETTE". This attribute identifies this palette data set as a palette that
conforms to the specifications on this page.

Attribute name="PAL_COLORMODEL"

Thisattribute is of type HST_STR_NULLTERM.

Possible values for thisare "RGB", "YUV", "CMY", "HSV".

This defines the color model that the entries in the pal ette data set represent.
"RGB"

Each color index contains a triplet where the the first val ue defines the red component, second defines the green
component, and the third the blue component.

"CMY™"

Each color index contains a triplet where the the first val ue defines the cyan component, second defines the magenta
component, and the third the yellow component.

"CMYK"

Each color index contains a quadrupl et where the the first value defines the cyan component, second defines the
magenta component, the third the yellow component, and the forth the black component.

"YCbCr"

Class Y encoding model. Each color index contains atriplet where the the first value defines the luminance, second
defines the Cb Chromonance, and the third the Cr Chromonance.

"YUV"

Composite encoding color model. Each color index contains a triplet where the the first value defines the luminance
component, second defines the chromonance component, and the third the value component.

"HS/"

Each color index contains a triplet where the the first val ue defines the hue component, second defines the saturation
component, and the third the value component. The hue component defines the hue spectrum with alow value
representing magenta/red progressing to a high value which would represent blue/magenta, passing through yellow,
green, cyan. A low value for the saturation component means less color saturation than a high value. A low value for
value will be darker than a high value.

University of lllinois at Urbana-Champaign 93

A User's Guide for HDF5

Attribute name="PAL_TYPE"

This attribute is of type H5T_STR_NULLTERM
The current supported values for this attribute are : "STANDARDS" or "RANGEINDEX"

A PAL_TYPE of "STANDARDS" defines a palette dataset such that the first entry definesindex O, the second entry
definesindex 1, etc. up until the length of the palette - 1. This assumes an image dataset with direct indexes into the
palette.

If the PAL_TYPE is set to "RANGEINDEX", there will be an additional attribute with a name of
"PAL_RANGEINDEX", The PAL_RANGEINDEX attribute contains an HDF object reference pointer which
specifies arange index array in the file to be used for color lookups for the palette. (See example 2 for more details)

Attribute name="PAL_MINNUMERIC"
Attribute name="PAL_MAXNUMERIC"

These two attributes are of the same type as the pal ette elements or color numerics.

They specify the minimum and maximum values of the color numeric components. For example, if the palette was an
RGB of type Float, the color numeric range for Red, Green, and Blue could be set to be between 0.0 and 1.0. The
intensity of the color guns would then be scaled accordingly to be between this minimum and maximum attribute.

11.3. Specifying a Palette for a Dataset

A dataset within an HDF5 file may specify an array of palettes to be viewed with. The dataset will have an attribute field
caled "PALETTE" which contains an array of object reference pointers which refer to palettesin the file. The first
palette in this array will be the default palette that the data may be viewed with.

Last modified: 14 October 1999

A National Center for Supercomputing Applications

HDF5 Release 1.2

12. Data Caching
12.1. Meta Data Caching

The HDF5 library caches two types of data: meta data and raw data. The meta data cache holds file objects like the file
header, symbol table nodes, global heap collections, object headers and their messages, etc. in a partially decoded state.
The cache has a fixed number of entries which is set with the file access property list (defaults to 10k) and each entry can
hold a single meta data object. Collisions between objects are handled by preempting the older object in favor of the new
one.

12.2. Raw Data Chunk Caching

Raw data chunks are cached because 1/0 requests at the application level typically don't map well to chunks at the storage
level. The chunk cache has a maximum size in bytes set with the file access property list (defaultsto 1M B) and when the
limit is reached chunks are preempted based on the following set of heuristics.

« Chunks which have not been accessed for along time relative to other chunks are penalized.
e Chunks which have been accessed frequently in the recent past are favored.

e Chunkswhich are completely read and not written, completely written but not read, or completely read and
completely written are penalized according to wO, an application-defined weight between 0 and 1 inclusive. A
weight of zero does not penalize such chunks while aweight of 1 penalizes those chunks more than all other
chunks. The default is 0.75.

e Chunkswhich are larger than the maximum cache size do not participate in the cache.

One should choose large values for wO if 1/0 requests typically do not overlap but smaller values for w0 if the requests do
overlap. For instance, reading an entire 2d array by reading from non-overlapping "windows" in a row-major order would
benefit from a high w0 value while reading a diagonal accross the dataset where each request overlaps the previous
request would benefit from a small wO.

12.3. Data Caching Operations

The cache parameters for both caches are part of afile access property list and are set and queried with this pair of
functions:

herr _t H5Pset _cache(hid_t plist, unsigned int ndc_nelnts, size_t rdcc_nbytes, double
w0)

herr _t H5Pget _cache(hid_t plist, unsigned int *ndc_nelnts, size_t *rdcc_nbytes, double
w0)

Sets or queries the meta data cache and raw data chunk cache parameters. The plist is a file access property list. The
number of elements (objects) in the meta data cache is mdc_nelmts. Thetotal size of the raw data chunk cache and
the preemption policy is rdcc_nbytes and wO. For H5Pget _cache() any (or al) of the pointer arguments may be
null pointers.

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 95

A User's Guide for HDF5

96 National Center for Supercomputing Applications

HDF5 Release 1.2

13. Dataset Chunking I ssues
13.1. Introduction

Chunking refers to a storage layout where a dataset is partitioned into fixed-size multi-dimensional chunks. The chunks
cover the dataset but the dataset need not be an integral number of chunks. If no datais ever written to a chunk then that
chunk isn't allocated on disk. Figure 1 shows a 25x48 element dataset covered by nine 10x20 chunks and 11 data points
written to the dataset. No data was written to the region of the dataset covered by three of the chunks so those chunks
were never allocated in the file -- the other chunks are allocated at independent locations in the file and written in their

entirety.
Figurel

Dataset Chunlk: Point
: Written

The HDF5 library treats chunks as atomic objects -- disk 1/O is alwaysin terms of complete chunks (footnote 1). This
allows data filters to be defined by the application to perform tasks such as compression, encryption, checksumming, etc.
on entire chunks. As shown in Figure 2 (next page), if H5Dwr i t e() touches only afew bytes of the chunk, the entire
chunk isread from the file, the data passes upward through the filter pipeline, the few bytes are modified, the data passes
downward through the filter pipeline, and the entire chunk is written back to the file.

University of lllinois a Urbana-Champaign 97

A User's Guide for HDF5

- Modify Bytes @ m .
]

Churnk

Filter
Pipeine

-h-I----I-L-.

|

@

HOFL File

v/

Figure 2

13.2. The Raw Data Chunk Cache

It's obvious from Figure 2 that calling H5Dwr i t e() many times from the application would result in poor performance
even if the data being written all falls within asingle chunk. A raw data chunk cache layer was added between the top of
thefilter stack and the bottom of the byte modification layer (footnote 2). By default, the chunk cache will store 521
chunks or IMB of data (whichever isless) but these values can be modified with H5SPset _cache() .

The preemption policy for the cache favors certain chunks and tries not to preempt them.

Chunks that have been accessed frequently in the near past are favored.
A chunk which has just entered the cache is favored.

A chunk which has been completely read or completely written but not partially read or written is penalized
according to some application specified weighting between zero and one.

A chunk which is larger than the maximum cache size is not eligible for caching.

98

National Center for Supercomputing Applications

HDF5 Release 1.2

13.3. Cache Efficiency

Now for some real numbers... A 2000x2000 element dataset is created and covered by a 20x20 array of chunks (each
chunk is 100x100 elements). The raw data cache is adjusted to hold at most 25 chunks by setting the maximum number of
bytes to 25 times the chunk size in bytes. Then the application creates a square, two-dimensional memory buffer and uses
it as awindow into the dataset, first reading and then rewriting in row-major order by moving the window across the
dataset (the read and write tests both start with a cold cache).

The measure of efficiency in Figure 3 is the number of bytes requested by the application divided by the number of bytes
transferred from the file. There are at least a couple ways to get an estimate of the cache performance: one way isto turn
on cache debugging (see Debugging in this User’s Guidé and look at the number of cache misses. A more accurate and
specific way isto register a datafilter whose sole purpose is to count the number of bytes that pass through it (that’s the
method used below).

Cache={slots=251, butes=23 chunks}, HB=0.r3
1 T

Efficiency

B.5 1 1.5 =4 2.5 3 2.5 4 4.5 =}
Hindow size as a fraction of chunk size

Figure3

The read efficiency isless than one for two reasons: collisions in the cache are handled by preempting one of the colliding
chunks, and the preemption algorithm occasionally preempts a chunk which hasn't been referenced for along time but is
about to be referenced in the near future.

The write test results in lower efficiency for most window sizes because HDF5 is unaware that the application is about to
overwrite the entire dataset and must read in most chunks before modifying parts of them.

University of lllinois a Urbana-Champaign 99

A User's Guide for HDF5

Thereisasimple way to improve efficiency for this example. It turns out that any chunk that has been completely read or
written is a good candidate for preemption. If we increase the penalty for such chunks from the default 0.75 to the
maximum 1.00 then efficiency improves.

Cache={=slots=251, bytes=253 chunksi, HE=1.86

Efficiency

i i i i i i
6.5 1 1.5 z 2.3 3 3.3 4 4.5 5
Hindow size as a fraction of chunk size

Figure4

100 National Center for Supercomputing Applications

HDF5 Release 1.2

The read efficiency is still less than one because of collisionsin the cache. The number of collisions can often be reduced
by increasing the number of slotsin the cache. Figure 5 shows what happens when the maximum number of dotsis
increased by an order of magnitude from the default (this change has no major effect on memory used by the test since the
byte limit was not increased for the cache).

Cache={slots=2518, butes=25 chunks}, HB=1.88
1 B E——
: ; : : : : read

S r—

Efficiency

B.5 1 1.5 2 2.5 3 3.5 4 4.5 =]
Hindow size as a fraction of chunk size

Figure5

Although the application eventually overwrites every chunk completely the library has know way of knowing this before
hand since most callsto H5Dwr i t e() modify only a portion of any given chunk. Therefore, the first modification of a
chunk will cause the chunk to be read from disk into the chunk buffer through the filter pipeline. Eventually HDF5 might
contain a data set transfer property that can turn off this read operation resulting in write efficiency which is equal to read
efficiency.

University of lllinois at Urbana-Champaign 101

A User's Guide for HDF5

13.4. Fragmentation

Even if the application transfers the entire dataset contents with asingle call to H5Dr ead() or H5SDwri t e() it'spossible
the request will be broken into smaller, more manageable pieces by the library. Thisis amost certainly trueif the data
transfer includes a type conversion.

FILE MEMOEY

T111T,
Y

v

1111
5

v

snnnge] TCONV > 11T

(FRRREL)

rnnnnaf

F 4
'h‘
K

4

Figure6

By default the strip size is IMB but it can be changed by calling H5Pset _buffer ().

13.5. File Storage Over head

The chunks of the dataset are allocated at independent |ocations throughout the HDF5 file and a B-tree maps chunk N-
dimensional addresses to file addresses. The more chunks that are allocated for a dataset the larger the B-tree. Large B-
trees have two disadvantages:

« Thefile storage overhead is higher and more disk I/O isrequired to traverse the tree from root to leaves.
* Theincreased number of B-tree nodes will result in higher contention for the meta data cache.

There are three ways to reduce the number of B-tree nodes. The obvious way is to reduce the number of chunks by
choosing alarger chunk size (doubling the chunk size will cut the number of B-tree nodes in half). Another method isto
adjust the split ratios for the B-tree by calling H5Pset _spl it _rati os(), but this method typically resultsin only a
slight improvement over the default settings. Finally, the out-degree of each node can be increased by calling

HoPset _i store_k() (increasing the out degree actually increases file overhead while decreasing the number of nodes).

Footnote 1: Parallel versions of the library can access individual bytes of a chunk when the underlying file uses MPI-IO.
Footnote 2: The raw data chunk cache was added before the second alpha release.

Last modified: 14 October 1999

102 National Center for Supercomputing Applications

HDF5 Release 1.2

14. Mounting Files
14.1. Purpose

This document contrasts two methods for mounting an hdf5 file on another hdf5 file: the case where the relationship
between filesis atree and the case where it's a graph. The tree case simplifies current working group functions and allows
symbolic links to point into ancestor files whereas the graph case is more consistent with the organization of groups
within aparticular file.

14.2. Definitions

If filechi | d ismounted onfile par ent at group/ mt in par ent then the contents of the root group of chi | d will
appear inthe group / mt of par ent . Thegroup/ mt is called the mount point of the child in the parent.

14.3. Common Features

These features are common to both mounting schemes.

e The previous contents of / mnt in par ent istemporarily hidden. If objectsin that group had names from other
groups then the objects will still be visible by those other names.

e Themount point is actualy an OID (not a name) so if there are other names besides/ rmt for that group then the
root group of the child will be visible in all those names.

* At most one file can be mounted per mount point but a parent can have any number of mounted children.

» Name lookups will entail a search through the mount table at each stage of the lookup. The search will be O(log
N) where N is the number of children mounted on that file.

« Filesopen for read-only can be mounted on other files that are open for read-only. Mounting afilein no way
changes the contents of the file.

* Mounting achild may hide mount points that exist below the child’s mount point, but it does not otherwise affect
mounted files.

« Hard links cannot cross file boundaries. An object cannot be moved or renamed with H5Grove() in such away
that the new location would be in a different file than the original location.

* The child can be accessed in a manner different from the parent. For instance, a read-write child in aread-only
parent, aparallel child in aserial parent, etc.

e |f some object in the child is open and the child is unmounted and/or closed, the object will remain open and
accessible until explicitly closed. Asin the mountless case, the underlying UNIX file will be held open until al
member objects are closed.

» Current working groups that point into a child will remain open and usable even after the child has been
unmounted and/or closed.

» Datasets that share a committed datatype must reside in the same file as the datatype.

University of lllinois at Urbana-Champaign 103

A User's Guide for HDF5

14.4. Contrasting Features

Tree Graph

The set of mount-related files makes a directed

The set of mount-related files makes a tree.
graph.

A file can be mounted at any number of mount

A file can be mounted at only one mount point. .
points.

Symbolic linksin the child that have alink value
which is an absolute name can be interpreted with [Symbolic links in the child that have alink value
respect to the root group of either the child or the |which is an absolute name are interpreted with
root of the mount tree, a property which is respect to the root group of the child.

determined when the child is mounted.

Closing a child has no effect on its relationship
with the parent. One can continue to access the
child contents through the parent.

Closing a child causesit to be unmounted from the
parent.

Closing the parent recursively unmounts and closes |Closing the parent unmounts all children but does
all mounted children. not close them or unmount their children.

The current working group functions H5Gset (),
H5Gpush(), and H5Gpop() operate on the root of
the mount tree.

The current working group functions operate on the
file specified by their first argument.

IAbsol ute name lookups (like for HsDopen()) are
always performed with respect to the root of the
mount tree.

Absol ute name lookups are performed with respect
to the file specified by the first argument.

Relative name lookups (like for H5Dopen()) are |Relative name lookups are always performed with
always performed with respect to the specified respect to the specified group or the current
group or the current working group of the root of |working group of the file specified by the first

the mount tree. argument.
Mounting a child temporarily hides the current Mounting a child has no effect on its current
working group stack for that child working group stack.

Calling H5Ff | ush() will flush dl files of the
mount tree regardless of which fileis specified as
the argument.

Calling H5Ff | ush() will flush only the specified
file.

104 National Center for Supercomputing Applications

HDF5 Release 1.2

14.5. Functions

herr _t H5Fmount (hid_t /oc, const char *nanme, hid_t child, hid_t plist)

Thefile child is mounted at the specified location in the parent. The loc and name specify the mount point, agroup in
the parent. The plist argument is an optional mount property list. The call will fail if somefileisalready mounted on
the specified group.

Tree Graph

The call will fail if the child is already mounted

A child can be mounted at numerous mount points.
elsewhere.

The call will fail if the child is an ancestor of the parent. |The mount graph is allowed to have cycles.

Subsequently closing the child will causeit to be Closing the child has no effect on its mount relationship
unmounted from the parent. with the parent.

herr _t H5Funmount (hid_t /oc, const char *nane)
Any file mounted at the group specified by loc and name is unmounted. The child is not closed. This function failsif
no child is mounted at the specified point.

hi d_t H5Pcreat e(HSP_MOUNT)

Creates and returns a new mount property list initialized with default values.

herr _t H5Pset _sym ink_locality(hid_t p/ist, H5G symink_t [ocality)
herr _t H5Pget _sym ink_locality(hid_t pl/ist, H5G symink_t */ocality)

These functions exist only for the tree scheme. They set or query the property that determines whether symbolic links
with absolute name value in the child are looked up with respect to the child or to the mount root. The possible values
are H5G_SYMLI NK_LOCAL or H5G_SYM.I NK_GLOBAL (the default).

hid_t H5Freopen(hid_t file)

A file handle is reopened, creating an additional file handle. The new file handle refers to the same file but has an
empty current working group stack.

Tree Graph

The new handle is not mounted but the old handle The new handle is mounted at the same location(s) as the
continues to be mounted. original handle.

University of lllinois at Urbana-Champaign 105

A User's Guide for HDF5

14.6. Example

A fileeos. h5 contains data which is constant for al problems. The output of a particular physics application is dumped
into dat al. h5 and dat a2. h5 and the physics expects various constants from eos. h5 in the eos group of the two data
files. Instead of copying the contents of eos. h5 into every physics output file we simply mount eos. h5 as aread-only

child of dat a1. h5 and dat a2. h5.

Tree

/* Create datal.h5 */

H5Gset _comment (datal, "/

/* Create data2.h5 */

H5Gset _comment (dat a2, "/

/* Open eos.h5 and nount
eosl = H5Fopen("eos. h5",
H5Fnount (dat al, "/eos",
eos2 = H5Freopen(eosl);
H5Fnount (dat a2, "/eos",

physi cs out put

H5Fcl ose(dat al);
H5Fcl ose(dat a2);

dat al = H5Fcreat e("datal. h5", H5F ACC TRUNC, H5P DEFAULT, H5P_DEFAULT);
H5Ccl ose(H5Ger eat e(dat al, "/eos", 0));

dat a2 = H5Fcreate("data2. h5", H5F_ACC TRUNC, H5P_DEFAULT, H5P_DEFAULT);
H5Ccl ose(H5Ger eat e(dat a2, "/eos", 0));

eos", "ECS nount point");

eos", "EOCS mount point");

it in both files */

H5F_ACC RDONLY, H5P_DEFAULT);
eosl, H5P_DEFAULT);

eos2, H5P_DEFAULT);

Graph

/* Create datal.h5 */

H5Gset _coment (datal, "/

/* Create data2.h5 */

H5Gset _comment (dat a2, "/

/* Open eos. h5 and nount
eos = H5Fopen("eos. h5",
H5Fnount (dat al, "/eos",
H5Fnount (dat a2, "/eos",
H5Fcl ose(eos);

physi cs out put

H5Fcl ose(dat al);
H5Fcl ose(dat a2);

dat al = H5Fcreat e("datal. h5", H5F ACC TRUNC, H5P DEFAULT, H5P_DEFAULT);
H5Ccl ose(H5Ger eat e(dat al, "/eos", 0));

dat a2 = H5Fcreat e("data2. h5", H5F ACC TRUNC, H5P DEFAULT, H5P_DEFAULT);
H5Ccl ose(H5Ger eat e(dat a2, "/eos", 0));

eos", "ECS mount point");

eos", "ECS nount point");

it in both files */
H5F _ACC _RDONLY, H5P_DEFAULT);
eos, H5P_DEFAULT);
eos, H5P_DEFAULT);

Last modified: 14 October 1999

106

National Center for Supercomputing Applications

HDF5 Release 1.2

15. Performance Analysis and | ssues
15.1. Introduction

This section includes brief discussions of performance issuesin HDF5 and performance analysis tools for HDF5 or
pointers to such discussions.

15.2. Dataset Chunking

Appropriate dataset chunking can make a siginificant difference in HDF5 performance. Thistopic is discussed in Dataset
Chunking Issues elsewhere in this User’s Guide.

15.3. Use of the Pablo I nstrumentation of HDF5

Pablo HDF5 Trace software provides a means of measuring the performance of programs using HDF5.

The Pablo software consists of an instrumented copy of the HDF5 library, the Pablo Trace and Trace Extensions libraries,
and some utilities for processing the output. The instrumented version of the HDF5 library has hooks inserted into the
HDF5 code which call routines in the Pablo Trace library just after entry to each instrumented HDF5 routine and just
prior to exit from the routine. The Pablo Trace Extension library has programs that track the 1/0 activity between the entry
and exit of the HDF5 routine during execution.

A few lines of code must be inserted in the user’s main program to enable tracing and to specify which HDF5 procedures
are to be traced. The program is linked with the special HDF5 and Pablo libraries to produce an executable. Running this
executable on a single processor produces an output file called the trace file which contains records, called Pablo Self-
Defining Data Format (SDDF) records, which can later be analyzed using the HDF5 Analysis Utilities. The HDF5
Analysis Utilites can be used to interpret the SDDF records in the trace files to produce a report describing the HDF5 10
activity that occurred during execution.

For further instructions, see the file READ _ME inthe $(t opl evel)/ hdf 5/ pabl o/ subdirectory of the HDF5 source
code distribution.

For further information about Pablo and the Self-Defining Data Format, visit the Pablo website at the following URL:

htt p: // www pabl o. cs. ui uc. edu/

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 107

A User's Guide for HDF5

108 National Center for Supercomputing Applications

HDF5 Release 1.2

16. Debugging HDF5 Applications
16.1. Introduction

The HDFS library contains a number of debugging features to make programmers’ lives easier including the ability to
print detailed error messages, check invariant conditions, display timings and other statistics, and trace API function calls

and return val ues.

Error Messages

Error messages are normally displayed automatically on the standard error stream and include a stack trace of the
library including file names, line numbers, and function names. The application has complete control over how error
messages are displayed and can disable the display on a permanent or temporary basis. Refer to the documentation
for the H5E error handling package.

Invariant Conditions

Unless NDEBUG is defined during compiling, the library will include code to verify that invariant conditions have the
expected values. When a problem is detected the library will display the file and line number within the library and
the invariant condition that failed. A core dump may be generated for post mortem debugging. The code to perform
these checks can be included on a per-package bases.

Timings and Statistics

The library can be configured to accumulate certain statistics about things like cache performance, datatype
conversion, data space conversion, and datafilters. The code is included on a per-package basis and enabled at
runtime by an environment variable.

API Tracing

All API calls made by an application can be displayed and include formal argument names and actual values and the
function return value. This codeis also conditionally included at compile time and enabled at runtime.

The statistics and tracing can be displayed on any output stream (including streams opened by the shell) with output from
different packages even going to different streams.

University of lllinois at Urbana-Champaign 109

A User's Guide for HDF5

16.2. Error M essages

By default any API function that fails will print an error stack to the standard error stream.

maj or (04):
nm nor (10) :

maj or (04) :
m nor (10) :

HDF5- DI AG Error detected in thread O.
#000: HS5F.c line 1245 in H5Fopen():

File interface

Unabl e to open file

#001: HS5F.c line 846 in H5F _open():

File interface

Unabl e to open file

Back trace fol |l ows.
unable to open file

file does not exist

The error handling package (H5E) is described section 9, Error Handling, in thisUser’s Guide

16.3. Invariant Conditions

To include checks for invariant conditions the library should be configured with - - di sabl e- pr oduct i on, the default
for versions before 1.2. The library designers have made every attempt to handle error conditions gracefully but an
invariant condition assertion may fail in certain cases. The output from a failure usually looks something like this:

Assertion failed: H5.c:123:
| OT Trap, core dunped

i <NELMTS(H5_debug_g)

16.4. Timings and Statistics

Code to accumulate statisticsisincluded at compile time by using the - - enabl e- debug configure switch. The switch
can be followed by an equal sign and a comma-separated list of package names or else a default list is used.

Name Default Description
a No Attributes
ac Yes Meta data cache
b Yes B-Trees
d Yes Datasets
e Yes Error handling
f Yes Files
g Yes Groups
hg Yes Global heap

110

National Center for Supercomputing Applications

HDF5 Release 1.2

hi No Local heaps
i Yes Interface abstraction
mf No File memory management
mm Yes Library memory managment
o] No Object headers and messages
p Yes Property lists
S Yes Data spaces
t Yes Datatypes
\Y Yes Vectors
z Yes Raw datafilters

In addition to including the code at compile time the application must enable each package at runtime. Thisis done by

listing the package names in the HDF5_ DEBUG environment variable. That variable may also contain file descriptor
numbers (the default is ‘2") which control the output for all following packages up to the next file number. Theword al |
refersto all packages. Any word my be preceded by a minus sign to turn debugging off for the package.

Sample debug specifications

all This causes debugging output from all packages to be sent to the standard error
stream.

all -t —s Debugging output for all packages except datatypes and data spaces will
appear on the standard error stream.

-all ac 255 t,s This disables all debugging even if the default was to debug something, then

output from the meta data cache is send to the standard error stream and output
from data types and spaces is sent to file descriptor 255 which should be
redirected by the shell.

The components of the HDF5_DEBUG&alue may be separated by any non-lowercase | etter.

University of Illinois at Urbana-Champaign

111

A User's Guide for HDF5

16.5. API Tracing

The HDF5 library can trace API calls by printing the function name, the argument names and their values, and the return
value. Some people like to see lots of output during program execution instead of using a good symbolic debugger, and
this featureisintended for their consumption. For example, the output fromh51 s f oo after turning on tracing, includes:

H5Tcopy(type=184549388)
H5Tcopy(type=184549392)

184549419 (type);
184549424 (type);

H5TI ock(type=184549424) = SUCCEED,
H5Tcopy(type=184549393) 184549425 (type);
H5Tl ock(type=184549425) SUCCEED;

H5Fopen(fil enane="foo0", flags=0, access=H5P_DEFAULT) = FAIL;
HDF5- DI AG Error detected in thread 0. Back trace foll ows.
#000: H5F.c line 1245 in H5Fopen(): unable to open file

maj or(04): File interface
m nor (10): Unable to open file
#001: H5F.c line 846 in H5F_open(): file does not exist
major(04): File interface
m nor (10): Unable to open file

The code that performs the tracing must be included in the library by specifying the - - enabl e- t r ace configuration
switch (the default for versions before 1.2). Then the word t r ace must appear in the value of the HDF5_ DEBUG variable.
The output will appear on the last file descriptor before the wordt r ace or two (standard error) by default.

To display the trace on the standard error stream:

$ env HDF5_DEBUG=trace a.out

To send the trace to afile:

$ env HDF5 DEBUG="55 trace" a.out 55trace-out put

Perfor mance

If the library was not configured for tracing then there is no unnecessary overhead since all tracing code is excluded.
However, if tracing is enabled but not used there is asmall penalty. First, code sizeis larger because of extra statically-
declared character strings used to store argument types and names and extra auto variable pointer in each function. Also,
execution is slower because each function sets and tests alocal variable and each API function callstheH5_t race()
function.

If tracing is enabled and turned on then the penalties from the previous paragraph apply plus the time required to format
each line of tracing information. There isaso an extracall to H5_trace() for each API function to print the return value.

Safety

The tracing mechanism is invoked for each API function before arguments are checked for validity. If bad arguments are
passed to an API function it could result in a segmentation fault. However, the tracing output is line-buffered so all
previous output will appear.

112 National Center for Supercomputing Applications

HDF5 Release 1.2

Completeness

There are two API functions that don't participate in tracing. They are H5Epri nt () and H5Epri nt _cb() because their
participation would mess up output during automatic error reporting.

On the other hand, a number of API functions are called during library initialization and they print tracing information.

| mplementation

For those interested in the implementation here is a description. Each API function should have a call to one of the
HSTRACE() macrosimmediately after the FUNC_ENTER() macro. The first argument is the return type encoded as a
string. The second argument is the types of all the function arguments encoded as a string. The remaining arguments are
the function arguments. This macro was designed to be as terse and unobtrousive as possible.

In order to keep the HSTRACE() calls synchronized with the source code we've written a perl script which gets called
automatically just before Makefile dependencies are calculated for the file. However, this only works when oneis using
GNU make. To reinstrument the tracing explicitly, invoke thet r ace program from the hdf5 bin directory with the names
of the source files that need to be updated. If any file needs to be modified then a backup is created by appending atilde to
the file name.

Explicit Instrumentation

$../bin/trace *.c
HS5E. c: in function ‘' H5SEwal k_cb’ :
H5E. c: 336: warning: trace info was not inserted

Note: The warning message is the result of a comment of the form/*NO TRACE*/ somewhere in the function body.
Tracing information will not be updated or inserted if such acomment exists.

Error messages have the same format as a compiler so that they can be parsed from program devel opment environments
like Emacs. Any function which generates an error will not be modified.

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 113

A User's Guide for HDF5

114 National Center for Supercomputing Applications

HDF5 Release 1.2

17. HDF5 Library Environment Variables and
Configuration Parameters

17.1. Environment Variables

The HDF5 library uses UNIX environment variablesto control or adjust certain library features at runtime. The variables
and their defined effects are asfollows:

HDF5_DEBUG
Defines alist of debugging switches documented in the Debugging section of the HDF5 User’s Guide.

HDF5_ NOCL EANUP

When set to a non-empty value, the programsin the test directory do not remove temporary HDF5 datafiles. The
default isfor each test to remove the files before exit.

HDF5_ MPI _OPT_TYPES (for paralel betaversion only)

When set to 1, PHDF5 will use the MPI optimized code to perform parallel read/write accesses to datasets.
Currently, this optimization fails when accessing extendable datasets. The default is not to use the optimized

code.
HDF5_MPI _1_METAWRI TE (for parallel betaversion only)

When set to 1, PHDF5 will write the metadata via process 0 of each opened parallel HDF5 file. This should
improve 1/O throughput. The default is not to use this optimization.

17.2. Configuration Parameters

The HDF5 configuration script accepts alist of parameters to control configuration features when creating the Makefiles
for the library. The command

configure —help

will display the current list of parameters and their effects.

Last modified: 14 October 1999

University of lllinois at Urbana-Champaign 115

A User's Guide for HDF5

116 National Center for Supercomputing Applications

HDF5 Release 1.2

18. DDL in

BNF for HDF5

18.1. Introduction

This document contains the data description language (DDL) for an HDF5 file. The description isin Backus-Naur Form.

18.2. Explanati

on of Symbols

This section contains a brief explanation of the symbols used in the DDL.

= defined as
<t name> atoken with the name tname
<a> | oneof <a> or
<a>opt zero or one occurrence of <a>
<a>* zero or more occurrence of <a>
<a>+ one or more occurrence of <a>
TBD To Be Decided
18.3. The DDL
<file> ::= HDF5 <file_name> { <fil e_boot_bl ock>opt <root_group> }

<file_name> ::

<fil e_boot _bl ock> ::

<boot _bl ock_cont ent >

<root _group> ::

<unaned_dat at ype> ::

<unared_t ype_nane> ::

<conpound_type> ::

<menber _type_def> ::

<scal ar _type_def> ::

<identifier>

BOOT_BLOCK { <boot _bl ock_content> }

.= TBD

= GROUP "/" { <unaned_dat at ype>* <group_attri bute>* <group_nenber>* }

DATATYPE <unaned_type_name> { <conpound_type> }

the assigned nane for unanmed type is in the form of
#o0i d1: 0oi d2, where oidl and o0id2 are the object ids of the type

<menber _type_def >+

<scal ar _type_def> | <array_type_def>

<atomi c_type> <field_nanme> ;

<atomic_type> ::= <integer> | <float> | <time> | <string> | <bitfield> | <opaque> |
<reference> | <enunv
<integer> ::= H5T_STD I8BE | H5T_STD I8LE | H5T_STD I 16BE | H5T_STD | 16LE |
H5T_STD | 32BE |
H5T_STD I 32LE | H5T_STD | 64BE | H5T_STD I64LE | H5T_STD USBE |
H5T_STD USLE | H5T_STD U16BE | H5T_STD U16LE | H5T_STD U32BE |
H5T_STD U32LE | H5T_STD UB4BE | H5T_STD UBALE | HST_NATI VE_CHAR |
H5T_NATI VE_UCHAR | H5T_NATI VE_SHORT | H5T_NATI VE_USHORT |
H5T_NATI VE_INT | HST_NATIVE_UINT | HST_NATIVE LONG | H5T_NATI VE_ULONG |
H5T_NATI VE_LLONG | H5T_NATI VE_ULLONG

<float> ::

H5T | EEE_F32BE |
HST_NATI VE_FLOAT |

H5T | EEE_F32LE |
H5T_NATI VE_DOUBLE |

H5T | EEE_F64BE | H5T_| EEE_F64LE |
H5T_NATI VE_LDOUBLE

University of Illinois at Urbana-Champaign

117

A User's Guide for HDF5

<time> ::= TBD
<string> ::= { STRSIZE <strsize> ;
STRPAD <strpad> ;
CSET <cset> ;
CTYPE <ctype> ; }
<strsize> ::= an integer
<strpad> ::= H5T_STR NULLTERM | H5T_STR NULLPAD | H5T_STR_SPACEPAD
<cset> ::= H5T_CSET_ASCI |
<ctype> ::= H5T_C S1 | H5T_FORTRAN_S1
<bitfield> ::= TBD
<opaque> ::= TBD
<reference> ::= H5T_REFERENCE
<field_name> ::= <identifier>
<array_type_def> ::= <atomic_type> <field_name> <di msizes> ;
<di m si zes> ::= [dinsizel][dinsize2]..., where dinsizel, dinsize2 are integers
<group_attribute> ::= <attribute>
<attribute> ::= ATTRI BUTE <attr_nane> { <dat atype>

<dat aspace>
<dat a>opt }
/] <dat atype> and <dat aspace> nust appear before <data>.

<attr_name> ::= <identifier>
<dat atype> ::= DATATYPE { <atomic_type>} |

DATATYPE { <conpound_type> } |
DATATYPE { <naned_type> }

<enun® ::= HS5T_ENUM { <integer>; <enumdef>+ }
<enum def> ::= <enum synbol > <enum val >;

<enum synbol > ::= <identifier>

<enumyval > ::= an integer;

<naned_type> ::= <pat h_nane>

<path_name> ::= <identifier>

<dat aspace> ::= DATASPACE { SCALAR } |
DATASPACE { SI MPLE <current_dims> / <max_dinms> } |
DATASPACE { COVPLEX <ds_definition>+ }

DATASPACE { <dat aspace_name> } |

<current_dinms> ::= (i1, i2, ...), where ikis an integer, kK =1,2,...
<mex_dims> ::= (i1, i2, ...) where ik is an integer or H5S_UNLIM TED
<ds_definition> ::= TBD

118 National Center for Supercomputing Applications

HDF5 Release 1.2

<dat aspace_nane> ::= <identifier>

<data> ::= DATA { <scal ar_space_data> | <sinpl e_space_data> | <conpl ex_space_data> }
<scal ar _space_data> ::= <atom c_scal ar_data> | <conpound_scal ar _dat a>

<atomi c_scalar_data> :: = <integer_data> | <float_data> | <tine_data> | <string_data>

<bitfield_data> | <opaque_data> | <enum data>
<ref erence_dat a>

<i nteger _data> ::= an integer
<float_data> ::= a floating point nunber
<time_data> ::= TBD

<string data> ::= a string

/Il A string is enclosed in double quotes.
/1l If a string is displayed on nore than one line, string concatenate operator '//'is
used.

<bitfield_data> ::= TBD
<opaque_data> ::= TBD
<enum data> ::= <enum synbol >

/I maybe will be <enumsynbol> in the future

<reference_data> ::= <object_ref_data> | <data_region_data> | NULL

<obj ect _ref_data> ::= <object_type> <object_id>

<obj ect _type> ::= DATASET | GROUP | DATATYPE

<object_id> ::= an integer:an integer

<data_regi on_data> ::= H5T_STD REF_DSETREG <obj ect _i d> {<dat a_r egi on_dat a_i nf 0>,
<data_region_data_info> ...}

<data_region_data_info> ::= <region_info> | <point_info>

<region_info> ::= (<l ower_bound>: <upper _bound>, <Iower_bound>: <upper _bound>, ...)

<l ower _bound> ::= an integer

<upper _bound> ::= an integer

<point _info> ::= (an integer, an integer, ...)

<conpound_scal ar_data> ::= { [<nmenber_data>], [<menber _data>1], ... }

<menber _data> ::= <atomi c_scal ar_data> | <atom c_sinpl e_data>

<atom c_sinple_data> :: = <atom c_el enent>, <atom c_el enent>

<atom c_el ement> ::= <atom c_scal ar _dat a>

<si nmpl e_space_data> :: = <atonic_sinple_data> | <conpound_sinpl e_dat a>

<compound_si npl e_dat a> :: = <conpoud_el ement >, <conpound_el enent >,

<conpound_el enent > :: = <conpound_scal ar_dat a>

University of lllinois at Urbana-Champaign 119

A User's Guide for HDF5

<conpl ex_space_data> ::= TBD

<group_nenber > ::= <panmed_dat at ype> | <naned_dat aspace> | <group> | <dataset>
<softlink>

<naned_dat at ype> ::= DATATYPE <type_nane> { <conmpound_type> }
<type_nanme> ::= <identifier>
<naned_dat aspace> ::= TBD
<group> ::= GROUP <group_nane> { <hardlink> }
GROUP <group_nane> { <group_attribute>* <group_nenber>* }
<group_name> ::= <identifier>
<hardl i nk> ::= HARDLI NK <pat h_nanme>
<dat aset > ::= DATASET <dat aset _name> { <hardlink> }

DATASET <dat aset _name> { <dat at ype>
<dat aspace>
<st or agel ayout >opt
<conpr essi on>opt
<dat aset _attri bute>*
<dat a>opt }
/1 Tokens within {} can be in any order as long as <data> and <dataset _attri bute>
/1 are after <datatype> and <dat aspace>

<dat aset _nanme> ::= <identifier>

<storagel ayout > :: = STORAGELAYQUT <conti guous_| ayout >
STORAGELAYQUT <chunked_| ayout >
STORACGELAYQUT <conpact _| ayout > |
STORAGELAYQUT <ext er nal _I ayout >

<cont i guous_| ayout > ::= { CONTI GUOUS} /1 default
<chunked_l ayout> ::= {CHUNKED <di ns> }

<dims> ::= (i1, i2, ...), ikis an integer, kK =1,2,...
<conpact _| ayout> ::= TBD

<external | ayout> ::= {EXTERNAL <external file>+ }
<external file> ::= (<file_nane> <offset> <size>)

<of fset> ::= an integer

<size> ::= an integer

<conpression> :: = COVPRESSION { TBD }
<dataset_attribute> ::= <attribute>

<softlink> ::= SOFTLINK <softlink_name> { LINKTARGET <target> }
<softlink_nane> ::= <identifier>

<target> ::= <identifier>

<identifier> ::= string

/1 character '/’ should be used with care.

120 National Center for Supercomputing Applications

HDF5 Release 1.2

18.4. An Example of an HDF5 Filein DDL

HDF5 "examnpl e. h5" {
GROUP "/" {
ATTRI BUTE "attr1" {
DATATYPE {
{ STRSI ZE 17;
STRPAD H5T_STR _NULLTERM
CSET H5T_CSET_ASCI | ;
CTYPE H5T_C SI;
}

}
DATASPACE { SCALAR }
DATA {

"string attribute”
}

}

DATASET "dset 1" {
DATATYPE { H5T_STD | 32BE }
DATASPACE { SIMPLE (10, 10) / (10, 10) }
DATA {

©oo0o0o000000
PRRrPrpRrPpRERpe
NRNRNRNNRND
W 0w W W W ww
ARARBARRALS
GUae o n e
0000000000
NNNNNNNNNSN
0 0000 @ 00w 0
©oOO0O0O0OO0Oo0©

}

}
DATASET "dset 2" {
DATATYPE {
H5T_STD_ | 32BE "a";
H5T_| EEE_F32BE "b";
H5T_| EEE_F64BE "c";

}
DATASPACE { SIMPLE (5) / (5) }

DATA {
{
[1],
[0.1],
[0.01]
}
{
[2]1
[0.2],
[0.02]
},
{
[3]1
[0.3],
[0.03]
},
{
[4]1
[0.4],
[0.04]

University of lllinois at Urbana-Champaign 121

A User's Guide for HDF5

- n
—0 o
n oo

}

GROUP "groupl" {

}

DATASET "dset 3" {

DATATYPE {

"/typel"

DATASPACE { SIMPLE (5) / (5) }

}

}

GROUP "group2" {

}

"/ groupl"

HARDLI NK

}

"soneval ue"

SOFTLI NK "slink1l" {
LI NKTARGET

National Center for Supercomputing Applications

122

HDF5 Release 1.2

}
DATATYPE "typel" {
H5T_STD_I 32BE "a"[4];
H5T_| EEE_F32BE "b"[5][6];
}
}
}

Last modified: 14 October 1999

University of Illinois at Urbana-Champaign 123

A User's Guide for HDF5

124 National Center for Supercomputing Applications

HDF5 Release 1.2

19. The Ragged Array Interface (HSRA)

The H5RA Interfaceisstrictly experimental at thistime; the interface may change dramatically or support
for ragged arrays may be unavailablein futurein releases. Asaresult, futurereleases may be unableto
retrieve data stored with thisinterface.

Usethese functions at your own risk!
Do not create any archivesusing thisinterface!

19.1. Introduction

Ragged arrays should be consider ed alpha quality. They were added to HDF5 to satisfy the needs of the
ASCI/DMF vector bundle project; the interface and storage methods are likely to changein the future in waysthat
arenot backward compatible.

A two-dimensional ragged array has been added to the library and built on top of other existing functionality. A ragged
array is aone-dimensional array of rows where the length of any row is independent of the lengths of the other rows. The
number of rows and the length of each row can be changed at any time (the current version does not support truncating an
array by removing rows). All elements of the ragged array have the same datatype and, as with datasets, the datais type-
converted between memory buffers and files.

The current implementation works best when most of the rows are approximately the same length since atwo dimensional
dataset can be created to hold a nominal number of elements from each row with the additional elements stored in a
Separate dataset which implements a heap.

A ragged array is a composite object implemented as a group with three datasets. The name of the group is the name of
theragged array. The raw dataset is atwo-dimensional array that contains the first N elements of each row where N is
determined by the application when the array is created. If most rows have fewer than N elements then internal
fragmentation may be quite bad.

The over dataset is a one-dimensional array that contains elements from each row that don't fit in the raw dataset.

The meta dataset maintains information about each row such as the number of elementsin the row, the location of the
overflow elementsin the over dataset (if any), and the amount of space reserved in over for the row. The meta dataset has
one entry per row and is where most of the storage overhead is concentrated when rows are relatively short.

2. Opening and Closing

hid t H5RAcreate (hid_t /ocation, const char *nane, hid_t type, hid_t plist)
This function creates a new ragged array by creating the group with the specified name and populating it with the
component datasets (which should not be accessed independently). The dataset creation property list plist defines the
width of the raw dataset; a nominal row is considered to be the width of a chunk. The type argument defines the
datatype which will be stored in thefile. A negative value isreturned if the array cannot be created.

hi d_t H5RAopen (hid_t /ocation, const char *nane)

This function opens aragged array by opening the specified group and the component datasets (which should not be
accessed indepently). A negative value isreturned if the array cannot be opened.

University of lllinois at Urbana-Champaign 125

A User's Guide for HDF5

herr_t H5RAcl ose (hid_t array)

All ragged arrays should be closed by calling this function. The group and component datasets will be closed
automatically by thelibrary.

19.3. Reading and Writing

In order to be as efficient as possible the ragged array layer operates on sets of contiguous rows and it isto the
application’s advantage to perform I/O on as many rows at a time as possible. These functions take a starting row number
and the number of rows on which to operate.

herr _t H5RAwite (hid_t array id, hssize_t start_row hsize_t nrows, hid_t type,
hsize_t size[], void *buf[])

A set of ragged array rows beginning at start_row and continuing for nrowsis written to the file, converting the
memory datatype type to the file data type which was defined when the array was created. The number of elementsto
write from each row is specified in the size array and the data for each row is pointed to from the buf array. The size
and buf are indexed so their first element corresponds to the first row on which to operate.

herr t H5RAread (hid_ t array id, hssize t start_row hsize t nrows, hid_t type, hsize_t
size[], void *buf[])

A set of ragged array rows beginning at start_row and continuing for nrowsis read from the file, converting from the
file datatype which was defined when the array was created to the memory datatype type. The number of elementsto
read from each row is specified in the size array and the buffers in which to place the results are pointed to by the buf
array. On return, the size array will contain the actual size of the row which may be different than the requested size.
When the request size is smaller than the actual size the row will be truncated; otherwise the remainder of the output
buffer will be zero filled. If a pointer in the buf array is null then the library will ignore the corresponding size value
and allocate a buffer large enough to hold the entire row. This function returns negative for failures with buf
containing the original input values.

Last modified: 14 October 1999

126 National Center for Supercomputing Applications

HDF5 Release 1.2

HDF5 Glossary
Release 1.2, October 1999

Relationships among Terms

atomic datatype file access mode root group
attribute group selection
chunked layout member hyperslab
chunking root group serialization
compound datatype hard link soft link
contiguous layout hyperslab storage layout
dataset identifier chunked
dataspace link chunking
datatype hard contiguous

atomic soft super block

compound member variable-length datatype

enumeration name

named named datatype

opagque opaque datatype

variable-length path
enumeration datatype property list
file data transfer

group dataset access

path dataset creation

root group file access

super block file creation

atomic datatype
A datatype which cannot be decomposed into smaller units at the API level.
attribute
A small dataset that can be used to describe the nature and/or the intended usage of the object it is attached to.
chunked layout
The storage layout of a chunked dataset.
chunking

A storage layout where a dataset is partitioned into fixed-size multi-dimensional chunks. Chunking tends to improve

University of lllinois at Urbana-Champaign 127

A User's Guide for HDF5

performance and facilitates dataset extensibility.
compound datatype

A collection of one or more atomic types or small arrays of such types. Similar to a struct in C or acommon block in
Fortran.

contiguous layout

The storage layout of a dataset that is not chunked, so that the entire data portion of the dataset is stored in asingle
contiguous block.

datatransfer property list

The data transfer property list is used to control various aspects of the I/O, such as caching hints or collective I/0O
information.

dataset
A multi-dimensional array of data elements, together with supporting metadata.
dataset access property list
A property list containing information on how a dataset is to be accessed.
dataset creation property list
A property list containing information on how raw data is organized on disk and how the raw datais compressed.
dataspace

An object that describes the dimensionality of the dataarray. A dataspace is either aregular N-dimensional array of
data points, called a simple dataspace, or amore general collection of data points organized in another manner, called
acomplex dataspace.

datatype

An object that describes the storage format of the individual data points of a data set. There are two categories of
datatypes: atomic and compound datatypes. An atomic type is a type which cannot be decomposed into smaller units
at the API level. A compound datatype is a collection of one or more atomic types or small arrays of such types.

enumer ation datatype
A one-to-one mapping between a set of symbols and a set of integer values, and an order isimposed on the symbols
by their integer values. The symbols are passed between the application and library as character strings and all the
values for a particular enumeration datatype are of the same integer type, which is not necessarily a native type.

file
A container for storing grouped collections of multi-dimensional arrays containing scientific data.

file access mode

Determines whether an existing file will be overwritten, opened for read-only access, or opened for read/write access.
All newly created files are opened for both reading and writing.

file access property list

File access property lists are used to control different methods of performing 1/0 on files:

128 National Center for Supercomputing Applications

HDF5 Release 1.2

file creation property list
The property list used to control file metadata.

group

A structure containing zero or more HDF5 objects, together with supporting metadata. The two primary HDF5
objects are datasets and groups.

hard link
A direct association between a name and the object where both exist in a single HDF5 address space.
hyperdab

A portion of adataset. A hyperslab selection can be alogically contiguous collection of pointsin a dataspace or a
regular pattern of points or blocksin a dataspace.

identifier

A unique entity provided by the HDF5 library and used to access an HDF5 object, such as afile, goup, dataset,
datatype, etc.

link

An association between a name and the object in an HDF5 file group.
member

A group or dataset that isin another dataset, dataset A, isa member of dataset A.
name

A dlash-separated list of components that uniquely identifies an element of an HDF5 file. A name begins that begins
with a slash is an absolute name which is accessed beginning with the root group of the file; all other names are
relative names and the associated objects are accessed beginning with the current or specified group.

named datatype
A datatype that is named and stored in afile. Naming is permanent; a datatype cannot be changed after being named.
opaque datatype

A mechanism for describing data which cannot be otherwise described by HDF5. The only properties associated with
opaque types are asize in bytes and an ASCI| tag.

path
The dlash-separated list of components that forms the name uniquely identifying an element of an HDF5 file.
property list

A collection of name/value pairs that can be passed to other HDF5 functions to control features that are typically
unimportant or whose default values are usually used.

root group

The group that isthe entry point to the group graph in an HDF5 file. Every HDF5 file has exactly one root group.

University of lllinois at Urbana-Champaign 129

A User's Guide for HDF5

selection

A subset of adataset or a dataspace, up to the entire dataset or dataspace.
serialization

The flattening of an N-dimensional data object into a 1-dimensional object so that, for example, the data object can be
transmitted over the network as a 1-dimensional bitstream.

soft link

An indirect association between a name and an object in an HDF5 file group.
storage layout

The manner in which adataset is stored, either contiguous or chunked, in the HDF5 file.
super block

A block of data containing the information required to portably access HDF5 files on multiple platforms, followed by
information about the groups and datasets in the file. The super block contains information about the size of offsets,
lengths of objects, the number of entriesin group tables, and additional version information for the file.

variable-length datatype

A sequence of an existing datatype (atomic, variable-length (VL), or compound) which are not fixed in length from
one dataset location to another.

Last modified: 18 October 1999

130 National Center for Supercomputing Applications

HDF5 Reference Manual

Release 1.2
October 1999

Hierarchical Data Format (HDF) Group
National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign (UIUC)

HDF5 Reference Manual

Copyright Notice and Statement for
NCSA HDF5 (Hierarchical Data Format 5) Software
Library and Utilities

NCSA HDF5 (Hierarchical Data Format 5) Software Library and Utilities
Copyright 1998, 1999 by the Board of Trustees of the University of Illinois
All rightsreserved.

Contributors: National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign (UIUC), Lawrence Livermore National Laboratory (LLNL), Sandia National
Laboratories (SNL), Los Alamos National Laboratory (LANL), Jean-loup Gailly and Mark Adler (gzip
library).

Redistribution and use in source and binary forms, with or without modification, are permitted for any
purpose (including commercial purposes) provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, thislist of conditions, and
the following disclaimer.

2. Redigtributionsin binary form must reproduce the above copyright notice, thislist of conditions,
and the following disclaimer in the documentation and/or materials provided with the
distribution.

3. Inaddition, redistributions of modified forms of the source or binary code must carry prominent
notices stating that the original code was changed and the date of the change.

4. All publications or advertising materials mentioning features or use of this software are asked,
but not required, to acknowledge that it was developed by the National Center for
Supercomputing Applications at the University of Illinois at Urbana-Champaign and to credit the
contributors.

5. Neither the name of the University nor the names of the Contributors may be used to endorse or
promote products derived from this software without specific prior written permission from the
University or the Contributors.

6. THIS SOFTWARE ISPROVIDED BY THE UNIVERSITY AND THE CONTRIBUTORS"AS
IS" WITH NO WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED. In no
event shall the University or the Contributors be liable for any damages suffered by the users
arising out of the use of this software, even if advised of the possibility of such damage.

Last modified: 13 October 1999

National Center for Supercomputing Applications

HDF5 Release 1.2

HDF5: APl Specification
Reference M anual

H5: General Library Functions
H5A: Attribute I nterface

Attribute APl Functions

H5D: Datasets I nterface 15
Dataset Object API Functions

H5E: Error Interface 25
Error API Functions

H5F: File Interface 31
File API Functions

H5G: Group Interface 39
Group Object API Functions

H5I: Identifier Interface 49
Identifier APl Functions

H5P: Property List Interface 51
Property List APl Functions

H5R: Reference I nterface 93
Reference API Functions

H5S: Dataspace I nterface 97
Dataspace Object API Functions

H5T: Datatype Interface 113
Datatype Object APl Functions

H5Z: Compression Interface 151
Compression API Functions

H5RA: Ragged Array Interface 153
Ragged Array APl Functions

HDF5 Tools 159
HDF5 Tool Interfaces

HDF5 Glossary 167

University of Illinois at Urbana-Champaign

HDF5 Reference Manual

National Center for Supercomputing Applications

HDF5 Release 1.2

H5: General Library Functions

These functions serve general-purpose needs of the HDF5 library and it users.

e H5open » Hb5get_libversion e H5dont_atexit
e Hb5close e Hb5check version

Name: H5open
Signature:

herr_t H5open(void)
Purpose:

Initializesthe HDF5 library.
Description:

H5open initialize the library. This function is normally called automatically, but if you find that an HDF5 library
function is failing inexplicably, try calling this function first.

Parameters:
None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5close
Signature:
herr_t H5cl ose(void)
Purpose:
Flushes all datato disk, closesfile identifiers, and cleans up memory.
Description:

H5cl ose flushes all datato disk, closes all file identifiers, and cleans up all memory used by the library. This
function is generall called when the application callsexi t , but may be called earlier in event of an emergency
shutdown or out of desire to free all resources used by the HDF5 library.

Parameters:
None.

University of Illinois at Urbana-Champaign 1

HDF5 Reference Manual

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5dont_atexit
Signature:
herr_t H5dont _at exi t (void)
Purpose:
Instructs library not to install at exi t cleanup routine.
Description:

H5dont _at exi t indicatesto the library that an at exi t () cleanup routine should not be installed. The mgjor
purpose for thisisin situations where the library is dynamically linked into an application and is un-linked from the
application beforeexi t () getscalled. In those situations, aroutine installed with at exi t () would jump to aroutine
which was no longer in memory, causing errors.

In order to be effective, this routine must be called before any other HDF function calls, and must be called each time
the library is loaded/linked into the application (the first time and after it's been un-loaded).

Parameters:
None.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5get_libversion
Signature:
herr_t Hsget | i bver si on(unsigned *maj num unsigned *m nnum unsigned *r el num)
Purpose:
Returns the HDF library release number.
Description:

Hoget _| i bver si on retrieves the major, minor, and rel ease numbers of the version of the HDF library whichis
linked to the application.

Parameters:
unsigned *maj num

OUT: The mgjor version of thelibrary.

2 National Center for Supercomputing Applications

HDF5 Release 1.2

unsigned *mi nnum
OUT: The minor version of the library.
unsigned *r el num
OUT: The release number of the library.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5check version
Signature:
herr_t Hscheck_ver si on(unsigned maj num unsigned ni nnum unsigned r el num)
Pur pose:
Description:

H5check_ver si on verifies that the arguments match the version numbers compiled into the library. Thisfunctionis
intended to be called by the user to verify that the version of the header files compiled into the application match the
version of the HDF5 library being used.

Due to the risks of data corruption or segmentation faults, Hscheck_ver si on causes the application to abort if the
version numbers do not match.

If the version numbers of the library do not match the version numbers in the header files being checked, the library
callsthe standard C function abort () .

Parameters:
unsigned nmaj num
IN: The major version of thelibrary.
unsigned nmi nnum
IN: The minor version of the library.
unsigned r el num
IN: The release number of the library.
Returns:

Returns a non-negative value if successful. Upon failure, this function causes the application to abort.

Last modified: 30 October 1998

University of Illinois at Urbana-Champaign 3

HDF5 Reference Manual

4 National Center for Supercomputing Applications

HDF5 Release 1.2

H5A: Attribute Interface
Attribute APl Functions

These functions create and manipulate attributes and information about attributes.

e HS5Acreate e H5Aget_name H5AQet_type

e H5Awrite H5Aopen_name HS5Aget_num_attrs
¢ H5Aread e H5Aopen_idx ¢ Hb5Aiterate

¢ H5Aclose e H5Aget_space e« H5Adelete

The Attribute interface, H5A, is primarily designed to easily allow small datasets to be attached to primary datasets as
metadata information. Additional goals for the H5A interface include keeping storage requirement for each attribute to a
minimum and easily sharing attributes among datasets.

Because attributes are intended to be small objects, large datasets intended as additional information for a primary dataset
should be stored as supplemental datasetsin a group with the primary dataset. Attributes can then be attached to the group
containing everything to indicate a particular type of dataset with supplemental datasetsis located in the group. How
small is"small" is not defined by the library and is up to the user’s interpretation.

See the “Attributes” section of théDF5 User’s Guide for further information.

Name: H5Acreate
Signature:
hid_t H5Acr eat e(hid_t 1 oc_i d, const char *nane, hid_ttype_i d, hid_tspace_i d, hid_tcreate_plist)
Purpose:
Creates a dataset as an attribute of another group, dataset, or named datatype.
Description:

HSACr eat e creates an attribute which is attached to the object specifietl wdth d. | oc_i d is an identifier of a

group, dataset, or named datatype. The name specifiedanithfor each attribute for an object must be unique for

that object. The datatype and dataspace identifiers of the atttigpte,i d andspace_i d, respectively, are created

with the H5T and H5S interfaces, respectively. Currently only simple dataspaces are allowed for attribute dataspaces.
Thecreate_plist_id property listis currently unused, but will be used int the future for optional properties of
attributes. The attribute identifier returned from this function must be releasebaithose or resource leaks will

develop. Attempting to create an attribute with the same name as an already existing attribute will fail, leaving the
pre-existing attribute in place.

Parameters:
hid tloc_id

IN: Object (dataset, group, or named datatype) to be attached to.

University of Illinois at Urbana-Champaign 5

HDF5 Reference Manual

const char *nane
IN: Name of attribute to create.
hid ttype id
IN: Identifier of datatype for attribute.
hid_t space_i d
IN: Identifier of dataspace for attribute.
hid tcreate_plist
IN: Identifier of creation property list (currently not used).
Returns:

Returns an attribute identifier if successful; otherwise returns a negative value.

Name: H5Aopen_name
Signature:
hid_t H5Aopen_nane(hid_t | oc_i d, const char *nane)
Pur pose:
Opens an attribute specified by name.
Description:

H5Aopen_nane opens an attribute specified by its name, name, which is attached to the object specified with
| oc_i d. Thelocation object may be either a group, dataset, or named datatype, which may have any sort of attribute.
The attribute identifier returned from this function must be released with H5Acl ose or resource leaks will develop.

Parameters:
hid tloc_id
IN: Identifier of a group, dataset, or named datatype atttribute to be attached to.
const char *name
IN: Attribute name.

Returns:

Returns attribute identifier if successful; otherwise returns a negative value.

6 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5A0pen_idx
Signature:
hid_t H5Aopen_i dx(hid_t 1 oc_i d, unsigned inti dx)
Purpose:
Opens the attribute specified by itsindex.
Description:

H5Aopen_i dx opens an attribute which is attached to the object specified with | oc_i d. The location object may be
either a group, dataset, or named datatype, all of which may have any sort of attribute. The attribute specified by the
index, i dx, indicates the attribute to access. The value of i dx is a 0-based, non-negative integer. The attribute
identifier returned from this function must be released with H5Ac! ose or resource leaks will develop.

Parameters:
hid tloc_id
IN: Identifier of the group, dataset, or named datatype attribute to be attached to.
unsigned int i dx
IN: Index of the attribute to open.
Returns:

Returns attribute identifier if successful; otherwise returns a negative val ue.

Name: H5Awrite
Signature:
herr_t H5Awri te(hid tattr_id, hid tmem type_i d, void *buf)
Purpose:
Writes data to an attribute.
Description:

HSAWr i t e writes an attribute, specified with at t r _i d. The attribute’s memory datatype is specified with
mem t ype_i d. The entire attribute is written from buf to thefile.

Datatype conversion takes place at the time of a read or write and is automatic. See the “Data Conversion” section of
The Data Type Interface (H5T) in theHDF5 User’s Guide for a discussion of data conversion, including the range of
conversions currently supported by the HDFS5 libraries.

University of Illinois at Urbana-Champaign 7

HDF5 Reference Manual

Parameters:
hid tattr_id
IN: Identifier of an attribute to write.
hid_tmem type_i d
IN: Identifier of the attribute datatype (in memory).
void *buf
IN: Datato be written.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Aread
Signature:
herr_t H5Ar ead(hid_tattr_i d, hid_tmem type_i d, void *buf)
Purpose:
Reads an attribute.
Description:

H5Ar ead reads an attribute, specified with at t r _i d. The attribute’s memory datatype is specified with
mem t ype_i d. The entire attribute isread into buf from thefile.

Datatype conversion takes place at the time of a read or write and is automatic. See the “Data Conversion” section of
The Data Type Interface (H5T) in theHDF5 User’s Guide for a discussion of data conversion, including the range of
conversions currently supported by the HDFS5 libraries.
Parameters:
hid tattr_id
IN: Identifier of an attribute to read.
hid tnrem type_id
IN: Identifier of the attribute datatype (in memory).
void *buf
OUT: Buffer for data to be read.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

8 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Aget_space
Signature:

hid_t H5Aget _space(hid_tattr_i d)
Purpose:

Gets a copy of the dataspace for an attribute.
Description:

H5Aget _space retrieves a copy of the dataspace for an attribute. The dataspace identifier returned from this function
must be released with H5Scl ose or resource leaks will develop.

Parameters:
hid tattr_id
IN: Identifier of an attribute.
Returns:

Returns attribute dataspace identifier if successful; otherwise returns a negative value.

Name: H5Aget_type
Signature:
hid t H5Aget type(hid tattr _id)
Purpose:
Gets an attribute datatype.
Description:
H5Aget _t ype retrieves a copy of the datatype for an attribute.

The datatype is reopened if it is a named type before returning it to the application. The datatypes returned by this
function are always read-only. If an error occurs when atomizing the return datatype, then the datatype is closed.

The datatype identifier returned from this function must be released with H5Tcl ose or resource leaks will develop.
Parameters:
hid tattr_id
IN: Identifier of an attribute.
Returns:

Returns a datatype identifier if successful; otherwise returns a negative val ue.

University of Illinois at Urbana-Champaign 9

HDF5 Reference Manual

Name: H5Aget_name
Signature:
ssize t H5Aget _nane(hid_tattr_i d, size tbuf _si ze, char *buf)
Purpose:
Gets an attribute name.
Description:

H5Aget _name retrieves the name of an attribute specified by the identifier, at t r _i d. Upto buf _si ze characters
are stored in buf followed by a\ 0 string terminator. If the name of the attribute is longer than buf _si ze -1, the
string terminator is stored in the last position of the buffer to properly terminate the string.

Parameters:
hid tattr_id
IN: Identifier of the attribute.
size tbuf _si ze
IN: The size of the buffer to store the namein.
char *buf
IN: Buffer to store namein.
Returns:

Returns the length of the attribute’s name, which may be longer than buf _si ze, if successful. Otherwise returns a
negative value.

Name: H5Aget_num_attrs
Signature:
int H5Aget _num at trs(hid tl oc_i d)
Purpose:
Determines the number of attributes attached to an object.
Description:

H5Aget _num at t r s returns the number of attributes attached to the object specified by itsidentifier, | oc_i d. The
object can be a group, dataset, or named datatype.

10 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid tloc_id
IN: Identifier of a group, dataset, or named datatype.
Returns:

Returns the number of attributes if successful; otherwise returns a negative value.

Name: H5Aiterate
Signature:
int H5Ai t er at e(hid_t 1 oc_i d, unsigned * i dx, HS5A operator_t op, void *op_dat a)
Purpose:
Calls auser’s function for each attribute on an object.
Description:

H5AI t er at e iterates over the attributes of the object specified by itsidentifier, | oc_i d. The object can be a group,
dataset, or named datatype. For each attribute of the object, the op_dat a and some additional information specified
below are passed to the operator function op. The iteration begins with the attribute specified by itsindex, i dx; the
index for the next attribute to be processed by the operator, op, isreturned ini dx. If i dx isthe null pointer, then al
attributes are processed.

The prototype for HSA_oper at or _t is:
typedef herr_t (*H5A operator_t)(hid_t /oc_id, const char *attr_nane, void
*oper at or _dat a) ;

The operation receives the identifier for the group, dataset or named datatype being iterated over, | oc_i d, the name
of the current attribute about the object, at t r _nane, and the pointer to the operator data passed in to H5Ai t er at e,
op_dat a. Thereturn values from an operator are:

e Zero causesthe iterator to continue, returning zero when all attributes have been processed.

» Positive causes the iterator to immediately return that positive value, indicating short-circuit success. The
iterator can be restarted at the next attribute.

« Negative causes the iterator to immediately return that value, indicating failure. The iterator can be restarted
at the next attribute.

Parameters:
hid tloc_id
IN: Identifier of a group, dataset or named datatype.
unsigned * i dx

IN/OUT: Starting (IN) and ending (OUT) attribute index.

University of lllinois at Urbana-Champaign 11

HDF5 Reference Manual

HS5A _operator_t op
IN: User’s function to pass each attribute to
void *op_dat a
IN/OUT: User's data to pass through to iterator operator function
Returns:

If successful, returns the return value of the last operator if it was non-zero, or zero if all attributes were processed.
Otherwise returns a negative value.

Name: H5Adelete
Signature:
herr_t H5Adel et e(hid_t1 oc_i d, const char *nane)
Purpose:
Deletes an attribute from alocation.
Description:

H5Adel et e removes the attribute specified by its name, name, from a dataset, group, or named datatype. This
function should not be used when attribute identifiersare open on | oc_i d asit may cause the internal indexes of the
attributes to change and future writes to the open attributes to produce incorrect results.

Parameters:
hid tloc_id
IN: Identifier of the dataset, group, or named datatype to have the attribute deleted from.
congt char *nane
IN: Name of the attribute to delete.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

12 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Aclose
Signature:

herr_t H5Acl ose(hid_tattr_i d)
Purpose:

Closes the specified attribute.
Description:

H5Ac! ose terminates access to the attribute specified by itsidentifier, at t r _i d. Further use of the attribute identifier
will result in undefined behavior.

Parameters:
hid tattr_id
IN: Attribute to release access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Last modified: 20 October 1999

University of Illinois at Urbana-Champaign 13

HDF5 Reference Manual

14 National Center for Supercomputing Applications

HDF5 Release 1.2

H5D: Datasets I nterface
Dataset Object APl Functions

These functions create and manipul ate dataset objects, and set and retrieve their constant or persistent properties.

e H5Dcreate e H5Dget create plist e H5Dread

¢ H5Dopen e H5Dget_storage size e H5Dwrite
e H5Dclose e H5Dget vlen_buf size e Hb5Diterate
e H5Dget_space e H5Dvlen reclaim e H5Dextend

e H5Dget_type

Name: H5Dcreate
Signature:
hid_t H5Dcr eat e(hid_t | oc_i d, const char *nane, hid_tt ype_i d, hid_tspace_i d, hid tcreate_plist_id)
Purpose:
Creates a dataset at the specified location.
Description:

H5Dcr eat e creates a data set with aname, nane, in the file or in the group specified by the identifier | oc_i d. The
dataset has the datatype and dataspace identified by t ype_i d and space_i d, respectively. The specified datatype
and dataspace are the datatype and dataspace of the dataset as it will exist in the file, which may be different thanin
application memory. Dataset creation properties are specified by the argument cr eat e_pl i st _i d.

create_plist_idisaH5P_DATASET_CREATE property list created with H5Pcr eat e() and initialized with the
various functions described above. H5Dcr eat e() returns a dataset identifier for success or negative for failure. The
identifier should eventually be closed by calling H5Dcl ose() to release resourcesit uses.

Parameters:
hid tloc_id
Identifier of the file or group to create the dataset within.
const char * nane
The name of the dataset to create.
hid ttype id

Identifier of the datatype to use when creating the dataset.

University of lllinois at Urbana-Champaign 15

HDF5 Reference Manual

hid_t space_i d
Identifier of the dataspace to use when creating the dataset.
hid tcreate_plist_id
Identifier of the set creation property list.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.

Name: H5Dopen
Signature:
hid_t H5Dopen(hid_t I oc_i d, const char *nane)
Purpose:
Opens an existing dataset.
Description:

H5Dopen opens an existing dataset for access in the file or group specified inl oc_i d. nane isadataset name and is
used to identify the dataset in thefile.

Parameters:
hid tloc_id
Identifier of the dataset to open or the file or group to access the dataset within.
const char * name
The name of the dataset to access.
Returns:

Returns a dataset identifier if successful; otherwise returns a negative value.

Name: H5Dget_space
Signature:
hid t H5Dget _space(hid tdat aset _id)
Purpose:
Returns an identifier for a copy of the dataspace for a dataset.
Description:

HoDget _space returns an identifier for a copy of the dataspace for a dataset. The dataspace identifier should be
released with the H5Scl ose() function.

16 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t dat aset _i d
Identifier of the dataset to query.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative val ue.

Name: H5Dget_type
Signature:
hid_t H5Dget _t ype(hid_tdat aset _i d)
Purpose:
Returns an identifier for a copy of the datatype for a dataset.
Description:

H5Dget _t ype returns an identifier for a copy of the datatype for a dataset. The datatype should be released with the
H5Tcl ose() function.

If adataset has a named datatype, then an identifier to the opened datatype is returned. Otherwise, the returned
datatype is read-only. If atomization of the datatype fails, then the datatype is closed.

Parameters:
hid tdat aset _id
Identifier of the dataset to query.
Returns:

Returns a datatype identifier if successful; otherwise returns a negative val ue.

Name: H5Dget_create plist
Signature:
hid_t H5Dget _creat e_pl i st (hid_tdataset _id)
Purpose:
Returns an identifier for a copy of the dataset creation property list for a dataset.
Description:

H5Dget _creat e_pl i st returnsan identifier for a copy of the dataset creation property list for a dataset. The
creation property list identifier should be released with the H5Pcl ose() function.

University of lllinois at Urbana-Champaign 17

HDF5 Reference Manual

Parameters:
hid_t dat aset _i d
Identifier of the dataset to query.
Returns:

Returns a dataset creation property list identifier if successful; otherwise returns a negative value.

Name: H5Dget_storage size
Signature:
hsize t H5Dget _st or age_si ze(hid_t dat aset _i d)
Purpose:
Returns the amount of storage required for a dataset.
Description:
H5Dget _st or age_si ze returns the amount of storage that is required for the specified dataset, dat aset _i d. For
chunked datasets, this is the number of allocated chunks times the chunk size. The return value may be zero if no data
has been stored.
Parameters:
hid_t dat aset _i d
Identifier of the dataset to query.

Returns:

Returns the amount of storage space allocated for the dataset, not counting meta data; otherwise returns a negative
value.

Name: H5Dget vlen buf size (Not yet implemented.)
Signature:
herr_t H5Dget _vl en_buf _si ze(hid_t dat aset _i d, hid_ttype_i d, hid_t space_i d, hsize t *si ze)
Pur pose:
Determines the number of bytes required to store VL data.
Description:

H5Dget _vl en_buf _si ze determines the number of bytes required to store the VL data from the dataset, using the
space_i d for the selection in the dataset on disk and thet ype_i d for the memory representation of the VL datain
memory.

*si ze isreturned with the number of bytes are required to store the VL datain memory.

18 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t dat aset _i d
Identifier of the dataset to query.
hid_ttype_id
Identifier of the datatype.
hid_tspace_id
Identifier of the dataspace.
hsize t *si ze
The size in bytes of the buffer required to store the VL data.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.

Name: H5Dvlen reclaim
Signature:
herr_t H5Dvl en_r ecl ai mhid_ttype_i d hid tspace_i d, hid tplist_id, void*buf)
Purpose:
Reclaims VL datatype memory buffers.
Description:
H5DvI en_r ecl ai mreclaims memory buffers created to store VL datatypes.

Thet ype_i d must be the datatype stored in the buffer. The space_i d describes the selection for the memory buffer
to freethe VL datatypes within. Thepl i st _i d isthe dataset transfer property list which was used for the 1/O
transfer to create the buffer. And buf isthe pointer to the buffer to be reclaimed.

The VL structures (hvl _t) in the user's buffer are modified to zero out the VL information after the memory has
been reclaimed.

If nested VL datatypes were used to create the buffer, this routine frees them from the bottom up, releasing all the
memory without creating memory leaks.

Parameters:
hid ttype id
Identifier of the datatype.
hid_t space_i d

Identifier of the dataspace.

University of lllinois at Urbana-Champaign 19

HDF5 Reference Manual

hid_tplist_id
Identifier of the property list used to create the buffer.
void *buf
Pointer to the buffer to be reclaimed.
Returns:

Returns non-negative value if successful; otherwise returns a negative value.

Name: H5Dread
Signature:

herr_t H5Dr ead(hid_t dat aset _i d, hid_tmem t ype_i d, hid_t mem space_i d, hid_tfil e_space_i d, hid_t
xfer_plist_id,void* buf)

Purpose:

Reads raw data from the specified dataset into buf , converting from file datatype and dataspace to memory datatype
and dataspace.

Description:

H5Dr ead reads a (partial) dataset, specified by itsidentifier dat aset _i d, from the file into the application memory
buffer buf . Data transfer properties are defined by the argument xf er _pl i st _i d. The memory datatype of the
(partial) dataset isidentified by the identifier mem t ype_i d. The part of the dataset to read is defined by

mem space_idandfile_space_id.

fil e_space_i d can bethe constant H5S_ALL, which indicates that the entire file data space is to be referenced.

mem space_i d can be the constant H5S_ALL, in which case the memory data space is the same as the file data space
defined when the dataset was created.

The number of elements in the memory data space must match the number of elementsin the file data space.
xfer_plist_idcanbetheconstant HSP_DEFAULT, in which case the default data transfer properties are used.

Datatype conversion takes place at the time of a read or write and is automatic. See the “Data Conversion” section of
The Data Type Interface (H5T) in theHDF5 User’s Guide for a discussion of data conversion, including the range of
conversions currently supported by the HDF5 libraries.

Parameters:
hid tdat aset _id
Identifier of the dataset read from.
hid tmem type id
Identifier of the memory datatype.

hid_t mrem space_i d

20 National Center for Supercomputing Applications

HDF5 Release 1.2

Identifier of the memory dataspace.
hid tfile_space_id

Identifier of the dataset’s dataspace in thefile.
hid_txfer_plist_id

Identifier of atransfer property list for this /O operation.
void * buf

Buffer to store data read from the file.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Dwrite
Signature:

herr_t H5Dwr i t e(hid_t dat aset _i d, hid_tmem t ype_i d, hid_t mem space_i d, hid_tfil e_space_i d, hid_t
xfer_plist_id,constvoid* buf)

Purpose:

Writes raw data from an application buffer buf to the specified dataset, converting from memory datatype and
dataspace to file datatype and dataspace.

Description:

H5Dwr i t e writes a (partial) dataset, specified by itsidentifier dat aset _i d, from the application memory buffer buf
into the file. Data transfer properties are defined by the argument xf er _pl i st _i d. The memory datatype of the
(partial) dataset is identified by the identifier mem t ype_i d. The part of the dataset to write is defined by

mem space_idandfile_space_id.

fil e_space_i d can bethe constant H5S_ALL. which indicates that the entire file data space is to be referenced.

mem space_i d can be the constant H5S_ALL, in which case the memory data space is the same as the file data space
defined when the dataset was created.

The number of elementsin the memory data space must match the number of elementsin the file data space.
xfer_plist_idcanbetheconstant HSP_DEFAULT. in which case the default data transfer properties are used.
Writing to an external dataset will fail if the HDF5 file is not open for writing.

Datatype conversion takes place at the time of a read or write and is automatic. See the “Data Conversion” section of
The Data Type Interface (H5T) in theHDF5 User’s Guide for a discussion of data conversion, including the range of
conversions currently supported by the HDF5 libraries.

University of lllinois at Urbana-Champaign 21

HDF5 Reference Manual

Parameters:
hid tdat aset _id
Identifier of the dataset read from.
hid tmem type id
Identifier of the memory datatype.
hid_t mrem space_i d
Identifier of the memory dataspace.
hid tfile_space_id
Identifier of the dataset’s dataspace in thefile.
hid_txfer_plist_id
Identifier of atransfer property list for this I/O operation.
const void * buf
Buffer with data to be written to the file.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Dextend
Signature:
herr_t H5Dext end(hid_t dat aset _i d, const hsize t* si ze)
Pur pose:
Extends a dataset with unlimited dimension.
Description:

H5Dext end verifiesthat the dataset is at least of sizesi ze. The dimensionality of si ze isthe same as that of the
dataspace of the dataset being changed. This function cannot be applied to a dataset with fixed dimensions.

Parameters:
hid_t dat aset _i d
Identifier of the dataset.
const hsize t* si ze
Array containing the new magnitude of each dimension.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

22 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Dclose
Signature:

hid_t H5Dcl ose(hid_t dat aset _id)
Purpose:

Closes the specified dataset.
Description:

H5Dcl ose ends access to a dataset specified by dat aset _i d and releases resources used by it. Further use of the
dataset identifier isillegal in calsto the dataset API.

Parameters:
hid_t dat aset _i d
Identifier of the dataset to finish access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Diterate
Signature:

herr_t H5Di t er at e(void *buf , hid_ttype_ i d, hid t space_i d, HSD_operator_t oper at or , void
*operator_data)

Purpose:
Iterates over all selected elements in a dataspace.
Description:

H5Di t er at e iterates over all the elements selected in a memory buffer. The callback function is called once for each
element selected in the dataspace.

The selection in the dataspace is modified so that any elements already iterated over are removed from the selection if
the iteration isinterrupted (by the H5SD_oper at or _t function returning non-zero) before the iteration is complete;
the iteration may then be re-started by the user where it left off.

Parameters:
void *buf
IN/OUT: Pointer to the buffer in memory containing the elementsto iterate over.
hid ttype id

IN: Datatype identifier for the elements stored in buf .

University of lllinois at Urbana-Champaign 23

HDF5 Reference Manual

hid_t space_i d
IN: Dataspace identifier for buf . Also contains the selection to iterate over.
HS5D_operator_t oper at or
IN: Function pointer to the routine to be called for each element in buf iterated over.
void *oper at or _dat a
IN/OUT: Pointer to any user-defined data associated with the operation.
Returns:

Returns the return value of the last operator if it was non-zero, or zero if all elements have been processed. Otherwise
returns a negative value.

Last modified: 20 October 1999

24 National Center for Supercomputing Applications

HDF5 Release 1.2

HS5E: Error Interface

Error API Functions

These functions provide error handling capabilitiesin the HDF5 environment.

e H5Eset_auto e H5Eprint e H5Eget major
e H5Eget auto e H5Ewak e H5Eget minor
e H5Eclear e H5Ewak cb

The Error interface provides error handling in the form of a stack. The FUNC_ENTER() macro clears the error stack
whenever an interface function is entered. When an error is detected, an entry is pushed onto the stack. Asthe functions
unwind, additional entries are pushed onto the stack. The API function will return some indication that an error occurred
and the application can print the error stack.

Certain API functions in the H5E package, such as H5Epri nt (), do not clear the error stack. Otherwise, any function
which does not have an underscore immediately after the package name will clear the error stack. For instance,
H5Fopen() clearsthe error stack while H5F_open() does not.

An error stack has afixed maximum size. If this size is exceeded then the stack will be truncated and only the inner-most
functions will have entries on the stack. Thisis expected to be arare condition.

Each thread hasits own error stack, but since multi-threading has not been added to the library yet, this package maintains
asingle error stack. The error stack is statically allocated to reduce the complexity of handling errors within the HSE
package.

Name: H5Eset_auto
Signature:
herr_t H5Eset _aut o(H5E_auto_t f unc, void *cl i ent _data)
Purpose:
Turns automatic error printing on or off.
Description:

H5Eset _aut o turnson or off automatic printing of errors. When turned on (non-null f unc pointer), any APl
function which returns an error indication will first call f unc, passingitcl i ent _dat a as an argument.

When the library is first initialized the auto printing function is set to H5Epr i nt () (cast appropriately) and
cl i ent _dat a isthe standard error stream pointer, st derr .

Automatic stack traversal is alwaysin the HSE_WALK _DOANWARD direction.

University of lllinois at Urbana-Champaign 25

HDF5 Reference Manual

Parameters:
H5E_auto tfunc
Function to be called upon an error condition.
void*cl i ent _data
Data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Eget_auto
Signature:
herr_t H5Eget _aut o(H5E_auto_t * f unc, void **cl i ent _data)
Purpose:
Returns the current settings for the automatic error stack traversal function and its data.
Description:

H5Eget _aut o returns the current settings for the automatic error stack traversal function, f unc, and its data,
cl i ent _dat a. Either (or both) arguments may be null in which case the value is not returned.

Parameters:
HS5E_auto t* func
Current setting for the function to be called upon an error condition.
void **cl i ent _dat a
Current setting for the data passed to the error function.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Eclear
Signature:

herr_t H5Ecl ear (voi d)
Purpose:

Clears the error stack for the current thread.

26 National Center for Supercomputing Applications

HDF5 Release 1.2

Description:
H5Ecl ear clearsthe error stack for the current thread.
The stack is also cleared whenever an API function is called, with certain exceptions (for instance, H5Epri nt ()).
H5Ecl ear can fail if there are problemsinitializing the library.

Parameters:
None
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Eprint
Signature:
herr_t H5Epri nt (FILE * stream)
Pur pose:
Prints the error stack in a default manner.
Description:

H5Epr i nt printsthe error stack on the specified stream, st r eam Even if the error stack is empty, a one-line message
will be printed:
HDF5- DI AG. Error detected in thread O.

H5Epr i nt isaconvenience function for H5SEwal k() with afunction that prints error messages. Users are encouraged
to write there own more specific error handlers.

Parameters:
FILE* stream
File pointer, or stderr if NULL.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Ewalk
Signature:

herr_t H5Ewal k(H5E_direction tdi recti on, HSE walk tfunc, void* client_data)
Purpose:

Walks the error stack for the current thread, calling a specified function.

University of lllinois at Urbana-Champaign 27

HDF5 Reference Manual

Description:

H5Ewal k walks the error stack for the current thread and calls the specified function for each error along the way.

di r ect i on determines whether the stack is walked from the inside out or the outside in. A value of
HSE_WALK _UPWARD means begin with the most specific error and end at the API; avalue of HSE_WALK DOWNWARD
means to start at the APl and end at the inner-most function where the error was first detected.

func will be called for each error in the error stack. Its arguments will include an index number (beginning at zero
regardless of stack traversal direction), an error stack entry, and thecl i ent _dat a pointer passed to HSE_pri nt .

H5Ewal k can fail if there are problems initializing the library.

Parameters:

H5E direction tdirection

Direction in which the error stack is to be walked.
H5E walk tfunc

Function to be called for each error encountered.
void* cl i ent _data

Data to be passed with f unc.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Ewalk cb

Signature:

herr_t H5Ewal k_cb(int n, HS5E error_t *err _desc, void*cl i ent _data)

Purpose:

Default error stack traversal callback function that prints error messages to the specified output stream.

Description:

H5Ewal k_cb isadefault error stack traversal callback function that prints error messages to the specified output
stream. It is not meant to be called directly but rather as an argument to the H5Ewal k() function. Thisfunctionis
called also by H5Epri nt () . Application writers are encouraged to use this function as a model for their own error
stack walking functions.

n isacounter for how many times this function has been called for this particular traversal of the stack. It always
begins at zero for the first error on the stack (either the top or bottom error, or even both, depending on the traversal
direction and the size of the stack).

err_desc isan error description. It contains al the information about a particular error.

cl i ent _dat a isthe same pointer that was passed asthecl i ent _dat a argument of H5Ewal k() . It is expected to be
afile pointer (or stderr if null).

28

National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
intn
Number of times this function has been called for thistraversal of the stack.
H5E error_t*err _desc
Error description.
void*client _data
A file pointer, or stderr if null.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Eget_major
Signature:

const char * H5Eget _maj or (HS5E_major_t n)
Purpose:

Returns a character string describing an error specified by amajor error number.
Description:

Given amajor error number, HSEget _maj or returns a constant character string that describes the error.
Parameters:

H5E_major_tn

Major error number.

Returns:

Returns a character string describing the error if successful. Otherwise returns "Invalid major error number."

Name: H5Eget_minor
Signature:
const char * H5Eget _mi nor (HS5E_minor_t n)
Purpose:
Returns a character string describing an error specified by aminor error number.
Description:

Given aminor error number, H5Eget _mi nor returns a constant character string that describes the error.

University of lllinois at Urbana-Champaign 29

HDF5 Reference Manual

Parameters:
H5E _minor_tn
Minor error number.
Returns:

Returns a character string describing the error if successful. Otherwise returns "Invalid minor error number."

Last modified: 30 October 1998

30 National Center for Supercomputing Applications

HDF5 Release 1.2

H5F: File Interface
File APl Functions

These functions are designed to provide file-level accessto HDF5 files. Further manipulation of objectsinside afileis
performed through one of APIs documented below.

e H5Fcreate e H5Fflush e H5Fget create plist
e H5Fopen e H5Fis hdf5 e H5Fget_access plist
e H5Freopen e H5Fmount

¢ H5Fclose e H5Funmount

Name: H5Fopen
Signature:
hid_t H5Fopen(const char *nane, unsigned f | ags, hid taccess_id)
Purpose:
Opens an existing file.
Description:
H5Fopen opens an existing file and is the primary function for accessing existing HDF5 files.

The parameter access_i d isafile access property list identifier or H5P_DEFAULT for the default 1/0 access
parameters.

Thef | ags argument determines whether writing to an existing file will be allowed or not. Thefile is opened with
read and write permission if f | ags is set to H5F_ACC_RDWR. All flags may be combined with the bit-wise OR

operator (‘|') to change the behavior of the file open call. The more complex behaviors of afile's access are controlled

through the file-access property list.

Files which are opened more than once return a unique identifier for each HsFopen() call and can be accessed
through all file identifiers.

Thereturn valueis afileidentifier for the open file and it should be closed by calling H5Fcl ose() whenitisno
longer needed.

Parameters:
const char *nane

Name of the file to access.

University of Illinois at Urbana-Champaign

31

HDF5 Reference Manual

unsigned f | ags
File access flags. Allowable valuesinclude:
H5F ACC_RDWR
Allow read and write access to file.
H5F ACC_RDONLY
Allow read-only accessto file.
H5F ACC_DEBUG
Print debug information. (Used only by HDF5 library developers. Do not use this flag in applications.)
HS5F_ACC_RDWR and H5F_ACC_RDONLY are mutually exclusive; use exactly one.
hid taccess_id

Identifier for the file access properties list. If parallel file accessis desired, thisis a collective call according to
the communicator stored intheaccess_i d. Use H5P_DEFAULT for default file access properties.

Returns:

Returns afileidentifier if successful; otherwise returns a negative value.

Name: H5Fcreate
Signature:
hid_t H5Fcr eat e(const char *nane, unsigned f | ags, hid tcreate_i d, hid taccess_id)
Purpose:
Creates HDF5 files.
Description:
H5Fcr eat e isthe primary function for creating HDF5 files .

Thef | ags parameter determines whether an existing file will be overwritten. All newly created files are opened for
both reading and writing. All flags may be combined with the bit-wise OR operator (‘) to change the behavior of the
H5Fcr eat e call.

The more complex behaviors of file creation and access are controlled through the file-creation and file-access
property lists. The value of H5P_DEFAULT for a property list value indicates that the library should use the default
values for the appropriate property list. Also see H5Fpubl i c. h for the list of supported flags.

Parameters:
const char *nane

Name of the file to access.

32 National Center for Supercomputing Applications

HDF5 Release 1.2

uintnf | ags
File access flags. Allowable valuesinclude:
H5F ACC_TRUNC
Truncate file, if it already exists, erasing al data previously stored in the file.
H5F ACC_EXCL
Fall if file already exists.
H5F ACC_DEBUG
Print debug information. (Used only by HDF5 library developers. Do not use this flag in applications.)
H5F_ACC_TRUNC and H5F_ACC_EXCL are mutually exclusive; use exactly one.
hid tcreate_id

File creation property list identifier, used when modifying default file meta-data. Use H5P_DEFAULT for default file
creation properties.

hid taccess_id

File access property list identifier. If parallel file access is desired, thisis a collective call according to the
communicator stored inthe access_i d. Use H5P_DEFAULT for default file access properties.

Returns:

Returns afileidentifier if successful; otherwise returns a negative value.

Name: H5Fflush
Signature:

herr_t H5Ff | ush(hid_t obj ect _i d, H5F_scope t scope)
Purpose:

Flushes all buffers associated with afile to disk.
Description:

H5Ff | ush causes all buffers associated with afile to be immediately flushed to disk without removing the data from
the cache.

obj ect _i d can be any object associated with the file, including the file itself, a dataset, a group, an attribute, or a
named data type.

University of lllinois at Urbana-Champaign 33

HDF5 Reference Manual

scope specifies whether the scope of the flushing action is global or local. Valid values are

H5F_SCOPE_GLOBAL Flushes the entire virtual file.
H5F_SCOPE_LOCAL Flushes only the specified file.
Parameters:

hid_t obj ect _i d
Identifier of object used to identify thefile.
HSF_scope_tscope
Specifies the scope of the flushing action.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Fis_hdf5
Signature:

htri_t H5Fi s_hdf 5(const char *nane)
Purpose:

Determines whether afileisin the HDF5 format.
Description:

H5Fi s_hdf 5 determines whether afileisin the HDF5 format.
Parameters:

congt char *nane

File name to check format.

Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value.

Name: H5Fget_create plist
Signature:

hid_t H5Fget _create_plist(hid tfile_id)
Purpose:

Returns a file creation property list identifier.

34 National Center for Supercomputing Applications

HDF5 Release 1.2

Description:

H5Fget _creat e_pl i st returnsafile creation property list identifier identifying the creation properties used to
create thisfile. Thisfunction is useful for duplicating properties when creating another file.

See "File Creation Properties’ in H5P: Property List Interface in this reference manual and "File Creation Properties’
in Filesin the HDF5 User’s Guide for additional information and related functions.

Parameters:
hid tfile_id
Identifier of the file to get creation property list of
Returns:

Returns afile creation property list identifier if successful; otherwise returns a negative value.

Name: H5Fget_access plist
Signature:
hid_t H5Fget _access_pli st (hid tfile_id)
Purpose:
Returns a file access property list identifier.
Description:
HoFget _access_pl i st returnsthe file access property list identifier of the specified file.

See "File Access Properties" in the “H5P: Property List Interface” section of this reference manual and “File Access
Property Lists” in the “Files” section of tiDF5 User’s Guide for additional information and related functions.

Parameters:
hid tfile_id
Identifier of file to get access property list of
Returns:

Returns a file access property list identifier if successful; otherwise returns a negative value.

Name: H5Fclose
Signature:

herr_t H5Fcl ose(hid tfile_ id)
Purpose:

Terminates access to an HDF5 file.

University of lllinois at Urbana-Champaign 35

HDF5 Reference Manual

Description:

H5Fcl ose terminates accessto an HDF5 file. If thisisthe last file identifier open for afile and if accessidentifiers
are still in use, this function will fail.

Parameters:
hid tfile_id
Identifier of afile to terminate access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: HSFmount
Signature:
herr_t H5Fnmount (hid_t1 oc_i d, const char *nane, hid_tchild_id, hid tplist_id)
Purpose:
Mounts afile.
Description:

H5Frmount mounts the file specified by chi | d_i d onto the group specified by | oc_i d and nane using the mount
propertiespl i st _i d.

Notethat | oc_i d iseither afile or group identifier and nare isrelativeto | oc_i d.
Parameters:
hid tloc_id
The identifier for of file or group in which nane is defined.
const char *nane
The name of the group onto which the file specified by chi | d_i d is to be mounted.
hid_tchild_id
The identifier of the file to be mounted.
hid_tplist_id
Theidentifier of the property list to be used.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

36 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Funmount
Signature:
herr_t H5Funnmount (hid_t 1 oc_i d, const char *nane)
Purpose:
Unmounts afile.
Description:

Given amount point, H5SFunmount dissassociates the mount point’s file from the file mounted there. This function
does not close either file.

The mount point can be either the group in the parent or the root group of the mounted file (both groups have the
same name). If the mount point was opened before the mount then it is the group in the parent; if it was opened after
the mount then it is the root group of the child.

Notethat | oc_i d iseither afile or group identifier and name isrelativeto | oc_i d.
Parameters:
hid tloc_id
Thefile or group identifier for the location at which the specified fileis to be unmounted.
congt char *nane
The name of the mount point.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Freopen
Signature:

hid__t H5Freopen(hid_tfile_id)
Purpose:

Reopens an HDF5 file.

Description: H5Fr eopen reopens an HDF5 file. The new file identifier which is returned points to the same file asthe
specified file idetifier, f i | e_i d. Both identifiers share caches and other information. The only difference between the
identifiersis that the new identifier is not mounted anywhere and no files are mounted on it.

Parameters:
hid tfile id

Identifier of afile to terminate access to.

University of lllinois at Urbana-Champaign 37

HDF5 Reference Manual

Returns:

Returns anew file identifier if successful; otherwise returns a negative value.

Last modified: 20 October 1999

38 National Center for Supercomputing Applications

HDF5 Release 1.2

H5G: Group Interface
Group Object API Functions

The Group interface functions create and manipul ate groups of objectsin an HDF5 file.

e H5Gcreate e H5GIink e H5Gget_objinfo

e H5Gopen e H5Gunlink e H5Gget_linkval

e H5Gclose e H5Giterate * H5Gset_comment
¢ H5Gmove * H5Gget_comment

A group associates names with objects and provides a mechanism for mapping a name to an object. Since all objects
appear in at least one group (with the possible exception of the root object) and since objects can have names in more than
one group, the set of all objectsin an HDF5 fileis a directed graph. The internal nodes (nodes with out-degree greater
than zero) must be groups while the leaf nodes (nodes with out-degree zero) are either empty groups or objects of some
other type. Exactly one object in every non-empty file is the root object. The root object always has a positive in-degree
becauseit is pointed to by the file boot block.

An object name consists of one or more components separated from one another by slashes. An absolute name begins
with a slash and the object islocated by looking for the first component in the root object, then looking for the second
component in the first object, etc., until the entire name is traversed. A relative name does not begin with a slash and the
traversal begins at the location specified by the create or access function.

Name: H5Gcreate
Signature:
hid_t H5Gcr eat e(hid_t 1 oc_i d, const char *nane, size tsi ze_hint)
Purpose:
Creates a new empty group and givesit a name.
Description:

H5Ger eat e creates anew group with the specified name at the specified location, | oc_i d. Thelocation is identified
by afile or group identifier. The name, name, must not already be taken by some other object and all parent groups
must already exist.

si ze_hi nt isahint for the number of bytes to reserve to store the names which will be eventually added to the new
group. Passing avalue of zero for si ze_hi nt isusually adequate since the library is able to dynamically resize the
name heap, but a correct hint may result in better performance. If a non-positive value is supplied for si ze_hi nt,
then adefault sizeis chosen.

Thereturn value is a group identifier for the open group. This group identifier should be closed by calling
H5Gel ose() whenitisnolonger needed.

University of lllinois at Urbana-Champaign 39

HDF5 Reference Manual

Parameters:

hid tloc_id
Thefile or group identifier.

const char *name
The absolute or relative name of the new group.

size tsize_hint
An optional parameter indicating the number of bytes to reserve for the names that will appear in the group. A
conservative estimate could result in multiple system-level 1/0 requests to read the group name heap; alibera
estimate could result in asingle large 1/0O request even when the group has just a few names. HDF5 stores each
name with a null terminator.

Returns:

Returns a valid group identifier for the open group if successful; otherwise returns a negative value.

Name: H5Gopen
Signature:
hid_t H5Gopen(hid_tl oc_i d, const char *nane)
Purpose:
Opens an existing group for modification and returns a group identifier for that group.
Description:
H5Gopen opens an existing group with the specified name at the specified location, | oc_i d.
The location isidentified by afile or group identifier

H5Gopen returns a group identifier for the group that was opened. This group identifier should be released by calling
H5Gel ose() whenit is no longer needed.

Parameters:
hid tloc_id
File or group identifier within which group is to be open.
const char * name
Name of group to open.
Returns:

Returns avalid group identifier if successful; otherwise returns a negative value.

40 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Gclose
Signature:

herr_t H5Gel ose(hid_t group_i d)
Purpose:

Closes the specified group.
Description:

H5Gel ose releases resources used by a group which was opened by H5Ger eat e() or H5Gopen() . After closing a
group, the gr oup_i d cannot be used again.

Failure to release a group with this call will result in resource leaks.
Parameters:
hid_tgroup_id
Group identifier to release.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5GlIink
Signature:
herr_t H5G i nk(hid_t1 oc_i d, H5G link t1i nk_t ype, const char *cur r ent _nane, const char *new_nane)
Pur pose:
Creates alink of the specified type from new_nane to current _nane.
Description:
H5d i nk creates a new name for an object that has some current name, possibly one of many namesit currently has.

If i nk_t ype iSH5G_LI NK_HARD, then cur r ent _name must specify the name of an existing object and both names
areinterpreted relativeto | oc_i d, which is either afile identifier or agroup identifier.

If i nk_t ype iSH5G_LI NK_SOFT, then cur r ent _name can be anything and is interpreted at lookup time relative to
the group which contains the final component of new_nane. For instance, if current _nane is. / f oo, new_nane is
.I'x/ylbar, and arequest ismade for . / x/ y/ bar , then the actual object looked upis./x/y/./f oo.

Parameters:
hid tloc_id

File or group identifier.

University of lllinois at Urbana-Champaign 41

HDF5 Reference Manual

H5G_link t1ink_type
Link type. Possible valuesare H5G_LI NK_HARD and H5G_LI NK_SOFT.
const char * current _nanme
Name of the existing object if link isa hard link. Can be anything for the soft link.
const char * new_nane
New name for the object.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Gunlink
Signature:
herr_t H5Gunl i nk(hid_t1 oc_i d, const char *nane)
Purpose:
Removes the specified nanme from the group graph and decrements the link count for the object to which nane points
Description:
H5Gunl i nk removes an association between a name and an object. Object headers keep track of how many hard
links refer to the object; when the hard link count reaches zero, the object can be removed from the file. Objects

which are open are not removed until all identifiers to the object are closed.

If the link count reaches zero, al file-space associated with the object will be reclaimed. If the object is open, the
reclamation of the file space is delayed until al handles to the object are closed.

Parameters:
hid tloc_id
Identifier of the file containing the object.
const char * nane
Name of the object to unlink.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

42 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Giterate
Signature:
int H5G t er at e(hid_t | oc_i d, const char * narme, int *i dx, HSG_operator_t oper at or, void *oper at or _data)
Purpose:
Iterates an operation over the entries of a group.
Description:

H5G t er at e iterates over the members of nane in the file or group specified with | oc_i d. For each object in the
group, the oper at or _dat a and some additional information, specified below, are passed to the oper at or function.
The iteration begins with the i dx object in the group and the next element to be processed by the operator is returned
ini dx. Ifi dx isNULL, then the iterator starts at the first group member; since no stopping point isreturned in this
case, theiterator cannot be restarted if one of the calls to its operator returns non-zero.

The prototype for H5G oper at or _t is:

t ypedef herr_t*(H5G operator _t)(hid_tgroup_i d, const char *menber _nane, void
*operator_data/*in, out*/);

The operation receives the group identifier for the group being iterated over, gr oup_i d, the name of the current
object within the group, menber _nane, and the pointer to the operator data passed into H5G t er at e,
oper at or _dat a.

The return values from an operator are:
e Zero causesthe iterator to continue, returning zero when all group members have been processed.

« Positive causes the iterator to immediately return that positive value, indicating short-circuit success. The
iterator can be restarted at the next group member.

* Negative causes the iterator to immediately return that value, indicating failure. The iterator can be restarted
at the next group member.

Parameters:
hid tloc_id
IN: File or group identifier.
const char *nane
IN: Group over which the iteration is performed.
int*i dx
IN/OUT: Location at which to begin the iteration.
H5G iterate t oper at or

IN: Operation to be performed on an object at each step of the iteration.

University of lllinois at Urbana-Champaign 43

HDF5 Reference Manual

void * oper at or _dat a
IN/OUT: Data associated with the operation.
Returns:

Returns the return value of the last operator if it was non-zero, or zero if all group members were processed.
Otherwise returns a negative value.

Name: H5Gmove
Signature:
herr_t H5Grove(hid_t1 oc_i d, const char *sr ¢, const char *dst)
Purpose:
Renames an object within an HDF5 file.
Description:

H5GrTove renames an object within an HDF5 file. The original name, sr c, is unlinked from the group graph and the
new name, dst , isinserted as an atomic operation. Both names are interpreted relativeto | oc_i d, which iseither a
file or agroup identifier.

Parameters:
hid tloc_id
File or group identifier.
const char *src
Object's original name.
const char *dst
Object’s new name.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Gget_objinfo
Signature:

herr_t H5Gget _obj i nfo(hid_t!| oc_i d, const char *name, hbool tfol | ow | i nk, H5G_stat_t *st at buf)
Purpose:

Returns information about an object.

44 National Center for Supercomputing Applications

HDF5 Release 1.2

Description:

H5Gget _obj i nf o returnsinformation about the specified object through the st at buf argument. | oc_i d (afileor
group identifier) and nane together determine the object. If the object isa symbolic link and f ol | ow_| i nk iszero
(0), then the information returned is that for the link itself; otherwise thelink is followed and information is returned
about the object to which the link points. If f ol | ow_| i nk isnon-zero but the final symbolic link is dangling (does
not point to anything), then an error is returned. The st at buf fields are undefined for an error. The existence of an
object can be tested by calling this function with anull st at buf .

H5Gget _obj i nf o() fillsin the following data structure:

typedef struct H5G stat t {
unsi gned long fileno[2];
unsi gned | ong obj no[2];
unsi gned nli nk;
int type;
time_t ntinme;
size_t linklen;

} H5G stat _t

Thefil eno and obj no fields contain four values which uniquely itentify an object among those HDF5 files which
are open: if all four values are the same between two objects, then the two objects are the same (provided both files
are still open). Thenl i nk field isthe number of hard links to the object or zero when information is being returned
about a symbolic link (symbolic links do not have hard links but all other objects always have at least one). Thet ype
field contains the type of the object, one of HSG_GROUP, H5G_DATASET, H5G LI NK, or H5G _TYPE. Thent i me field
contains the modification time. If information is being returned about a symbalic link then | i nkl en will be the
length of the link value (the name of the pointed-to object with the null terminator); otherwisel i nkl en will be zero.
Other fields may be added to this structure in the future.

Note:

Some systems will be able to record the time accurately but unable to retrieve the correct time; such systems (e.g.,
Irix64) will report an nt i me value of 0 (zero).

Parameters:
hid tloc_id
IN: File or group identifier.
const char * nane
IN: Name of the object for which status is being sought.
hbool_tfol |l ow |ink
IN: Link flag.
H5G_stat_t * st at buf
OUT: Buffer in which to return information about the object.
Returns:

Returns a non-negative value if successful, with the fields of st at buf (if non-null) initialized. Otherwise returns a
negative value.

University of lllinois at Urbana-Champaign 45

HDF5 Reference Manual

Name: H5Gget_linkval
Signature:
herr_t H5Gget _I i nkval (hid_t| oc_i d, const char *nane, size tsi ze, char *val ue)
Purpose:
Returns the name of the object that the symbolic link points to.
Description:
H5Gget _| i nkval returnssi ze characters of the name of the object that the symbolic link nane pointsto.
The parameter | oc_i d isafile or group identifier.
The parameter nane must be a symbolic link pointing to the desired object and must be defined relativeto | oc_i d.

If si ze issmaller than the size of the returned object name, then the name stored in the buffer val ue will not be null
terminated.

Thisfunction failsif name is not a symbolic link. The presence of a symbolic link can be tested by passing zero for
si ze and NULL for val ue.

This function should be used only after H5Gget _obj i nf o() has been called to verify that nanme isa symbolic link.
Parameters:
hid tloc_id
IN: Identifier of the file or group.
congt char *name
IN: Symbolic link to the object whose hame is to be returned.
size tsize
IN: Maximum number of characters of val ue to be returned.
char *val ue
OUT: A buffer to hold the name of the object being sought.
Returns:

Returns a non-negative value, with thelink valuein val ue, if successful. Otherwise returns a negative value.

46 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Gset_comment
Signature:
herr_t H5Gset _comment (hid_t | oc_i d, const char *name, const char *comment)
Purpose:
Sets comment for specified object.
Description:

H5Gset _coment sets the comment for the the object nane to comment . Any previously existing comment is
overwritten.

If comment isthe empty string or a null pointer, the comment message is removed from the object.
Comments should be relatively short, null-terminated, ASCII strings.

Comments can be attached to any object that has an object header, e.g., data sets, groups, named data types, and data
spaces, but not symbolic links.

Parameters:
hid tloc_id
IN: Identifier of the file or group.
const char *name
IN: Name of the object whose comment isto be set or reset.
const char *comrent
IN: The new comment.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Gget_comment
Signature:
herr_t H5Gget _conment (hid_t| oc_i d, const char *namne, size t buf si ze, char *conment)
Purpose:
Retrieves comment for specified object.
Description:

H5Gget _coment retrieves the comment for the the object name. The comment is returned in the buffer comment .

University of lllinois at Urbana-Champaign 47

HDF5 Reference Manual

At most buf si ze characters, including a null terminator, are copied. The result is not null terminated if the comment
islonger than the supplied buffer.

If an object does not have a comment, the empty string is returned.
Parameters:
hid tloc_id
IN: Identifier of the file or group.
const char *name
IN: Name of the object whose comment is to be set or reset.
size tbuf si ze
IN: Anticipated size of the buffer required to hold conmmrent .
char *conment
OUT: The comment.
Returns:

Returns the number of characters in the comment, counting the null terminator, if successful; the value returned may
be larger than buf si ze. Otherwise returns a negative value.

Last modified: 20 October 1999

48 National Center for Supercomputing Applications

HDF5 Release 1.2

H5I: | dentifier I nterface

|dentifier APl Functions

This function provides atool for working with object identifiers.

e Hb5Iget_type

Name: HSlget_type
Signature:
H5I_type t H51 get _type(hid_tobj _id)
Purpose:
Retrieves the type of an object.
Description:
H51 get _t ype retrieves the type of the object identified by obj _i d.

Valid types returned by the function are

H51 _FI LE File

H51 _GROUP Group

H51 _DATATYPE Datatype
H51 _DATASPACE Dataspace
H51 _DATASET Dataset
H51 _ATTR Attribute

If no valid type can be determined or the identifier submitted isinvalid, the function returns

H51 _BADI D Invalid identifier

Thisfunction is of particular value in determining the type of object closing function (H5Dcl ose, H5Gel ose, €tc.) to
call after acall to H5Rder ef er ence.

Parameters:
hid_t obj _i d

IN: Object identifier whose type isto be determined.
Returns:

Returns the object type if successful; otherwise H51 _BADI D.

Last modified: 30 October 1998

University of lllinois at Urbana-Champaign 49

HDF5 Reference Manual

50 National Center for Supercomputing Applications

HDF5 Release 1.2

H5P: Property List Interface
Property List APl Functions

These functions manipulate property list objects to allow objects which require many different parameters to be easily

manipul ated.

General Property List Operations
* HS5Pcreate
e H5Pget class
* H5Pcopy
e H5Pclose

File Creation Properties
e H5Pget version
e H5Pset_userblock
e H5Pget userblock
e H5Pset sizes
e H5Pget_sizes
e H5Pset_ sym k
¢« H5Pget sym k
e H5Pset_istore k
e H5Pget istore k

Variable-length Datatype Properties
e H5Pset vlen_mem_ manager

¢ H5Pget vlen_ mem_manager

File Access Properties
e H5Pget driver

.+ H5Pset_stdio
H5Pget_stdio
+ H5Pset_sec2

e H5Pget_sec?

e H5Pset_alignment

e H5Pget_alignment

e H5Pset_core

e H5Pget_core

e H5Pset_mpi ||

e HS5Pget_ mpi ||

e H5Pset_family

e H5Pget_family

e H5Pset_cache

e H5Pget_cache

e H5Pset_split

e H5Pget_split

e H5Pset_gc references
e H5Pget_gc references

|| Available only in the parallel
HDFS5 library.

Dataset Creation Properties

H5Pset_layout
H5Pget_layout
H5Pset_chunk
H5Pget_chunk
H5Pset_deflate
H5Pset_fill_value
H5Pget_fill_value
H5Pset_filter
H5Pget_nfilters
H5Pget_filter
H5Pset_external
H5Pget_external_count
H5Pget_external

Dataset Memory and Transfer
Properties

H5Pset_buffer
H5Pget_buffer
H5Pset_preserve
H5Pget_preserve
H5Pset_hyper_cache
H5Pget_hyper_cache
H5Pset_btree ratios
H5Pget_btree ratios
H5Pset_xfer ||
H5Pget_xfer ||

University of Illinois at Urbana-Champaign

51

HDF5 Reference Manual

Name: H5Pcreate
Signature:
hid_t H5Pcr eat e(H5P_class ttype)
Purpose:
Creates a new property as an instance of a property list class.
Description:

H5Pcr eat e creates anew property as an instance of some property list class. The new property list isinitialized with
default values for the specified class. The classes are:

H5P_FI LE_CREATE

Properties for file creation. See Filesin the HDF User’s Guide for details about the file creation properties.
H5P_FI LE_ACCESS

Properties for file access. See Filesin the HDF User’s Guide for details about the file creation properties.

H5P_DATASET_CREATE

Properties for dataset creation. See Datasets in the HDF User’s Guide for details about dataset creation
properties.

H5P_DATASET XFER

Properties for raw data transfer. See Datasets in the HDF User’s Guide for details about raw data transfer
properties.

H5P_ MOUNT

Properties for file mounting. With this parameter, H5Pcr eat e creates and returns a new mount property list
initialized with default val ues.

Parameters:
H5P_class ttype
IN: The type of property list to create.
Returns:

Returns a property list identifier (pl i st) if successful; otherwise Fail (-1).

52 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pclose
Signature:

herr_t H5Pcl ose(hid_tpli st)
Purpose:

Terminates access to a property list.
Description:

H5Pcl ose terminates access to a property list. All property lists should be closed when the application is finished
accessing them. This frees resources used by the property list.

Parameters:
hid_tpli st
IN: Identifier of the property list to terminate access to.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_class
Signature:

H5P_class t H5Pget _cl ass(hid_tpli st)
Purpose:

Returns the property list class for a property list.
Description:

H5Pget _cl ass returns the property list class for the property list identified by thepl i st parameter. Valid property
list classes are defined in the description of H5Pcr eat e() .

Parameters:
hid_t pli st
IN: Identifier of property list to query.
Returns:

Returns a property list classif successful. Otherwise returns HSP_NO_CLASS (-1).

University of lllinois at Urbana-Champaign 53

HDF5 Reference Manual

Name: H5Pcopy
Signature:
hid_t H5Pcopy (hid_tpli st)
Purpose:
Copies an existing property list to create a new property list.
Description:

H5Pcopy copies an existing property list to create a new property list. The new property list has the same properties
and values as the original property list.

Parameters:
hid_t pli st
IN: Identifier of property list to duplicate.
Returns:

Returns a property list identifier if successful; otherwise returns a negative value.

Name: H5Pget_version
Signature:

herr_t H5Pget _ver si on(hid_tplist,int* boot,int* freelist,int* stab, int* shhdr)
Purpose:

Retrieves the version information of various objects for afile creation property list.
Description:

H5Pget _ver si on retrieves the version information of various objects for afile creation property list. Any pointer
parameters which are passed as NULL are not queried.

Parameters:
hid_t pli st
IN: Identifier of the file creation property list.
int * boot
OUT: Pointer to location to return boot block version number.
int* freelist

OUT: Pointer to location to return global freelist version number.

54 National Center for Supercomputing Applications

HDF5 Release 1.2

int* stab
OUT: Pointer to location to return symbol table version number.
int* shhdr
OUT: Pointer to location to return shared object header version number.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_userblock
Signature:
herr_t H5Pset _user bl ock(hid_t pli st, hsize tsi ze)
Purpose:
Sets user block size.
Description:

H5Pset _user bl ock setsthe user block size of afile creation property list. The default user block sizeis O; it may be
set to any power of 2 equal to 512 or greater (512, 1024, 2048, etc.).

Parameters:
hid_t pli st
IN: Identifier of property list to modify.
hsize tsize
IN: Size of the user-block in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_userblock
Signature:
herr_t H5Pget _user bl ock(hid tplist,hsize t* si ze)
Purpose:
Retrieves the size of a user block.
Description:

H5Pget _user bl ock retrieves the size of a user block in afile creation property list.

University of lllinois at Urbana-Champaign 55

HDF5 Reference Manual

Parameters:
hid_t pli st
IN: Identifier for property list to query.
hsize t* si ze
OUT: Pointer to location to return user-block size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_sizes
Signature:
herr_t H5Pset _si zes(hid tpli st, size tsi zeof _addr, size tsi zeof _si ze)
Purpose:
Sets the byte size of the offsets and lengths used to address objectsin an HDF5 file.
Description:
HoPset _si zes setsthe byte size of the offsets and lengths used to address objects in an HDF5 file. Thisfunctionis
only valid for file creation property lists. Passing in avalue of 0 for one of the sizeof parameters retains the current
value. The default value for both valuesis 4 bytes. Valid values currently are 2, 4, 8 and 16.
Parameters:
hid_tpli st
IN: Identifier of property list to modify.
size tsi zeof _addr
IN: Size of an object offset in bytes.
size tsi zeof _si ze
IN: Size of an object length in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

56 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pget_sizes
Signature:
herr_t H5Pget _si zes(hid_tpl i st, size t* si zeof _addr, Size t* si zeof _si ze)
Purpose:
Retrieves the size of the offsets and lengths used in an HDF5 file.
Description:

H5Pget _si zes retrieves the size of the offsets and lengths used in an HDF5 file. This function isonly valid for file
creation property lists.

Parameters:
hid_t pli st
IN: Identifier of property list to query.
size t* size
OUT: Pointer to location to return offset size in bytes.
size t* size
OUT: Pointer to location to return length size in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_mpi

Signature:
herr_t H5Pset _npi (hid_t pl i st, MPI_Commconm MPI_Infoi nfo)

Purpose:
Retrieves the access mode for parallel 1/0 and the user supplied communicator and info object.

Description:
HoPset _npi stores the access mode for MPIO call and the user supplied communicator and info in the access
property list, which can then be used to open file. This function is available only in the parallel HDF5 library and is
not a collective function.

Parameters:
hid_t pli st

IN: Identifier of property list to modify

University of lllinois at Urbana-Champaign 57

HDF5 Reference Manual

MPI_Comm comm

IN: MPI communicator to be used for file open as defined in MPI_FILE_OPEN of MPI-2. This function does not
make a duplicated corm Any modification to commafter this function call returns may have undetermined effect
to the access property list. Users should call this function again to setup the property list.

MPI_Infoi nfo

IN: MPI info object to be used for file open as defined in MPI_FILE_OPEN of MPI-2. This function does not
make aduplicated i nf o. Any modification toi nf o after this function call returns may have undetermined effect
to the access property list. Users should call this function again to setup the property list.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_ mpi
Signature:
herr_t H5Pget _npi (hid_t pl i st, MPI_Comm*comm MPI_Info*info)
Purpose:
Retrieves the communicator and info object.
Description:

H5Pget _npi retrieves the communicator and info object that have been set by H5Pset_mpi. This functionis
available only in the parallel HDF5 library and is not a collective function.

Parameters:
hid_t pli st
IN: Identifier of afile access property list that has been set successfully by H5Pset mpi.
MPI_Comm* comm
OUT: Pointer to location to return the communicator.
MPI_Info* i nfo
OUT: Pointer to location to return the info object.
Returns:

Returns a non-negative value if the file access property list is set to the MPI. Otherwise returns a negative value.

58 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pset_xfer
Signature:
herr_t H5Pset _xf er (hid_t pl i st, H5D_transfer_t dat a_xf er _node)
Purpose:
Sets the transfer mode of the dataset transfer property list.
Description:

HoPset _xf er setsthe transfer mode of the dataset transfer property list. Thelist can then be used to control the I/O
transfer mode during dataset accesses. This function is available only in the parallel HDF5 library and is not a
collective function.

Valid data transfer modes are:
H5D_XFER_INDEPENDENT
Use independent 1/0 access. (Currently the default mode.)
H5D_XFER_COLLECTIVE
Use MPI collective 1/0 access.
H5D _XFER DFLT
User default 1/0 access.
Parameters:
hid_t pli st
IN: Identifier of a dataset transfer property list
H5D transfer tdat a_xfer _node
IN: Data transfer mode.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_xfer
Signature:

herr_t H5Pget _xfer (hid_tplist, H5D transfer_t* data_xfer _node)
Purpose:

Retrieves the transfer mode from the dataset transfer property list.

University of lllinois at Urbana-Champaign 59

HDF5 Reference Manual

Description:

H5Pget _xf er retrievesthe transfer mode from the dataset transfer property list. This function is available only in the
parallel HDF5 library and is not a collective function.

Parameters:
hid_t pli st
IN: Identifier of a dataset transfer property list.
H5D_transfer_t * dat a_xf er _node
OUT: Pointer to location to return the data transfer mode.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_sym k
Signature:
herr_t H5Pset _sym k(hid_tplist,intik,intlk)
Purpose:
Sets the size of parameters used to control the symbol table nodes.
Description:

H5Pset _sym k setsthe size of parameters used to control the symbol table nodes. This functionis only valid for file
creation property lists. Passing in avalue of O for one of the parameters retains the current value.

i k isone half the rank of atree that stores a symbol table for a group. Internal nodes of the symbol table are on
average 75% full. That is, the average rank of the tree is 1.5 times the value of i k.

| k isone half of the number of symbols that can be stored in a symbol table node. A symbol table node is the leaf of
asymbol table tree which is used to store a group. When symbols are inserted randomly into a group, the group’s
symbol table nodes are 75% full on average. That is, they contain 1.5 times the number of symbols specified by | k.

Parameters:
hid_tpli st
IN: Identifier for property list to query.
intik
IN: Symbol table tree rank.
intlk

IN: Symbol table node size.

60 National Center for Supercomputing Applications

HDF5 Release 1.2

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget sym k
Signature:
herr_t H5Pget _sym k(hid_tplist,int*ik,int* 1 k)
Purpose:
Retrieves the size of the symbol table B-tree 1/2 rank and the symbol table leaf node 1/2 size.
Description:

H5Pget _sym k retrieves the size of the symbol table B-tree 1/2 rank and the symbol table leaf node 1/2 size. This
functionis only valid for file creation property lists. If a parameter valued is set to NULL, that parameter is not
retrieved. See the description for H5Pset _sym k for more information.

Parameters:
hid_t pli st
IN: Property list to query.
int* ik
OUT: Pointer to location to return the symbol table’'s B-tree 1/2 rank.
int* size
OUT: Pointer to location to return the symbol table's leaf node 1/2 size.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset istore k
Signature:
herr_t H5Pset _i store_k(hid_tplist,intik)
Purpose:
Sets the size of the parameter used to control the B-trees for indexing chunked datasets.
Description:
H5Pset _i st or e_k setsthe size of the parameter used to control the B-trees for indexing chunked datasets. This

functionis only valid for file creation property lists. Passing in avalue of O for one of the parameters retains the
current value.

University of Illinois at Urbana-Champaign

61

HDF5 Reference Manual

i k isone half the rank of atree that stores chunked raw data. On average, such atree will be 75% full, or have an
average rank of 1.5 timesthevalueof i k.

Parameters:
hid_t pli st
IN: Identifier of property list to query.
intik
IN: /2 rank of chunked storage B-tree.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_istore k
Signature:

herr_t H5Pget _i store_k(hid tplist,int*ik)
Purpose:

Queriesthe 1/2 rank of an indexed storage B-tree.
Description:

H5Pget _i st ore_k queriesthe 1/2 rank of an indexed storage B-tree. The argument i k may be the null pointer
(NULL). Thisfunction isonly valid for file creation property lists.

See H5Pset _i st or e_k for details.
Parameters:
hid_t pli st
IN: Identifier of property list to query.
int* ik
OUT: Pointer to location to return the chunked storage B-tree 1/2 rank.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

62 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pset_|ayout
Signature:

herr_t H5Pset _| ayout (hid_tplist, H5D_layout t| ayout)
Purpose:

Sets the type of storage used store the raw data for a dataset.
Description:

H5Pset _| ayout setsthe type of storage used store the raw data for a dataset. This functionis only valid for dataset
creation property lists. Valid parametersfor | ayout are:

H5D_COMPACT (Not yet implemented.)

Store raw data and object header contiguously in file. This should only be used for very small amounts of
raw data (suggested less than 1K B).

H5D_CONTIGUOUS
Store raw data separately from object header in one large chunk in the file.
H5D_CHUNKED

Store raw data separately from object header in one large chunk in the file and store chunks of the raw data
in separate locationsin thefile.

Parameters:
hid_tpli st
IN: Identifier of property list to query.
H5D_layout t 1 ayout
IN: Type of storage layout for raw data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget layout
Signature:

H5D_layout t H5Pget _| ayout (hid_tpli st)
Purpose:

Returns the layout of the raw data for a dataset.

University of lllinois at Urbana-Champaign 63

HDF5 Reference Manual

Description:

H5Pget _| ayout returnsthe layout of the raw data for a dataset. This functionis only valid for dataset creation
property lists. Valid typesfor | ayout are:

H5D_COMPACT (Not yet implemented.)
Raw data and object header stored contiguoudly infile.
H5D_CONTIGUOUS
Raw data stored separately from object header in one large chunk in the file.
H5D_CHUNKED
Raw data stored separately from object header in chunks in separate locations in thefile.
Parameters:
hid_t pli st
IN: Identifier for property list to query.
Returns:

Returns the layout type of aa dataset creation property list if successful. Otherwise returns H5D_LAYOUT_ERROR
(-1).

Name: H5Pset_chunk
Signature;

herr_t H5Pset _chunk(hid_t pl i st, int ndi nms, const hsize t * di m)
Purpose:

Sets the size of the chunks used to store a chunked layout dataset.
Description:

H5Pset _chunk setsthe size of the chunks used to store a chunked layout dataset. This function is only valid for
dataset creation property lists. The ndi ns parameter currently must be the same size as the rank of the dataset. The
values of the di marray define the size of the chunks to store the dataset’s raw data. As a side-effect, the layout of the
dataset is changed to H5D_CHUNKED, if it is not already.

Parameters:
hid_tpli st
IN: Identifier for property list to query.
int ndi ns

IN: The number of dimensions of each chunk.

64 National Center for Supercomputing Applications

HDF5 Release 1.2

const hsize t* di m
IN: An array containing the size of each chunk.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_chunk
Signature:

int H5Pget _chunk(hid_tpli st, int max_ndi ns, hsize t* di s)
Purpose:

Retrieves the size of chunks for the raw data of a chunked layout dataset.
Description:

H5Pget _chunk retrieves the size of chunks for the raw data of a chunked layout dataset. This function isonly valid
for dataset creation property lists. At most, max_ndi ns elements of di s will beinitialized.

Parameters:
hid_tpli st
IN: Identifier of property list to query.
int max_ndi ns
OUT: Size of the di ns array.
hsize t* di ns
OUT: Array to store the chunk dimensions.
Returns:

Returns chunk dimensionality successful; otherwise returns a negative value.

Name: H5Pset_alignment
Signature:
herr_t H5Pset _al i gnnent (hid_t pl i st, hsize tt hreshol d, hsize tal i gnment)
Purpose:
Sets alignment properties of afile access property list.
Description:

H5Pset _al i gnnent setsthe alignment properties of afile access property list so that any file object =
THRESHOLD bytes will be aligned on an address which isamultiple of ALIGNMENT. The addresses are relative

University of lllinois at Urbana-Champaign 65

HDF5 Reference Manual

to the end of the user block; the alignment is calculated by subtracting the user block size from the absolute file
address and then adjusting the address to be a multiple of ALIGNMENT.

Default values for THRESHOLD and ALIGNMENT are one, implying no alignment. Generally the default values
will result in the best performance for single-process access to the file. For MPI-10 and other parallel systems, choose
an alignment which is a multiple of the disk block size.

Parameters:
hid_tpli st
IN: Identifier for afile access property list.
hsize tthreshol d
IN: Threshold value.
hsize tal i gnment
IN: Alignment value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_alignment
Signature:

herr_t H5Pget _al i gnnent (hid _tpl i st, hsize t*threshol d, hsize t*al i gnment)
Purpose:

Retrieves the current settings for alignment properties from afile access property list.
Description:

H5Pget _al i gnnent retrieves the current settings for alignment properties from afile access property list. The
t hreshol d and/or al i gnment pointers may be null pointers (NULL).

Parameters:
hid_tpli st
IN: Identifier of afile access property list.
hsize t*t hreshol d
OUT: Pointer to location of return threshold value.
hsize t*al i gnnent
OUT: Pointer to location of return alignment value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

66 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pset_external
Signature:
herr_t H5Pset _ext er nal (hid_t pl i st, const char * nane, off tof f set, hsize tsi ze)
Purpose:
Adds an external file to the list of external files.
Description:
H5Pset _ext er nal adds an external fileto the list of external files.

If adataset is split across multiple files then the files should be defined in order. The total size of the dataset isthe
sum of thesi ze arguments for all the externa files. If the total size islarger than the size of a dataset then the dataset
can be extended (provided the data space also allows the extending).

Thesi ze argument specifies number of bytes reserved for datain the external file. If si ze isset to
H5F_UNLI M TED, the external file can be of unlimited size and no more files can be added to the external fileslist.

Parameters:
hid_tpli st
IN: Identifier of a dataset creation property list.
const char * nane
IN: Name of an externd file.
off tof fset
IN: Offset, in bytes, from the beginning of the file to the location in the file where the data starts.
hsize tsize
IN: Number of bytes reserved in the file for the data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_external_count
Signature:

int H5Pget _ext er nal _count (hid_tplist,)
Purpose:

Returns the number of external files for a dataset.

University of lllinois at Urbana-Champaign 67

HDF5 Reference Manual

Description:
H5Pget _ext er nal _count returnsthe number of external files for the specified dataset.
Parameters:
hid_t pli st
IN: Identifier of adataset creation property list.
Returns:

Returns the number of external filesif successful; otherwise returns a negative value.

Name: H5Pget_external
Signature:
herr_t H5Pget _ext ernal (hid_tpli st,inti dx, size tnane_si ze, char *nane, off t*of f set, hsize t*si ze)
Purpose:
Returns information about an external file.
Description:

H5Pget _ext er nal returns information about an external file. The external file is specified by itsindex, i dx, which
isanumber from zero to N-1, where N isthe value returned by H5Pget _ext er nal _count () . At most nane_si ze
characters are copied into the nanme array. If the external file nameislonger than nane_si ze with the null
terminator, the return valueis not null terminated (similar to st r ncpy()).

If name_si ze is zero or name isthe null pointer, the external file name is not returned. If of f set or si ze are null
pointers then the corresponding information is not returned.

Parameters:
hid_tpli st
IN: Identifier of a dataset creation property list.
intidx
IN: External fileindex.
size tnanme_si ze
IN: Maximum length of name array.
char *nane
OUT: Name of the external file.
off t*of fset

OUT: Pointer to alocation to return an offset val ue.

68 National Center for Supercomputing Applications

HDF5 Release 1.2

hsize t*si ze
OUT: Pointer to alocation to return the size of the external file data.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset fill value
Signature:
herr_tH5Pset _fill _val ue(hid tplist_id,hid ttype_id, constvoid *val ue)
Purpose:
Sets a dataset fill value.
Description:
H5Pset _fil | _val ue setsthefill value for a dataset creation property list.

Theval ue isinterpreted as being of typet ype_i d. This need not be the same type as the dataset, but the library
must be able to convert val ue to the dataset type when the dataset is created.

Notes:
If afill valueis set for adataset (even if thefill valueisall zeros), the fill value will be written to the file. If no fill
valueis set, then HDF5 relies on the underlying file driver (usually a Unix file system) to initialize unwritten parts of
thefile to zeros.

Creating a contiguous dataset with afill value can be a very expensive operation since the optimization has not yet
been implemented that would delay the writing of the fill values until after some data has been written.

Parameters:
hid_tplist_id
IN: Property list identifier.
hid_ttype_id,
IN: The datatype identifier of val ue.
const void *val ue
IN: Thefill value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 69

HDF5 Reference Manual

Name: H5Pget_fill_value
Signature:
herr_t H5Pget _fi Il _val ue(hid tplist_id,hid ttype_id, void*val ue)
Purpose:
Retrieves a dataset fill value.
Description:
HoPget fill _val ue queriesthefill value property of a dataset creation property list.
Thefill valueis returned through the val ue pointer.
Memory is allocated by the caller.
Thefill value will be converted from its current data type to the type specified by t ype_i d.
Parameters:
hid_tplist_id
IN: Property list identifier.
hid_ttype_id,
IN: The datatype identifier of val ue.
const void *val ue
IN: Thefill value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset filter
Signature:

herr_tH5Pset _filter(hid tplist,H5Z filter tfilter,unsignedintfl ags,size tcd_nel nt's, const unsigned
intcd_val ues[])

Purpose:
Adds afilter to the filter pipeline.
Description:

HoPset filter addsthe specifiedfilter and corresponding properties to the end of an output filter pipeline. If
pl i st isadataset creation property list, the filter is added to the permanent filter pipeline; if pl i st isadataset
transfer property list, thefilter is added to the transient filter pipeline.

70 National Center for Supercomputing Applications

HDF5 Release 1.2

Thearray cd_val ues containscd_nel nt s integers which are auxiliary data for the filter. The integer values will be
stored in the dataset object header as part of the filter information.

Thef | ags argument is a bit vector with the following fields specifying certain general properties of the filter:

H5Z_FLAG OPTI ONAL If thishit is set then the filter is optional. If the filter fails (see below) during an
HoDwr i t e() operation then thefilter isjust excluded from the pipeline for the
chunk for which it failed; the filter will not participate in the pipeline during an
H5Dr ead() of the chunk. Thisis commonly used for compression filters: if the
compression result would be larger than the input then the compression filter
returns failure and the uncompressed datais stored in the file. If thisbit is clear
and afilter failsthen HsDwr i t e() or H5Dr ead() also fails.

Note: Thisfunction currently supports only the permanent filter pipeline; pl i st _i d must be a dataset creation property
list.

Parameters:
hid_t pli st
IN: Property list identifier.
H5Z filter_tfilter
IN: Filter to be added to the pipeline.
unsigned int f | ags
IN: Bit vector specifying certain general properties of thefilter.
size tcd_nelnts
IN: Number of elementsincd_val ues
const unsigned int cd_val ues[]
IN: Auxiliary data for thefilter.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_nfilters
Signature:

int H5Pget _nfilters(hid tplist)
Purpose:

Returns the number of filtersin the pipeline.
Description:

HoPget _nfi | t er s returnsthe number of filters defined in the filter pipeline associated with the property list pl i st .

University of lllinois at Urbana-Champaign 71

HDF5 Reference Manual

In each pipeline, the filters are numbered from O through N-1, where N is the value returned by this function. During
output to the file, the filters are applied in increasing order; during input from the file, they are applied in decreasing
order.

H5Pget _nfi | t er s returnsthe number of filtersin the pipeline, including zero (0) if there are none.
Note:

This function currently supports only the permanent filter pipeline; pl i st _i d must be adataset creation property

list.
Parameters:
hid_tpli st
IN: Property list identifier.
Returns:

Returns the number of filtersin the pipelineif successful; otherwise returns a negative value.

Name: H5Pget_filter
Signature:

H5Z filter_t H5Pget _filter (hid tplist,intfilter_nunber,unsignedint*fl ags, size t*cd_nel nts,
unsigned int *cd_val ues, size t narrel en, char nane[])

Purpose:
Returns information about afilter in a pipeline.
Description:

HoPget _fil ter returnsinformation about afilter, specified by itsfilter number, in afilter pipeline, specified by the
property list with which it is associated.

If pl i st isadataset creation property list, the pipeline is a permanent filter pipeline; if pl i st isadataset transfer
property list, the pipelineis atransient filter pipeline.

Oninput, cd_nel nt s indicates the number of entriesin thecd_val ues array, as alocated by the caler; on
return,cd_nel nt s contains the number of values defined by the filter.

filter_nunber isavaue between zero and N-1, as described in H5Pget _nfi | t er s() . The function will return a
negative value if the filter number is out of range.

If nane isapointer to an array of at least nanel en bytes, the filter name will be copied into that array. The name will
be null terminated if namel en islarge enough. The filter name returned will be the name appearing in the file, the
name registered for the filter, or an empty string.

The structure of thef | ags argument isdiscussed in HsPset _filter().
Note:

This function currently supports only the permanent filter pipeling; pl i st must be adataset creation property list.

72 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t pli st
IN: Property list identifier.
intfilter_nunber
IN: Sequence number within the filter pipeline of the filter for which information is sought.
unsigned int *f | ags
OUT: Bit vector specifying certain general properties of the filter.
size t*cd_nelnts
IN/OUT: Number of elementsincd_val ues
unsigned int *cd_val ues
OUT: Auxiliary data for the filter.
size tnanel en
IN: Anticipated number of charactersin nane.
char name[]
OUT: Name of thefilter.

Returns:

Returns the filter identification number if successful. Otherwise returns H5Z_FILTER_ERROR (-1).

Name: H5Pget_driver
Signature:
H5F driver_t H5Pget _dri ver (hid_tplist,)
Purpose:
Returns alow-level file driver identifier.
Description:
H5Pget _dri ver returnstheidentifier of the low-level file driver. Valid identifiers are;
+ H5F_LOW_STDIO (0)
+ H5F_LOW_SEC2 (1)
« H5F_LOW_MPIO (2)

+ H5F_LOW_CORE (3)

University of lllinois at Urbana-Champaign 73

HDF5 Reference Manual

« H5F _LOW_SPLIT (4)
« H5F_LOW_FAMILY (5)
Parameters:
hid_t pli st
IN: Identifier of afile access property list.
Returns:

Returns alow-level driver identifier if successful. Otherwise returns H5F_ LOW_ERROR (-1).

Name: H5Pset_stdio
Signature:
herr_t H5Pset _st di o(hid tpli st)
Purpose:
Setsthe low level file driver to use the functions declared in the stdio.h.
Description:

H5Pset _st di o setsthelow level file driver to use the functions declared in the stdio.h file: fopen(), fseek() or
fseek64(), fread(), fwrite(), and fclose().

Parameters:
hid_t pli st
IN: Identifier of afile access property list.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_stdio
Signature:
herr_t H5Pget _st di o(hid tpli st)
Purpose:
Determines whether the file access property list is set to the stdio driver.
Description:

H5Pget _st di o checksto determine whether the file access property list is set to the stdio driver. In the future,
additional arguments may be added to this function to match those added to H5Pset_stdio().

74 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t pli st
IN: Identifier of afile access property list.

Returns:

Returns a non-negative value if the file access property list is set to the stdio driver. Otherwise returns a negative

value.

Name: H5Pset_sec?
Signature:
herr_t H5Pset _sec2(hid_tplist,)
Purpose:
Sets the low-level file driver to use the declared functions.
Description:

H5Pset _sec2 setsthe low-level file driver to use the functions declared in the unistd.h file: open(), Iseek() or
Iseek64(), read(), write(), and close().

Parameters:
hid_t pli st
IN: Identifier of afile access property list.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_sec2
Signature:
returntype HsPget _sec2(hid_t pli st)
Purpose:
Checks whether the file access property list is set to the sec2 driver.
Description:

H5Pget _sec2 checks to determine whether the file access property list is set to the sec2 driver. In the future,
additional arguments may be added to this function to match those added to H5Pset_sec2().

University of Illinois at Urbana-Champaign

75

HDF5 Reference Manual

Parameters:
hid_t pli st
IN: Identifier of afile access property list.
Returns:

Returns a non-negative value if the file access property list is set to the sec2 driver. Otherwise returns a negative
value.

Name: H5Pset_core
Signature:

herr_t H5Pset _cor e(hid_tplist, size ti ncrenent)
Purpose:

Sets the low-leve file driver to use malloc() and free().
Description:

H5Pset _cor e setsthelow-level filedriver tousenal | oc() andfree() . Thisdriver isrestricted to temporary files
which are not larger than the amount of virtual memory available. Thei ncr ement argument determines the file
block size and memory will be allocated in multiples of INCREMENT bytes. A libera i ncr ement resultsin fewer
calstoreal | oc() and probably less memory fragmentation.

Parameters:
hid_tpli st
IN: Identifier of afile access property list.
size ti ncrenent
IN: File block size in bytes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_core
Signature:

herr_t H5Pget _cor e(hid_tpli st, size t*i ncrenent)
Purpose:

Determines whether the file access property list is set to the core driver.

76 National Center for Supercomputing Applications

HDF5 Release 1.2

Description:

H5Pget _cor e checks to determine whether the file access property list is set to the core driver. On success, the block
sizeisreturned through thei ncr enent if it is not the null pointer. In the future, additional arguments may be added
to this function to match those added to H5Pset _core() .

Parameters:
hid_tpli st
IN: Identifier of the file access property list.
size t*i ncrenent
OUT: Pointer to alocation to return the file block size (in bytes).
Returns:

Returns a non-negative value if the file access property list is set to the core driver. Otherwise returns a negative
value.

Name: H5Pset_split
Signature:

herr_t H5Pset _spl it (hid tpli st, const char *nmet a_ext, hid tneta_pl i st, const char *raw_ext, hid t
raw plist)

Purpose:
Setsthe low-level driver to split meta data from raw data.
Description:

H5Pset _spl it setsthelow-level driver to split meta data from raw data, storing meta datain one file and raw data
in another file. The metafile will have a name which is formed by adding meta_extension (recommended default
value: . met a) to the end of the base name and will be accessed according to the meta_properties. The raw file will
have a name which is formed by appending raw_extension (recommended default value: . r aw) to the base name and
will be accessed according to the raw_properties. Additional parameters may be added to this function in the future.

Parameters:
hid_tpli st
IN: Identifier of the file access property list.
const char * net a_ext
IN: Name of the extension for the metafile filename. Recommended default value: . net a.
hid tmeta_pl i st

IN: Identifier of the metafile access property list.

University of Illinois at Urbana-Champaign 17

HDF5 Reference Manual

const char *r aw_ext
IN: Name extension for the raw file filename. Recommended default value: . r aw.
hid_traw pli st

IN: Identifier of the raw file access property list.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_split

Signature:

herr_t H5Pget _spl it (hid tplist,size tneta_ext_size, char *net a_ext, hid t*meta_properties, size t
raw_ext _si ze, char *raw_ext, hid t*raw properties)

Purpose:

Determines whether the file access property list is set to the split driver.

Description:

H5Pget _spl i t checksto determine whether the file access property list is set to the split driver. On successful
return, met a_properti es andraw_properti es will point to copies of the meta and raw access property lists
which should be closed by calling H5Pcl ose() when the application is finished with them, but if the meta and/or
raw file has no property list then a negative valueis returned for that property list identifier. Also, if

met a_ext ensi on and/or r aw_ext ensi on are non-null pointers, at most met a_ext _si ze or r aw_ext _si ze
characters of the meta or raw file name extension will be copied to the specified buffer. If the actual name is longer
than what was reguested then the result will not be null terminated (similar to st r ncpy()). In the future, additional
arguments may be added to this function to match those added to H5Pset _split ().

Parameters:

hid_t pli st
IN: Identifier of the file access property list.
Size tneta_ext _size
IN: Number of characters of the meta file extension to be copied to thenet a_ext buffer.
char *met a_ext
OUT: Metafile extension.
hid t*neta_properties
OUT: Pointer to a copy of the meta file access property list.
size traw _ext _si ze

IN: Number of characters of the raw file extension to be copied to ther aw_ext buffer.

78

National Center for Supercomputing Applications

HDF5 Release 1.2

char *r aw_ext
OUT: Raw file extension.
hid t*raw properties
OUT: Pointer to a copy of the raw file access property list.
Returns:

Returns a non-negative value if the file access property list is set to the split driver. Otherwise returns a negative
value.

Name: H5Pset_gc_references
Signature:
herr_t H5Pset _spl it (hid_tplist, unsignedgc_ref)
Purpose:
Sets garbage collecting references flag.
Description:
HoPset _gc_ref er ences setsthe flag for garbage collecting references for the file.
Dataset region references and other reference types use space in an HDF5 file's global heap. If garbage collectionis
on and the user passesin an uninitialized value in areference structure, the heap might get corrupted. When garbage

collection is off, however, and the user re-uses a reference, the previous heap block will be orphaned and not returned
to the free heap space.

When garbage collection is on, the user must initialize the reference structures to 0 or risk heap corruption.
The default value for garbage collecting referencesiis off.
Parameters:
hid_tpli st
IN: File access property list identifier.
unsigned gc_r ef
IN:

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 79

HDF5 Reference Manual

Name: H5Pget_gc_references

Signature:

herr_t H5Pget _spl it (hid_tpli st, unsigned *gc_ref)

Purpose:

Returns garbage collecting references setting.

Description:

H5Pget _gc_r ef er ences returns the current setting for the garbage collection references property from the
specified file access property list. The garbage collection references property is set by H5Pset_gc_references.

Parameters:

hid_t pli st
IN: File access property list identifier.
unsigned gc_r ef

OUT:

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_family

Signature:

herr_tH5Pset _fami | y(hid tplist, hsize tnenb_si ze, hid tmenb_plist)

Purpose:

Setsthe file access properties list to thef ami | y driver.

Description:

HoPset _fami | y setsthe file access propertiesto usethef ani | y driver; any previously defined driver properties are
erased from the property list. See “File Families” inHIE=5 Files section of thédDF5 User’s Guide.

Each member of the file family will useenb_pl i st as its file access property list.

Thenenb_si ze argument gives the logical size in bytes of each family member; the actual size could be smaller
depending on whether the file contains holes. The member size is only used when creating a new file or truncating an
existing file; otherwise the member size comes from the size of the first member of the family being opened.

Note: If the size of thef f _t type is four bytes, then the maximum family member size is usually 2*31-1 because
the byte at offset 2,147,483,647 is generally inaccessible.

Additional parameters may be added to this function in the future.

80

National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t pli st
IN: Identifier of the file access property list.
hsize t nenb_si ze
IN: Logical size, in bytes, of each family member.
hid_t menb_pl i st
IN: Identifier of the file access property list for each member of the family.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_family
Signature:

herr_t H5Pget _f ami | y(hid_tti d, hsize t*menb_si ze, hid_t*menb_pli st)
Purpose:

Determines whether the file access property list is set to the family driver.
Description:

HoPget _fami | y checksto determine whether the file access property list is set to the family driver. On successful
return, access_properties will point to a copy of the member access property list which should be closed by calling
H5Pcl ose() when the application is finished with it. If memb_size is non-null then it will contain the logical sizein
bytes of each family member. In the future, additional arguments may be added to this function to match those added
toH5Pset _fam ly().

Parameters:
hid_t pli st
IN: Identifier of the file access property list.
hsize t*menb_si ze
OUT: Logical size, in bytes, of each family member.
hid t*menb_pl i st
OUT: Identifier of the file access property list for each member of the family.
Returns:

Returns a non-negative value if the file access property list is set to the family driver. Otherwise returns a negative
value.

University of lllinois at Urbana-Champaign 81

HDF5 Reference Manual

Name: H5Pset_cache
Signature:
herr_t H5Pset _cache(hid_tpli st,intndc_nel nt's, size trdcc_nbyt es, doublerdcc_w0)
Purpose:
Sets the number of elementsin the meta data cache and the total number of bytes in the raw data chunk cache.
Description:

H5Pset _cache sets the number of elements (objects) in the meta data cache and the total number of bytes in the raw
data chunk cache.

Sets or queries the meta data cache and raw data chunk cache parameters. The plist is afile access property list. The
number of elements (objects) in the meta data cache is mdc_nelmts. The total size of the raw data chunk cache and
the preemption policy is rdcc_nbytes and wO. For H5Pget _cache() any (or al) of the pointer arguments may be
null pointers.

The RDCC_WO0 value should be between 0 and 1 inclusive and indicates how much chunks that have been fully read
are favored for preemption. A value of zero means fully read chunks are treated no differently than other chunks (the
preemption is strictly LRU) while a value of one means fully read chunks are always preempted before other chunks.
Parameters:
hid_t pli st
IN: Identifier of the file access property list.
intmdc_nel nts
IN: Number of elements (objects) in the meta data cache.
size trdcc_nbytes
IN: Total size of the raw data chunk cache, in bytes.
doublerdcc_wo
IN: Preemption policy.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

82 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pget_cache
Signature:
herr_t H5Pget _cache(hid_tpli st,int*ndc_nel nts, size t*rdcc_nbyt es, double*rdcc_w0)
Purpose:
Retrieves maximum sizes of meta data cache and RDCC_WO.
Description:
Retrieves the maximum possible number of elementsin the meta data cache and the maximum possible number of
bytes and the RDCC_WO value in the raw data chunk cache. Any (or all) arguments may be null pointersin which
case the corresponding datum is not returned.
Parameters:
hid_tpli st
IN: Identifier of the file access property list.
int*mdc_nel nt s
IN/OUT: Number of elements (objects) in the meta data cache.
size t*rdcc_nbytes
IN/OUT: Total size of the raw data chunk cache, in bytes.
double*rdcc_wo
IN/OUT: Preemption policy.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_hyper_cache
Signature:
herr_t H5Pset _hyper _cache(hid_t pl i st, unsigned cache, unsigned i nit)
Purpose:
Indicates whether to cache hyperdlab blocks during I/O.
Description:

Given a dataset transfer property list, H5Pset _hyper _cache indicates whether to cache hyperslab blocks during
1/0, aprocess which can significantly increase |/O speeds.

The parameter | i mi t sets the maximum size of the hyperslab block to cache. If ablock is smaller than that limit, it

University of lllinois at Urbana-Champaign 83

HDF5 Reference Manual

may still not be cached if no memory is available. Setting the limit to 0 (zero) indicates no limitation on the size of
block to attempt to cache.

The default is to cache blocks with no limit on block size for serial 1/0 and to not cache blocks for parallel /0.
Parameters:
hid_t pli st
IN: Dataset transfer property list identifier.
unsigned cache
IN:
unsigned | i mi t
IN: Maximum size of the hyperslab block to cache. 0 (zero) indicates no limit.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_hyper_cache
Signature:

herr_t H5Pget _hyper cache(hid_tpli st, unsigned cache, unsignedlimit)
Purpose:

Returns information regarding the caching of hyperslab blocks during I/0.
Description:

Given a dataset transfer property list, H5Pget _hyper _cache returns instructions regarding the caching of hyperslab
blocks during I/O. These parameters are set with the H5Pset _hyper _cache function.

Parameters:
hid_tpli st
IN: Dataset transfer property list identifier.
unsigned cache
OUT:
unsigned | i mi t
OUT: Maximum size of the hyperslab block to cache. 0 (zero) indicates no limit.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

84 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pset_btree ratios
Signature:
herr_t H5Pset _btree_rati os(hid_tpli st, doublel ef t, doublenmi ddl e, doubleri ght)
Purpose:
Sets B-tree split ratios for a dataset transfer property list.
Description:

HoPset _btree_rati os setsthe B-tree split ratios for a dataset transfer property list. The split ratios determine what
percent of children go in the first node when a node splits.

Theratio | ef t isused when the splitting node is the left-most node at itslevel in thetree; theratiori ght isused
when the splitting node is the right-most node at its level; and the ratio i dd! e isused for all other cases.

A node which isthe only node at its level in the tree usestheratior i ght when it splits.
All ratios are real numbers between 0 and 1, inclusive.
Parameters:
hid_tpli st
IN: The dataset transfer property list identifier.
doublel ef t
IN: The B-tree split ratio for left-most nodes.
doubleri ght
IN: The B-tree split ratio for right-most nodes and lone nodes.
doubleni ddl e
IN: The B-tree split ratio for all other nodes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_btree ratios
Signature:

herr_t H5Pget _btree_rati os(hid_tpli st, double*| ef t , double *ni ddl e, double*ri ght)
Purpose:

Gets B-tree split ratios for a dataset transfer property list.

University of lllinois at Urbana-Champaign 85

HDF5 Reference Manual

Description:
H5Pget _btree_rati os returnsthe B-tree split ratios for a dataset transfer property list.

The B-tree split ratios are returned through the non-NULL arguments| ef t , ni ddl e, and ri ght , as set by the
H5Pset _btree_rati os function.

Parameters:
hid_t pli st
IN: The dataset transfer property list identifier.
doublel ef t
OUT: The B-tree split ratio for left-most nodes.
doubleri ght
OUT: The B-tree split ratio for right-most nodes and lone nodes.
doubleni ddl e
OUT: The B-tree split ratio for al other nodes.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_buffer
Signature:
herr_t H5Pset _buf f er (hid tpli st, size tsize, void*t conv, void * bkg)
Purpose:
Sets type conversion and background buffers.
Description:

Given a dataset transfer property list, H5SPset _buf f er setsthe maximum size for the type conversion buffer and
background buffer and optionally supplies pointers to application-allocated buffers. If the buffer size is smaller than
the entire amount of data being transferred between the application and the file, and a type conversion buffer or
background buffer is required, then strip mining will be used.

Note that there are minimum size requirements for the buffer. Strip mining can only break the data up along the first
dimension, so the buffer must be large enough to accommodate a compl ete slice that encompasses all of the
remaining dimensions. For example, when strip mining a 100x200x300 hyperslab of a simple data space, the buffer
must be large enough to hold 1x200x300 data elements. When strip mining a 100x200x300x150 hyperslab of a
simple data space, the buffer must be large enough to hold 1x200x300x150 data el ements.

If t conv and/or bkg are null pointers, then buffers will be allocated and freed during the data transfer.

The default value for the maximum buffer is 1 Mb.

86 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t pli st
IN: Identifier for the dataset transfer property list.
size tsize
IN: Size for the type conversion and background buffers.
voidt conv
IN: Pointer to application-allocated type conversion buffer.
void bkg
IN: Pointer to application-allocated background buffer.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_buffer
Signature:

size t H5Pget _buf f er (hid_tpl i st, void**t conv, void **bkg)
Purpose:

Reads buffer settings.
Description:

H5Pget _buf f er readsvalues previously set with H5Pset_buffer().
Parameters:

hid_tpli st

IN: Identifier for the dataset transfer property list.

void **t conv

OUT: Address of the pointer to application-allocated type conversion buffer.

void * * bkg
OUT: Address of the pointer to application-allocated background buffer.
Returns:

Returns buffer size if successful; otherwise 0 on failure.

University of Illinois at Urbana-Champaign

87

HDF5 Reference Manual

Name: H5Pset_preserve
Signature:
herr_t H5Pset _preserve(hid_tpli st, hbool_t st atus)
Purpose:
Sets the dataset transfer property list status to TRUE or FALSE.
Description:
HoPset _pr eser ve setsthe dataset transfer property list statusto TRUE or FALSE.
When reading or writing compound data types and the destination is partially initialized and the read/write is
intended to initialize the other members, one must set this property to TRUE. Otherwise the I/O pipeline treats the
destination datapoints as completely uninitialized.
Parameters:
hid_tpli st
IN: Identifier for the dataset transfer property list.
hbool_t st at us
IN: Status of for the dataset transfer property list (TRUE/FALSE).
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_preserve
Signature:

int H5Pget _preserve(hid_tpli st)
Purpose:

Checks status of the dataset transfer property list.
Description:

H5Pget _pr eser ve checks the status of the dataset transfer property list.
Parameters:

hid_t pli st

IN: Identifier for the dataset transfer property list.

Returns:

Returns TRUE or FAL SE if successful; otherwise returns a negative value.

88 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Pset_deflate
Signature:

herr_t H5Pset _def | ate(hid_tplist,intl evel)
Purpose:

Sets compression method and compression level.
Description:

HoPset _def | at e setsthe compression method for a dataset creation property list to H5D COVPRESS DEFLATE and
the compression level to | evel , which should be avalue from zero to nine, inclusive. Lower compression levels are
faster but result in less compression. Thisis the same algorithm as used by the GNU gzip program.

Parameters:
hid_tpli st
IN: Identifier for the dataset creation property list.
intlevel
IN: Compression level.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pset_vlen_mem_manager
Signature:

herr_t H5Pset _vl en_nmem manager (hid_t pl i st, HSMM_allocate t al | oc, void *al | oc_i nf o, HSMM_free t
free,void*free_info)

Purpose:
Sets the memory manager for variable-length datatype allocation in H5Dr ead and H5Dvl en_recl ai m
Description:

H5Pset _vl en_mem manager setsthe memory manager for variable-length datatype allocation in H5Dr ead and free
inH5Dvl en_recl ai m

Theal | oc and f r ee parameters identify the memory management routines to be used. If the user has defined
custom memory management routines, al | oc and/or f r ee should be set to make those routine calls (i.e., the name of
the routine is used as the value of the parameter); if the user prefersto use the system’'smal | oc and/or f r ee, the

al | oc and f r ee parameters, respectively, should be set to NULL

University of lllinois at Urbana-Champaign 89

HDF5 Reference Manual

The prototypes for these user-defined functions would appear as follows:

typedef void *(*H5MM al | ocat e_t)(Size tsi ze, void *al | oc_i nf 0) ;

typedef void (*H5SMM f r ee_t)(void *mem void *f r ee_i nf o) ;
Theal | oc_i nf o andf r ee_i nf o parameters can be used to pass along any required information to the user’s
memory management routines.

In summary, if the user has defined custom memory management routines, the name(s) of the routines are passed in
theal | oc and f r ee parameters and the custom routines’ parameters are passed intheal | oc_i nfo andfree_i nfo
parameters. If the user wishes to use the system mal | oc and f r ee functions, the al | oc and/or f r ee parameters are
set to NULL and theal | oc_i nf o and f r ee_i nf o parameters are ignored.

Parameters:

hid_t pli st
IN: Identifier for the dataset transfer property list.
H5MM_allocate tal | oc
IN: User'salocate routine, or NULL for system mal | oc.
void *al | oc_info
IN: Extra parameter for user’s allocation routine. Ignored if preceding parameter is NULL.
HS5MM free tfree
IN: User'sfreerouting, or NULL for systemfr ee.
void*free_info

IN: Extra parameter for user’s free routine. Ignored if preceding parameter is NULL.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Pget_vien_mem_manager

Signature:

herr_t H5Pget _vl en_nmem manager (hid_t pl i st, HSMM_allocate t *al | oc, void **al | oc_i nf o, HSMM_free t
*free,void**free_info)

Purpose:

Gets the memory manager for variable-length datatype allocation in H5Dr ead and H5Tr ecl ai m vl en.

Description:

H5Pget _vl en_mem manager isthe companion function to H5Pset _vl en_nmem manager , returning the parameters
set by that function.

90

National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t pli st
IN: Identifier for the dataset transfer property list.
H5MM_allocate tal | oc
OUT: User'sallocate routine, or NULL for system nal | oc.

void *al l oc_info

OUT: Extra parameter for user’s allocation routine. Ignored if preceding parameter is NULL.

HS5MM free tfree
OUT: User'sfreeroutine, or NULL for systemfr ee.
void*free_info
OUT: Extra parameter for user's free routine. Ignored if preceding parameter is NULL.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Last modified: 20 October 1999

University of Illinois at Urbana-Champaign

91

HDF5 Reference Manual

92 National Center for Supercomputing Applications

HDF5 Release 1.2

H5R: Reference I nterface

Reference APl Functions

The Reference interface allows the user to create references to specific objects and data regionsin an HDF5 file.

e H5Rcreate e H5Rget region
» H5Rdereference e H5Rget object_type

Name: H5Rcreate
Signature:
herr_t H5Rcr eat e(void *r ef , hid_t1 oc_i d, const char *nanme, H5R type tref _type, hid tspace_id)
Purpose:
Creates areference.
Description:

H5Rcr eat e creates the reference, r ef , of the type specified inr ef _t ype, pointing to the object nane located at
| oc_id.

The parameters| oc_i d and name are used to locate the object.
The parameter space_i d identifies the region to be pointed to (for dataset region references).
Parameters:
void *r ef
OUT: Reference created by the function call.
hid tloc_id
IN: Location identifier used to locate the object being pointed to.
congst char *nane
IN: Name of object at location | oc_i d.
HSR type tref _type
IN: Type of reference.
hid_t space_i d
IN: Dataspace identifier with selection. Used for dataset region references.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 93

HDF5 Reference Manual

Name: H5Rdereference
Signature:
hid_t H5Rder ef er ence(hid_t dat aset , H5R type tref _t ype, void *ref)
Purpose:
Opens the HDF5 object referenced.
Description:
Given areference to some object, H5Rder ef er ence opens that object and returns an identifier.
The parameter r ef _t ype specifiesthe referencetype of r ef . r ef _t ype may contain either of the following values:
« H5R OBJECT (0)
e H5R_DATASET_REG ON(1)
Parameters:
hid_t dat aset
IN: Dataset containing reference object.
HSR type tref _type
IN: Thereferencetypeof ref .
void *r ef
IN: Reference to open.
Returns:

Returns valid identifier if successful; otherwise returns a negative value.

Name: H5Rget region
Signature:
hid_t H5Rget _r egi on(hid_t dat aset , H5R type tref _t ype, void *ref)
Purpose:
Retrieves a dataspace with the specified region selected.
Description:

Given areference to an object r ef , HSRget _r egi on creates a copy of the dataspace of the dataset pointed to and
defines a selection in the copy which isthe region pointed to.

A National Center for Supercomputing Applications

HDF5 Release 1.2

The parameter r ef _t ype specifiesthe reference type of r ef . r ef _t ype may contain the following value:
e H5R_DATASET_REG ON(1)
Parameters:
hid_t dat aset
IN: Dataset containing reference object.
HSR type tref _type,
IN: Thereferencetypeof ref .
void *r ef
IN: Reference to open.
Returns:

Returns avalid identifier if successful; otherwise returns a negative value.

Name: H5Rget object_type
Signature:
int H5Rget _obj ect _t ype(hid_ti d, void *r ef)
Purpose:
Retrieves the type of object that an object reference points to.
Description:
Given areference to an object r ef , HSRget _obj ect _t ype returns the type of the object pointed to.
Parameters:
hid_ti d,

IN: The dataset containing the reference object or the location identifier of the object that the dataset is located
within.

void *r ef
IN: Reference to query.
Returns:

Returns an object type as defined in H5Gpubl i ¢. h; otherwise returns H5G_UNKNON.

Last modified: 30 October 1998

University of lllinois at Urbana-Champaign 95

HDF5 Reference Manual

96 National Center for Supercomputing Applications

HDF5 Release 1.2

H5S. Dataspace I nterface
Dataspace Object API Functions

These functions create and manipulate the dataspace in which to store the elements of a dataset.

H5Screate H5Sget ssimple_extent_npoints H5Sget_select elem_npoints
H5Scopy H5Sget simple_extent_type H5Sget select_elem pointlist
H5Sclose H5Sextent_copy H5Sget select_bounds
H5Screate simple H5Sset_extent_simple H5Sselect_elements

H5Sis simple H5Sset_extent_none H5Sselect_all
H5Soffset_simple H5Sget _select_npoints H5Sselect_none
H5Sget_simple_extent_dims H5Sget_select_hyper_nblocks H5Sselect_valid
H5Sget_simple_extent_ndims H5Sget select_hyper_blocklist H5Sselect_hyperslab

The following H5S functions are included in the HDF5 specification, but have not yet been implemented. They are
described in the The Dataspace Interface (H5S) section of the HDF5 User’s Guide..

¢ H5Scommit e H5Sopen e H5Ssubspace
e H5Sis subspace ¢ H5Sselect_op e H5Ssubspace _name
¢ H5Slock e H5Sselect_order e H5Ssubspace location

Name: H5Screate
Signature:

hid_t H5Scr eat e(H5S class ttype)
Purpose:

Creates a new dataspace of a specified type.
Description:

H5Scr eat e creates a new dataspace of a particular t ype. The types currently supported are H5S_SCALAR and
H5S_SI MPLE; others are planned to be added later.

Parameters:
H5S class ttype
The type of dataspace to be created.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 97

HDF5 Reference Manual

Name: H5Screate simple
Signature:
hid_t H5Scr eat e_si npl e(int r ank, const hsize t * di ns, const hsize t * maxdi s)
Purpose:
Creates a new simple data space and opens it for access.
Description:

H5Scr eat e_si npl e creates a new simple data space and opens it for access. Ther ank isthe number of dimensions
used in the dataspace. The di ns argument is the size of the simple dataset and the maxdi ns argument is the upper
limit on the size of the dataset. maxdi s may be the null pointer in which case the upper limit isthe same asdi ns. If
an element of maxdi ns is zero then the corresponding dimension is unlimited, otherwise no element of naxdi ns
should be smaller than the corresponding element of di ns. The dataspace identifier returned from this function
should be released with H5Sc| ose or resource leaks will occur.

Parameters:
int rank
Number of dimensions of dataspace.
const hsize t* di ns
An array of the size of each dimension.
const hsize t* maxdi ns
An array of the maximum size of each dimension.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative val ue.

Name: H5Scopy
Signature:

hid_t H5Scopy(hid_t space_i d)
Purpose:

Creates an exact copy of a dataspace.
Description:

H5Scopy creates a new dataspace which is an exact copy of the dataspace identified by space_i d. The dataspace
identifier returned from this function should be released with H5Scl ose or resource leaks will occur.

98 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t space_i d

Identifier of dataspace to copy.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative val ue.

Name: H5Sselect_elements
Signature:

herr_t H5Ssel ect _el ement s(hid_t space_i d, H5S seloper_t op, const size t num el enent s, const hssize t
*coord[])

Purpose:
Selects array elements to be included in the selection for a dataspace.
Description:

H5Ssel ect _el ement s selects array elementsto beincluded in the selection for the space_i d dataspace. The
number of elements selected must be set with thenum el enent s. The coor d array is atwo-dimensional array of
size dataspace rank by num el ermrent s (ie. alist of coordinates in the array). The order of the element coordinatesin
the coor d array also specifiesthe order in which the array elements are iterated through when 1/O is performed.
Duplicate coordinate locations are not checked for.

The selection operator op determines how the new selection is to be combined with the previously existing selection
for the dataspace. The following operators are supported:

H5S_SELECT_SET Replaces the existing selection with the parameters from this call.
Overlapping blocks are not supported with this operator.

H5S_SELECT_OR Adds the new selection to the existing selection.

When operators other than H5S_SELECT_SET are used to combine a hew selection with an existing selection, the
selection ordering isreset to 'C’ array ordering.

Parameters:
hid_t space_i d
I dentifier of the dataspace.
H5S seloper_top
operator specifying how the new selection isto be combined with the existing selection for the dataspace.
const size tnum el enent s

Number of elements to be selected.

University of lllinois at Urbana-Champaign 99

HDF5 Reference Manual

const hssize t *coord[]
A 2-dimensional array specifying the coordinates of the elements being selected.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sselect all
Signature:
herr_t H5Ssel ect _al | (hid_tspace_i d)
Purpose:
Selects the entire dataspace.
Description:
H5Ssel ect _al | selectsthe entire extent of the dataspace space_i d.

More specifically, H5Ssel ect _al | selectsthe special 5S_SELECT _ALL region for the dataspace space_i d.
H5S SELECT_ALL selectsthe entire dataspace for any dataspace it is applied to.

Parameters:
hid_t space_i d
IN: Theidentifier for the dataspace in which the selection is being made.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sselect _none
Signature:
herr_t H5Ssel ect _none(hid _tspace_i d)
Purpose:
Resets the selection region to include no elements.
Description:
H5Ssel ect _none resets the selection region for the dataspace space_i d to include no elements.
Parameters:
hid_tspace_id

IN: The identifier for the dataspace in which the selection is being reset.

100 National Center for Supercomputing Applications

HDF5 Release 1.2

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sselect valid
Signature:
htri_t H5Ssel ect _val i d(hid_t space_i d)
Purpose:
Verifies that the selection is within the extent of the dataspace.
Description:

H5Ssel ect _val i d verifiesthat the selection for the dataspace space_i d is within the extent of the dataspace if the
current offset for the dataspace is used.

Parameters:
hid_t space_i d
Theidentifier for the dataspace in which the selection is being reset.
Returns:

Returns a positive value, for TRUE, if the selection is contained within the extent or 0 (zero), for FALSE, if it is not.
Returns a negative value on error conditions such as the selection or extent not being defined.

Name: H5Sget_ simple_extent_npoints
Signature:

hsize t H5Sget _si npl e_ext ent _npoi nt s(hid_t space_i d)
Purpose:

Determines the number of elementsin a dataspace.
Description:

H5Sget _si npl e_ext ent _npoi nt s determines the number of elementsin a dataspace. For example, asimple 3-
dimensional dataspace with dimensions 2, 3, and 4 would have 24 elements.

Parameters:
hid_tspace_id
ID of the dataspace object to query
Returns:

Returns the number of elements in the dataspace if successful; otherwise returns O.

University of lllinois at Urbana-Champaign 101

HDF5 Reference Manual

Name: H5Sget_select_npoints
Signature:

hssize t H5Sget _sel ect _npoi nt s(hid_t space_i d)
Purpose:

Determines the number of elements in a dataspace selection.
Description:

H5Sget _sel ect _npoi nt s determines the number of elements in the current selection of a dataspace.
Parameters:

hid_t space_i d

Dataspace identifier.

Returns:

Returns the number of elements in the selection if successful; otherwise returns a negative value.

Name: H5Sget simple_extent_ndims
Signature:

int H5Sget _si npl e_ext ent _ndi ns(hid_t space_i d)
Purpose:

Determines the dimensionality of a dataspace.
Description:

H5Sget _si npl e_ext ent _ndi ms determines the dimensionality (or rank) of a dataspace.
Parameters:

hid_t space_i d

Identifier of the dataspace

Returns:

Returns the number of dimensionsin the dataspace if successful; otherwise returns a negative value.

102 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Sget simple_extent_dims
Signature:
int H5Sget _si npl e_ext ent _di ns(hid_t space_i d, hsize t *di ns, hsize t *maxdi ns)
Purpose:
Retrieves dataspace dimension size and maximum size.
Description:

H5Sget _si npl e_ext ent _di ns returns the size and maximum sizes of each dimension of a dataspace through the
di ms and maxdi s parameters.

Parameters:
hid_t space_i d
IN: Identifier of the dataspace object to query
hsize t*di ns
OUT: Pointer to array to store the size of each dimension.
hsize t *maxdi ns
OUT: Pointer to array to store the maximum size of each dimension.
Returns:

Returns the number of dimensionsin the dataspace if successful; otherwise returns a negative value.

Name: H5Sget_simple_extent_type
Signature:
H5S class t H5Sget _si npl e_ext ent _t ype(hid_t space_i d)
Purpose:
Determine the current class of a dataspace.
Description:
H5Sget _si npl e_ext ent _t ype queries a dataspace to determine the current class of a dataspace.
The function returns a class name, one of the following: H5S_SCALAR, H5S_SI MPLE, or H5S_NONE.
Parameters:
hid_t space_i d

Dataspace identifier.

University of lllinois at Urbana-Champaign 103

HDF5 Reference Manual

Returns:

Returns a dataspace class name if successful; otherwise H5S NO_CLASS (-1).

Name: H5Sset_extent_simple
Signature:

herr_t H5Sset _ext ent _si npl e(hid_t space_i d, intrank, const hsize t*current _si ze, const hsize t
*maxi mum si ze)

Purpose:
Sets or resets the size of an existing dataspace.

Description:
H5Sset _ext ent _si npl e sets or resets the size of an existing dataspace.
r ank isthe dimensionality, or number of dimensions, of the dataspace.

current_si ze isan array of sizer ank which contains the new size of each dimension in the dataspace.
maxi mum si ze isan array of sizer ank which contains the maximum size of each dimension in the dataspace.

Any previous extent is removed from the dataspace, the dataspace type is set to H5S_SI MPLE, and the extent is set as
specified.

Parameters:
hid_t space_i d

Dataspace identifier.
int rank

Rank, or dimensionality, of the dataspace.
const hsize t *current _si ze

Array containing current size of dataspace.
const hsize t *maxi mum si ze

Array containing maximum size of dataspace.
Returns:

Returns a dataspace identifier if successful; otherwise returns a negative value.

104 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Sis simple
Signature:
htri_t H5Si s_si npl e(hid_t space_i d)
Purpose:
Determines whether a dataspace is a simple dataspace.
Description:

H5Si s_si npl e determines whether a dataspace is a simple dataspace. [Currently, all dataspace objects are smple
dataspaces, complex dataspace support will be added in the future]

Parameters:
hid_t space_i d
Identifier of the dataspace to query
Returns:

When successful, returns a positive value, for TRUE, or 0 (zero), for FALSE. Otherwise returns a negative value.

Name: H5Soffset_simple
Signature:
herr_t H5Sof f set _si npl e(hid_t space_i d, const hssize t *of f set)
Purpose:
Sets the offset of a simple dataspace.
Description:

H5Sof f set _si npl e setsthe offset of asimple dataspace space_i d. Theof f set array must be the same number of
elements as the number of dimensions for the dataspace. If the of f set array is set to NULL, the offset for the
dataspace is reset to 0.

This function allows the same shaped selection to be moved to different locations within a dataspace without
requiring it to be redefined.

Parameters:
hid_t space_i d
IN: Theidentifier for the dataspace object to reset.
const hssize t *of f set

IN: The offset at which to position the selection.

University of lllinois at Urbana-Champaign 105

HDF5 Reference Manual

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sextent_copy
Signature:
herr_t H5Sext ent _copy(hid_tdest _space_i d, hid tsource_space_id)
Purpose:
Copies the extent of a dataspace.
Description:

H5Sext ent _copy copiesthe extent from sour ce_space_i d todest _space_i d. Thisaction may change the type
of the dataspace.

Parameters:
hid_t dest _space_i d
IN: The identifier for the dataspace to which the extent is copied.
hid tsource_space_id
IN: The identifier for the dataspace from which the extent is copied.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sset_extent_none
Signature:

herr_t H5Sset _ext ent _none(hid_t space_i d)
Purpose:

Removes the extent from a dataspace.
Description:

H5Sset _ext ent _none removes the extent from a dataspace and setsthe typeto H5S NO CLASS.
Parameters:

hid_tspace_id

Theidentifier for the dataspace from which the extent is to be removed.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

106 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Sselect_hyperslab
Signature:

herr_t H5Ssel ect _hyper sl ab(hid_t space_i d, H5S seloper_top, const hssize t *st art, const hsize t *stri de
const hsize_t *count , const hsize t *bl ock)

Purpose:
Selects a hyperslab region to add to the current selected region.
Description:

H5Ssel ect _hyper sl ab selects a hyperslab region to add to the current selected region for the dataspace specified
by space_i d.

Thestart,stride, count, andbl ock arrays must be the same size as the rank of the dataspace.

The selection operator op determines how the new selection is to be combined with the already existing selection for
the dataspace.

The following operators are supported:

H5S_SELECT_SET Replaces the existing selection with the parameters from this call. Overlapping
blocks are not supported with this operator.

H5S_SELECT_OR Adds the new selection to the existing selection.
Thest art array determines the starting coordinates of the hyperslab to select.

Thest ri de array chooses array |ocations from the dataspace with each valuein the st ri de array determining how
many elements to move in each dimension. Setting avalueinthest ri de array to 1 moves to each element in that
dimension of the dataspace; setting avalue of 2 inalocationinthest ri de array movesto every other element in
that dimension of the dataspace. In other words, the st ri de determines the number of elements to move from the
start locationin each dimension. Stride values of O are not allowed. If the st ri de parameter isNULL, a contiguous
hyperslab is selected (asif each valueinthest ri de array was set to all 1's).

Thecount array determines how many blocks to select from the dataspace, in each dimension.

Thebl ock array determines the size of the element block selected from the dataspace. If the bl ock parameter is set
to NULL, the block size defaultsto a single element in each dimension (asif the bl ock array was set to all 1's).

For example, in a2-dimensional dataspace, setting st art to[1,1], stri de to[4,4], count to[3,7], and bl ock to
[2,2] selects 21 2x2 blocks of array elements starting with location (1,1) and selecting blocks at locations (1,1), (5,1),
(9,1), (1,5), (5,5), etc.
Regions selected with this function call default to C order iteration when /O is performed.

Parameters:

hid_t space_i d

IN: Identifier of dataspace selection to modify

University of lllinois at Urbana-Champaign 107

HDF5 Reference Manual

H5S seloper_t op
IN: Operation to perform on current selection.
const hssize t*start
IN: Offset of start of hyperslab
const hsize t *count
IN: Number of blocks included in hyperslab.
const hsize t*stri de
IN: Hyperdlab stride.
const hsize t *bl ock
IN: Size of block in hyperdlab.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sget_select _hyper_nblocks
Signature:
hssize t H5Sget _sel ect _hyper _nbl ocks(hid_t space_i d)
Purpose:
Get number of hyperslab blocks.
Description:
H5Sget _sel ect _hyper _nbl ocks returns the number of hyperslab blocks in the current dataspace selection.
Parameters:
hid_t space_i d
IN: Identifier of dataspace to query.
Returns:

Returns the number of hyperslab blocks in the current dataspace selection if successful. Otherwise returns a negative
value.

108 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Sget_select_hyper_blocklist
Signature:

herr_t H5Sget _sel ect _hyper _bl ockl i st (hid_t space_i d, hsize t st art bl ock, hsize t nunbl ocks, hsize t
*puf)

Purpose:
Getsthelist of hyperslab blocks currently selected.
Description:

H5Sget _sel ect _hyper _bl ockl i st returnsalist of the hyperslab blocks currently selected. Starting with the
st art bl ock-th block in thelist of blocks, nunbl ocks blocks are put into the user’s buffer. If the user’s buffer fills
up before nunbl ocks blocks are inserted, the buffer will contain only as many blocks as fit.

The block coordinates have the same dimensionality (rank) as the dataspace they are located within. The list of
blocksis formatted as follows:
<"start" coordinate>, immediately followed by
<"opposite" corner coordinate>, followed by
the next "start" and "opposite” coordinates,
etc.
until all of the selected blocks have been listed.
No guarantee is implied as the order in which blocks are listed.
Parameters:
hid_t space_i d
IN: Dataspace identifier of selection to query.
hsize tstartbl ock
IN: Hyperslab block to start with.
hsize t nunbl ocks
IN: Number of hyperdlab blocksto get.
hsize t *buf
OUT: List of hyperslab blocks selected.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 109

HDF5 Reference Manual

Name: H5Sget_select_elem npoints
Signature:

hssize t H5Sget _sel ect _el em npoi nt s(hid_t space_i d)
Purpose:

Gets the number of element pointsin the current selection.
Description:

H5Sget _sel ect _el em npoi nt s returns the number of element pointsin the current dataspace selection.
Parameters:

hid_t space_i d

IN: Identifier of dataspace to query.

Returns:

Returns the number of element points in the current dataspace selection if successful. Otherwise returns a negative
value.

Name: H5Sget_select_elem_pointlist
Signature:

herr_t H5Sget _sel ect _el em poi ntli st (hid tspace_i d hsize tstart poi nt, hsize t nunpoi nts, hsize t
*puf)

Purpose:
Getsthelist of element points currently selected.
Description:

H5Sget _sel ect _el em poi nt | i st returnsthe list of element pointsin the current dataspace selection. Starting
with the st ar t poi nt -th point in the list of points, nunpoi nt s points are put into the user’s buffer. If the user’s
buffer fills up before nunpoi nt s points are inserted, the buffer will contain only as many points as fit.

The element point coordinates have the same dimensionality (rank) as the dataspace they are located within. The list
of element points is formatted as follows:

<coordinate>, followed by

the next coordinate,

etc.
until all of the selected element points have been listed.

The points are returned in the order they will be iterated through when the selection is read/written from/to disk.

110 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_t space_i d
IN: Dataspace identifier of selection to query.
hsize tstart poi nt
IN: Element point to start with.
hsize t nunpoi nt's
IN: Number of element points to get.
hsize t *buf
OUT: List of element points selected.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Sget_select_bounds

Signature:

herr_t H5Sget _sel ect _bounds(hid tspace_i d hsize t*start, hsize t*end)

Purpose:

Gets the bounding box containing the current selection.

Description:

H5Sget _sel ect _bounds retrieves the coordinates of the bounding box containing the current selection and places

them into user-supplied buffers.

Thest art and end buffers must be large enough to hold the dataspace rank number of coordinates.

The bounding box exactly contains the selection. 1.e., if a2-dimensional element selection is currently defined as

containing the points (4,5), (6,8), and (10,7), then the bounding box will be (4, 5), (10, 8).
The bounding box calculation includes the current offset of the selection within the dataspace extent.

Calling thisfunction on anone selection will return FAI L.

Parameters:
hid_t space_i d
IN: Identifier of dataspace to query.

hsize t*start

OUT: Starting coordinates of the bounding box.

hsize t *end

University of Illinois at Urbana-Champaign

111

HDF5 Reference Manual

OUT: Ending coordinates of the bounding box, i.e., the coordinates of the diagonally opposite corner.
Returns:

Returns a negative value if successful; otherwise returns a negative value.

Name: H5Sclose
Signature:

herr_t H5Scl ose(hid tspace_id)
Purpose:

Releases and terminates access to a dataspace.
Description:

H5Scl ose releases a dataspace. Further access through the dataspace identifier isillegal. Failureto release a
dataspace with this call will result in resource leaks.

Parameters:
hid_tspace_id
Identifier of dataspace to release.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Last modified: 20 October 1999

112 National Center for Supercomputing Applications

HDF5 Release 1.2

H5T: Datatype I nterface
Datatype Object API Functions

These functions create and manipulate the datatype which describes elements of a dataset.

General Datatype Operations Atomic Datatype Properties Compound Datatype Properties
H5T create H5Tset_size H5Tget_ nmembers
H5Topen H5Tget_order H5Tget_member_name
H5Tcommit H5Tset_order H5Tget_member_offset
H5Tcommitted H5Tget_precision H5Tget_member_dims
H5T copy H5Tset_precision H5Tget_member_type
H5Tequal H5Tget offset H5Tinsert
H5Tlock H5Tset_offset H5Tpack
H5Tget class H5Tget pad H5Tinsert_array
H5Tget size H5Tset_pad
H5Tget_super H5Tget_sign Enumeration Datatypes
H5Tclose H5Tset_sign

H5Tget_fields H5Tenum_create
Conversion Functions H5Tset fields H5Tenum_insert

H 5Tget_ebi as H5Tenum_nameof
H5Tconvert H5Tset ebias H5Tenum_val ueof
H5Tfind H5Tget_norm H5Tget_member_value
H5Tset_overflow H5Tset norm
H5Tget overflow H 5Tget_i npad Opaque Datatypes
H5Tregister H5Tset_inpad
H5Tunregister H 5Tget_CSF;t H5Tset_tag

. H5Tset_cset HOTget_tag

Variable-length Datatypes H5Tget_strpad

H5Tset_strpad

H5Tvlen create

The Datatype interface, H5T, provides a mechanism to describe the storage format of individual data points of a data set
and is hopefully designed in such away asto allow new features to be easily added without disrupting applications that
use the data type interface. A dataset (the H5D interface) is composed of a collection or raw data points of homogeneous
type organized according to the data space (the H5S interface).

A datatype is a collection of datatype properties, all of which can be stored on disk, and which when taken as a whole,
provide complete information for data conversion to or from that datatype. The interface provides functions to set and
query properties of a datatype.

A data point is an instance of a datatype, which is an instance of atype class. We have defined a set of type classes and
properties which can be extended at a later time. The atomic type classes are those which describe types which cannot be
decomposed at the datatype interface level; all other classes are compound.

See the “Datatype Interface (H5T)” section in tH®F5 User’s Guide for further information, inclding a complete list of
all supported datatypes.

University of lllinois at Urbana-Champaign 113

HDF5 Reference Manual

Name: H5T open
Signature:
hid_tH5Topen(hid_t 1 oc_i d, const char * nane)
Purpose:
Opens a named datatype.
Description:

H5Topen opens a named datatype at the location specified by | oc_i d and returns an identifier for the datatype.
| oc_i d iseither afile or group identifier. The identifier should eventually be closed by calling H5Tcl ose() to

rel ease resources.
Parameters:
hid tloc_id

IN: A file or group identifier.
const char * nane
IN: A datatype name, defined within the file or group identified by | oc_i d.
Returns:

Returns a named datatype identifier if successful; otherwise returns a negative value.

Name: H5Tcommit
Signature:

herr_tH5Tconmi t (hid_t 1 oc_i d, const char * name, hid_ttype)
Purpose:

Commits atransient datatype to afile, creating a new named datatype.
Description:

H5Tconmi t commits atransient datatype (not immutable) to afile, turned it into a named datatype. Thel oc_i d is
either afile or group identifier which, when combined with nane, refers to a new named datatype.

Parameters:
hid tloc_id
IN: A file or group identifier.
const char * nane

IN: A datatype name.

114 National Center for Supercomputing Applications

HDF5 Release 1.2

hid_ttype
IN: A datatype identifier.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tcommitted
Signature:
htri_tH5Tconmi t t ed(hid_tt ype)
Purpose:
Determines whether a datatype is a named type or atransient type.
Description:

H5Tconmi t t ed queries atype to determine whether the type specified by thet ype identifier isanamed type or a
transient type. If this function returns a positive value, then the type is named (that is, it has been committed, perhaps
by some other application). Datasets which return committed datatypes with H5Dget _t ype() are able to share the
datatype with other datasets in the same file.

Parameters:
hid_ttype
IN: Datatype identifier.
Returns:

When successful, returns a positive value, for TRUE, if the datatype has been committed, or 0 (zero), for FALSE, if the
datatype has not been committed. Otherwise returns a negative value.

Name: H5Tinsert_array
Signature:

herr_tH5Ti nsert _array(hid_t parent _i d, const char *nane, size t of f set , int ndi ns, const size t *di m const
int *per m hid_t menber _i d)

Purpose:
Adds an array member to a compound datatype.
Description:

H5Ti nsert _arr ay adds a new member to the compound datatype par ent _i d. The member is an array with ndi s
dimensionality and the size of the array isdi m The new member’s name, name, must be unique within the compound
datatype. Theof f set argument defines the byte offset of the start of the member in an instance of the compound
datatype and menber _i d isthe type identifier of the new member. The total member size should be relatively small.

University of lllinois at Urbana-Champaign 115

HDF5 Reference Manual

The functionality of the per mparameter has not yet been implemented. Currently, per mis best set to NULL. (When
implemented, per mwill specify the mapping of dimensions within a struct. At that time, aNULL value for per mwill
mean no mappiing change is to take place. Thus, using a value of NULL ensures that application behavior will remain
unchanged upon implementation of this functionality.)

Parameters:
hid_t parent _i d
IN: Identifier of the parent compound datatype.
congt char *name
IN: Name of new member.
size tof f set
IN: Offset to start of new member within compound datatype.
int ndi ns
IN: Dimensionality of new member. Valid values are 0 (zero) through 4 (four).
const size t*di m
IN: Size of new member array.
const int *perm
IN: Pointer to buffer to store the permutation vector of the field.
hid_t menber _i d
IN: Identifier of the datatype of the new member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tfind
Signature:
H5T_conv_t H5Tfi nd(hid_tsrc_id, hid_tdst _i d, H5T cdata t**pcdata)
Purpose:
Finds a conversion function.
Description:
H5Tf i nd finds a conversion function that can handle a conversion fromtypesrc_i d totypedst _i d. Thepcdat a

argument is a pointer to a pointer to type conversion data which was created and initialized by the soft type
conversion function of this path when the conversion function was installed on the path.

116 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid tsrc_id
IN: Identifier for the source datatype.
hid_tdst_id
IN: Identifier for the destination datatype.
H5T cdata t**pcdat a
IN: Pointer to type conversion data.
Returns:

Returns a pointer to a suitable conversion function if successful. Otherwise returns NULL.

Name: H5T convert
Signature:
herr_t H5Tconvert (hid_tsrc_i d, hid tdst_i d, size tnel nt s, void *buf , void *backgr ound)
Purpose:
Converts data from between specified datatypes.
Description:

H5Tconvert convertsnel nt s elements from the type specified by thesrc_i d identifier to typedst _i d. The
source elements are packed in buf and on return the destination will be packed in buf . That is, the conversionis
performed in place. The optional background buffer is an array of nel nt s values of destination type which are
merged with the converted values to fill in cracks (for instance, backgr ound might be an array of structs with the a
and b fields already initialized and the conversion of buf suppliesthe c and d field values).

Parameters:
hid tsrc_id
Identifier for the source datatype.
hid_tdst_id
Identifier for the destination datatype.
size tnelnts
Size of array buf .
void *buf

Array containing pre- and post-conversion values.

University of lllinois at Urbana-Champaign 117

HDF5 Reference Manual

void *backgr ound
Optional background buffer.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tset_overflow
Signature:

herr_tH5Tset _over fl om(H5T overflow tf unc)
Purpose:

Sets the overflow handler to a specified function.
Description:

H5Tset _over f | ow sets the overflow handler to be the function specified by f unc. f unc will be called for all
datatype conversions that result in an overflow.

See the definition of H5T_over fl ow_t in H5Tpubl i ¢. h for documentation of arguments and return values. The
prototype for H5T_over f |l ow t isasfollows:
herr t (*H5T overflow t)(hid t src_id, hid_t dst_id, void *src_buf, void *dst_buf);
The NULL pointer may be passed to remove the overflow handler.
Parameters:
H5T overflow tfunc
Overflow function.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_overflow
Signature: H5Tget_overflow ()
H5T _overflow _t H5Tget _over f 1 ow(voi d)
Purpose:
Returns a pointer to the current global overflow function.
Description:

H5Tset _over f | owreturns a pointer to the current global overflow function. This is an application-defined function
that is called whenever a datatype conversion causes an overflow.

118 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
None.
Returns:

Returns a pointer to an application-defined function if successful. Otherwise returns NULL; this can happen if no
overflow handling function is registered.

Name: H5Tcreate
Signature:
hid_t H5Tcr eat e(H5T _class tcl ass, size tsi ze)
Purpose:
Creates anew dataype.
Description:
H5Tcr eat e creates a new dataype of the specified class with the specified number of bytes.
The following datatype classes are supported with this function:
e H5T_COVPOUND
e H5T_OPAQUE
e H5T_ENUM
Use H5Tcopy to create integer or floating-point datatypes.
The datatype identifier returned from this function should be released with H5Tcl ose or resource leaks will resullt.
Parameters:
H5T class tcl ass
Class of datatype to create.
size tsize
The number of bytes in the datatype to create.
Returns:

Returns datatype identifier if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 119

HDF5 Reference Manual

Name: H5Tvlen create
Signature:
hid_t H5Tvl en_cr eat e(hid_t base_type_id)
Purpose:
Creates a new variable-length dataype.
Description:
H5Tvl en_cr eat e creates a new variable-length (VL) dataype.

The base datatype will be the datatype that the sequence is composed of, characters for character strings, vertex
coordinates for polygon lists, etc. The base type specified for the VL datatype can be of any HDF5 datatype,
including another VL datatype, a compound datatype or an atomic datatype.

When necessary, use H5Tget _super to determine the base type of the VL datatype.
The datatype identifier returned from this function should be released with H5Tcl ose or resource leaks will result.
Parameters:
hid tbase_type_id
Base type of datatype to create.
Returns:

Returns datatype identifier if successful; otherwise returns a negative value.

Name: H5T copy
Signature:
hid_t H5Tcopy(hid_ttype_i d)
Purpose:
Copies an existing datatype.
Description:
H5Tcopy copies an existing datatype. The returned type is always transient and unlocked.

Thet ype_i d argument can be either a datatype identifier, a predefined datatype (defined in H5Tpubl i c. h), or a
dataset identifier. If t ype_i d isadataset identifier instead of a datatype identifier, then this function returns a
transient, modifiable datatype which is a copy of the dataset’s datatype.

The datatype identifier returned should be released with H5Tcl ose or resource leaks will occur.

120 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_ttype_id

Identifier of datatype to copy. Can be a datatype identifier, a predefined datatype (defined in H5Tpubl i c. h), or
adataset identifier.

Returns:

Returns a datatype identifier if successful; otherwise returns a negative value

Name: H5Tequal
Signature:
htri_t H5Tequal (hid_ttype_i d1, hid ttype i d2)
Purpose:
Determines whether two datatype identifiers refer to the same datatype.
Description:
H5Tequal determines whether two datatype identifiers refer to the same datatype.
Parameters:
hid ttype_id1l
Identifier of datatype to compare.
hid ttype_id2
Identifier of datatype to compare.
Returns:

When successful, returns a positive value, for TRUE, if the datatype identifiers refer to the same datatype, or 0 (zero),
for FALSE. Otherwise returns a negative value.

Name: H5Tlock
Signature:
herr_t H5Tl ock(hid ttype id)
Purpose:
Locks a datatype.
Description:

H5TI ock locks the datatype specified by thet ype_i d identifier, making it read-only and non-destrucible. Thisis
normally done by the library for predefined datatypes so the application does not inadvertently change or delete a

University of lllinois at Urbana-Champaign 121

HDF5 Reference Manual

predefined type. Once a datatype islocked it can never be unlocked.

Parameters:

hid ttype id

Identifier of datatype to lock.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_class

Signature:

H5T class t H5Tget _cl ass(hid ttype_id)

Purpose:

Returns the datatype class identifier.

Description:

H5Tget _cl ass returns the datatype class identifier.

Valid class identifiers, as defined in H5Tpubl i c. h, are:

Parameters:

H5T_I NTEGER (0)
H5T_FLOAT (1)
H5T_TI ME (2)
H5T_STRI NG (3)
H5T_BI TFI ELD (4)
H5T_OPAQUE (5)
H5T_COMPOUND (6)
H5T_ENUM(7)
H5T_REFERENCE (8)

hid ttype id

Identifier of datatype to query.

Returns:

Returns datatype class identifier if successful; otherwise HST_NO_CLASS (-1).

122

National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Tget_size
Signature:

size t H5Tget _si ze(hid ttype_id)
Purpose:

Returns the size of a datatype.
Description:

H5Tget _si ze returns the size of a datatype in bytes.
Parameters:

hid_ttype_id

Identifier of datatype to query.

Returns:

Returns the size of the datatype in bytes if successful; otherwise 0.

Name: H5Tset_size
Signature:

herr_tH5Tset _si ze(hid _ttype_id, size tsi ze)
Purpose:

Sets the total size for an atomic datatype.
Description:

H5Tset _si ze setsthetotal sizein bytes, si ze, for an atomic datatype (this operation is not permitted on compound
datatypes). If the size is decreased so that the significant bits of the datatype extend beyond the edge of the new size,
then the ‘ offset’ property is decreased toward zero. If the ‘ offset’ becomes zero and the significant bits of the datatype
still hang over the edge of the new size, then the number of significant bitsis decreased. Adjusting the size of an
H5T_STRING automatically setsthe precision to 8*size. All datatypes have a positive size.
Parameters:

hid_ttype_id

Identifier of datatype to change size.
size tsize

Sizein bytes to modify datatype.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

University of lllinois at Urbana-Champaign 123

HDF5 Reference Manual

Name: H5Tget_super
Signature:

hid_t H5Tget _super (hid_ttype)
Purpose:

Returns the base datatype from which a datatype is derived.
Description:

H5Tget _super returns the base datatype from which the datatypet ype is derived.

In the case of an enumeration type, the return value is an integer type.
Parameters:

hid_ttype

Datatype identifier for the derived datatype.

Returns:

Returns the datatype identifier for the base datatype if successful; otherwise returns a negative value.

Name: H5Tget_order
Signature:
H5T order_t H5Tget _or der (hid_ttype_id)
Purpose:
Returns the byte order of an atomic datatype.
Description:
H5Tget _or der returns the byte order of an atomic datatype.
Possible return values are;
H5T_ORDER_LE (0)
Little endian byte ordering (default).
H5T_ORDER_BE (1)
Big endian byte ordering.
H5T_ORDER_VAX (2)

VAX mixed byte ordering (not currently supported).

124 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid_ttype_id
Identifier of datatype to query.

Returns:

Returns a byte order constant if successful; otherwise H5T_ORDER_ERROR (-1).

Name: H5Tset_order
Signature:

herr_t H5Tset _order (hid ttype_ i d, HST order_tor der)
Purpose:

Sets the byte ordering of an atomic datatype.

Description:

H5Tset _or der setsthe byte ordering of an atomic datatype. Byte orderings currently supported are:

H5T_ORDER_LE (0)
Little-endian byte ordering (default).
H5T_ORDER_BE (1)
Big-endian byte ordering.
H5T_ORDER_VAX (2)
VAX mixed byte ordering (not currently supported).
Parameters:
hid ttype id
Identifier of datatype to set.
H5T order_torder
Byte ordering constant.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

University of Illinois at Urbana-Champaign

125

HDF5 Reference Manual

Name: H5Tget_precision
Signature:

size t H5Tget _preci si on(hid ttype_id)
Purpose:

Returns the precision of an atomic datatype.
Description:

H5Tget _pr eci si on returns the precision of an atomic datatype. The precision is the number of significant bits
which, unless padding is present, is 8 times larger than the value returned by H5Tget_size().

Parameters:
hid ttype_id
Identifier of datatype to query.
Returns:

Returns the number of significant bitsif successful; otherwise 0.

Name: H5Tset_precision
Signature:
herr_t H5Tset _preci si on(hid_ttype_i d, Size tpreci sion)
Purpose:
Sets the precision of an atomic datatype.
Description:

H5Tset _pr eci si on setsthe precision of an atomic datatype. The precision isthe number of significant bits which,
unless padding is present, is 8 times larger than the value returned by H5Tget_size().

If the precision isincreased then the offset is decreased and then the size isincreased to insure that significant bits do
not "hang over" the edge of the datatype.

Changing the precision of an H5T_STRING automatically changes the size as well. The precision must be a multiple
of 8.

When decreasing the precision of a floating point type, set the locations and sizes of the sign, mantissa, and exponent
fieldsfirst.

126 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid ttype_id
Identifier of datatype to set.
size tpreci sion
Number of bits of precision for datatype.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_offset
Signature:

size tH5Tget _of fset (hid ttype_id)
Purpose:

Retrieves the hit offset of the first significant bit.
Description:

H5Tget _of f set retrievesthe hit offset of the first significant bit. The signficant bits of an atomic datum can be
offset from the beginning of the memory for that datum by an amount of padding. The ‘offset’ property specifies the
number of bits of padding that appear to the "right of" the value. That is, if we have a 32-bit datum with 16-bits of
precision having the value 0x1122 then it will be layed out in memory as (from small byte address toward larger byte
addresses):

Bytepostion | Gl | heacis | Offetso | Offweets
0: [pad] [0x11] [0x22] [pad]
1 [pad] [0x22] [0x11] [pad]
2: [0x11] [pad] [pad] [0x22]
3 [0x22] [pad] [pad] [0x11]
Parameters:
hid_ttype_id

Identifier of datatype to query.

Returns:

Returns a positive offset value if successful; otherwise 0.

University of Illinois at Urbana-Champaign

127

HDF5 Reference Manual

Name: H5Tset_offset
Signature:
herr_t H5Tset _of f set (hid_ttype_i d, size tof fset)
Pur pose:
Sets the bit offset of the first significant bit.
Description:

HoTset _of f set setsthe bit offset of the first significant bit. The signficant bits of an atomic datum can be offset
from the beginning of the memory for that datum by an amount of padding. The ‘ offset’ property specifies the number
of bits of padding that appear to the "right of" the value. That is, if we have a 32-bit datum with 16-bits of precision
having the value 0x1122 then it will be layed out in memory as (from small byte address toward larger byte

addresses):
Byte Position Big—End_ian Big—Engian LittIeEnijian LittIeErldian
Offset=0 Offset=16 Offset=0 Offset=16
0: [pad] [Ox11] [0x22] [pad]
1 [pad] [0x22] [Ox11] [pad]
2 [0x11] [pad] [pad] [0x22]
3 [0x22] [pad] [pad] [Ox11]

If the offset isincremented then the total size isincremented also if necessary to prevent significant bits of the value
from hanging over the edge of the datatype.

The offset of an HS5T_STRING cannot be set to anything but zero.
Parameters:
hid ttype id
Identifier of datatype to set.
size tof f set
Offset of first significant hit.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

128 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Tget_pad
Signature:
herr_t H5Tget _pad(hid_ttype_i d, H5T pad_t* | sb, H5T pad t* nsb)
Purpose:
Retrieves the padding type of the least and most-significant bit padding.
Description:
H5Tget _pad retrieves the padding type of the least and most-significant bit padding. Valid types are:
H5T_PAD_ZERO (0)
Set background to zeros.
H5T_PAD_ONE (1)
Set background to ones.
H5T_PAD_BACKGROUND (2)
Leave background alone.
Parameters:
hid_ttype_id
IN: Identifier of datatype to query.
H5T pad t* I sb
OUT: Pointer to location to return least-significant bit padding type.
H5T _pad t* nsb
OUT: Pointer to location to return most-significant bit padding type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tset_pad
Signature:

herr_t H5Tset _pad(hid_ttype_id, H5T pad tlsb, H5T pad tnsb)
Purpose:

Sets the least and most-significant bits padding types.

University of lllinois at Urbana-Champaign 129

HDF5 Reference Manual

Description:

H5Tset _pad sets the least and most-significant bits padding types.

H5T_PAD_ZERO (0)
Set background to zeros.
H5T_PAD_ONE (1)

Set background to ones.
H5T_PAD_BACKGROUND (2)
Leave background alone.

Parameters:
hid ttype id
Identifier of datatype to set.
H5T pad t1sb
Padding type for least-significant bits.
H5T pad tnsb
Padding type for most-significant bits.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_sign
Signature:

H5T sign_t H5Tget _si gn(hid ttype_id)
Purpose:

Retrieves the sign type for an integer type.

Description:

H5Tget _si gn retrievesthe sign type for an integer type. Valid types are:

H5T_SGN_NONE (0)
Unsigned integer type.

H5T_SGN_2 (1)

Two’s complement signed integer type.

130

National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid ttype_id
Identifier of datatype to query.
Returns:

Returns avalid sign type if successful; otherwise H5T_SGN_ERROR (-1).

Name: H5Tset_sign
Signature:
herr_tH5Tset _si gn(hid_ttype_i d, H5T sign tsign)
Purpose:
Setsthe sign proprety for an integer type.
Description:
H5Tset _si gn setsthe sign proprety for an integer type.
H5T_SGN_NONE (0)
Unsigned integer type.
H5T_SGN_2 (1)
Two's complement signed integer type.
Parameters:
hid ttype_id
Identifier of datatype to set.
H5T _sign_tsign
Sign type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_fields
Signature:

herr_t H5Tget _fi el ds(hid ttype_id, Size t* epos, Size t* esi ze, Size t* npos, Size t* nsi ze)
Pur pose:

Retrieves floating point datatype bit field information.

University of lllinois at Urbana-Champaign 131

HDF5 Reference Manual

Description:

H5Tget _fi el ds retrieves information about the locations of the various bit fields of a floating point datatype. The
field positions are bit positions in the significant region of the datatype. Bits are numbered with the least significant
bit number zero. Any (or even all) of the arguments can be null pointers.

Parameters:
hid ttype_id
IN: Identifier of datatype to query.
size t* epos
OUT: Pointer to location to return exponent bit-position.
size t* esi ze
OUT: Pointer to location to return size of exponent in bits.
size t* npos
OUT: Pointer to location to return mantissa bit-position.
size t* nsi ze
OUT: Pointer to location to return size of mantissain bits.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tset_fields
Signature:
herr_tH5Tset _fi el ds(hid ttype_i d, Size tepos, Size tesi ze, Size t npos, Size tnsi ze)
Purpose:
Setslocations and sizes of floating point bit fields.
Description:

HoTset _fi el ds setsthe locations and sizes of the various floating point bit fields. The field positions are bit
positions in the significant region of the datatype. Bits are numbered with the least significant bit number zero.

Fields are not allowed to extend beyond the number of bits of precision, nor are they allowed to overlap with one
another.

Parameters:
hid ttype id

Identifier of datatype to set.

132 National Center for Supercomputing Applications

HDF5 Release 1.2

size tepos

Exponent bit position.
size tesi ze

Size of exponent in bits.
size t npos

Mantissa bit position.
size tnsi ze

Size of mantissain bits.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_ebias
Signature:

size t H5Tget _ebi as(hid ttype_id)
Purpose:

Retrieves the exponent bias of a floating-point type.
Description:

H5Tget _ebi as retrieves the exponent bias of a floating-point type.
Parameters:

hid ttype id

Identifier of datatype to query.

Returns:

Returns the bias if successful; otherwise 0.

Name: H5Tset_ebias
Signature:

herr_t H5Tset _ebi as(hid_ttype_i d, Size tebi as)
Purpose:

Sets the exponent bias of a floating-point type.

University of Illinois at Urbana-Champaign

133

HDF5 Reference Manual

Description:
H5Tset _ebi as setsthe exponent bias of a floating-point type.
Parameters:
hid ttype_id
Identifier of datatype to set.
size tebi as
Exponent bias value.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_norm
Signature:
H5T_norm t H5Tget _nor m(hid_ttype_id)
Purpose:
Retrieves mantissa normalization of a floating-point datatype.
Description:
H5Tget _nor mretrieves the mantissa normalization of a floating-point datatype. Valid normalization types are:
H5T_NORM_IMPLIED (0)
MSB of mantissais not stored, aways 1
H5T _NORM_MSBSET (1)
MSB of mantissais always 1
H5T_NORM_NONE (2)
Mantissais not normalized
Parameters:
hid ttype_id
Identifier of datatype to query.
Returns:

Returns avalid normalization type if successful; otherwise H5T_NORM ERROR (-1).

134 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Tset_norm
Signature:
herr_t H5Tset _nor n(hid_ttype_i d, H5T_norm_t nor m)
Purpose:
Sets the mantissa normalization of a floating-point datatype.
Description:
H5Tset _nor msets the mantissa normalization of a floating-point datatype. Valid normalization types are:
H5T_NORM_IMPLIED (0)
MSB of mantissais not stored, aways 1
H5T _NORM_MSBSET (1)
MSB of mantissais always 1
H5T_NORM_NONE (2)
Mantissais not normalized
Parameters:
hid ttype_id
Identifier of datatype to set.
HS5T_norm_t norm
Mantissa normalization type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_inpad
Signature:

H5T_pad t H5Tget _i npad(hid_ttype_id)
Purpose:

Retrieves the internal padding type for unused bits in floating-point datatypes.

University of lllinois at Urbana-Champaign 135

HDF5 Reference Manual

Description:

H5Tget _i npad retrieves the internal padding type for unused bitsin floating-point datatypes. Valid padding types
are

H5T_PAD_ZERO (0)
Set background to zeros.
H5T_PAD_ONE (1)
Set background to ones.
H5T_PAD_BACKGROUND (2)
Leave background alone.
Parameters:
hid ttype id
Identifier of datatype to query.
Returns:

Returns avalid padding type if successful; otherwise H5T_PAD ERROR(-1).

Name: H5Tset_inpad
Signature:
herr_t H5Tset _i npad(hid_ttype_i d, H5T pad ti npad)
Purpose:
Fills unused internal floating point bits.
Description:

If any internal bits of afloating point type are unused (that is, those significant bits which are not part of the sign,
exponent, or mantissa), then H5Tset _i npad will be filled according to the val ue of the padding val ue property
i npad. Valid padding types are:

H5T_PAD_ZERO (0)

Set background to zeros.
H5T_PAD_ONE (1)

Set background to ones.
H5T_PAD_BACKGROUND (2)

Leave background alone.

136 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid ttype_id
Identifier of datatype to modify.
H5T_pad t pad
Padding type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_cset
Signature:
H5T cset t H5Tget _cset (hid ttype_id)
Purpose:
Retrieves the character set type of a string datatype.
Description:
H5Tget _cset retrieves the character set type of a string datatype. Valid character set types are:
H5T_CSET_ASCII (0)
Character setisUS ASCI|
Parameters:
hid ttype_id
Identifier of datatype to query.
Returns:

Returns avalid character set type if successful; otherwise H5T_CSET_ERROR (-1).

Name: H5Tset_cset
Signature;
herr_t H5Tset _cset (hid_ttype_id, H5T cset tcset)
Purpose:
Sets character set to be used.
Description:

H5Tset _cset the character set to be used.

University of Illinois at Urbana-Champaign

137

HDF5 Reference Manual

HDF5 is able to distinguish between character sets of different nationalities and to convert between them to the extent
possible. Valid character set types are:

H5T_CSET_ASCII (0)
Character set isUS ASCII.
Parameters:
hid ttype id
Identifier of datatype to modify.
H5T cset tcset
Character set type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_strpad
Signature:
H5T str_ t H5Tget _strpad(hid ttype_id)
Purpose:
Retrieves the string padding method for a string datatype.
Description:
H5Tget _st r pad retrieves the string padding method for a string datatype. Valid string padding types are:
H5T_STR_NULL (0)
Pad with zeros (as C does)
H5T_STR_SPACE (1)
Pad with spaces (as FORTRAN does)
Parameters:
hid ttype_id
Identifier of datatype to query.
Returns:

Returns a valid string padding type if successful; otherwise HST_STR_ERROR (-1).

138 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Tset_strpad
Signature:

herr_t H5Tset _strpad(hid_ttype_i d, H5T str_tstrpad)
Purpose:

Defines the storage mechanism for character strings.
Description:

The method used to store character strings differs with the programming language: C usually null terminates strings
while Fortran left-justifies and space-pads strings. H5Tset _st r pad defines the storage mechanism for the string.
Valid string padding values are;

H5T_STR_NULL (0)
Pad with zeros (as C does)
H5T_STR_SPACE (1)
Pad with spaces (as FORTRAN does)
Parameters:
hid ttype id
Identifier of datatype to modify.
HS5T _str_tstrpad
String padding type.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_nmembers
Signature:
int H5Tget _nmenber s(hid ttype id)
Purpose:
Retrieves the number of fields in a compound datatype.
Description:

H5Tget _nmenber s retrieves the number of fields a compound datatype has.

University of lllinois at Urbana-Champaign 139

HDF5 Reference Manual

Parameters:
hid ttype_id
Identifier of datatype to query.
Returns:

Returns number of members datatype has if successful; otherwise returns a negative value.

Name: H5Tget_member_name
Signature:

char * H5Tget _menber _nane(hid ttype_id,intfiel d_i dx)
Purpose:

Retrieves the name of afield of a compound datatype.
Description:

H5Tget _nenber _name retrieves the name of afield of a compound datatype. Fields are stored in no particular order,
with indexes 0 through N-1, where N is the value returned by H5Tget _nnenber s() . The name of thefield is
allocated with mal | oc() and the caller isresponsible for freeing the memory used by the name.

Parameters:
hid ttype id
Identifier of datatype to query.
intfield_idx
Field index (0-based) of the field name to retrieve.
Returns:

Returns avalid pointer if successful; otherwise NULL.

Name: H5Tget_ member_offset
Signature:

size t H5Tget _nenber _of f set (hid_ttype_i d, int menb_no)
Purpose:

Retrieves the offset of afield of acompound datatype.
Description:

H5Tget _nenber _of f set retrieves the byte offset of the beginning of afield within a compound datatype with
respect to the beginning of the compound data type datum.

140 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid ttype_id
Identifier of datatype to query.
int menb_no
Number of the field whose offset is requested.
Returns:

Returns the byte offset of the field if successful; otherwise returns 0 (zero). Note that zero isavalid offset and that
this function will fail only if acall to H5Tget _menber _di ns() fails with the same arguments.

Name: H5Tget_member_dims
Signature:
int H5Tget _menber _di ms(hid_ttype_id,intfiel d_i dx, Size t *di ns, int *per m)
Purpose:
Returns the dimensionality of the field.
Description:

H5Tget _nmenber _di ms returns the dimensionality of the field. The dimensions and permuation vector are returned
through arguments di ns and per m both arrays of at least four elements. Either (or even both) may be null pointers.

Parameters:
hid ttype_id
Identifier of datatype to query.
intfield idx
Field index (0-based) of the field di ns to retrieve.
size t* dins
Pointer to buffer to store the dimensions of the field.
int* perm
Pointer to buffer to store the permutation vector of the field.
Returns:

Returns the number of dimensions, a number from 0 to 4, if successful. Otherwise returns a negative value.

University of lllinois at Urbana-Champaign 141

HDF5 Reference Manual

Name: H5Tget_member_type
Signature:
hid_t H5Tget _menber _t ype(hid ttype_id,intfiel d_i dx)
Purpose:
Returns the datatype of the specified member.
Description:

H5Tget _nmenber _t ype returns the datatype of the specified member. The caller should invoke H5Tclose() to release
resources associated with the type.

Parameters:
hid ttype_id
Identifier of datatype to query.
intfield idx
Field index (0-based) of the field type to retrieve.
Returns:

Returns the identifier of a copy of the datatype of the field if successful; otherwise returns a negative value.

Name: H5Tinsert
Signature:
herr_t H5Ti nsert (hid ttype_i d, const char * nane, size tof fset, hid tfield id)
Purpose:
Adds a new member to a compound datatype.
Description:

H5Ti nsert adds another member to the compound datatypet ype_i d. The new member has aname which must be
unique within the compound datatype. The of f set argument defines the start of the member in an instance of the
compound datatype, and f i el d_i d isthe datatype identifier of the new member.

Note: Members of a compound datatype do not have to be atomic datatypes, a compound datatype can have a
member which is a compound datatype.

Parameters:
hid ttype id

Identifier of compound datatype to modify.

142 National Center for Supercomputing Applications

HDF5 Release 1.2

const char * nane
Name of the field to insert.
size tof f set
Offset in memory structure of the field to insert.
hid tfield_ id
Datatype identifier of the field to insert.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tpack
Signature:
herr_t H5Tpack(hid ttype id)
Purpose:
Recursively removes padding from within a compound datatype.
Description:

H5Tpack recursively removes padding from within a compound datatype to make it more efficient (space-wise) to
store that data.

Parameters:
hid_ttype_id
Identifier of datatype to modify.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tregister
Signature:
herr_t H5Tr egi st er (H5T _pers t per s, const char * nane, hid tsrc_i d, hid tdst_i d, H5T conv_tfunc)
Purpose:
Registers a conversion function.
Description:

H5Tr egi st er registersahard or soft conversion function for a datatype conversion path.

University of lllinois at Urbana-Champaign 143

HDF5 Reference Manual

The parameter per s indicates whether a conversion function is HARD or SOFT.

A conversion path can have only one hard function. When per s iSHARD, f unc replaces any previous hard function.
If per s isHARD and f unc isthe null pointer, then any hard function registered for this path is removed.

When per s isSOFT, H5Tr egi st er adds the function to the end of the master soft list and replaces the soft function
in all applicable existing conversion paths. Soft functions are used when determining which conversion functionis
appropriate for this path.

The nane is used only for debugging and should be a short identifier for the function.

The path is specified by the source and destination datatypessr c_i d and dst _i d. For soft conversion functions,
only the class of these types isimportant.

The type of the conversion function pointer is declared as:

typedef herr_t (*H5T_conv_t) (hid_tsrc_i d, hid tdst _i d, H5T cdata_t *cdat a, Size_t nel nt s, void *buf ,
void *bkg);

Parameters:

HS5T _pers tpers
HARD for hard conversion functions; SOFT for soft conversion functions.
const char * nane
Name displayed in diagnostic output.
hid tsrc_id
Identifier of source datatype.
hid_tdst_id
Identifier of destination datatype.
HS5T_conv_t f unc

Function to convert between source and destination datatypes.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tunregister

Signature:

Pur

herr_t H5Tunr egi st er (H5T_conv_tfunc)
pose:

Removes a conversion function from all conversion paths.

144

National Center for Supercomputing Applications

HDF5 Release 1.2

Description:
H5Tunr egi st er removes a conversion function from all conversion paths.
The conversion function pointer type declaration is described in H5Tr egi st er .
Parameters:
H5T _conv_t f unc
Function to remove from conversion paths.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tenum_create
Signature:

hid_t H5Tenum cr eat e(hid tparent _id)
Purpose:

Creates a new enumeration datatype.
Description:

H5Tenum cr eat e creates a new enumeration datatype based on the specified base datatype, par ent _i d, which
must be an integer type.

Parameters:
hid_tparent _i d
IN: Datatype identifier for the base datatype.
Returns:

Returns the datatype identifier for the new enumeration datatype if successful; otherwise returns a negative value.

Name: H5Tenum _insert
Signature:
herr_t H5Tenum i nsert (hid_ttype, const char *nane, void *val ue)
Purpose:
Inserts a new enumeration datatype member.
Description:

H5Tenum i nsert inserts anew enumeration datatype member into an enumeration datatype.

University of Illinois at Urbana-Champaign

145

HDF5 Reference Manual

t ype isthe enumeration datatype, nane is the name of the new member, and val ue points to the value of the new
member.

nane and val ue must both be unique withint ype.
val ue pointsto datawhich is of the datatype defined when the enumeration datatype was created.
Parameters:
hid ttype
IN: Datatype identifier for the enumeration datatype.
const char *nane
IN: Name of the new member.
void *val ue
IN: Pointer to the value of the new member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tenum_nameof
Signature:
herr_t H5Tenum nameof (hid_tt ype void *val ue, char *nane, size tsi ze)
Purpose:
Returns the symbol name corresponding to a specified member of an enumeration datatype.
Description:
H5Tenum naneof findsthe symbol name that corresponds to the specified val ue of the enumeration datatypet ype.

At most si ze characters of the symbol nhame are copied into the nane buffer. If the entire symbol name and null
terminator do not fit in the nane buffer, then as many characters as possible are copied (not null terminated) and the
function fails.

Parameters:
hid ttype
IN: Enumeration datatype identifier.
void *val ue,
IN: Value of the enumeration datatype.
char *nane,

OUT: Buffer for output of the symbol name.

146 National Center for Supercomputing Applications

HDF5 Release 1.2

size tsize
IN: Anticipated size of the symbol name, in bytes (characters).
Returns:

Returns a non-negative value if successful. Otherwise returns a negative value and, if si ze alowsit, the first
character of nane isset to NULL.

Name: H5Tenum_valueof
Signature:
herr_t H5Tenum val ueof (hid_t t ype char *nane, void *val ue)
Purpose:
Returns the value corresponding to a specified member of an enumeration datatype.
Description:

H5Tenum val ueof findsthe value that corresponds to the specified name of the enumeration datatypet ype.

Theval ue argument should be at least as large as the value of H5Tget _si ze(t ype) inorder to hold the result.

Parameters:
hid_ttype
IN: Enumeration datatype identifier.
const char *nane,
IN: Symbol name of the enumeration datatype.
void *val ue,
OUT: Buffer for output of the value of the enumeration datatype.
Returns

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tget_ member_value
Signature:

hid_t H5Tget _menber _val ue(hid_tt ype int memb_no, void *val ue)
Purpose:

Returns the value of an enumeration datatype member.

University of Illinois at Urbana-Champaign

147

HDF5 Reference Manual

Description:
H5Tget _nmenber _val ue returns the value of the enumeration datatype member nenb_no.
The member value isreturned in a user-supplied buffer pointed to by val ue.
Parameters:
hid ttype
IN: Datatype identifier for the enumeration datatype.
int renb_no,
IN: Number of the enumeration datatype member.
void *val ue
OUT: Pointer to a buffer for output of the value of the enumeration datatype member.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5Tset_tag
Signature:
herr_t H5Tset _t ag(hid_ttype_i d const char *t ag)
Purpose:
Tags an opaque datatype.
Description:
H5Tset _t ag tags an opaque datatypet ype_i d with aunique ASCI| identifier t ag.
Parameters:
hid ttype_id
IN: Datatype identifier for the opague datatype to be tagged.
const char *t ag
IN: Unique ASCII string with which the opagque datatype isto be tagged.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

148 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5Tget_tag
Signature:
char *H5Tget _t ag(hid ttype_id)
Purpose:
Gets the tag associated with an opaque datatype.
Description:
H5Tget _t ag returns the tag associated with the opaque datatypet ype_i d.
Thetag is returned via a pointer to an allocated string, which the caller must free.
Parameters:
hid ttype id
Datatype identifier for the opaque datatype.
Returns:

Returns a pointer to an allocated string if successful; otherwise returns NULL.

Name: H5Tclose
Signature:
herr_t H5Tcl ose(hid ttype_id)
Pur pose:
Rel eases a datatype.
Description:

H5Tcl ose releases a datatype. Further access through the datatype identifier isillegal. Failure to release a datatype
with this call will result in resource leaks.

Parameters:
hid ttype_id
Identifier of datatype to release.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Last modified: 20 October 1999

University of Illinois at Urbana-Champaign 149

HDF5 Reference Manual

150 National Center for Supercomputing Applications

HDF5 Release 1.2

H5Z:. Compression Interface

Compression API Functions

This function enable the user to configure a new compression method for the local environment.
e Hb5Zregister

HDF5 supports compression of raw data by compression methods built into the library or defined by an application. A
compression method is associated with a dataset when the dataset is created and is applied independently to each storage
chunk of the dataset. The dataset must use the H5D_CHUNKED storage layout.

The HDF5 library does not support compression for contiguous datasets because of the difficulty of implementing random
access for partial 1/0. Compact dataset compression is not supported because it would not produce significant results.

See the Compression section of the HDF5 User’s Guide for further information.

Name: H5Zregister
Signature:

herr_t H5Zr egi st er (H5Z_method_t met hod, const char *name, H5Z func_tcf unc, H5Z func_t uf unc)
Purpose:

Registers new compression and uncompression functions for a method specified by a method number.
Description:

H5Zr egi st er registers new compression and uncompression functions for a method specified by a method number,
met hod. nane is used for debugging and may be the null pointer. Either or both of cf unc (the compression function)
and uf unc (the uncompression method) may be null pointers.

The statistics associated with a method number are not reset by this function; they accumulate over the life of the
library.

Parameters:
H5Z_method_t net hod
Number specifying compression method.
const char *nane
Name associated with the method number.
H5Z func_t cf unc

Compression method.

University of lllinois at Urbana-Champaign 151

HDF5 Reference Manual

H5Z func tuf unc
Uncompression method.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Last modified: 30 October 1998

152 National Center for Supercomputing Applications

HDF5 Release 1.2

H5RA: Ragged Array Interface
Ragged Array APl Functions

The H5RA Interfaceisstrictly experimental at thistime; the interface may change dramatically or support
for ragged arrays may be unavailable in futurein releases. Asaresult, future releases may be unableto
retrieve data stored with thisinterface.

Usethese functions at your own risk!
Do not create any archivesusing thisinterface!

These functions enable the user to store and retrieve data in ragged arrays.

¢ HS5RAcreate « H5RAO0pen ¢ H5RAwrite
¢ HS5RAclose ¢ H5RAread

This version of the Ragged Array interface implements a two-dimensional array where each row of the array is a different
length. It isintended for applications where the distribution of row lengths is such that most rows are near an average
length with only a few rows that are significantly shorter or longer. The raw datais split among two datasets, r aw and
over : ther awdataset is atwo-dimensional chunked dataset whose width is large enough to hold most of the rows while
theover dataset isa heap that stores the ends of rows that overflow the first dataset. A third dataset, called net a,
contains one record for each row and describes what elements, if any, overflow the r aw dataset and where they are stored
intheover dataset. All three datasets are contained in a single group whose name is the name of the ragged array.

Name: H5RAcreate
Signature:
hid_t H5RAcr eat e(hid_t1 oc_i d, const char *nane, hid ttype_i d, hid tplist_id)
Purpose:
Creates aragged array.
Description:

H5RACT eat e creates a new ragged array with the name specified in nane. A ragged array isimplemented as a group
containing three datasets. The dataset r aw is a fixed width dataset which will hold the majority of the data. The
dataset over isaone dimensional heap which will hold the end of rows which aretoo long to fit inr aw Finally, the
met a dataset contains information about the over array. All elements of the ragged array are stored with the same
datatype.

The property list pl i st _i d should contain information about chunking. The chunk width will determine the width of
the r aw dataset while the chunk Iength should be such that the total chunk size is reasonably large since 1/0 will be
performed in units of chunks). If thepl i st _i d does not have a chunk size defined (e.g., H5P_DEFAULT) then this
function will fail.

University of lllinois at Urbana-Champaign 153

HDF5 Reference Manual

Parameters:
hid tloc_id
Location identifier of the dataset.
const char *nane
The assigned name of the data set to be stored in the ragged array.
hid ttype id
Datatype identifier for the ragged array data.
hid_tplist_id
Property list of the dataset.
Returns:

Returns aragged array identifier if successful; otherwise returns a negative value.

Name: H5RAopen
Signature:
hid_t H5RAopen(hid_t1 oc_i d, const char *nane)
Purpose:
Opens aragged array.
Description:
H5RAopen opens an existing ragged array.

The name of the array, name, should be the same that was used when the array was created, i.e., the name of the
group which implements the array.

Parameters:
hid tloc_id
The location identifier of the dataset.
congt char *nane
The name of the ragged array.
Returns:

Returns aragged array identifier if successful; otherwise returns a negative value.

154 National Center for Supercomputing Applications

HDF5 Release 1.2

Name: H5RAclose
Signature:

herr_t H5RAcl ose(hid_tarray_i d)
Purpose:

Closes aragged array.
Description:

H5RAc| ose closes the ragged array specified with the array identifier array_i d.
Parameters:

hid tarray_id

The array identifier for the ragged array to be closed.

Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5RAwrite
Signature:

herr_tH5RAwr i te(hid tarray_id, hssize tstart_row, hsize tnrows, hid_ttype_id, hsize t
si ze[/*nrows*/],void*buf [/ *nrows*/])

Purpose:
Writes to aragged array.
Description:

HSRAwr i t e writes a contiguous set of rows to aragged array beginning at row number st art _r owand continuing
for nr ows rows.

Each row of the ragged array containssi ze[] elements of typet ype_i d and each row is stored in a buffer pointed
tobybuf[].

Datatype conversion takes place at the time of a read or write and is automatic. See the “Data Conversion” section of
The Data Type Interface (H5T) in theHDF5 User’s Guide for a discussion of data conversion, including the range of
conversions currently supported by the HDF5 libraries.

Parameters:
hid tarray_id

Array identifier for the ragged array to be written to.

University of lllinois at Urbana-Champaign 155

HDF5 Reference Manual

hssize tstart _row
Row at which the write will start.
hsize t nrows
Number of rows to be written
hid ttype_id
Datatype identifier for the data to be written.
hsize tsi ze[/*nrows*/]
Lengths of the rows to be written.
void *buf [/ *nr ows*/]
Pointers to buffers containing the data to be written.
Returns:

Returns a non-negative value if successful; otherwise returns a negative value.

Name: H5RAread
Signature:

herr_t H5RAr ead(hid tarray_i d, hssize tstart _row, hsize tnrows, hid_ttype_i d, hsize t
si ze[/*nrows*/],void*buf [/ *nrows*/])

Purpose:
Description:
H5RAr ead reads the contents of one or more rows of the ragged array pointed to by array _i d.
The rowsto be read begin at row st ar t _r owand continue for nr ows rows.
All raw datais converted to typet ype_i d.
The caller must allocatethesi ze[] andbuf[] arrays.

Memory for the data can be allocated by either the caller or the library. In the former case, the caller should initialize
thebuf [] array with pointersto valid memory and the si ze[] array with the lengths of the buffers. In the latter
case, the caller should initialize buf [] with null pointers (the input value of si ze[] isirrelevant in this case) and the
library will allocate memory for each row by calling nmal | oc() .

Datatype conversion takes place at the time of aread or write and is automatic. See the Data Conversion section of
The Data Type Interface (H5T) in the HDF5 User’s Guide for a discussion of data conversion, including the range of
conversions currently supported by the HDF5 libraries.

156 National Center for Supercomputing Applications

HDF5 Release 1.2

Parameters:
hid tarray_id
Array identifier for the ragged array to be read from.
hssize tstart _row
Row at which the read will start.
hsize t nrows
Number of rowsto be read
hid ttype_id
Datatype identifier for the data to be read.
hsize tsi ze[/*nrows*/]
Lengths of the rows to be read.
void *buf [/ *nr ows*/]
Pointers to buffersinto which the datais to be read.
Returns:

Returns a non-negative value if successful. The values of thesi ze[] array will be the true length of each row. If a
row is longer than the caller-allocated length, then si ze[] will contain the true length of the row although not all
elements of that row will be stored in the buffer.

Returns a negative value on failure. The buf [] array will contain it's original pointers (null or otherwise), although
the caller-supplied buffers may have been modified. Thesi ze[] array may also have been modified.

Last modified: 30 October 1998

University of lllinois at Urbana-Champaign 157

HDF5 Reference Manual

158 National Center for Supercomputing Applications

HDF5 Release 1.2

HDF5 Tools
HDF5 Tool Interfaces

These tools enable the user to examine HDF5 filesinteractively.
e h5dump -- A tool for displaying HDF5 file contents
¢ hbIs-- A tool for listing specified features of HDF5 file contents
e hbrepart -- A tool for repartitioning afile, creating afamily of files

¢ hbtoh4 -- A tool for converting an HDF5 file to an HDF4 file.

Tool Name: h5dump
Syntax:
h5dunmp [-h] [-bb] [-header] [-a names] [-d names] [-g names] [-I names] [-t names| file
Pur pose:
Displays HDF5 file contents.
Description:

hsdunp enables the user to interactively examine the contents of an HDF5 file and dump those contents, in human
readable form, to an ASCI| file.

hsdunp displays HDF5 file content on standard output. It may display the content of the whole HDF5 file or selected
objects, which can be groups, datasets, links, attributes, or data types.

The - header option displays object header information only.

Names are the absolute names of the objects. hs5dunp displays objects in the order same as the command order. If a
name does not start with a slash, h5dunp begins searching for the specified object starting at the root group.

If an object is hard linked with multiple names, h5dunp displays the content of the object in the first occurrence.
Only the link information is displayed in later occurrences.

h5dunp assigns aname for any unnamed data type in the form of #oid1: oid2, where oid1 and oid2 are the object
identifiers assigned by the library. The unnamed types are displayed within the root group.

Data types are displayed with standard type names. For example, if adata set is created with H5T_NATI VE_| NT type
and the standard type name for integer on that machineisH5T_STD | 32BE, h5dunp displaysH5T_STD_| 32BE as
the type of the data set.

The h5dunp output is described in detail in the DDL for HDF5, the Data Description Language document.

University of lllinois at Urbana-Champaign 159

HDF5 Reference Manual

Optionsand Parameters:
-h
Prints information on this command.

- bb

Displays the contents of the boot block. The default is not to display.

- header
Displays header information only; no datais displayed.
- a names
Displays the specified attribute(s).
- d names
Displays the specified dataset(s).
- g hames
Displays the specified group(s) and all the members.
-1 names
Displays the values of the specified soft link(s).
-t names
Displays the specified named data type(s).
file
The file to be examined.
Current Status:
The current version of h5dunp displays the following information:
« Group
* group attribute (see Attribute)
e group member
* Dataset
e dataset attribute (see Attribute)
e dataset type (see Datatype)
e dataset space (see Data space)

e dataset data

160

National Center for Supercomputing Applications

HDF5 Release 1.2

o Attribute
e attribute type (see Data type)
e attribute space (see Data space)
« attribute data
« Datatype
e integer type
-H5T_STD_I8BE, H5T_STD_I8LE, H5T _STD_I16BE, ...
» floating point type
- H5T_|EEE_F32BE, H5T |IEEE_F32LE, H5T |IEEE_F64BE, ...
e dtring type
e compound type
- named, unnamed and transient compound type
- integer, floating or string type member
« referencetype
- object references
- dataregions
s enumtype
e Dataspace
e scalar and simple space
e Soft link
« Hardlink
* Loop detection
See Also:

HDF5 Data Description Language syntax (DDL for HDF5)

University of lllinois at Urbana-Champaign 161

HDF5 Reference Manual

Tool Name: h5ls
Syntax:
h5l's [options] file [objects...]
Purpose:
Prints information about afile or dataset.
Description:
h5l s prints selected information about file objects in the specified format.
Optionsand Parameters:
-h or -? or --help
Print a usage message and exit.
-d or --dunp
Print the values of datasets.
-wN or --width=N
Set the number of columns of output.
-v or --verbose
Generate more verbose output.
-V or --version
Print version number and exit.
file
The file name may include a printf(3C) integer format such as %8®5d to open afile family.
objects
The names of zero or more objects about which information should be displayed. If agroup is mentioned then

information about each of its membersis displayed. If no object names are specified then information about all
of the objectsin the root group is displayed.

162 National Center for Supercomputing Applications

HDF5 Release 1.2

Tool Name: hbrepart
Syntax:
hSrepart [-v] [-V] [-[b] m N[g| nk]] source filedest file
Purpose:
Repartitions afile or family of files.
Description:

hsrepart splitsasinglefileinto afamily of files, joins afamily of filesinto asinglefile, or copies one family of
filesto another while changing the size of the family members. h5r epar t can also be used to copy asinglefileto a
single file with holes.

Sizes associated with the - b and - moptions may be suffixed with g for gigabytes, mfor megabytes, or k for kilobytes.
File family namesinclude an integer pri nt f format such as%a.

Optionsand Parameters:
-V

Produce verbose output.

Print a version number and exit.
-bN

The 1/0 block size, defaultsto 1kB
-mN

The destination member size or 1GB
source file

The name of the sourcefile
dest_file

The name of the destination files

University of lllinois at Urbana-Champaign 163

HDF5 Reference Manual

Tool Name: h5toh4

Syntax:

h5t oh4 -h

h5t oh4 h5file h4file

h5t oh4 h5file

h5t oh4 - m h5filel h5file2 h5file3 ...

Purpose:
Converts an HDF5 file into an HDF4 file.
Description:

h5t oh4 isan HDF5 utility which reads an HDF5 file, h5file, and converts all supported objects and pathways to
produce an HDF4 file, héfile. If h4file already exists, it will be replaced.

If only one file name is given, the name must end in . h5 and is assumed to represent the HDF5 input file. h5t oh4
replacesthe . h5 suffix with . hdf to form the name of the resulting HDF4 file and proceeds as above. If afile with
the name of the intended HDF4 file already exists, h5t oh4 exits with an error without changing the contents of any
file

The - moption alows multiple HDF5 file arguments. Each file name is treated the same as the single file name case
above.

The - h option causes the following syntax summary to be displayed:

h5toh4 file.h5 file. hdf
h5toh4 file.h5
h5toh4 -mfilel.h5 file2.h5 ...

The following HDF5 objects occurring in an HDF5 file are converted to HDF4 objectsin the HDF4 file:

« HDF5 group objects are converted into HDF4 V group objects. HDF5 hardlinks and softlinks pointing to
objects are converted to HDF4 V group references.

« HDF5 dataset objects of integer datatype are converted into HDF4 SDS objects. These datasets may have up
to 32 fixed dimensions. The slowest varying dimension may be extendable. 8-bit, 16-bit, and 32-hit integer
datatypes are supported.

« HDF5 dataset objects of floating point datatype are converted into HDF4 SDS objects. These datasets may
have up to 32 fixed dimensions. The dowest varying dimension may be extendable. 32-bit and 64-bit
floating point datatypes are supported.

» HDF5 dataset objects of single dimension and compound datatype are converted into HDF4 V data objects.
The length of that single dimension may be fixed or extendable. The members of the compound datatype are
constrained to be no more than rank 4.

» HDF5 dataset objects of single dimension and fixed length string datatype are converted into HDF4 Vdata
objects. The HDF4 Vdatais asingle field whose order is the length of the HDF5 string type. The number of
records of the Vdatais the length of the single dimension which may be fixed or extendable.

Other objects are not converted and are not recorded in the resulting h4file.

164 National Center for Supercomputing Applications

HDF5 Release 1.2

Attributes associated with any of the supported HDF5 objects are carried over to the HDF4 objects. Attributes may be
of integer, floating point, or fixed length string datatype and they may have up to 32 fixed dimensions.

All datatypes are converted to big-endian. Floating point datatypes are converted to |EEE format.
Optionsand Parameters:
-h

Displays a syntax summary.

Converts multiple HDF5 files to multiple HDF4 files.
h5file

The HDFS5 file to be converted.
hafile

The HDF4 file to be created.

Last modified: 29 April 1999

University of lllinois at Urbana-Champaign 165

HDF5 Reference Manual

166 National Center for Supercomputing Applications

HDF5 Release 1.2

HDF5 Glossary
Release 1.2, October 1999

Relationships among Terms

atomic datatype file access mode root group
attribute group selection
chunked layout member hyperslab
chunking root group serialization
compound datatype hard link soft link
contiguous layout hyperslab storage layout
dataset identifier chunked
dataspace link chunking
datatype hard contiguous

atomic soft super block

compound member variable-length datatype

enumeration name

named named datatype

opagque opaque datatype

variable-length path
enumeration datatype property list
file data transfer

group dataset access

path dataset creation

root group file access

super block file creation

atomic datatype
A datatype which cannot be decomposed into smaller units at the API level.
attribute
A small dataset that can be used to describe the nature and/or the intended usage of the object it is attached to.
chunked layout
The storage layout of a chunked dataset.
chunking

A storage layout where a dataset is partitioned into fixed-size multi-dimensional chunks. Chunking tends to improve

University of lllinois at Urbana-Champaign 167

HDF5 Reference Manual

performance and facilitates dataset extensibility.
compound datatype

A collection of one or more atomic types or small arrays of such types. Similar to a struct in C or acommon block in
Fortran.

contiguous layout

The storage layout of a dataset that is not chunked, so that the entire data portion of the dataset is stored in asingle
contiguous block.

datatransfer property list

The data transfer property list is used to control various aspects of the I/O, such as caching hints or collective I/0O
information.

dataset
A multi-dimensional array of data elements, together with supporting metadata.
dataset access property list
A property list containing information on how a dataset is to be accessed.
dataset creation property list
A property list containing information on how raw data is organized on disk and how the raw datais compressed.
dataspace

An object that describes the dimensionality of the dataarray. A dataspace is either aregular N-dimensional array of
data points, called a simple dataspace, or amore general collection of data points organized in another manner, called
acomplex dataspace.

datatype

An object that describes the storage format of the individual data points of a data set. There are two categories of
datatypes: atomic and compound datatypes. An atomic type is a type which cannot be decomposed into smaller units
at the API level. A compound datatype is a collection of one or more atomic types or small arrays of such types.

enumer ation datatype
A one-to-one mapping between a set of symbols and a set of integer values, and an order isimposed on the symbols
by their integer values. The symbols are passed between the application and library as character strings and all the
values for a particular enumeration datatype are of the same integer type, which is not necessarily a native type.

file
A container for storing grouped collections of multi-dimensional arrays containing scientific data.

file access mode

Determines whether an existing file will be overwritten, opened for read-only access, or opened for read/write access.
All newly created files are opened for both reading and writing.

file access property list

File access property lists are used to control different methods of performing 1/0 on files:

168 National Center for Supercomputing Applications

HDF5 Release 1.2

file creation property list
The property list used to control file metadata.

group

A structure containing zero or more HDF5 objects, together with supporting metadata. The two primary HDF5
objects are datasets and groups.

hard link
A direct association between a name and the object where both exist in a single HDF5 address space.
hyperdab

A portion of adataset. A hyperslab selection can be alogically contiguous collection of pointsin a dataspace or a
regular pattern of points or blocksin a dataspace.

identifier

A unique entity provided by the HDF5 library and used to access an HDF5 object, such as afile, goup, dataset,
datatype, etc.

link

An association between a name and the object in an HDF5 file group.
member

A group or dataset that isin another dataset, dataset A, isa member of dataset A.
name

A dlash-separated list of components that uniquely identifies an element of an HDF5 file. A name begins that begins
with a slash is an absolute name which is accessed beginning with the root group of the file; all other names are
relative names and the associated objects are accessed beginning with the current or specified group.

named datatype
A datatype that is named and stored in afile. Naming is permanent; a datatype cannot be changed after being named.
opaque datatype

A mechanism for describing data which cannot be otherwise described by HDF5. The only properties associated with
opaque types are asize in bytes and an ASCI| tag.

path
The dlash-separated list of components that forms the name uniquely identifying an element of an HDF5 file.
property list

A collection of name/value pairs that can be passed to other HDF5 functions to control features that are typically
unimportant or whose default values are usually used.

root group

The group that isthe entry point to the group graph in an HDF5 file. Every HDF5 file has exactly one root group.

University of lllinois at Urbana-Champaign 169

HDF5 Reference Manual

selection
A subset of adataset or a dataspace, up to the entire dataset or dataspace.
serialization

The flattening of an N-dimensional data object into a 1-dimensional object so that, for example, the data object can be
transmitted over the network as a 1-dimensional bitstream.

soft link

An indirect association between a name and an object in an HDF5 file group.
storage layout

The manner in which adataset is stored, either contiguous or chunked, in the HDF5 file.
super block

A block of data containing the information required to portably access HDF5 files on multiple platforms, followed by
information about the groups and datasets in the file. The super block contains information about the size of offsets,
lengths of objects, the number of entriesin group tables, and additional version information for the file.

variable-length datatype

A sequence of an existing datatype (atomic, variable-length (VL), or compound) which are not fixed in length from
one dataset location to another.

Last modified: 18 October 1999

170 National Center for Supercomputing Applications

