Mapping HDF4 Objects to HDF5 Objects

Mike Folk and the HDF Group
National Center for Supercomputing Applications, University of lllinois

February, 2000

Note to reader: We present here some guidelines on how to represent HDF4 objects in HDF5 and how to interpret
HDF5 objects as HDF4 objects. It is meant to help in implementing software that has to deal with both formats in
some consistent way, such as converting HDF4 files to HDF5, or adapting HDF4 tools to HDF5. It is very possible
that we have missed some things, and gotten some things wrong, so please send any comments, questions and
suggestions to the author @tfolk @ncsa.uiuc.edu

1 Introduction

All versions of NCSA HDF from HDF1 through HDF4 are essentially the same. The HDF4 format and library are
backwardly compatible with all earlier versions of HDF. HDF5 is different. Although it shares many features with
earlier versions of HDF and is intended for essentially the same uses, HDF5 is a completely new file format, and the
NCSA HDF5 API and library are also new and entirely different.

Many applications have been written for accessing, visualizing, and otherwise dealing with HDF4 objects and files.
Few have as yet been written for HDF5. A great deal of development time and expense could be saved if some
HDF4 applications could be adapted for dealing with HDF5 objects. The purpose of this paper is to facilitate such
adaptations by establishing standard ways to (a) represent HDF4 objects in HDF5, and (b) interpret HDBS objects
HDF4 objects.

Case (a) assumes that an application writes an HDF5 object intending for the object to be understood as a particular
HDF4 object. It may add extra attributes to the object to make it conform as fully as possible to the corresponding
HDF4 data model. Case (b) assumes that the HDF5 object was not created with HDF4 in mind, but nevertheless
conforms to one or more HDF4 objects. (In the context of this paper, the term "conform" means that the
characteristics of the HDF5 object are such that it would be meaningful and useful in to and HDF4 application. It
does not mean that the HDF5 object is exactly the same as a corresponding HDF4 object would be.)

It is not our intention to map all possible HDF4 objects into HDF5, and vice versa. In section 2 we identify those
HDF4 and HDF5 objects that will be mapped.

Section 2 describes the types of HDF4 and HDF5 objects that can be mapped, and identifies those for which
mappings are not recommended.

Section 3 covers case (a), how to explicitly represent HDF4 objects in HDF5. It describes the basic mappings that
are recommended, and and presents a rigorous set of rules to instantiate the mappings

Section 4 covers case (b), how to interpret HDF5 objects as if they were HDF4 objects.
Section 5 covers other considerations, such HDF4 reference numbers and file-level information.

In the following treatment, it is assumed that the reader is familiar with both HDF4 and HDF5 datatypes. The
following documentation is available to provide this background information:

e HDF4 documentation: http://hdf.ncsa.uiuc.edu/doc.htmi
» HDF5 documentation: http://hdf.ncsa.uiuc.edu/HDF5/
* HCR documentatioritp:/ftp.ncsa.uiuc.edu/HDF/pub/HCR/Doc/HCR-Definitions/

2 HDF4 objects and HDF5 objects
The HDF4 format and library support the following eight basic objects:

« Scientific dataset (SDS), a multidimensional array with dimension scales
» 8-bit raster image (RIS8), a 2-dimensional array of 8-bit pixels

1/9

o 24-hit raster image (RIS24), a 2-dimensional array of 24-bit pixels

* General raster image (GR), a 2-dimensional array of multi-component pixels
» 8-hit color lookup table (palette), a 256 by 3 array of 8-bit integers

« Table (Vdata), a sequence of records

« Annotation, a stream of text that can be attached to any object

» Group, a structure for grouping objects

The HDF4 format also includes "primitive" objects that are used to construct these basic objects within an HDF4
file. These primitive objects are identified by "tags" within an HDF4 file. Since most HDF4 primitive objects have
no counterpart in HDF5, nor are they accessed directly by most HDF4 users or applications, they will not be
considered here. Exceptions to this are the HDF4 palette and annotation, which will be considered.

HDF5 supports two primary objects:

« Dataset, a multidimensional array of records
» Group, a structure for grouping objects

HDF5 also supports "attributes”, which are (usually) small, named datasets that are associated with groups or
datasets. HDF5 supports other objects, such as named datatypes, but these have no counterparts in HDF4 and hence
will not be considered here.

3 Representing HDF4 objects in HDF5

In this section we provide detailed rules for representing HDF4 objects in HDF5. All eight basic HDF4 objects can
be represented in HDF5. Usually such representations require restrictions or extra metadata. In the table 1, a
mapping is shown from HDF4 objects to their HDF5 counterparts.

Table 1. Representing HDF4 objects in HDF5..

all

is

o

on the

HDF4 Corres- Restrictions

object ponding
HDF5
object

SDS Dataset HDF4 DIMENSIONLIST becomes an HDF5 attribute, if it exists. HDF4 dimension
scales become HDF5 datasets. Only the first dimension can be unlimited. Not
HDF4 storage properties are supported.

Image Dataset The HDF5 dataset must be 2-dimensional. If the number of pixel components is 1, an
HDF5 scalar datatype is used, otherwise a compound type is used. If a palette
present, HDF5 attributes are used to indicate this. Not all HDF4 storage propetties
are supported.

Palette Dataset The HDF5 dataset must be a 256 by 3 array of 8-bit integers. HDF5 attribute
describe this dataset as a standard 8-bit palette.

Vdata Dataset The HDF5 dataset must be 1-dimensonal, with a compound datatype equivalent to

(table) corresponding HDF4 field and record structure. Non-interleaved fields are not
permitted in HDF5. (This last restriction could be lifted if a structure is created to
store fields as separate datasets.)

Annotation Attribute HDF4ile annotations are attributes of the HDF5 root group. Holjjdct
annotations are attributes of the corresponding HDF5 object. Only annotations
HDF4 objects listed here are supported.
Vgroup Group

2/9

As indicated in table 1, in all cases except Vgroups and annotations HDF4 objects are mapped to HDF5 datasets
with simple dataspaces. Vgroups are mapped to HDF5 groups, and annotations are mapped to HDF5 attributes. In
the tables that follow we identify all components of an HDF4 object that an application is likely to use, and map it to
a corresponding HDF5 component. This mapping includes only persistent objects and components. Items that are
available only when accessing HDF4 files (e.g. file id and object index) are omitted.

All of the HDF5 objects except annotations have the following two optional attributes: HDF4_OBJECT_TYPE and
HDF4_REF_NUM. HDF4_OBJECT_TYPE can be used to tell applications that the object is compatible with an
HDF4 object. HDF4_REF_NUM is available for those applications that use reference numbers as identifiers for
HDF4 objects.

In HDF4, SDS, images, Vdatas and Vgroups have unigue names. In the mapping, we use a
"HDF4_OBJECT_NAME" attribute for this.

When translating an HDF4 object to HDF5, it may be possible to determine certain storage properties used for
storing the HDF4 object. For example, valid storage properties b&nare compression, chunking, and external
storage. If special storage properties are used in HDF4, and if those storage properties are available in HDF5, then
they should be used to store the corresponding HDF5 object. For instance, if an HDF4 SDS is chunked, then the
corresponding HDF5 datasets should be chunked in the same way. If it is hot possible to determine an HDF4
storage property, then of course the HDF5 can stored without applying that property.

3.1 The mapping tables

In the following sub-sections, each of the six mappings from table 1 is described in detail with a table containing
five columns:

« Column 1: a flag indicating whether the object is required ("R) in HDF5 in order for the object to conform
to the corresponding HDF4 object. "O" (optional) means that it is not required.

e Column 2: components from HDF4 that are to be mapped to HDF5. Items with HDF names are in bold
caps. Items in parentheses refer to information that is needed in the HDF5 version but do not have an
HDF4 counterpart.

* Column 3: the HDF5 object that is mapped to.

« Column 4: information about the datatype, value, etc. of the HDF5 object.

* Column 5: additional information on how to perform the mapping.

The HCR definition of HDF5 was used to identify the HDF4 items that are to be mapped. In the tables, we have
tried to used the HCR terminology whenever possible. For instance, in column 2, DATATYPE refers to an HDF4
datatype. Non-terminals are shown in angle brackets (e.g. <name>). Most non-terminals are defined in the HCR
documentation. Others that are used are:

e <string>: any legal quoted string

e <name>: any valid name

* <value>: any valid scalar value

» <HDF4 datatype>: any valid HDF4 datatype.
e <uintl6>: a value of type DFNT_UINT16

3.2 SDS

The SDS mapping requires two types of HDF5 dataset, one for the SDS array and one for dimension scales. For
each dimension, the creator of the HDF5 "SDS" has create a corresponding dimension dataset with a unique name.
In the HDF5 "SDS" an attribute "DIMENSIONLIST" is created consisting of pointers to each of the respective
dimension datasets.

HDF4 object HDF5 Datatype, value, etc. Notes
object or
component
R | <SDSArray> Dataset Objects with unlimited dimensions are
stored using chunked storage.

3/9

O | <SDS Dimension with Name> Dataset
O | (HDF4 object type) Attr HDF4_OBJECT _TYPE =
"SDS"
O | <File annotation> Attr <User-defined attribute in root
group.
<SDSArray>
R | NAME Attr HDF4_OBJECT_NAME =
<SDSArrayName>
R | DATATYPE Datatype <HDF4 datatype>
R | DIMENSIONRANK & Dataspace dimension sizes are also part of
DIMENSIONSIZE dimension information.
R | DIMENSIONLIST Attr HDF4_DIMENSIONLIST | Dimension names are <DimNamel,
= <DimName2>, ...,<DimNameN> as
{ptrl, pt2, ... ptrn} defined in HCR. See note 4.
R | (Data) Data How should "native" number types in
HDF4 be handled?
O | <User-defined attribute > Attr rank = 1; size is fixed. Global attribu
see note 3.
O | <SDS pre-defined attribute >
O | (Reference number) Attr HDF4_REF_NUM =
<uint16>
O | (Storage properties)
(0] Compression property Storage prop Use if supported in HDF5.
(0] Chunk property Storage prop Use if supported in HDF5.
(0] External storage Storage prap Use if supported in HDF5.
O | <User-defined attribute > Attr <name> = <value>* rank = 1; size is fixed. Global attribute
see note 3.
O | NAME Name <name>
O | DATATYPE Datatype <HDF4 datatype>
O | N_VALUES Num-values
O | DATA Data <value>*
O | <SDS pre-defined attribute > Same names, datatypes, etc., as the h
counterpart
O | LONGNAME Attr
O | UNIT Attr
O | FORMAT Attr
O | COORDINATE_SYSTEM Attr
O | RANGE Attr
O | FILL_VALUE Attr Note 1.
O | SCALE_FACTOR Attr
O | SCALE_FACTOR_ERROR Attr
O | ADD_OFFSET Attr
O | ADD_OFFSET_ERROR Attr
O | CALIBRATED_NT Attr

4/9

es:

df4

not

<SDS Dimension with Name> Dataset
R | NAME Name <name>
R | SIZE Dataspace rank=1. Only the first dimension can [
unlimited.
O | DATATYPE Datatype <HDF4 datatype>
O | DATA Data <value>*
O | <Dimension pre-defined These are dims of dim scale dataset,
attribute> SDS dataset
(0] LONGNAME Attr How about named vs. unnamed
dimensions?
(0] UNIT Attr
(0] FORMAT Attr
O | <User-defined attribute> Attr defined above

Note 1. The Fill-Value, if not explicitly defined, has default values. There are plans to support the Fill-Value feature
as an HDF5 storage property, but it is not yet been fully defined.

Note 2. Dimension scales are to be stored in HDF5 as separate datasets. Hence, all of the information in this
category is stored as part of the corresponding HDF5 dimension scale dataset. Dimension scale datasets are
identified by the attribute DIMENSIONLIST in the SDS dataset.

Note 3. Global SDS attributes should be stored as attributes to the HDF5 root group.

Note 4. Dimensions must have names. If a dimension in an SDS does not have a name, one must be created in

order to store the SDS in HDF5.

f

3.3 Vdata
Vdatas are mapped to HDF5 datasets of 1 dimensional extendable of compound datatype.
Vdata HDF5 Datatype, value, etc. Notes
object or
component
R | NAME Attr <name> = <string> <name> is the same as a normal Vdat
name
O | CLASS Attr HDF4_VDATA_CLASS =
<string>
O | INTERLACEMODE NA Full interlace always used in HDF5
version.
R | (Number of records) Dataspace Rank=1, curr_size = the number of]
records.
R | (Record) Compound
datatype
R | (Field) Member Compound datatype member
R NAME Name <name>
R DATATYPE Datatype <HDF4 datatype>
R ORDER Num-values What's the correct name for the size 0
the array?
(0] <User-defined attribute> Attr <FieldName>:<name> = | <FieldName> is value dfAME for the
<value> field.
R | (Data) Data
O | <User-defined attribute > Attr <name> = <value> rank = 1; size is fixed;
O | (HDF4 object type) Attr HDF4_OBJECT _TYPE =

5/9

"Vdata"

O | (Reference number) Attr HDF4_REF_NUM =
<uint16>
O | (External storage) Storage prap
3.4 Vgroup
Vgroups are mapped to HDF5 group.
Vgroup HDF5 Datatype, value, etc. Notes
object or
component
R | NAME Attr HDF4_OBJECT_NAME = | <name> is the same as a normal Vgrg
<string> name
O | CLASS Attr HDF4_VGROUP_CLASS
= <string>
R | <Vgroup member> Group HDF5 hard link
member
O | (HDF4 object type) Attr HDF4_OBJECT_TYPE="
Vgroup"
O | <User-defined attribute> Attr <name> = <value> rank = 1; size is fixed;
O | (Reference number) Attr REF_NUM = <uint16>

Note: HCR defines three additional items: MEMBERTYPE, MEMBERNAME, and PALETTEINDEX. It would be
awkward to represent these in HDF5 groups, and hence they have been omitted. If it is found that they are needed,

they will be added later.

3.5 Image

Raster images (8-bit, 24-bit, and general raster (GR)) are mapped to HDF5 datasets with simple 2D dataspaces.
Each element of the dataset is a one-dimensional array of pixel components.

Image HDF5 object | Datatype, value, etc. Notes
or
component
R | NAME Attr HDF4_OBJECT_NAME = <name> is the same as a GR nam
<string>
R | (Pixel type) Datatype If N_COMPS=1, use atomic, else
compound with 1 field(?)
R N_COMPS Num values order of field, if N COMPS > 1
R COMP_TYPE Atomic type <HDF4 datatype>
R | DIMENSIONSIZE Dataspace rank=2
R | (image array) data
O | <User-defined attribute> Attr <name> = <value> rank = 1; size is fixed;
O | (Class) Attr CLASS = "IMAGE"
O | (HDF4 object type) Attr (HDF4_OBJECT_TYPE="rast
er8", "raster24" or "GR") or
(CLASS = "IMAGE")
O | (Reference number) Attr HDF4_REF_NUM = <uint16>
O | <Ilmage palette> IMAGE_PALETTE = {ptrl, | each pointer points to a palette
pt2, ... ptrn}
O | (Image subclass) Attr IMAGE_SUBCLASS = Indicates a palette is to be used
"IMAGE_INDEXED"
O | (Storage properties)
(0] Compression Storage prop If supported in HDF5. JPEG an

6/9

1%

RLE are not supported in HDF5.

(0] Chunking Storage prop

0] External storage Storage prof

Note: The HDF5 image conventions support additional information that is not supported in HDF4, such as image
transparency.

3.6 Palette
Palettes are mapped to HDF5 datasets that are 2-D arrays of bytes with dimensions 256 x 3.
Palette HDF5 object | Datatype, value, etc. Notes
or
component
R | (Datatype) Atomic <uint8>
datatype
R | (Data) Data
R | (Rank & dimension sizes) Dataspace rank=2, dimension size = 256x3 (See
note 2.)
R | (HDF4 object type) Attr HDF4_OBJECT_TYPE="
palette" or
(CLASS ="PALETTE"
and PAL_TYPE =
"STANDARDS8")
O | <User-defined attribute> Attr <name> = <value> rank = 1; size is fixed;
O | (Reference number) Attr HDF4_REF_NUM =
<uint16>
O | (Class) Attr CLASS ="PALETTE"
O | (Palette type) Attr PAL_TYPE =
"STANDARDS"

Note 1. The HDF5 palette conventions support additional information that is not supported in HDF4, such as color
model and range index.

Note 2: The HDF5 palette specification requires that a palette dataset have dimemsivies(by
ncomponents) , wherehentries 'is the number of colors (in this case 256) agdmponents ' is the number
of values per color (in this case 3).

3.7 Annotation

Annotations are mapped to HDF5 attributes. There are four kinds of HDF4 annotations: file labels and descriptions,
and object labels and descriptions. File annotations will be attributes of the root group. Although object annotations
can be associated with any tag/ref supported by HDF4, this specification supports only object annotations that are
associated with HDF&DS, Vgroups, Vdatas, images, and palettes. Annotations will have the following HDF5
attribute names: FILE_LABEL<n>, FILE_DESCRIPTION<n>, OBJECT_LABEL<n>,

OBJECT_DESCRIPTION<n>, where <n> is an integer used to distinguish one annotation from another. For
instance, if an object had two object labels, the corresponding attribute names would be OBJECT_LABEL1 and
OBJECT_LABELZ2.

7/9

4 Interpreting HDF5 objects when there is not explicit metadata
What if an HDF4-based application encounters and object in an HDF5 file that does not contain the metadata
described in the previous section? In this case, three possible outcomes can occur:

1. No HDF4 counterpart exists

2. The ambiguous case: there are more than one possible HDF4 counterparts to the HDF5 object

3. The HDF5 object has an unambiguous corresponding HDF4 counterpart

4.1 Case 1: No HDF4 counterpart

In the previous section, we indicated that HDF5 datasets, groups, and attributes might have HDF4 counterparts. All
other HDF5 objects should be assumed not to have an HDF4 counterpart. For instance, the HDF5 "named
datatype" object has no HDF4 counterpart.

But certain HDF5 datasets, attributes and groups also have no HDF4 counterpart, including:

« Any HDF5 dataset or attribute whose datatype is not equivalent to an HDF4 datatype. HDF4 datatypes
include unsigned and signed 8-, 16-, 32- and 64-bit integers, and 32- and 64-bit IEEE floats.

« Datasets with datatypes of multiplicity greater than 1, unless they map to Vdatas.

» Any HDF5 object whose size is greater than 2°31-1.

« Any HDF5 attribute that is associated with an HDF5 dataset whose HDF4 counterpart is a palette.

* Any HDF5 soft link that does not point to a corresponding HDF4-compatible object.

4.2 Case 2: The ambiguous case

There are a number of cases where an HDF4 object could map to any of a number of HDF5 objects. Here are some
such cases.

4.2.1 HDF4 "datasets"

According to Table 1 HDF5 datasets can repreS&8, images, palettes, and Vdatas. This can lead to certain
ambiguities. For example, a 2-D HDF5 dataset of some HDF4-compatible datatype could be converted either to an
HDF4 SDS, GR raster, or Vdata. We propose the following convention to resolve this ambiguous case:

Unless there is metadata to indicate otherwise, an HDF5 datasets with
an HDF4-compatible scalar datatype is assumed to be an HDF4 SDS.

4.2.2 The root group

Another ambiguous case is the HDF5 root group, which has no precise counterpart in HDF4. The HDF5 root group
could always be mapped to a corresponding HDF4 Vgroup, with all HDF4 objects descending from that group, but
this might in some cases create a view that was unnatural for a particular application. It might be more natural, for
instance, to ignore the root group and to treat all of its attributes as HDF4 file annotations. Therefore, with respect
to the root group, we propose:

An application can treat an HDF5 root group in whatever way best fits with its view of HDF4 files.

4.2.3 Strings

HDF4 does not have a "string" datatype, so it is common to use a 1-D array, or a Vdata field of order greater than 1
to hold data that is meant to represent a character string. As a general rule,

An HDF4 structure that is intended to be a string, should map to the HDF5 string datatype.

There will be cases when it is not possible to know whether an HDF4 data structure was meant to be a string. In
such cases, it is left to the application to choose a corresponding HDF5 representation.

8/9

4.3 Case 3: The mapping is unambiguous

Any HDF5 dataset that is not covered in case 1 or case 2 should map to and HDF4 SDS or Vdata. HDF5 groups
map to Vgroups.

Any HDF5 dataset or group attribute becomes an attribute to the corresponding HDF4 object, if the object supports
attributes. Otherwise it is interpreted as an annotation for the corresponding HDF4 object.

5 Other considerations

Most applications that deal with HDF4 files deal with the eight basic objects, but there is other information that
sometimes must be considered.

5.1.1 Dealing with HDF4 reference numbers

Reference numbers should not, in general, be used by applications as identifiers for HDF4 objects. Nevertheless,
since some applications use reference numbers in this way, it would be useful to have an unambiguous way to store
equivalent identifiers with HDF5 objects. Hence, if an application must use a reference number in connection with
an HDF5 object we propose using an attribl®EF_NUM" of type uint180 indicate that the corresponding object is

to be interpreted as having the given reference number. It is the responsibility of the application to provide a method
of assigning valid values for such reference numbers.

5.1.2 File-level information
HDF4 and HDF5 both have certain file-level information. This includes information that is stored in the file, such

as version number, and information about the file, such as its size. It is recommended that the following types of file
characteristics be treated as indicated:

* Version number: the library version number of the HDF5 file should be ignored.

» File size: HDF5 files that are larger than 2731-1 cannot be fully represented in HDF4. It is the
responsibility of the application to decide how to deal with HDF5 files that are larger than 2°31-1.

» HDF5 user-defined header: to be treated as an HDF4 file description.

» HDFS5 offset datatype and other datatypes: should be ignored.

9/9

