

HDF5 Single-writer/Multiple-reader User’s Guide

This document describes the HDF5 Library’s single-writer/multiple-reader feature and
describes how to use the feature. The feature allows concurrent access of HDF5 files by
writer and reader processes.

http://www.HDFGroup.org

http://www.hdfgroup.org/

Copyright 2013-16 by The HDF Group.

All rights reserved.

This document is part of HDF5. For HDF5 copyright and license information, see this page on The HDF
Group website: http://www.hdfgroup.org/HDF5/doc/Copyright.html.

Page 2 of 19

http://www.hdfgroup.org/HDF5/doc/Copyright.html

HDF5 Single-writer/Multiple-reader User’s Guide Contents

Contents

1. Introduction .. 4
1.1. POSIX-compliant Requirement .. 4

2. The SWMR Design ... 5

3. SWMR Scope and Limitations ... 6

4. The SWMR-enabled HDF5 Library ... 7
4.1. Getting the Source ... 7
4.2. Building the Library .. 7
4.3. Testing SWMR .. 7

5. The Programming Model .. 9
5.1. Setting up SWMR Access to an HDF5 File .. 9
5.2. H5Dflush and H5Drefresh .. 10

5.2.1. H5Dflush ... 10
5.2.2. H5Drefresh ... 11

6. SWMR Examples ... 12
6.1. Appending a Single Chunk to a Dataset ... 12

6.1.1. Description of use_append_chunk... 12
6.1.2. Running use_append_chunk .. 13

6.2. Appending a Hyperslab of Multiple Chunks ... 14
6.2.1. Description of use_append_mchunk ... 14
6.2.2. Running use_append_mchunk ... 15

6.3. Appending n-1 Dimensional Planes ... 16
6.3.1. Description ... 17
6.3.2. Running the Program ... 17

6.4. The h5watch Tool ... 17
6.4.1. Description ... 17
6.4.2. Running h5watch .. 17

7. References .. 19

Page 3 of 19

HDF5 Single-writer/Multiple-reader User’s Guide Introduction

1. Introduction
Versions of the HDF5 Library prior to the 1.10.0 release do not support a concurrent read from an HDF5
file while it is being written to without explicit coordination between the processes. This limitation
makes inspecting data while it is being collected impossible at the file level.

The primary reason for this lack of concurrent read/write access is the complexity of the HDF5 file
format combined with the presence of a caching layer in the library. The internal structure of an HDF5
file includes internal file addresses. It is possible that a file metadata object can be flushed to the disk
before other objects it references are flushed. This would create a transiently invalid file. A reader that
opens this partially written file could attempt to resolve the invalid file address and read garbage instead
of the expected file object. Other considerations, such as free space recycling in the file, are also
problematic under concurrent access.

In order to address this issue, HDF5 developers have implemented a mechanism to allow for concurrent
access by a single writer process with any number of reader processes. This data access pattern is
known as single-writer/multiple-reader or SWMR for short.

Some of the HDF5 Library’s internal structures were enhanced to be SWMR-safe, and tests were added
to validate the SWMR functionality.

While the general SWMR feature is far from completion, the HDF5 SWMR implementation described in
this document supports a particular SWMR access pattern that might be of interest to many application
developers: a writer process can append data to the datasets in an HDF5 file while several reader
processes can concurrently read the new data from the file. No communications between the processes
and no file locking are required. The processes can run on the same or on different platforms.

This document was written for application developers who might be interested in working with SWMR
and providing feedback to the HDF5 development team.

1.1. POSIX-compliant Requirement
The HDF5 file that is accessed by SWMR HDF5 applications must be located on a file system that
complies with the POSIX write() semantics, and the writer and reader processes must follow the SWMR
programming model to assure correct results.

Page 4 of 19

HDF5 Single-writer/Multiple-reader User’s Guide The SWMR Design

2. The SWMR Design
To solve the difficulties involved with allowing concurrent access to write and read processes, HDF5
developers used an approach that is lock-free and that does not require any communication between
processes.

This approach is based on the assumption that the HDF5 file resides on a file system compliant with
POSIX write semantics. The ordering feature of the POSIX write semantics is critical for the
implementation: POSIX I/O writes must be performed in a sequentially consistent manner.

These semantics apply to any processes that access the file from any location.

The HDF5 SWMR feature was tested on Linux clusters with GPFS and Lustre, Linux systems with ext3/4,
FreeBSD with UFS2, OS X with HFS+, and Windows with NTFS and GPFS. The SWMR feature does not
work on network file systems (NFS, SMB/Windows file shares, and so on) since write ordering may not
be preserved on those systems.

The HDF5 1.10.0 release includes simple SWMR test programs that attempt to expose deficiencies in a
file system that prevents proper SWMR operation. Those tests are described in the “Testing SWMR”
section.

For more information on SWMR-safe design, see the “HDF5 SWMR Feature Design and Semantics”
document. [1]

Word of Caution: Please note that HDF5 files created with SWMR access cannot not be read by the tools
based on the HDF5 1.8 libraries due to the file format changes in the HDF5 1.10 version of the library. In
particular, the library uses new chunk indexing schemas when creating chunked datasets. New schemas
use a checksum on metadata information allowing the library to verify the validity of a metadata item
such as a B-tree node. This is critical for the SWMR implementation to assure that a SWMR reader
application will always see consistent metadata created by the SWMR writer.

One can use the h5repack or h5format_convert tools to convert an HDF5 file created by the HDF5
Library version 1.10.0 to be accessible by the HDF5 Library version 1.8. The h5repack tool rewrites the
whole file; h5format_convert modifies the file “in place” by rewriting only metadata information
according to the 1.8 format while leaving raw data intact. [2]

An application built with the HDF5 Library 1.10.0 can always read and modify files created by all
previous versions of HDF5.

Page 5 of 19

https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-SWMR-20130629.v5.2.pdf
https://www.hdfgroup.org/HDF5/doc/RM/Tools.html%23Tools-Repack
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/h5format_convert.htm

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Scope and Limitations

3. SWMR Scope and Limitations
The current SWMR implementation scope is as follows:

1. The writer process is only allowed to modify raw data of existing datasets by:
a. Appending data along any unlimited dimension.
b. Modifying existing data.

The following operations are not allowed:

2. The writer is not allowed to add any new objects to the file such as groups, datasets, links,
committed datatypes, and attributes.
3. The writer is not allowed to delete HDF5 objects such as groups, datasets, links, committed
datatypes, and attributes.
4. The writer is not allowed to modify or append to any data items containing variable-size
datatypes (including string and region references datatypes).
5. File space recycling is not allowed. As a result, the sizes of a file modified by a SWMR writer may
be larger than if a non-SWMR writer modified it.

It is the user’s responsibility to follow the SWMR scope since the HDF5 Library does not enforce the
scope.

Page 6 of 19

HDF5 Single-writer/Multiple-reader User’s Guide The SWMR-enabled HDF5 Library

4. The SWMR-enabled HDF5 Library
The purpose of this chapter is to describe what must be installed and configured so that the SWMR
feature can be used.

4.1. Getting the Source
The SWMR feature is available in HDF5 version 1.10.0 and later.

4.2. Building the Library
No special configuration options are required to build the HDF5 library with the SWMR functionality. The
usual configure, make, make check, and make install process should be followed for building
the library. Please see the release_docs/INSTALL file in the source distribution for more
information about building and installing the HDF5 Library.

The HDF5 SWMR implementation is currently only supported on Unix-like systems. The implementation
is not being tested on Windows systems at this time.

4.3. Testing SWMR
SWMR functionality is tested as a part of the make check build step as described below:

• POSIX atomicity tests test/atomic_writer.c and test/atomic_reader.c check to
confirm if a file system supports POSIX atomicity. Information on how to run the POSIX tests can
be found in the test/AtomicWriterReader.txt file.

• The metadata cache test exercises the flush ordering functionality required for SWMR. See the
test/swmr*.c files.

• Basic SWMR operation between processes is tested via a shell script named testswmr.sh. This
script invokes a writer and some readers which then operate on a central file using the SWMR
access pattern.

• The programs test/use_append_chunk and test/use_append_mchunk append data to
datasets with unlimited dimensions and exercise the main functionality of the current SWMR
implementation. The programs would be useful to anyone who would like to start using the
SWMR feature in their HDF5 applications and who needs to know how to create writer and
reader applications. The programs are described in detail in the “SWMR Examples” chapter
beginning on page 12.

Page 7 of 19

HDF5 Single-writer/Multiple-reader User’s Guide The SWMR-enabled HDF5 Library

• A test script test_usecases.sh is installed in the same directory as the programs and is used
to run the programs during make check.

Output from the tests is displayed on stdout and stderr like all other HDF5 test results. No special log
files are created.

Page 8 of 19

HDF5 Single-writer/Multiple-reader User’s Guide The Programming Model

5. The Programming Model
Our main consideration in this stage of the implementation is appending data to chunked datasets with
unlimited dimensions. We anticipate this to be the most common scenario where SWMR semantics are
needed. Any number of dimensions (up to the limit of the library) is supported, and any of those
dimensions can be unlimited in size. No new file objects can be created under SWMR operation.
Variable-length and reference datatypes are not supported.

The current SWMR implementation does not support data updates of the fixed-size chunked datasets
due to a chunk indexing method that has not been fully converted and tested with SWMR-safe
semantics. The work-around is to declare one dimension to be unlimited using H5S_UNLIMITED.

Note that applications that want to take advantage of the SWMR feature must follow the SWMR
programming model to assure correct results. The model is described below.

5.1. Setting up SWMR Access to an HDF5 File
Go through the sequence of steps below to use the SWMR data access pattern:

1. Set up the file
a. Create the HDF5 file using either one of the following ways:

i. Create the file with the latest file format:

H5P_set_libver_bounds(fapl,H5F_LIBVER_LATEST,H5F_LIBVER_LATEST);
fid = H5Fcreate(FILE, H5F_ACC_TRUNC, fcpl, fapl);

ii. Create the file specifying SWMR access:

fid = H5Fcreate(FILE, H5F_ACC_TRUNC|H5F_ACC_SWMR_WRITE, fcpl, H5P_DEFAULT);

b. Create any file objects such as datasets and groups that are required for data storage.
c. Close the file.

2. Start a writer process

a. Open the file by calling H5Fopen using the H5F_ACC_SWMR_WRITE flag and begin writing to
the dataset. Here is a sample:

fid = H5Fopen(FILE, H5F_ACC_RDWR | H5F_ACC_SWMR_WRITE, H5P_DEFAULT);

b. Use H5Dflush periodically to flush the data for a particular dataset to the file. New data will
appear as file objects are evicted/flushed from the cache (see page 10).

3. Start at least one reader process

a. Open the file by calling H5Fopen using the H5F_ACC_SWMR_READ flag and begin reading
data from the dataset. Here is a sample:

Page 9 of 19

HDF5 Single-writer/Multiple-reader User’s Guide The Programming Model

fid = H5Fopen(FILE, H5F_ACC_RDONLY | H5F_ACC_SWMR_READ, H5P_DEFAULT);

b. Poll the dataset. SWMR presumes no communication between processes. Newly appended
data is checked for via polling the dataset. Polling is done by calling H5Drefresh on the
dataset, checking the number of stored elements in each dimension of interest (via H5S*
extent calls), and comparing this with the previous number of elements (see page 11). When
the size has been seen to change, the new data is read from the file using the usual H5Dread
calls.

4. Stop the writer process

a. The writer process closes the file.

5. Stop Reader(s)
a. Each reader process closes the file.

Note that after step 1, the file can be opened by the writer and reader(s) in any order. In other words,
steps 2 and 3 can occur in any order.

If a reader process opens a file before a writer process, the writer will not be able to modify the file due
to the lock the reader puts on the file. The lock can be shared with any other reader thus allowing
multiple readers. It is the user’s responsibility to start the writer and readers in the correct order.

If a writer opens the file first, it locks the file and modifies the file’s superblock to indicate that the file is
open for SWMR write access. After the superblock is flushed to the disk, the writer releases the lock,
and any reader can open the file. Any other writer will fail to open the file due to the SWMR write access
flag in the file superblock. For more information, see “File Locking in HDF5 1.10”. [5]

Please remember that file locking is not used for coordinating SWMR writer and readers. It is used only
to protect an HD5 file from accidental access by another application that may corrupt the data.

5.2. H5Dflush and H5Drefresh
Two new APIs were introduced in HDF5 1.10.0 to allow applications to flush and refresh cached
metadata in order for readers to see new data in the file. This section provides a short description of
each function.

5.2.1. H5Dflush

Signature: herr_t H5Dflush(hid_t dset_id)

Purpose: Flushes all data and metadata associated with a dataset.

Page 10 of 19

HDF5 Single-writer/Multiple-reader User’s Guide The Programming Model

Description: The function flushes the specified dataset’s metadata from the metadata cache to the file
and all raw data buffers associated with the dataset to the file. If the dataset is chunked, raw data
chunks are written to the file when this call is issued.

Parameters:
 hid_t dset_id IN: Dataset identifier

Returns: Non-negative on success; negative on failure.

5.2.2. H5Drefresh

Signature: herr_t H5Drefresh(hid_t dset_id)

Purpose: Refreshes metadata items associated with a dataset in a metadata cache.

Description: The function refreshes all metadata items associated with the dataset in the metadata
cache.

Parameters:
 hid_t dset_id IN: Dataset identifier

Returns: Non-negative on success; negative on failure.

Page 11 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

6. SWMR Examples
The HDF5 1.10 source distribution contains two example programs for the SWMR access feature:
test/use_append_chunk and test/use_append_mchunk. Each example consists of a writer and a
reader(s) that use the SWMR programming model. The writer adds data along an unlimited dimension,
and the reader(s) reads newly appended data. These programs are described below.

HDF5 version 1.10.0 and later also has a new tool called h5watch which is located in the
hl/tools/h5watch directory. The tool is an example of a polling application and is described in “The
h5watch Tool” section on page 17.

6.1. Appending a Single Chunk to a Dataset

6.1.1. Description of use_append_chunk

The program use_append_chunk appends a single chunk of raw data to a dataset along an unlimited
dimension within a pre-created file and reads the new data back.

The program first creates one 3-dimensional dataset using chunked storage. Each chunk is a
(1,chunksize,chunksize) square. The dataset dimensions are
(unlimited,chunksize,chunksize). The datatype is a 2 byte integer. No data is written to a
dataset; in other words, the size of the first current dimension is 0.

The writer first appends planes, each of (1,chunksize,chunksize), to the dataset. Next, it fills
each plane with a plane number n, and then it writes new plane at the nth plane. The writer increases
the plane number and repeats until the first dimension becomes chunksize long. The end dataset is a
chunksize3 cube as shown in the figure below.

Page 12 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

Figure 1. Writer fills cube with planes along the slowest changing dimension

The reader is a separate process running concurrently with the writer. It reads planes from the dataset
as the dataset is growing. When it detects that the size of the unlimited dimension increases, the reader
will read in the new planes, one by one, and verify the correctness of the data. The nth plane should
contain all “n” (all values = n). When the unlimited dimension grows to the chunksize, which is the
expected end of data, the reader exits.

6.1.2. Running use_append_chunk

The simplest way to run the program is without specifying any arguments:

$ use_append_chunk

The program first creates a skeleton dataset (0,256,256) of 2 byte integers. Next, it forks off a process,
which becomes the reader process to read planes from the dataset, while the original process continues
as the writer process to append planes onto the dataset.

Other possible options:

1. -z specifies a different chunk size. The default chunk size value is 256.

$ use_append_chunk -z 1024

The command above uses (1,1024,1024) chunks to produce a 10243 cube, about 2 GB in size.

2. -f filename specifies different file name

$ use_append_chunk -f /gpfs/tmp/append_data.h5

chunksize

c
h
u
n
k
s
i
z
e

Page 13 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

The data file is /gpfs/tmp/append_data.h5. This allows two independent processes in separate
compute nodes to access the HDF5 file on the shared /gpfs file system.

3. -l option launches only the reader or writer process.

$ use_append_chunk -f /gpfs/tmp/append_data.h5 -l w # in node X
$ use_append_chunk -f /gpfs/tmp/append_data.h5 -l r # in node Y

Valid values for option are w for writer and r for reader.

In node X, launch the writer process to create the data file and append to it. In node Y, launch
the read process to read the data file. Note that one needs to time the read process to start
AFTER the write process has created the skeleton data file. Otherwise, the reader will encounter
errors such as data file not found.

4. -n option specifies the number of planes to write or read. The default value is the same as the
chunk size as specified by option -z.

$ use_append_chunk -n 1000

The command above writes 1000 planes in one HDF5 I/O call.

5. -s option enables the SWMR file access mode. The default value is yes.

$ use_append_chunk -s 0

The command above opens the HDF5 data file without the SWMR access mode (0 means off).
This likely will result in error. This option is provided for users to see the effect of the needed
SWMR access mode for concurrent access.

6.2. Appending a Hyperslab of Multiple Chunks

6.2.1. Description of use_append_mchunk

The program use_append_mchunk appends a hyperslab that spans several chunks of a dataset with
unlimited dimensions within a pre-created file and reads the new data back.

The program first creates one 3-dimensional dataset using chunked storage. Each chunk is a
(1,chunksize,chunksize) square. The dataset dimensions are
(unlimited,2*chunksize,2*chunksize). The datatype is a 2 byte integer. Therefore, each plane
consists of 4 chunks. No data is written to a dataset; in other words, the size of the first current
dimension is 0.

Page 14 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

The writer first appends planes, each of (1,2*chunksize,2*chunksize) to the dataset. Next, it fills
each plane with a plane number n and then writes the new plane at the nth plane. The writer increases
the plane number and repeats until the first dimension becomes 2*chunksize long. The end dataset
is a (2*chunksize)3 cube as shown in the figure below.

Figure 2. Writer fills cube with planes along the slowest changing dimension
Each plane consists of four chunks.

The reader is a separate process running concurrently with the writer. It reads planes from the dataset
as the dataset is growing. When it detects that the size of the unlimited dimension increases, the reader
will read in the new planes, one by one, and verify the correctness of the data. The nth plane should
contain all “n” (all values = n). When the unlimited dimension grows to 2*chunksize, which is the
expected end of data, the reader exits.

6.2.2. Running use_append_mchunk

The simplest way to run the program is without specifying any arguments:

$ use_append_mchunk

The program creates a skeleton dataset (0,512,512) of 2 byte integers. Next, it forks off a process, which
becomes the reader process to read planes from the dataset, while the original process continues as the
writer process to append planes onto the dataset.

Other possible options:

1. -z specifies different chunk size. The default chunk size value is 256.

$ use_append_mchunk -z 512

2*chunksize

2
*
c
h
u
n
k
s
i
z
e

Page 15 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

The command above uses (1,512,512) chunks to produce a 10243 cube, about 2 GB size.

2. -f filename specifies different file name

$ use_append_mchunk -f /gpfs/tmp/append_data.h5

The data file is /gpfs/tmp/append_data.h5. This allows two independent processes in separate
compute nodes to access the HDF5 file on the shared /gpfs file system.

3. -l option launches only the reader or writer process.

$ use_append_mchunk -f /gpfs/tmp/append_data.h5 -l w # in node X
$ use_append_mchunk -f /gpfs/tmp/append_data.h5 -l r # in node Y

Valid values for option are w for writer and r for reader.

In node X, launch the writer process to create the data file and append to it. In node Y, launch
the read process to read the data file. Note that one needs to time the read process to start
AFTER the write process has created the skeleton data file. Otherwise, the reader will encounter
errors such as data file not found.

4. -n option specifies the number of planes to write or read. The default value is same as the chunk
size as specified by option -z.

$ use_append_mchunk -n 1000

The command above writes 1000 planes in one HDF5 I/O call.

5. -s option: use SWMR file access mode or not. The default value is yes.

 $ use_append_mchunk -s 0

The command above opens the HDF5 data file without the SWMR access mode (0 means off).
This likely will result in error. This option is provided for users to see the effect of the needed
SWMR access mode for concurrent access.

6.3. Appending n-1 Dimensional Planes
Both use_append_chunk and use_append_mchunk can be used to append n-1 dimensional planes.

Page 16 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

6.3.1. Description

The programs use_append_chunk and use_append_mchunk append n-1 dimensional planes or
regions to a chunked dataset where the data does not fill the chunk. This means the chunks have
multiple planes, and when a plane is written, only part of each chunk is written. This use case is achieved
by extending the previous examples by defining the chunks to have the slowest changing dimension size
greater than 1. The -y option is implemented for both use_append_chunk and
use_append_mchunk.

6.3.2. Running the Program

The simplest way to run the program use_append_mchunk is:

$ use_append_mchunk –y 5

The program creates a skeleton dataset (0,512,512) of 2 byte integers with chunk sizes (5,512,512).
Next, it forks off a process, which becomes the reader process to read one plane at a time, while the
original process continues as the writer process to append one plane at a time.

Other possible options will work as in the previous examples.

6.4. The h5watch Tool

6.4.1. Description

The h5watch tool allows a user to monitor the growth of a dataset written by an HDF5 application. It
prints out the new elements whenever the application extends the size and adds data to that dataset.

h5watch polls the specified dataset periodically for changes in its dimension sizes. If at least one of the
dataset's dimension sizes has increased, h5watch prints out the new appended data. For compound
datasets, the tool has an option to print new data for the specified fields in the compound datatype.
h5watch can be used only on chunked datasets with unlimited dimensions. The application that writes
the file needs to ensure that changes to the dataset are flushed to the file with H5Dflush.

6.4.2. Running h5watch

To run the tool, use the following command:

Page 17 of 19

HDF5 Single-writer/Multiple-reader User’s Guide SWMR Examples

$ h5watch Path_to_dataset

Path_to_dataset consists of two parts: the path to the HDF5 file and the path to the dataset within
the file. For example, to monitor dataset A in the file /home/user/file.h5, the argument
path_to_dataset is /home/user/file.h5/A.

The following are other useful options for h5watch:

1. --help prints help message

$ h5watch --help

2. –polling=N sets the polling interval to N (in seconds) when the dataset will be checked for
changes in dimension sizes. The default interval for polling is 1.

$ h5watch –polling=5 ./myfile.h5/mygroup/mydataset

With the command-line above, the tool will read data every 5 seconds from the dataset
/mygroup/mydataset in the file ./myfile.h5.

For more options, check the tool’s help message.

Page 18 of 19

HDF5 Single-writer/Multiple-reader User’s Guide References

7. References

1. “HDF5 Single-writer/Multiple-reader Feature Design and Semantics” at
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-SWMR-
20130629.v5.2.pdf.

2. More information on the h5repack tool can be found on The HDF Group website at
https://www.hdfgroup.org/HDF5/doc/RM/Tools.html#Tools-Repack.

3. More information on the h5format_convert tool can be found on The HDF Group website at
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/h5format_convert.htm.

4. More information on the h5watch tool can be found on The HDF Group website at
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/h5watch.htm.

5. “Design: File Locking under SWMR – Semantics, Programming Model, and Implementation” at
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-FileLocking.pdf.

Page 19 of 19

https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-SWMR-20130629.v5.2.pdf
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-SWMR-20130629.v5.2.pdf
https://www.hdfgroup.org/HDF5/doc/RM/Tools.html%23Tools-Repack
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/h5format_convert.htm
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/h5watch.htm
https://www.hdfgroup.org/HDF5/docNewFeatures/SWMR/Design-HDF5-FileLocking.pdf

	1. Introduction
	1.1. POSIX-compliant Requirement

	2. The SWMR Design
	3. SWMR Scope and Limitations
	4. The SWMR-enabled HDF5 Library
	4.1. Getting the Source
	4.2. Building the Library
	4.3. Testing SWMR

	5. The Programming Model
	5.1. Setting up SWMR Access to an HDF5 File
	5.2. H5Dflush and H5Drefresh
	5.2.1. H5Dflush
	5.2.2. H5Drefresh

	6. SWMR Examples
	6.1. Appending a Single Chunk to a Dataset
	6.1.1. Description of use_append_chunk
	6.1.2. Running use_append_chunk

	6.2. Appending a Hyperslab of Multiple Chunks
	6.2.1. Description of use_append_mchunk
	6.2.2. Running use_append_mchunk

	6.3. Appending n-1 Dimensional Planes
	6.3.1. Description
	6.3.2. Running the Program

	6.4. The h5watch Tool
	6.4.1. Description
	6.4.2. Running h5watch

	7. References

